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Objective & Accomplishments

Objective:
Develop interregional high capacity overlay design process to facilitate growth
of renewables (wind, solar, geothermal) to 2050;

Design and evaluate “good” U.S. transmission overlays for different futures;
Quantify benefits to building a national transmission overlay

Accomplishments to date:
Design process:

Candidate selection algorithm;

Multi-stage/circuit transmission optimization modeling approach;
Developed 4 futures: ref, high off-shore, high solar, high geothermal
Overlay designs for 4 futures
Quantified steady state and dynamic benefits of overlay designs

Investigate impacts of overlay on dynamics (Aliprantis)




Study Framework

geo/climate
data

2. Transmission Candidate Selection
(in MATLAB)

Estimated
Econ signal

Existing transmission

Data
characterizing

scenario k
1. Multi-year generation 40-year
forecast (Using NETPLAN) gen/load data
Copper Sheet SELE

3a. Multi-stage network expansion
optimization using MIP, solving in CPLEX

1

3b. Rule of 3 and SS
contingency screening

Add
1 constraints

No Yes

Finalized
ss plan for
scenario k

Compare with
previous solution

ss transmission
design for
scenario k

Enough
Coordination?

Finalized 5. Resilience 6 7
ss plans o . & economic . '
for mp| 4 Flexibility Finalized evaluation w/ REMACTIE: = Defense Finalized
. design ss plan 1-yr prod based on mitigation plan
SEELArios dynamics & plan
k=1,..N cost cascadin design
simulations g 2 3




Four Futures
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Four “high renewable” futures, very different in renewable generation type and
amount, were designed using a 62 node US model, accurately representing existing
generation, using representative data for future generation based on technology and
location, in compliance with NERC’s regional reserve requirements.
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Transmission Candidates
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a.
b.
C.

d.

Iterative Reweighting Minimum Spanning Tree Algorithm

Eliminates infeasible paths (reserve land, national parks, lightning areas...)

Finds minimum “distance” tree which connects all nodes; stores selected arcs
Develops weighted distance on selected arcs, where weights reflect

attributes facilitating transmission: existing trans, interstate hwy, rail;

attributes inhibiting transmission: terrain, pop density, forest, wind/ice;
economic impact;

Repeat steps a-b, each time storing selected arcs

383 Candidates,

7 InterstateHwy [

N-1 connected set




Network Expansion Optimization

Multi-stage transmission expansion optimization using disjunctive model, with an exten-
sion to allow multiple parallel circuit. Benders’ decomposition is used to partition the
problem into an investment master problem and 40 operational sub-problems:

Ming, ¢, g, 3 Z zkﬁ(t)Zii_lcl(k)ini(t)+Zﬁ(’[)Cog(t)

teHinv ii=1 teH
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Objective function includes T-investment &
G-production costs. T-investment is function
of technology, distance, substation.

Nodal balance

| power flow, but maintains linearity using

Represents impedance effects via DC

disjunctive model extended to allow
multiple parallel circuits.

Investment Accumulation

. Transmission Capacity Constraints;

AC capacities a function of distance

.. Generation Output Limit
.. Reference bus angle set to be 0

. Binary decision variables 6



Overlay Designs for Each Future
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A Closer Look: The Reference Case

Transmission Overlay, yr 25: Major investments around Great Lakes, consistent with
MISO-MTEP-2010 study results. 800kV DC lines supply SW, where limited
renewable resources are available. WECC, El, ERCOT interconnected near SPP.

700 i * S—
[ ¥ T —— L i | i i i i | | i
i:# . T ——— | | S | | 1 | R
_ {NW T I o
iy PN | | e | | I
] - i : 3 : : o i 3 3 it
.‘ . “ -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

100 o o 765kv AC North
-------- 500kV AC
+/-600kV DC e $
+/-800kV DC .
00 160 260 1200 1250



A Closer Look: The Reference Case

Transmission Overlay, yr 40: Further investments in PJM, SERC and Arizona areas, to
facilitate renewable generation increase and serve load centers.
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Benefit Quantification:

Each overlay design evaluated under over 40 yrs, using NETPLAN
solver. Results below indicate national transmission overlays benefit the
overall U.S. electric system via lower costs & lower emissions.

TABLE I
BENEFIT OF TRANSMISSION OVERLAY#

Expanded Transmission

Case

Gen. Inv. Cost(T$
Tran. Inv. Cost(T$)

_Gen. Prod. Cost(1b)" |

Ref.

1.766
0.565

High
Off.
0.517

\
2975 |

High
Solar

1.752
0.591

High
Geo.
0.740

Fixed
Current
Transmision

2.523

0

Total Cost(1$) 5336 5.226 5.345 5.470 5.794

miSSion

5.135

(10" short ton)

5.448

5.072

5.112

#All costs have been discounted into 2010 dollars.
"The Generation Production costs include fuel costs and O&M costs.

5.812
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Future Work:

* Flexibility design: to identify investments which minimize adaptation costs to

future uncertainties.
« Analysis of resilience to very large scale “Katrina-like” events

« Refine design, particularly technology choice (AC vs DC, kV level) based on

«  Steady state and dynamic security studies,

« Cascading.
« Develop defense plan
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Research Objectives

Investigate impacts of new transmission overlay
plans on power system dynamics.

Metric of interest: frequency response.

We model “slow” governor dynamics and
Impacts on average system frequency.

We apply a computational technique for
reachability analysis to model uncertainties In
disturbances and system parameters.

Calculate bounds of trajectories of frequency
response with (E)HVAC/HVDC tie-lines.

HVDC lines have frequency-sensitive controls.
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Reachability Analysis

« Reachability analysis yields bounds of solutions
to an uncertain dynamic problem.

* Find a set (flow tube) that contains all possible
trajectories.

* Run one study, calculating the evolution of the

reachable set & capturing all possible scenarios.
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National Transmission Overlay Model

High-capacity HVAC improves
connectivity among

synchronously connected areas.

High-capacity HVYDC can be
used for frequency regulation:

« Control law that emulates
governor response
Implemented between
asynchronously connected
areas (e.g., areas a & d).

« Control law that detects
variability of renewable
generation in one area (e.g.,
area b) and transfers to
others with high inertia
constant (e.g., area a).

—— Existing - Overlay

Low-inertia

area High-

inertia
area

Area d
(Frequency d)

Area a
(Frequency a)

Frequency sensitive
control

DC b-a

] Variability sensitive
control

Area ¢

(Frequency c¢)

Low-inertia,
high-renew.

x(t) = Ax(t) + v(t) area
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Example: Frequency-Sensitive HVDC

For simplicity, we model the U.S. power system as
13 regions:

Simplified U.S. power system areas (not to scale) with across-area
transmission capacity (solid) and studied HVAC (dashed) - HVYDC (dotted)
transmission overlays.
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Example: Frequency-Sensitive HVDC
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Example: Frequency-Sensitive HVDC and
Parameter Uncertainty
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Region-1 frequency response
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Example: Renewables Variability
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Conclusions

A high-capacity HVDC overlay improves frequency
response and can be used to “transmit variability.”

A national transmission HVAC overlay improves
“connectivity” among areas and the dynamic frequency
response of areas with high renewable penetration.

HVDC can transfer impacts to areas with higher inertia
constants in a synchronous network (may improve
governor response to frequency waves). Future work will
entail more detailed modeling.

Reachability analysis yields bounds of solutions to an
uncertain dynamic problem.
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