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Objective & Accomplishments 

Accomplishments to date: 

• Design process: 

• Candidate selection algorithm; 

• Multi-stage/circuit transmission optimization modeling approach; 

• Developed 4 futures: ref, high off-shore, high solar, high geothermal 

• Overlay designs for 4 futures 

• Quantified steady state and dynamic benefits of overlay designs 

• Investigate impacts of overlay on dynamics (Aliprantis) 

Objective:  

• Develop interregional high capacity overlay design process to facilitate growth 

of renewables (wind, solar, geothermal) to 2050; 

• Design and evaluate “good” U.S. transmission overlays for different futures; 

• Quantify benefits to building a national transmission overlay 
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Four Futures 

Four “high renewable” futures, very different in renewable generation type and 
amount, were designed using a 62 node US model, accurately representing existing 
generation, using representative data for future generation based on technology and 
location, in compliance with NERC’s regional reserve requirements. 
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Transmission Candidates 

Iterative Reweighting Minimum Spanning Tree Algorithm 
a. Eliminates infeasible paths (reserve land, national parks, lightning areas…) 

b. Finds minimum “distance” tree which connects all nodes; stores selected arcs 

c. Develops weighted distance on selected arcs, where weights reflect 

• attributes facilitating transmission: existing trans, interstate hwy, rail;  

• attributes inhibiting transmission: terrain, pop density, forest, wind/ice; 

• economic impact;  

d. Repeat steps a-b, each time storing selected arcs 

383 Candidates,  

N-1 connected set 
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Network Expansion Optimization 
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Multi-stage transmission expansion optimization using disjunctive model, with an exten-

sion to allow multiple parallel circuit. Benders’ decomposition is used to partition the 

problem into an investment master problem and 40 operational sub-problems:  
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Objective function includes T-investment & 

G-production costs. T-investment is function 

of technology, distance, substation. 

Nodal balance 

Represents impedance effects via DC 

power flow, but maintains linearity using 

disjunctive model extended to allow 

multiple parallel circuits. 

Investment Accumulation 
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Overlay Designs for Each Future 

Reference Case High Offshore-Wind 

High Solar High Geothermal 
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A Closer Look: The Reference Case 

Transmission Overlay, yr 25: Major investments around Great Lakes, consistent with 
MISO-MTEP-2010 study results. 800kV DC lines supply SW, where limited 
renewable resources are available. WECC, EI, ERCOT interconnected near SPP.  
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A Closer Look: The Reference Case 

Transmission Overlay, yr 40: Further investments in PJM, SERC and Arizona areas, to 

facilitate renewable generation increase and serve load centers.  
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Benefit Quantification: 

Each overlay design evaluated under over 40 yrs, using NETPLAN 

solver. Results below indicate national transmission overlays benefit the 

overall U.S. electric system via lower costs & lower emissions. 
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Future Work: 

• Flexibility design: to identify investments which minimize adaptation costs to 

future uncertainties. 

• Analysis of resilience to very large scale “Katrina-like” events 

• Refine design, particularly technology choice (AC vs DC, kV level) based on 

• Steady state and dynamic security studies,  

• Cascading. 

• Develop defense plan 

Finalized 

ss plans  

for 

scenarios 

k=1,…N 

6. 

Refinement 

based on  

dynamics & 

cascading  

5. Resilience 

& economic 

evaluation w/ 

1-yr prod 

cost 

simulations 

4. Flexibility 

design 

Finalized 

ss plan 
Finalized 

plan 

7. 

Defense/

mitigation 

plan 

design 



A National Transmission 

Overlay (1.2) 

PSERC Future Grid Initiative 

May 29, 2013 

Dionysios Aliprantis 

Hugo Villegas-Pico 

Iowa State University 
(dali@iastate.edu) 



 

Research Objectives 

• Investigate impacts of new transmission overlay 

plans on power system dynamics. 

• Metric of interest: frequency response. 

• We model “slow” governor dynamics and 

impacts on average system frequency. 

• We apply a computational technique for 

reachability analysis to model uncertainties in 

disturbances and system parameters. 

• Calculate bounds of trajectories of frequency 

response with (E)HVAC/HVDC tie-lines. 

• HVDC lines have frequency-sensitive controls. 
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Reachability Analysis 

• Reachability analysis yields bounds of solutions 

to an uncertain dynamic problem.  

• Find a set (flow tube) that contains all possible 

trajectories.  

• Run one study, calculating the evolution of the 

reachable set & capturing all possible scenarios.  
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National Transmission Overlay Model 

• High-capacity HVAC improves 

connectivity among 

synchronously connected areas. 

• High-capacity HVDC can be 

used for frequency regulation: 

• Control law that emulates 

governor response 

implemented between 

asynchronously connected 

areas (e.g., areas a & d). 

• Control law that detects 

variability of renewable 

generation in one area (e.g., 

area b) and transfers to 

others with high inertia 

constant (e.g., area a). 
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Example: Frequency-Sensitive HVDC 
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Simplified U.S. power system areas (not to scale) with across-area 

transmission capacity (solid) and studied HVAC (dashed) - HVDC (dotted) 

transmission overlays. 

For simplicity, we model the U.S. power system as 

13 regions: 



17 Region-1 HVDC power injections.  

Region-1 frequency response  

without HVDC regulation.  

Disturbance: 

Uncertain loss of generation in region 1 

𝑤1
𝑑 ∈ [0.65, 0.75] p.u., with 𝑆𝐵 = 1000 MVA 

and unity power factor. 

Region-1 frequency response  

with HVDC regulation.  

Example: Frequency-Sensitive HVDC 
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Impact on frequency of other regions (arbitrarily selected) when supporting 

region 1 by HVDC regulation.  

Example: Frequency-Sensitive HVDC 
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Disturbance: 

Uncertain loss of generation in region 1 

𝑤1
𝑑 ∈ [0.65, 0.75] p.u., with 𝑆𝐵 = 1000 MVA 

and unity power factor. 

Region-1 frequency response  

with HVDC regulation and inertia constant uncertainty (±5% off nominal).  

Example: Frequency-Sensitive HVDC and 

Parameter Uncertainty  
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Frequency bounds of regions without HVAC- 

HVDC overlay.  

Disturbance: 

Uncertainty in renewable-generation power 

in areas 5 and 10. 𝑝5
𝑟 ,  𝑝10

𝑟 ∈ [−0.1,0.1] p.u.  

with 𝑆𝐵 = 1000 MVA and unity power factor. 

Frequency bounds of regions with HVAC overlay. 

(Improves bounds in 𝜔5 and 𝜔10. ) 
Frequency bounds of regions with HVAC and 

HVDC overlay. (Improved bounds in 𝜔5 and 𝜔10 

than HVAC alone) 

Example: Renewables Variability 



• A high-capacity HVDC overlay improves frequency 

response and can be used to “transmit variability.” 

• A national transmission HVAC overlay improves 

“connectivity” among areas and the dynamic frequency 

response of areas with high renewable penetration. 

• HVDC can transfer impacts to areas with higher inertia 

constants in a synchronous network (may improve 

governor response to frequency waves). Future work will 

entail more detailed modeling. 

• Reachability analysis yields bounds of solutions to an 

uncertain dynamic problem. 
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Conclusions 


