

Technology Session 6: Computational Challenges

Santiago Grijalva

Georgia Institute of Technology

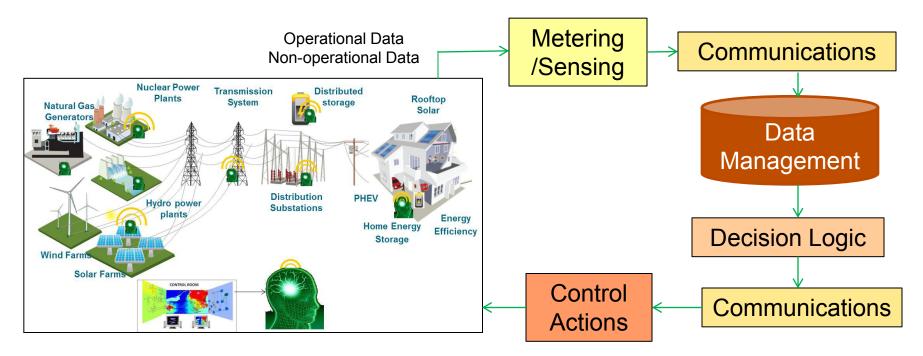
Future Grid Forum June 27-28, 2012 Washington D.C.

Introduction

- The future grid must reach higher levels of Economy and Reliability (traditional objectives).
- At the same time the future grid has new objectives: Sustainability and Energy Security
- Meeting these objectives results in difficult and new computational problems:
 - Existing tools exhibit fundamental limitations.
 - PMU, AMI, and IED data provide great opportunities for improved industry processes:
 - Must organize and secure the data.

Introduction

- Thrust Area 5 addresses the computational challenges of the future grid.
- Computation is critical to the industry because it supports decision-making.
- New decision-making:
 - Spans new scales in space and time.
 - Takes place in a distributed form.
 - Cannot be achieved just by having more data
 - Cannot be achieved just by using more computing power.



Objective

- To develop a computational framework and key algorithms that enable meeting the future grid objectives by:
 - a) Supporting complex and integrated decision-making under uncertainty.
 - b) Enabling real-time distributed control
 - c) Leveraging sensing and massive data, and
 - d) Leveraging advanced computing hardware

Opportunities

- Major benefits can be achieved if emerging and legacy data is integrated in a seamless framework.
- Decision-making must capture emerging complex phenomena present at new temporal and spatial scales.

Technologies and Opportunities

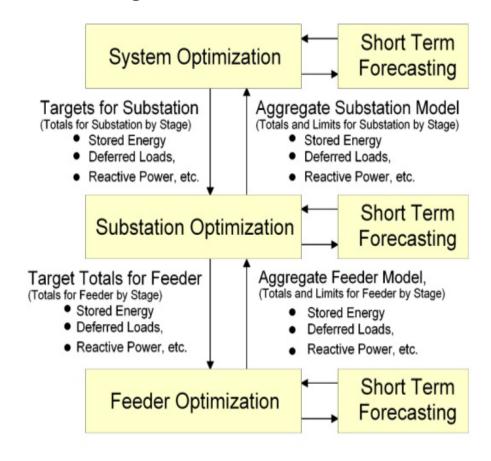
Technology	Time Scale	Space Scale	Opportunities
Sensing			
Intelligent Distributed Sensor Networks	sec, min	T/D	Ubiquitous low-cost sensing Energy harvesting-powered
Intelligent Electronic Devices	us – min	T/D	Synchronized event recording Operational @ non-oper. data Customizable applications
Smart meters	sec, min, hour	Customer	Consumer-in-the-loop enabler Enhanced restoration
Data Management			
Common Models	-	T/D	Seamless data exchange
Data Mining	all	all	Learning from the load Behavior Discovery

Technologies and Opportunities

Technology	Time Scale	Space Scale	Opportunities
Decision Making			
Data Analytics	min, hour	all	System discovery
Hierarchical control	sec, min, hour	Utility, microgrid, customer	Coordinated control Increased operational range Increased reliability and economy
Model-less phasor measurement security apps.	ms-sec	Wide-area ISO, utility, microgrid	Increased wide-area awareness Enhanced reliability
Rolling Time Stochastic Optimization	LT Planning	ISO, utility	Efficient scenario analysis Increased benefits from assets Optimal expansion planning
Decision-Making Frameworks	all	all	Develops formalisms for decisions Ensures objectives can be met.

TA5.1 Computational Issues of Optimization for Planning

- Task Leader: Sarah M. Ryan, Iowa State University
- Specific Problem to be Addressed:
 - Need for planning tools to accommodate increasing uncertainty and the associated risks posed by high levels of renewable resource penetration in markets.
 - Further develop, implement and test a method to reduce the number of scenarios considered in stochastic programming when implemented with a rolling time horizon.
 - Solve multiple variations of a bi-level optimization problem with uncertainty in the lower-level market equilibrium sub-problem.



- **Methods**: Scenario reduction in stochastic programming using a rolling time horizon.
- Achieved: Demonstration of scenario reduction method for generation expansion in a small system. Solution of at least two versions of the bi-level optimization model.
- Final: Comprehensive test of new scenario reduction heuristic against other methods in realistic-sized generation expansion problems. Full case study of bi-level optimization on a realistic system to demonstrate scalability.

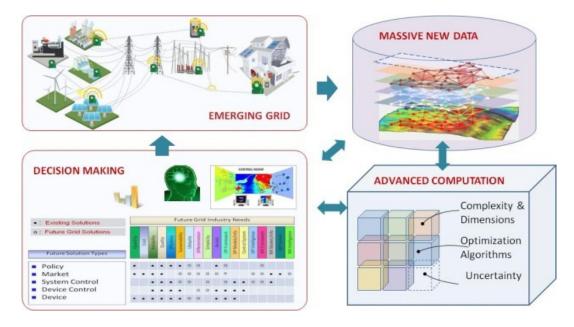
TA5.2 Hierarchical Probabilistic Coordination and Optimization of DERs and Smart Appliances

- Task Leader: A. P. Meliopoulos, Georgia Tech
- Problem to be Addressed
 - Need to integrate smart grid technologies, renewables, smart appliances, PHEVs, etc. into an optimized system of systems that can mitigate the effects of uncertainties.
- Quantification of:
 - a) Resulting savings,
 - b) Impact on GHG emissions
 - c) Shifts in primary fuel utilization.

- Methods: Hierarchical stochastic optimization and control
- Achieved: Simulation results for a typical system that quantifies the savings in fuel costs, shifting of primary fuel utilization, and reduction in greenhouse emissions.
- Final: A hierarchical optimization model and results from case studies.

TA5.3 Real-Time PMU-Based Tools for Monitoring Operational Reliability

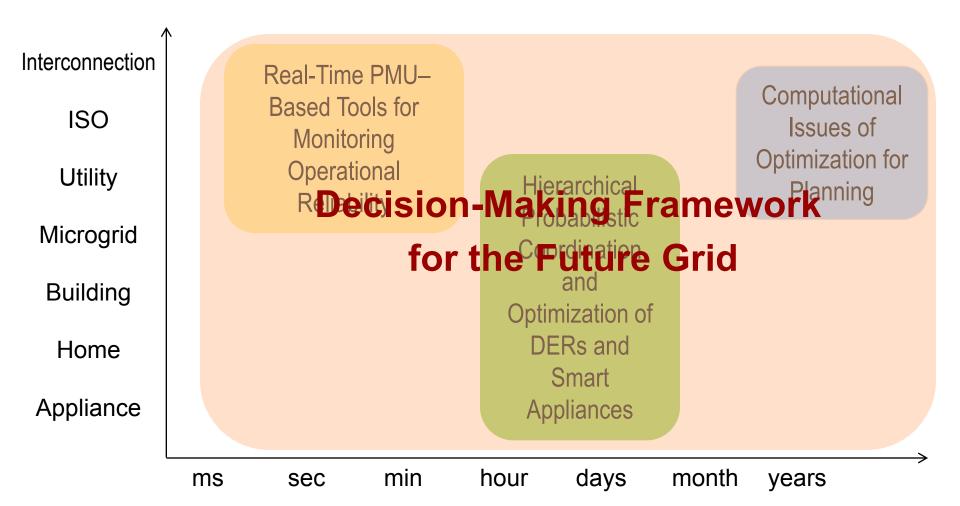
- Task Leader: Alejandro D. Dominguez-Garcia, University of Illinois Collaborators: Peter W. Sauer, University of Illinois
- Specific Problem to be Addressed
 - Need for real-time PMU-based tools for helping operators with operational reliability issues:
 - System loadability monitoring,
 - Transient stability analysis, and
 - 3. Real-time line model and equivalent parameter updating.
 - Develop recursive-filtering techniques for appropriately handling of phasor measurement data and estimating the parameters of interest.



- Methods: Prob. 1 & 2: PMU data alone without assuming any knowledge of the system topology. Prob. 3: Individual transmission model.
- Achieved: PMU data filtering algorithms and theory of model-less loadability monitoring.
- Year 2: Line model and equivalent updating algorithms based on PMU data.
- **Final:** Feasibility of performing transient stability using PMU measurements on certain monitored lines.

TA5.4 Decision-Making Framework for the Future Grid

- Task Leader: Santiago Grijalva, Georgia Tech
- Specific Problem to be Addressed
 - Characterize emerging decision processes at new spatial and temporal scales.
 - Identify new decision makers and address decision complexity.
 - Identify gaps and technological needs for effective decision-making.



- Methods: Complex systems, formal informatics mapping methods, information flow, agent-based simulations, gap analysis.
- Achieved: Categorized list of new decisions, data requirements, and layered architecture.
- Y2: Data, computation, and analytical gaps.
- Final: Critical decision points and processes.
- Automated, machine-learned and human decisions.
- Massive data and computation module interfaces.
- Demonstration for 3 areas: transmission investment, restoration, and consumer management.

TA5 Summary

Conclusions

- Research Priorities
 - Enhanced stochastic optimization algorithms
 - Distributed computational framework under a cyberphysicals systems (CPS) formalism.
 - Distributed power system control algorithms
 - Access to realistic test data
 - Availability to benchmark software

