

Coupling Renewable Energy Supply with Deferrable Demand Anthony Papavasiliou, Shmuel S. Oren, Department of Industrial Engineering and Operations Research, U.C. Berkeley

Results						
	Mul	ti-area	study	/		
		Deep-Simple	e No Wind	Moderate	Deep	[
	RE daily waste (MWh)	100	0 0	890	2,186	ĺ
	Cost (\$M)	5.012	2 11.508	9.363	7.481	
Δ Cost (\$) Δ Cost (\$) 3+5 30% peak	Capacity (MW)	20,744	4 26,377	26,068	26,068	
56,795 69,309 1.09 1.33	Daily savings (\$)	38,628	8 104,321	198,199	188,735	
3+5 30% peak	Forecast gains $(\%)$	32.4	4 35.4	41.9	46.7	
Total Slow Total 17,716 7,840 17,827	<u></u>		1			1
ir 3+5 30% peak 8 8,783 8,753	Deman	id resp	onse s	study		
						_
		Min load	Fuel	Startup	Total	
ect	No wind	1,382,156	7,549,491	-	9,098,537	
ECI	Centralized Moderate	1,246,552	7,364,815		8,677,857	
	Bids Moderate	1,317,383	7,471,363		8,888,866	
· · · · · · · · · · · · · · · · · · ·	Coupled Moderate	1,330,130	7,532,898	-	8,942,958	-
\wedge 1	Centralized Deep Bids Deep	1,194,606 1,360,543	7,174,611 7,494,472	· · · · · · · · · · · · · · · · · · ·	8,419,322 8,998,232	
/	Coupled Deep	1,432,948	7,592,595		9,124,819	
	coupled Deep	1,152,510	1,072,070	<i>,210</i>	,121,017	
	C	apacity (M	(MW) Spillag		ige (MWh)	
		5,123	N/			
1		5,254	0			
15 20 25		5,789	2			
10 20 20	r]	

Publications

[1] A. Papavasiliou, S. S. Oren, R. P. O'Neill, *Reserve Requirements for* Wind Power Integration: A Scenario-Based Stochastic Programming Framework, accepted for publication in IEEE Transactions on Power

[2] A. Papavasiliou, S. S. Oren, Multi-Area Stochastic Unit Commitment for High Wind Penetration in a Transmission Constrained Network, submitted to Operations Research, runner-up

[3] A. Papavasiliou, S. S. Oren, *Large-Scale Integration of Deferrable* Electricity and Renewable Energy Sources in Power Systems, submitted to IEEE Transactions on Power Systems special section on

Potential Uses of this Research

Stochastic unit commitment software

• Renewable integration / demand response research Smart charging algorithms for deferrable loads