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Uncertainty
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Could you predict the energy production for this wind park
either day-ahead or 5 hours in advance?

Each Day is a differant coler.
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Negative Correlation with Load
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Variability

in Wind and Solar
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A 150 MW wind plant and a 24 MW solar resource
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Conventional Solution
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The DR Alternative to Expanding
Flexible Thermal Generation

Mobilizing demand response (DR) and a
paradigm shift to “load following available supply
provides an economically viable and sustainable
path to a renewable low carbon future.

* Price responsive load

* Energy efficiency

» Deferrable loads:
« EV/IPHEV
« HVAC
» Water heaters
» Electric space heaters
» Refrigeration
« Agricultural pumping
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How BIG is the Resource Potential?

Estimates for most of California (5 largest utilities) based on RECs and CEC data.
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Potential for Wind + PEV Coupling

(Based on NYISO case study)
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Challenges

Develop distributed control paradigms and business models
for mobilizing demand response to mitigate the uncertainty
and variability introduced by massive integration of
renewable energy resources

Develop market mechanisms that will incentivize load
response and flexibility and correctly price uncertainty (or
uncertainty reduction) on the demand and supply side.

Develop dispatch and planning tools that can explicitly
account for uncertainty, variability and flexibility (e.g.
storage) in resource optimization and reserves
procurement.

Develop simulation tools that can account for increased
uncertainty in verifying system and market performance



Task 3.1

Direct and Telemetric Coupling
of Renewable Energy Resources
with Flexible Loads

Shmuel Oren
Anthony Papavasiliou
UC Berkeley
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Alternative DR Paradigms
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Evaluation Methodology

Comparison requires explicit accounting for
uncertainty for consistent determination of
locational reserves.

Stochastic unit commitment optimization
accounts for uncertainty by considering a limited
number of probabilistic wind and contingency
scenarios, committing slow reserves early with
fast reserves and demand response adjusted
after uncertainties are revealed.

Economic and reliability outcomes are calculated
using Monte Carlo simulation with large number
of probabilistic scenarios and contingencies
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California Case Study
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Task 3.3

Planning and Market Design for Using
Dispatchable Loads to Meet
Renewable Portfolio Standards and
Emissions Reduction Targets

Timothy Mount
Robert Thomas
Max Zhang
Cornell University
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PSERC

Wind and PEV Dispatch Patterns
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In scenarios with significant wind curtailment, curtailment largely occurs in the
valley-load hours. Similar pattern is observed for PEV dispatch. Valley-load
smoothing is performed to reduce generator start ups and shut downs, and
ramping operations which increase production and maintenance cost.
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Price Responsive Ice Storage Systems
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» Case study aimed to evaluate the benefits of aggregating Ice Storage
Systems in large commercial and industrial buildings in New York State to
reduce NYSO system costs.

» Heuristic methods were used to reduce system costs for a two-settlement
market operation, where both steady-state and ramping costs are taken into
consideration.

« Optimal allocation manages to reduce peak load and total system cost, and

flatten out the load profile.




Task 3.2

Mitigating Renewables Intermittency
through Nondisruptive Distributed Load
Control

Duncan Callaway

Johanna Mathieu
UC Berkeley
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Control Paradigm
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Modeling Aggregated TCLs:
‘State Bin Transition Model’
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Controlling TCLs to Track a 5-Minute
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Task 3.4

Probabilistic Simulation of Power Systems
With Integrated Renewable, Demand
Response and Storage Resources

Alejandro Dominguez-Garcia
George Gross
University of lllinois at Urbana/Champaign
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Resource Mix Planning
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Utility-Scale Storage Application

NaS Battery

pumped storage

<= storage resource discharging
during peak hours

storage resource charging
— — during low-load hours
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Wind/Storage Interactions

energy discharged during peak
MW hours
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Simulation Approach

wind, load and available generation capacity r.v.’s for the simulation period
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