Robust and Dynamic Reserve Requirements (1.3)

Kory W. Hedman

Arizona State University (Kory.Hedman@asu.edu)

PSERC Future Grid Initiative May 29, 2013

Acknowledgment

- Thanks to the Department of Energy and PSERC
- Thanks to Arizona State University
 - Provided additional support to fund another student for this project
- Thanks to my two students:
 - PhD Student Joshua Lyon (Industrial Engineering)
 - PhD Student Fengyu Wang (Electrical Engineering)
- Clarification: While this talk is in the Markets track, this research is for any setting (vertically integrated utilities and within market settings)

Outline

- Motivation and Background
- Project Achievements
- Day-Ahead Scheduling Process
- Daily Dynamic Reserve Zones
- Future Work
- References
- Appendix

Motivation and Background

Motivation:

- Improve existing reserve policies (improve economic efficiency and reliability)
- Create reserve policies for renewable resources
- Opportunities to improve existing reserve rules for markets or vertically integrated environments

Background:

- Existing reserve requirements (contingency / spinning and non-spinning reserve) are imposed inside of day-ahead unit commitment to ensure sufficient backup capacity
 - Do not guarantee N-1 because congestion may prevent reserves from being deliverable
- Ensuring sufficient and deliverable reserves (quantity + location) will be increasingly more difficult with renewables

Map of the Midwest ISO

Project Achievements

- Develop systematic ways to determine dynamic reserve requirements (zones and levels)
 - Improved reserve location/deliverability
 - Transitioned from static to dynamic (operational state dependent) rules
 - Developed reserve rules for renewable resources
 - Developed reserve rules for network topology changes
 - Results: improvements in economic efficiency (reduces costly uneconomic adjustments) and reliability/reserve deliverability

- Due to computational limitations, approximations are made for the day-ahead scheduling process (offline approximations as well as within the day-ahead model)
- Approximations are checked and corrected in an expost stage

- Transmission constraints / transfer capabilities
- Nomograms
- Reserve requirements (zones and levels)
- Reliability must run (RMR)

- Deterministic unit commitment
- Reserve policies as a function of congestion

Uncertainties (e.g., wind)

Actions:

- Reserve disqualification (reserve down flags)
- RMR, out-of-sequence units 10

Daily dynamic reserve zones (offline)

Current Industry Practices: Reserve Zones

- Reserve zones are usually determined by identifying critical transmission bottlenecks
- Zones treated as static (seasonally)
- Zones in Texas (i.e., ERCOT):
 - Each generator/load within the zone has a similar impact on commercially significant constraints (CSC) [1]
 - Statistical clustering methods used to define zones
- Similar approach taken by MISO [2]

^[1] ERCOT, "ERCOT Protocols, Section 7: Congestion Management," [Online]. July, 2010.

^[2] Personal discussion with James Mitsche, President, PowerGEM, June 2012.

Zone Determination Procedures

Reserve rules that fail to achieve N-1 require costly uneconomic adjustments / out of market corrections (operators manually adjust schedule)

Based on day-ahead probabilistic representation of operational state to reduce those corrections

Day-Ahead Dynamic Zones

- Solved a 24HR day-ahead UC (IEEE 118 test system) with:
 - Traditional reserves: zones based on MISO's zone method
 - Two-stage stochastic program: 10 selected wind scenarios
 - Proposed dynamic reserves: zones based on probabilistic power flow
 - For each approach, reserve > max(largest contingency, NREL 3+5 rule)
- <u>Performed contingency analysis</u> on N-1 and 1000 wind scenarios across 12 days from January to March = 5 Million simulations
- Expected violations occur only when reserve is not deliverable due to congestion (inside contingency analysis), which then requires out-ofmarket corrections / uneconomic adjustments [3]:

	Traditional Seasonal	Stochastic Programming	Daily Dynamic Reserve
	(3 Zones)	(Single Zone)	Zones (3 Zones)
Expected Violations (via contingency analysis)	17.0 MW	20.6 MW	10.6 MW
Solution Time	18 s	339 s	26 s

[3] Fengyu Wang and Kory W. Hedman, "Dynamic reserve zones for day-ahead unit commitment with renewable resources," *IEEE Transactions on Power Systems*, submitted.

Future Work

 Currently testing policies on large-scale networks (FERC/PJM 15,000-bus test case)

- Model refinement based on industry feedback –
 please contact me if you would like to provide
 additional feedback or you would like further
 information (kory.hedman@asu.edu)
- Optimal coupling of robust and dynamic reserve policies with stochastic programming

References

- [3] F. Wang and K. W. Hedman, "Dynamic reserve zones for day-ahead unit commitment with renewable resources," *IEEE Transactions on Power Systems*, submitted.
- [4] F. Wang and K. W. Hedman, "Reserve zone determination based on statistical clustering methods," *NAPS2012*.
- [5] J. D. Lyon, K. W. Hedman, and M. Zhang, "Reserve requirements to efficiently mitigate intra-zonal congestion," *IEEE Transactions on Power Systems*, submitted.
- [6] J. D. Lyon, M. Zhang, and K. W. Hedman, "Dynamic reserve zones for distinct scenarios," In preparation.
- [7] J. D. Lyon, K. W. Hedman, and M. Zhang, "Embedding reserve zone partitioning into unit commitment," In preparation.

Appendix

Reserve policies as a function of congestion (within)

Reserve Rules Related to Congestion

- Congestion on zone interfaces dictates the ability to share reserve between zones
 - ISONE models reserve sharing as a function of congestion [8]
- Most policies ignore intra-zonal congestion
- New policies can better reflect system stress by relating reserve to congestion
 - The option to increase reserve or decrease congestion is embedded in the optimization algorithm
 - Design so increments in reserve and decrements in congestion have similar effects on reliability

[8] T. Zheng and E. Litvinov, "Contingency-based zonal reserve modeling and pricing in a co-optimized energy and reserve market," *IEEE Transactions on Power Systems*, vol. 23, no. 2, pp. 277–286, May 2008.

Reserve as a Function of Congestion

- Day 352 of IEEE 73 bus test system
 - Policies tested with different levels of conservatism
 - Pareto dominant solutions attributable to reducing congestion

[5] Joshua D. Lyon, Kory W. Hedman, and Muhong Zhang, "Reserve requirements to efficiently mitigate intra-zonal congestion," *IEEE Transactions on Power Systems*, submitted.

Reserve disqualification / down flag policies (ex-post stage)

Reserve Disqualification

- MISO, ISONE manually disqualify reserve located behind transmission bottlenecks (reserve disqualification and reserve down flags respectively)
- Ongoing work [6]:
 - Propose a generalized reserve down flag procedure
 - Determined via mathematical programming
 - Applied on a per-scenario basis
 - Can be used as a procedure to implement uneconomic adjustments
 - Can be embedded inside deterministic unit commitment (via a decomposition algorithm)
 - Complement stochastic programming with dynamic reserve policies

[6] Joshua D. Lyon, Muhong Zhang, and Kory W. Hedman, "Dynamic reserve zones for distinct scenarios," In preparation.