Decision-Making Framework for the Future Grid

Tanguy Hubert & Santiago Grijalva – Georgia Institute of Technology

Research Objectives

Develop and demonstrate a decision-making framework for the future grid that:

- 1. Ensures that the **goals** of the future grid can be met
- 2. Covers all relevant decision scales (including spatial and temporal scales)
- 3. Addresses decision complexity through layered abstractions
- 4. Uncovers the gaps and technological needs as the industry evolves into the future grid

Importance for the Future Grid

Increased uncertainty and complexity:

- Emerging system behavior at new temporal scales
- New spatial scales requiring diverse granularity
- Massive amounts of heterogeneous data
- Shift from instantaneous deterministic optimization to complex stochastic scheduling
- Consideration of consumer behavior...
 - > Decision processes need to be revisited

Contribution to DOE Broader Objectives

- 1. Descriptive dimension illustrates why decision makers could make better decisions once DOE objectives for the future grid are realized.
- 2. Normative dimension demonstrates how decisions should be made so that DOE objectives are realized.
- 3. Prescriptive dimension provides concrete guidance on how decision making entities should act as we are transitioning to the future grid.

