Technology Challenges in Designing the Future Grid to Enable Sustainable Energy Systems

Workforce Development Challenges

Wanda Reder

VP – S&C Electric Company
Chair – IEEE Smart Grid

President - IEEE Power & Energy Society President 2008-09
Wanda.reder@sandc.com

June 28, 2012

Changing Power & Energy World

Growing Population, More Electronics

Rising Cost of Energy

Increasing Environmental Requirements

Escalating Security Concerns

Heightened Investor Demands

Driving Technology:

- Carbon Management
- Electric Transportation
- Sustainability
- Distributed Sources
- Efficiency
- Modernization
- Reliability

Challenges: Big Picture Messaging

- Big picture messaging
 - Connection to sustainability
 - Acknowledging societal costs
 - Linkage to global competition
 - Macro-benefits
 - What-if scenarios
- Audiences
- Implications
- Ownership

Challenges: Supply and Demand


- Knowledge and quantification
- Outsourcing impact
- Productivity gains
- Believability
- Nimbleness
- Scenario planning
- Risk assessments
- Responsibility to measure
- Alignment ownership

"52 % of skilled technicians and engineers may need to be replaced in the next 10 years"

Source: 2011 CEWD Workforce Survey

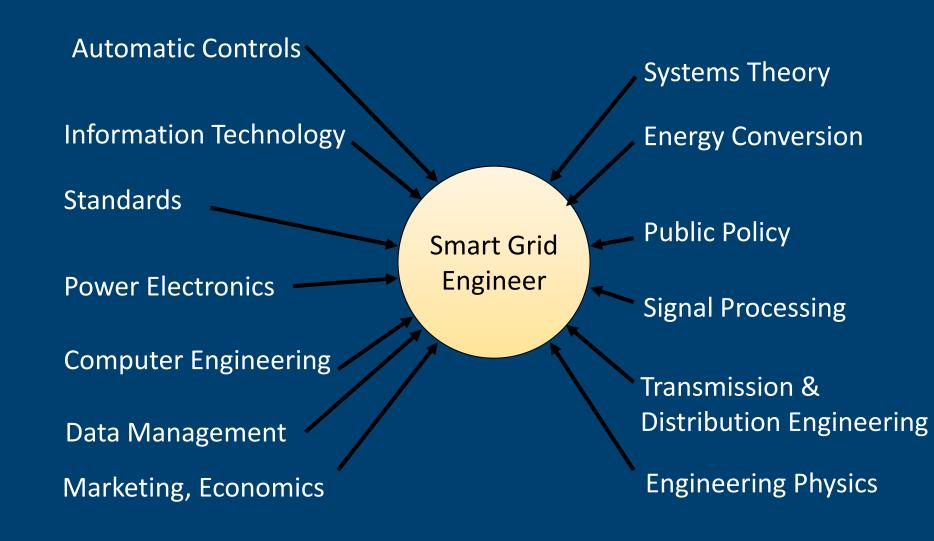
Power engineering programs are weakening, declining, or ending

Source: IEEE Power Engineering Education Committee

Challenges: Education

Availability of programs

- Faculty demographics
- Monitoring of academic supply and demand
- Visibility of programs
- Research and workforce needs are not aligned
- Modular design


Industry participation

- Relevance
- Transitioning intellectual property
- Undergraduate specialization is becoming less prevalent

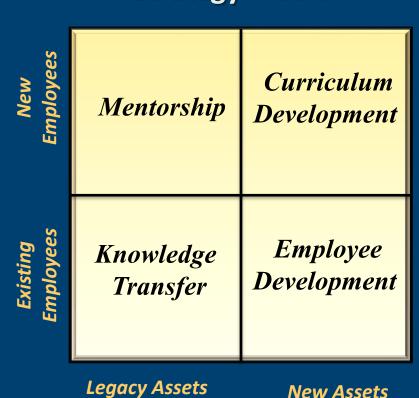
Curriculum development

- Acceptance of on-line teaching
- Institutional crosscollaboration
- Nimbleness to meet needs

Smart Grid is Multi-Disciplinary

Source: Professional Resources to Implement the "Smart Grid" Gerald T. Heydt and others 2009 IEEE Power & Energy Society General Meeting

Challenges: Focus and Planning


- Short-term business focus
 - Lack proactive hiring
 - Cut training programs
 - Do more with less mentality
 - Outsource
- Strategic visibility & planning
 - Competency definition
 - Succession planning
 - Retention
 - Diversity
 - Requirements for foreign nationals
 - Business risk quantification

Challenge: Managing the Transition

- Monitor and develop skills
 - Tribal knowledge
 - Knowledge transfer
 - Existing and new employee development
- Consider new technologies and processes implications
- Limited time for mentoring
- Embracing diversity
- Foreign national implications
- Organizational silos
- Engineer ≠ Engineer

Workforce Transition
Strategy Matrix

Challenges: Awareness, Collaboration

- Identity?
- Outreach, role models
- Collaboration, leveraging and scaling
- Tools and timing
- Ownership
- Roles

IEEE Power & Energy Society SCHOLARSHIP PLUS INITIATIVE™

Preparing the Next Generation of Power & Energy Engineers

Conclusion

- Business is changing: workforce needs to evolve
- Challenges:
 - Big picture messaging
 - Supply and demand alignment
 - Education: availability, curriculum, industry involvement
 - Multi-disciplinary recognition
 - Visibility, planning, short-term focus
 - Collaboration and awareness
- Opportunities for government, educators and industry
- Managing the transition is CRITICAL!