# Communication Architecture for Wide-Area Control and Protection of the Smart Grid (Task 2.1)

### Prashant Kansal, Yannan Wang, Pradeep Yemula, Anjan Bose

Washington State University

pkansal@wsu.edu, yannan.wang@email.wsu.edu, pyemula@eecs.wsu.edu, bose@wsu.edu



PSERC Future Grid Initiative May 29, 2013



## **Objective of the paper**

- To present a conceptual architecture for smart grid communications
- To describe a process to simulate, design and test the adequacy of the communication systems and their impact on the wide area control systems

## **Need for Communications in Smart Grid**

- With the proliferation of phasor measurement units, fast and accurate measurements are available
- Smart grid applications are designed to exploit these high throughout real-time measurements
- Real-time wide area control applications have strict latency requirements in the range of 100 msec to 5 sec
- A fast communication infrastructure is needed which can handle a huge amount of data

### Applications classified based on latency and data requirement

| Main<br>Application          | Applications based on<br>this                                                                                | Origin of Data/Place<br>where we need the data                                                             |                                            | Latency<br>requirement | Number of<br>PMUs we may<br>need              | Data time<br>window                        |
|------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|-----------------------------------------------|--------------------------------------------|
| Transient<br>Stability       | Load trip, Generation trip,<br>Islanding                                                                     | Generating substations/<br>Application servers                                                             | Generator<br>internal<br>angle, df/dt, f   | 100<br>milliseconds    | Number of<br>generation buses<br>(1/20 buses) | 10-50<br>cycles                            |
| State<br>Estimation          | Contingency analysis,<br>Power flow, AGC, AVC,<br>Energy markets,<br>Dynamic/ Voltage<br>security assessment | All substations/<br>Control center                                                                         | All substations/ P,Q, V, theta, I second I |                        | Number of buses<br>in the system              | Instant                                    |
| Small<br>Signal<br>Stability | Modes, Modes shape,<br>Damping, Online update<br>of PSS, Decreasing tie-<br>line flows                       | Some key locations/<br>Application server                                                                  | V phasor                                   | 1 second               | 1/10 buses                                    | Minutes                                    |
| Voltage<br>Stability         | Capacitor switching, Load shedding, Islanding                                                                | Some key location/<br>Application server                                                                   | V phasor                                   | 1-5 seconds            | 1/10 buses                                    | Minutes                                    |
| Postmortem<br>analysis       | Model validation,<br>Engineering settings for<br>future                                                      | All PMU and DFR data/<br>Historian. This data base<br>can be distributed to<br>avoid network<br>congestion | All<br>measurements                        | NA                     | Number of buses<br>in the system              | Instant and<br>Event files<br>from<br>DFRs |

### **Architectural Considerations**

| Location of<br>Data            | <ul><li> closer to the source of data</li><li> databases distributed at substations</li></ul>              |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
|                                |                                                                                                            |  |  |
| Location of<br>Applications    | <ul> <li>bring applications to data instead of<br/>data to the applications</li> </ul>                     |  |  |
|                                |                                                                                                            |  |  |
| Movement of<br>Data            | <ul> <li>a communication middleware<br/>moves the data using publish<br/>subscribe architecture</li> </ul> |  |  |
|                                |                                                                                                            |  |  |
| Format for Data<br>and Control | <ul> <li>Frames defined under the C37.118<br/>standard</li> </ul>                                          |  |  |

### **Communication Architecture for Smart Grid**



## **Objective of the paper**

- To present a conceptual architecture for smart grid communications
- To describe a process to simulate, design and test the adequacy of the communication systems and their impact on the wide area control systems

### **Process for design of communication system**



## Analysis on WECC 225 Bus System

WECC Statistics after Node Reduction

| S.No. | Parameter           | Value |
|-------|---------------------|-------|
| 1     | Buses               | 225   |
| 2     | Substations (S/S)   | 161   |
| 3     | Control Center (CC) | 1     |
| 4     | Control Scheme (CS) | 16    |
| 5     | Generating S/S      | 31    |
| 6     | Control S/S         | 58    |
| 7     | CS S/S              | 160   |

**Different Traffic Types** 

| S.No. | Traffic Type        |
|-------|---------------------|
| 1     | S/S to CC           |
| 2     | CC to S/S           |
| 3     | CS substation to CS |
| 4     | CS to CS substation |
| 5     | S/S to S/S          |
| 6     | CS to CC            |

## **Bandwidth and Latency for WECC**

#### Link Bandwidth Usage for WECC system

| Network<br>Topology | Max. of<br>used links<br>(Mbps) | Min. of<br>used links<br>(Mbps) | Average of<br>used links<br>(Mbps) | Median of<br>used links<br>(Mbps) | % of<br>unused<br>Gw2Gw<br>links |
|---------------------|---------------------------------|---------------------------------|------------------------------------|-----------------------------------|----------------------------------|
| Min S.T.            | 58.75                           | 0.10                            | 5.46                               | 0.39                              | 28.6%                            |
| 1CC links           | 45.60                           | 0.08                            | 3.34                               | 0.62                              | 11.4%                            |
| 3CC links           | 46.80                           | 0.10                            | 2.97                               | 0.51                              | 11.7%                            |
| 5CC links           | 44.09                           | 0.08                            | 2.03                               | 0.38                              | 10.8%                            |

#### Maximum delays for different traffic types WECC system

| Network<br>Topology | Type1<br>(ms) | Type2<br>(ms) | Type3<br>(ms) | Type4<br>(ms) | Type5<br>(ms) | Type6<br>(ms) |
|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Min S.T.            | 49.9          | 40.3          | 45.1          | 46.3          | 44.0          | 40.3          |
| 1CC links           | 26.2          | 27.6          | 26.6          | 27.1          | 29.4          | 23.9          |
| 3CC links           | 19.2          | 19.1          | 25.2          | 25.5          | 29.3          | 16.4          |
| 5CC links           | 11.7          | 5.2           | 13.8          | 12.9          | 15.6          | 4.5           |

## **Effect of Communication Latency**

#### Two Area – 4 machine system



#### **Communication Network for the system**

#### **NS-3 simulation results**





1-7: Substation
8: C/C
-:communication links
between substations

### Wide area damping controller with latency



**Controller with 10 Mbps link (79 ms delay)** 

#### M1 vs M4 rotor angle/degree time/sec rotor angle/degree M2 vs M4 time/sec M3 vs M4 rotor angle/degree 11.5 Δ time/sec

#### Controller with 3 Mbps link (210 ms delay)



### Conclusions

- as PMU data volumes and data rates increase, centralized control may no longer be scalable
- wide area power system control evolving towards distributed applications and databases
- new decentralized architectures needed
- bandwidth and latency considerations critical in design of communication infrastructures
- latency has impact on the performance of wide area controllers

### **Conclusions - 2**

 The architecture and the process described in this work aim towards development of a holistic approach for design of new decentralized and scalable architectures using distributed applications and distributed databases for wide area control of future smart grids.