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Motivation and Background 

Motivation: 

• Improve existing reserve policies (improve economic 

efficiency and reliability) 

• Create reserve policies for renewable resources 

• Opportunities to improve existing reserve rules for markets 

or vertically integrated environments 

Background: 

• Existing reserve requirements (contingency / spinning and 

non-spinning reserve) are imposed inside of day-ahead unit 

commitment to ensure sufficient backup capacity 
• Do not guarantee N-1 because congestion may prevent reserves 

from being deliverable 

• Ensuring sufficient and deliverable reserves (quantity + 

location) will be increasingly more difficult with renewables 
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Map of the Midwest ISO 
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(Area 1 is part of PJM) 



Project Achievements 

• Develop systematic ways to determine dynamic 

reserve requirements (zones and levels) 

• Improved reserve location/deliverability 

• Transitioned from static to dynamic (operational state 

dependent) rules 

• Developed reserve rules for renewable resources 

• Developed reserve rules for network topology 

changes 

• Results: improvements in economic efficiency 

(reduces costly uneconomic adjustments) and 

reliability/reserve deliverability 

6 



Path to Reliability 
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Days – months 

in advance 
Day-ahead Ongoing 

• Due to computational limitations, approximations are 

made for the day-ahead scheduling process (offline 

approximations as well as within the day-ahead model) 

• Approximations are checked and corrected in an ex-

post stage 



Path to Reliability 
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Days – months 

in advance 
Day-ahead Ongoing 

• Transmission constraints / transfer capabilities 

• Nomograms 

• Reserve requirements (zones and levels) 

• Reliability must run (RMR) 
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Path to Reliability 
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Days – months 

in advance 
Day-ahead Ongoing 

• Deterministic unit 

commitment 

• Reserve policies 

as a function of 

congestion 
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Path to Reliability 

10 

Days – months 

in advance 
Day-ahead Ongoing 

Modeling: 

• Contingency analysis 

• Uncertainties (e.g., wind) 

Actions: 

• Reserve disqualification 

(reserve down flags) 

• RMR, out-of-sequence units 
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Daily dynamic reserve zones 

(offline) 
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Current Industry Practices:  

Reserve Zones 

• Reserve zones are usually determined by 

identifying critical transmission bottlenecks 

• Zones treated as static (seasonally) 

• Zones in Texas (i.e., ERCOT):  

• Each generator/load within the zone has a 

similar impact on commercially significant 

constraints (CSC) [1] 

• Statistical clustering methods used to define 

zones 

• Similar approach taken by MISO [2] 
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[1] ERCOT, “ERCOT Protocols, Section 7: Congestion Management,” [Online]. July, 2010. 

[2] Personal discussion with James Mitsche, President, PowerGEM, June 2012. 

(Area 1 is part of PJM) 

ERCOT 

MISO 

http://www.ercot.com/content/mktrules/protocols/current/07-070110.doc


Zone Determination Procedures 
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Reserve rules that fail to achieve N-1 require costly uneconomic adjustments 

/ out of market corrections (operators manually adjust schedule) 

Based on day-ahead probabilistic representation of 

operational state to reduce those corrections 



• Solved a 24HR day-ahead UC (IEEE 118 test system) with: 

• Traditional reserves: zones based on MISO’s zone method 

• Two-stage stochastic program: 10 selected wind scenarios 

• Proposed dynamic reserves: zones based on probabilistic power flow 

• For each approach, reserve > max(largest contingency, NREL 3+5 rule)  

• Performed contingency analysis on N-1 and 1000 wind scenarios across 12 

days from January to March = 5 Million simulations 

• Expected violations occur only when reserve is not deliverable due to 

congestion (inside contingency analysis), which then requires out-of-

market corrections / uneconomic adjustments [3]: 

[3] Fengyu Wang and Kory W. Hedman, “Dynamic reserve zones for day-ahead unit 

commitment with renewable resources,” IEEE Transactions on Power Systems, submitted. 
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Traditional Seasonal 

(3 Zones) 

Stochastic Programming 

(Single Zone) 

Daily Dynamic Reserve 

Zones (3 Zones) 

Expected  Violations (via 

contingency analysis) 17.0 MW 20.6 MW 10.6 MW 

Solution Time 18 s 339 s 26 s 

Day-Ahead Dynamic Zones 



Future Work 

• Currently testing policies on large-scale 

networks (FERC/PJM 15,000-bus test case) 

 

• Model refinement based on industry feedback – 

please contact me if you would like to provide 

additional feedback or you would like further 

information (kory.hedman@asu.edu) 

 

• Optimal coupling of robust and dynamic reserve 

policies with stochastic programming 
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Appendix 
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Reserve policies as a function of 

congestion (within) 
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Reserve Rules Related to Congestion 

• Congestion on zone interfaces dictates the 
ability to share reserve between zones 
• ISONE models reserve sharing as a function of 

congestion [8] 

• Most policies ignore intra-zonal congestion 

• New policies can better reflect system stress by 
relating reserve to congestion 
• The option to increase reserve or decrease 

congestion is embedded in the optimization algorithm 

• Design so increments in reserve and decrements in 
congestion have similar effects on reliability 
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Reserve as a Function of Congestion 

• Day 352 of IEEE 73 bus test system 

• Policies tested with different levels of conservatism 

• Pareto dominant solutions attributable to reducing congestion 

20 

[5] Joshua D. Lyon, Kory W. Hedman, and Muhong Zhang, “Reserve requirements to efficiently 

mitigate intra-zonal congestion,” IEEE Transactions on Power Systems, submitted.  

0.0

0.2

0.4

0.6

0.8

1.0

 $3.64  $3.68  $3.72  $3.76

E
[v

io
la

ti
o

n
] 

(M
W

) 

Cost (millions $) 

% of load
(related to WECC policy)

% of largest contingency
(related to PJM policy)

Congestion-based



Reserve disqualification / down 

flag policies (ex-post stage) 
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Reserve Disqualification 

• MISO, ISONE manually disqualify reserve located 

behind transmission bottlenecks (reserve disqualification 

and reserve down flags respectively) 

• Ongoing work [6]:  

• Propose a generalized reserve down flag procedure 

• Determined via mathematical programming 

• Applied on a per-scenario basis 

• Can be used as a procedure to implement 

uneconomic adjustments 

• Can be embedded inside deterministic unit 

commitment (via a decomposition algorithm) 

• Complement stochastic programming with 

dynamic reserve policies 
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