Probabilistic Simulation Methodology for Evaluation of Renewable Resource Intermittency and Variability Impacts in Power **System Operations and Planning** (3.4)

George Gross

University of Illinois at Urbana-Champaign gross@illinois.edu

PSERC Future Grid Initiative May 29, 2013

MOTIVATION

- ☐ The conventional probabilistic simulation approach cannot be used to capture the time-varying nature and the inter-temporal effects required in the simulation of the storage and renewable resources nor the impacts of the transmission-constrained market environment
- □ Since the detailed representation of such timedependent and uncertain phenomena is analytically intractable, we propose to address this problem via Monte Carlo simulation techniques

NEED TO EXPLICITLY REPRESENT

- □ The time-varying demands and their associated uncertainty
- ☐ The time-varying supply resources with their associated uncertainty:
 - conventional generators
 - utility-scale storage units
 - O renewable resources
- ☐ The spatial and temporal correlations among the resources at the various sites and the demands
- □ The impacts of the grid constraints
- ☐ The hourly day-ahead market (*DAM*) outcomes

THRUST OF THE SIMULATION APPROACH

- We develop a comprehensive, computationally efficient *Monte Carlo simulation* approach to emulate the behavior of the power system with integrated storage and renewable energy resources
- We use discrete-time stochastic processes to model the system load and the resources
- We develop a storage scheduler to exploit arbitrage opportunities in the storage unit operations
- ☐ We emulate the impacts of the *transmission-constrained hourly day-ahead markets* (DAMs) to determine the power system operations

PROPOSED SIMULATION APPROACH: CONCEPTUAL STRUCTURE

THRUST OF THE APPROACH

- We collect sample paths of the market outcome stochastic processes to evaluate the expected system variable effects
- We evaluate metrics such as:
 - O nodal electricity prices (*LMP*s)
 - O generation by resource and revenues
 - O congestion rents
 - O CO₂ emissions
 - *LOLP* and *EUE* system reliability indices

KEY CONTRIBUTIONS

- Development of a new simulation tool appropriate
 - to address today's power industry challenges
- Salient features include:
 - quantification of the power system expected
 variable effects economics, reliability and
 environmental impacts in each sub-period
 - O computationally tractable for practical systems

KEY CONTRIBUTIONS

- detailed stochastic models of the time-varying resources and loads allow the representation of spatial and temporal correlations
- storage scheduler for optimized storage
 operation to exploit arbitrage opportunities
- representation of the transmission constrained market outcomes
- flexibility in the representation of the market environment /policy requirements

TYPICAL APPLICATIONS

- □ Resource planning studies
- □ Production costing issues
- □ Transmission utilization issues
- Environmental assessments
- □ Reliability analysis
- Investment analysis
- □ Various *what if* investigations

CASE STUDY: DEEPENING WIND PENETRATION

- ☐ The objective of this study is to perform a wind
 - penetration sensitivity analysis and to quantify
 - the enhanced ability to harness wind energy with
 - the integration of a storage energy resource
- We evaluate the key metrics for variable effect
 - assessment, including wholesale purchase
 - payments, reliability indices and CO₂ emissions

THE STUDY TEST SYSTEM: A MODIFIED IEEE 118-BUS SYSTEM

- ☐ Annual peak load: 8,090.3 MW
- ☐ Conventional generation resource mix: 9,714 MW
- ☐ 4 wind farms located in the Midwest with total nameplate capacity in multiples of 680 MW
- \square A storage unit with 400 MW capacity, 5,000 MWh storage capability and 89 % round-trip efficiency
- ☐ Unit commitment uses a 15 % reserves margin provided by conventional units and the storage resources
- lacksquare Wind power is assumed to be offered at $\theta \$ /MWh

NODE 80 AVERAGE HOURLY LMPs

EXPECTED WHOLESALE PURCHASE PAYMENTS

EXPECTED CO2 EMISSIONS

ANNUAL RELIABILITY INDICES

CONCLUDING REMARKS

- □ Storage and wind resources consistently pair well together: they reduce wholesale purchase dollars and improve system reliability; storage seems to attenuate the "diminishing returns" trend seen with deeper wind power penetration
- ☐ The location of a storage unit can have large local impacts; siting requires case-by-case studies
- Wind resources can substitute for conventional resources to a very limited extent, even in a

SALIENT SIMULATION APPROACH CHARACTERISTICS

- □ A practically-oriented approach to simulate largescale systems over longer-term periods
- □ Comprehensive, versatile and flexible approach to quantify the impacts of the integration of storage devices into power systems with deepening penetration of renewable resources
- □ Demonstration of the capabilities of the proposed approach on a wide range of planning, investment, transmission utilization and policy analysis studies

FUTURE DIRECTIONS

- □ Extension of the approach to explicitly represent ramping requirements for conventional resources in the *DAM*s for systems with deepening penetration of intermittent resources
- □ Analysis of the impacts of increased ramping requirements on power system variable effects
- □ Design of a market for ramping capability service product provision by controllable resources

CASE STUDY: STORAGE UNIT SITING

- ☐ The objective of this study is to perform a sensitivity analysis on the siting of 4 storage units in the system and assess its impacts on transmission usage and on the economics at the most heavily loaded bus in the network
- We quantify the expected *LMP*s at the load center at node 59 and the total congestion rents

TEST SYSTEM OF THE STUDY: A MODIFIED IEEE 118-BUS SYSTEM

- ☐ Annual peak load: 8,090.3 MW
- ☐ Conventional generation resource mix: 9,714 MW
- □ 4 wind farms located in the Midwest with total nameplate capacity 2,720 *MW*
- □ 4 identical utility-scale storage units, each having 200 MW capacity, 5,000 MWh storage capability and 89% round-trip efficiency
- □ Reserves margin is set at 15 % and is provided by conventional *and storage* resources

STORAGE SITING ON THE MODIFIED IEEE 118 – BUS TEST SYSTEM

SENSITIVITY CASES IN STUDY SET II

case	siting of the storage units
base	no storage units
S_{o}	at the principal load center
S_1	1 node away
S_{2}	2 nodes away
S_3	3 nodes away

each case has 2,720 MW nameplate wind capacity

STORAGE SITING REGION

NODE 59 EXPECTED HOURLY LMPs

EXPECTED HOURLY CONGESTION RENTS

TRANSMISSION PATH CONGESTION AND ITS REENFORCEMENT

PRE – PATH – REENFORCEMENT NODE 59 AVERAGE HOURLY LMPs

POST – PATH – REENFORCEMENT NODE 59 AVERAGE HOURLY LMPs

PRE – PATH – REENFORCEMENT AVERAGE HOURLY CONGESTION RENTS

POST – PATH – REENFORCEMENT AVERAGE HOURLY CONGESTION RENTS

STUDY SET III: SUBSTITUTION FOR THE CONVENTIONAL RESOURCES

- □ The aim of this study is to quantify the extent, from a purely reliability perspective, wind resources can substitute for conventional generation capacity in a power system with integrated storage resources
- □ We deem storage units to be firm capacity and use them to meet the desired reserves margin
- □ As the wind resources are integrated, we decrease progressively the system reserves margin, retire conventional unit capacity and assess the impacts

THE STUDY TEST SYSTEM: A MODIFIED IEEE 118-BUS SYSTEM

- ☐ Annual peak load: 8,090.3 MW
- ☐ Conventional generation resource mix: 9,714 MW
- □ 4 wind farms located in the Midwest with total nameplate capacity of 2,720 *MW*
- □ 4 units: each has a 100 MW capacity, 1,000 MWh storage capability and 89 % round-trip efficiency
- ☐ The unit commitment is performed to ensure the desired reserves margin is attained from the conventional *and storage* resources

SET IV SENSITIVITY CASES

case	retired conventional generation (MW)	reserves margin in %
base (no wind, no storage resources)	0	15
$oldsymbol{R}_{oldsymbol{ heta}}$	0	15
R_1	80	14
R_2	160	13
R_3	240	12
R_4	320	11
R_5	400	10
R_6	480	9
R_7	560	8
R_8	640	7

WEEKLY RELIABILITY INDICES vs. RESERVES MARGINS

