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Executive Summary 

Interarea and forced oscillations are emerging as operational concerns in modern power systems 

because of the changing intermittent generation patterns, unusual transmission power flows, and 

the integration of inverter-based resources with traditional power grid equipment. The project's 

objective is to develop rigorous statistical methods that can use widely available SCADA 

measurements to detect and analyze power system oscillations. Even though millions of SCADA 

measurements are available in a typical power utility company, they are used chiefly for quasi-

steady-state analysis in the present-day power system owing to their slow sampling rate. In this 

project, we propose using SCADA to detect the source of problematic dynamic oscillations in the 

power grid.  This is accomplished by exploiting the asynchronous sampling inherent in SCADA 

technology. While the oscillation period cannot be determined from SCADA data as implied by 

the sampling theorem, the inferential statistical formulation enables estimating the oscillation 

amplitude from the generation outputs and transmission line flows at a specified confidence level. 

The proposed methodology has been tested using the archived SCADA data from RTE France and 

has successfully identified the source of oscillations in those events. 
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1.  Introduction 

1.1  Background  

Recently, many algorithms have been proposed that utilize synchrophasors to identify potential 

forced oscillation sources. However, due to the lack of sufficient Phasor Measurement Units 

(PMUs) installments throughout the system, sometimes it might be challenging to pinpoint the 

exact generators or loads from where the oscillation originated initially. In this regard, SCADA 

data is helpful due to its abundance in the system. Although SCADA data has a much lower 

sampling rate than PMU data, the asynchronous sampling nature of the SCADA data can be 

capitalized on in identifying the problematic source of forced oscillations. Forced oscillations in 

power systems are typically caused by external disturbances, such as cyclic outputs from generator 

prime movers or persistent cyclic fluctuations in loads ([1]-[2]). Forced oscillations can interact 

with natural electromechanical modes ([3]-[4]), and the resonant oscillations can be observed in 

broad regions of the interconnections (e.g., January 11, 2019, eastern system event [5]). 

Considerable research works have been done in the power system domain to investigate the 

identification of the oscillation source through the analysis of measurements obtained from the 

PMUs installed in the system [6]-[10]. Reference [11] also comprehensively reviews the existing 

source location methods. 

The low sampling nature of SCADA can preserve some of the features of the data when it is 

sampled with PMU. The plot of MW output from a generating unit, measured by PMU and 

SCADA, is given below in Figure 1 for comparison purposes. The SCADA sampling feature 

preserves some characteristics, such as the amplitude of the PMU data, which can be utilized to 

develop the statistical method to analyze the oscillation event. This sampling nature remains the 

same even if the data are detrended, as seen in Figure 2. Different data-detrending methods can be 

applied to remove a trend from the time series data for analysis. 

 

Figure 1: Comparison of raw PMU and SCADA data sampling 
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The duration of the measurements plotted in Figure 1 is 3 hours. The PMU data sampling rate was 

30 Hz, whereas SCADA data had a sampling rate of 0.1 Hz (1 sample every 10 seconds). Although 

PMU data are sampled synchronously, SCADA data are sampled asynchronously and randomly, 

and this inherent quality of the SCADA samples preserves all the information needed to develop 

a rigorous statistical technique for analyzing and detecting forced oscillation sources.  

 

 

Figure 2: Comparison of PMU and SCADA data sampling after detrending 

1.2  Overview of the Problem 

Partial synchrophasor coverage of power generation limits the scope of oscillations that can be 

observed and analyzed for the source location of forced oscillations using these synchrophasor 

measurements. On the other hand, when combined with intelligent analysis methods, the wide 

availability of SCADA measurements can solve the oscillation monitoring and source location 

problems by easy detection and analysis of these oscillations. By deriving a novel application 

based on the SCADA infrastructure, the methodology provides additional value for power 

companies on their existing investment. Currently, oscillations are monitored using 

synchrophasors, which have a high sampling rate, typically 30 Hz in the North American power 

systems and 50 Hz in the European interconnections. While the technology for oscillation 

monitoring using synchrophasors is maturing, the installation cost and communication 

requirements have implied that the observability of the power grid using synchrophasors remains 

limited. On the other hand, SCADA technology has been in implementation since the 1970s, and 

these measurements are available at almost every synchronous generator and at the bulk 

interconnection interface for most of the renewable generators in the power grid due to the ample 

number of installations. 
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1.3  Technical Overview 

In this project, we organized the research problem into the following sections: 

 

(a) Statistical method for oscillation detection and analysis using SCADA data:  

 

The key feature of the SCADA data that motivates our project is that the SCADA data is sampled 

asynchronously and in a somewhat random fashion in the sense of sampling time. That is, even 

when the SCADA sampling rate is one per second, the sampling is not done every second apart 

concerning any accurate timing signal. Instead, the sampling is done according to some polling 

schedule, and the actual sampling may occur at any time within a quarter-second window. This is 

significant for a signal exhibiting an oscillation because this random sampling schedule implies 

that the sampling may “hit” any part of the oscillating signal. This forms the basis for applying 

inferential statistical methods to derive probabilities for when the sampled value will be above a 

prespecified magnitude in the sense of an oscillation. In other words, statistical tests can be 

developed to ascertain whether a SCADA signal exhibits an oscillation of a certain amplitude for 

a given significance level. In summary, SCADA measurements can be shown to be random 

samples of the analog signals being monitored, and this forms the basis for applying inferential 

statistical methods. We can use statistical theory to derive probabilities for when the sampled value 

will exceed a prespecified magnitude in an oscillation. In other words, we can develop statistical 

tests to ascertain whether a SCADA signal exhibits signatures of an oscillation above a certain 

amplitude for a given confidence level. 

 

The typical oscillation frequency of power plant oscillations ranges between 0.2 Hz to 2 Hz, while 

subsynchronous oscillations associated with inverter-based resources typically range between 5 

Hz and 50 Hz [12]. By sampling theorem, the sampling rate must be between 0.4 and 100 Hz for 

analyzing such oscillations, respectively. On the other hand, the sampling rate of the SCADA data 

varies between 0.1 Hz to 1 Hz. While this appears to be a contradiction, the random sampling 

schedules discussed above in the context of the SCADA data enable the sampling to preserve 

specific features of the oscillation, such as the oscillation amplitude in a probabilistic sense. 

Another essential condition for observing high amplitude samples in the SCADA data is that the 

transducer should not have a lower sampling frequency than the oscillation frequency present in 

the signal. Otherwise, the oscillation would not be observable in the SCADA samples. The MW 

and MVAR outputs of the generator units can measure how strongly the unit is participating in an 

oscillation. 

 

(b) Oscillation analysis of SCADA data using statistical method:  

 

After developing the theoretical background, we implemented the algorithm, using filters and data-

detrending methods to preprocess the SCADA data. We analyzed the generation outputs and 

transmission line flows for different test cases to detect the possible source of oscillations. 

 

(c) Validation of the methodology on offline test cases:  

 

We used various test cases from the RTE system's past events to test the methodology and 

validated the results by discussing the findings with RTE. 
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(d) Open-source oscillation analysis toolbox OASIS:  

 

We developed an oscillation analysis toolbox named OASIS using the Python Streamlit library 

with the proposed algorithm.  

1.4  Discussion 

1.4.1  Potential Benefits 

Oscillations have emerged as one of the main stumbling blocks in reliable power grid operation, 

where the oscillations can appear from natural system modes or forced oscillations from control 

failures, rough zone operation, or incorrect setting of control parameters. Such oscillations can 

cause potential damage to expensive generator equipment, including rotor shafts. They can also be 

a problem for power quality for the consumers and a safety hazard for power plant personnel. With 

the increased adoption of renewable generation, the problem is primarily in integrating power 

electronic-based intermittent energy resources into the power grid. There is an urgent need to 

develop methods to detect and analyze the cause of these oscillations to quickly correct the 

underlying problems.   
 
Detection and efficient analysis of oscillations can help manage and accelerate the integration of 

large numbers of renewable devices into the power grid. Also, timely correction of the oscillation 

issues in fossil fuel and nuclear power plants can prevent unscheduled outages of these energy 

sources and help avoid the need to dispatch power from less efficient power plants. Moreover, it 

can help improve the overall economy of the power grid by preventing potential damage from 

problematic oscillations and leading to a more operationally reliable power grid in the future. 

1.4.2  Related Work 

In [12], two slightly different methods named Pattern Mining Algorithm (PMA) and Maximal 

Variance Ratio Algorithm (MVRA) were proposed, which use SCADA data for forced oscillation 

source location wherein the oscillation detection was done using high-speed synchrophasor data. 

PMA and MVRA methods require more parameters to tune for different test cases than the 

proposed algorithm for accurate detection of the source. If those parameters are not set or tuned 

properly for various oscillation events, it might be challenging to identify the sources. On the other 

hand, those two methods are heuristic, whereas this proposed methodology applies inferential 

statistical theory for the rigorous development of the algorithm. 

1.5  Report Organization 

The rest of the report is organized as follows: Section 2 introduces the inferential statistical theory 

as the foundation for developing the algorithm. Section 3 summarizes the steps of the algorithm 

for locating the sources of forced oscillations using SCADA data. Section 4 illustrates and 

discusses the real forced oscillation events in the RTE systems. Section 5 provides an overview of 

the OASIS toolbox, and section 6 concludes the report. 
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2.  Statistical Method for Oscillation Detection and Analysis Using SCADA 

Data 

2.1  Statistical Theory 

During a forced oscillation event, the amplitude of the source signals increases or decreases 

compared to the other signals in the system in normal or ambient conditions. To introduce the 

theory behind the algorithm, it is assumed that the oscillating signal behaves like a sine wave. 

Although this assumption might differ in real cases, it can be handled by any proper data-

detrending method. For analyzing the SCADA samples, a pair of bands can be set up, which are 

used as an indication to check how high the amplitude of the signal is. In the case of a forced 

oscillation event, the oscillating signal will cross the bands, and the sampled data of the signal will 

show transitions across the bands. This transition behavior among the data samples can be used to 

formulate an algorithm to identify the system's high-amplitude signals. An illustration of data 

samples transitioning across the bands for both ambient and oscillating conditions is shown in the 

following Figure 3 with an ideal sine wave oscillation case. For example, the sine wave's amplitude 

is 1 per unit (pu) in ambient conditions, and the band is set to 2. As a result, the samples do not 

transition across the bands. On the other hand, when oscillation occurs, and the signal's amplitude 

can go from 1 to 4, there would be transitions among the samples across the bands. 

 

 

Figure 3: Illustration of data transition in ambient (left) and oscillating condition (right) across 

the transition bands 

2.2  Analysis with One Sample 

The algorithm is formulated by counting the number of transitions in the SCADA samples across 

the upper and lower transition bands. Let 𝑥(𝑘) be a random SCADA sample, which can lie 

anywhere in the upper, middle, or lower region, as shown in Figure 5. Let the transition band be 

represented by 𝐵. The sample space Ω consists of three outcomes. 

Ω = {𝑅1, 𝑅2, 𝑅3} 

where, 𝑅1: 𝑥(𝑘) ∈ (+∞, 𝐵), 𝑅2: 𝑥(𝑘) ∈ (𝐵, −𝐵) and 𝑅3: 𝑥(𝑘) ∈ (−𝐵, −∞). 

The probability 𝑟 can be defined as the probability of finding the sampled data 𝑥(𝑘) in the upper 

region which corresponds to the outcome 𝑅1. If the highest amplitude of the oscillation is 
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represented by 𝐴, and the transition band is set up at +𝐵 in the upper region, then for outcome 𝑅1, 

the probability 𝑟 can be written as, 

                                                            𝑟 =
1

2
∗ (

𝐴 − 𝐵

𝐴 − 0
) +

1

2
∗ 0 =

𝐴 − 𝐵

2 ∗ 𝐴
                                            (1) 

Similarly, the probability of finding a sampled data 𝑥(𝑘) in the lower region which corresponds to 

the outcome 𝑅3 can also be defined as 𝑟. In that case, if the transition band is set up at −𝐵 in the 

lower region, and the lowest amplitude of the oscillation is −𝐴, then for outcome 𝑅3, 𝑟 can be 

written as,  

𝑟 =
1

2
∗ 0 +

1

2
∗ (

−𝐵 − (−𝐴)

0 − (−𝐴)
) =

𝐴 − 𝐵

2 ∗ 𝐴
 

which is same as (1). 

The transition happens between two consecutive samples. For example, let the two successive 

samples be 𝑥1(𝑘) and 𝑥2(𝑘). So, the transition between these two samples will occur if they 

correspond to the following pair of outcomes: {𝑅1, 𝑅2} or, {𝑅2, 𝑅3} or, {𝑅1, 𝑅3}. So, the probability 

of transition, 𝑠 can be written in terms of 𝑟 as, 

                                         𝑠 = 1 − 𝑟2 − 𝑟2 − (1 − 2𝑟)2 =  −6 (𝑟 −
1

3
)

2

+
2

3
                                 (2)  

Equation (2) represents the parabolic relation between 𝑠 and 𝑟. The following claims can be made 

about probability 𝑟, probability of transition, 𝑠, and the transition band 𝐵. 

Lemma 1: 𝑟 < 0.5 

Referring to (1), 

If, 𝐴 > 0, then, 𝐵 > 0. As a result, 𝑟 < 0.5. 

If, 𝐴 < 0, then, 𝐵 < 0. As a result, 𝑟 < 0.5.  

If, 𝐵 = 0 𝑎𝑛𝑑 𝐴 ∈ ℝ, 𝑟 = 0.5. 

Since 𝐵 ≠ 0, 𝑟 must be constrained as 0 < 𝑟 < 0.5. 

The relationship between 𝑟 and 𝑠 can be visualized from the following Figure 4. 

 

 

Figure 4: Relation between r and s 
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It can be observed that the value of 𝑠 increases with the increase of 𝑟 at first. When 𝑟 is 0.33, 𝑠 

reaches its maximum value which is 0.66. After that, with the increase of 𝑟, 𝑠 starts decreasing. 

The unshaded region of Figure 4 is the considerable region for the proposed algorithm. 

The probability of transition, 𝑠 can be scaled with the following formulation. 

                                                                              𝑝 =
3

2
𝑠                                                                      (3) 

Here, 𝑝 is the scaled probability of transition, and the range of this scaled probability is 0 < 𝑝 < 1 

according to (3). 

Lemma 2: r is an increasing function respective to the amplitude of oscillation, A. 

From (1), 

                                                                           
𝑑𝑟

𝑑𝐴
=

𝐵

2 ∗ 𝐴2
                                                                (4) 

When the amplitude of oscillation increases and the band is kept fixed, the probability 𝑟 will also 

increase. For example, let the upper transition band be at 50 MW or MVAR. Then, the lower 

transition band would be set at –50 MW or MVAR. If the amplitude of oscillation is 80 MW or 

MVAR, then 𝑟 would be 0.1875. If the amplitude of oscillation is increased from 80 to 100 MW 

or MVAR, then 𝑟 would be 0.25. It is to be noted that increasing the value of 𝑟 does not mean the 

detection is better. Since the amplitude of oscillation is not known beforehand, the setting of the 

band needs to be handled intuitively for the accurate detection of the source, which is discussed in 

section 3. 

Lemma 3: In an ideal case, 𝐴 = 3𝐵. 

According to Figure 4, when 𝑟 = 0.33, 𝑠 = 0.66. Putting the value 𝑟 = 0.33 in (1) results in 𝐴 =
3𝐵. So, for an ideal test case scenario, the amplitude of oscillation should be three times of the 

transition band. 

Lemma 4: If 𝐵 > 𝐴, 𝑟 = 0 and the probability of source detection is 0.  

If the band is set up higher than the largest amplitude of the oscillation signal, there would be no 

transitions between samples. As a result, in the event of forced oscillation, it would not be possible 

to identify the source with the algorithm. 

2.3  Testing for Detection of Source with Multiple Samples 

Let 𝐾 be the number of transitions across the +/−𝐵 band and 𝑛 be the length of the sample window 

for analysis.  
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Figure 5: Sampled data transitions across the band 

In the Figure 5 above, there are 10 samples in the sample window, and 7 transitions occurred 

between the two consecutive samples. An assumption can be made on the distribution of the 

number of transitions, 𝐾. Either there would be a transition between two samples, or there would 

be no transition. So, these two occurrences can be modeled as success and failure outcomes from 

the binomial distribution. Since the SCADA samples are discrete, we assume that 𝐾 follows the 

binomial distribution. 

For the detection of oscillation from a test sample, a hypothesis test can be formulated with a null 

hypothesis and an alternate hypothesis. 

 

Null hypothesis (H0): There is no oscillation (high amplitude data) present in the power system 

compared to the average amplitude in ambient conditions. 

 

Alternate hypothesis (H1): Oscillation is present in the power system, and the amplitude 

(absolute value) of the source signal during the oscillation period is higher than the average during 

the non-oscillation period. 

 

For the samples present in the analysis window, the binomial probability mass function for 𝐾, the 

number of transitions among 𝑛 samples can be expressed as in (5). 

 

                                                          Pr(𝑛, 𝑘, 𝑝) = (
𝑛

𝑘
) 𝑝𝑘(1 − 𝑝)𝑛−𝑘                                                  (5) 

 

Here, 𝑃𝑟, the binomial probability is a function of 𝑛, 𝑘 and 𝑝, where 𝑛 represents the total number 

of samples in the oscillation window, 𝑘 is the number of successes to the occurrence of transitions 

in 𝑛 trials, and 𝑝 is the scaled probability of a transition between two successive samples and (𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
. 

Clearly, smaller values of transition probability 𝑝 are indicative of no oscillation in the process, 

and when 𝑝 is beyond a pre-specified value, say, 𝑝𝑚𝑖𝑛, then one concludes that oscillations are 

present in the process. Thus, the null and alternative hypotheses can be equivalently expressed in 

terms of 𝑝 as: 
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𝐻0: 𝑝 ≤ 𝑝𝑚𝑖𝑛 

𝐻1: 𝑝 > 𝑝𝑚𝑖𝑛 

 

The testing of H0 against H1 is carried out by identifying the number of transition thresholds under 

the binomial probability distribution for 𝐾. As is done in any hypothesis testing problem, the 

threshold number for transitions is obtained by assuming the null hypothesis H0 to be true. Thus, 

under H0, 𝐾 follows a binomial distribution with parameters (𝑛, 𝑝𝑚𝑖𝑛). It is well known that under 

the binomial distribution, the observed sum is uniformly the most powerful statistic for the one-

sided hypothesis testing problem. Thus, for any given significance level 𝛼, one finds the threshold 

number 𝑘𝛼 from the binomial distribution with parameters (𝑛, 𝑝𝑚𝑖𝑛). In this manner, a Uniformly 

Most Powerful (UMP) test can be formulated. The time window during the oscillation event is 

referred to as the oscillation window, and the non-oscillation duration of the time window is 

referred to as the ambient or base window in this report. These hypothesis tests for both oscillation 

and ambient windows would give high confidence to detect the source of forced oscillation 

accurately and would further prevent any false detection. 

 

Thus, 𝑝𝑚𝑖𝑛 and significance level, 𝛼 can be used to determine the number of transitions threshold, 

𝐾𝛼 that enables one to reject the null hypothesis 𝐻0. So, if the actual number of transitions among 

the samples is denoted by 𝐾, then the test can be formulated for the oscillation window analysis 

as, 

 

𝐴𝑐𝑐𝑒𝑝𝑡 𝐻0 𝑖𝑓 𝐾 ≤ 𝑘𝛼 

𝑅𝑒𝑗𝑒𝑐𝑡 𝐻0 𝑖𝑓 𝐾 > 𝑘𝛼 
 

Under the above accept/reject criterion, one can expect the following. Whenever 𝐻0 is true, the 

actual number of transitions 𝐾 can be expected to be below 𝑘𝛼, and except for a small proportion 

𝛼 we would stay with the null hypothesis most of the time. However, if the alternative is true, then 

the actual number of transitions will most likely be greater than the threshold value 𝑘𝛼 , and one 

will make the right decision of rejecting the null hypothesis.  

 

Let us consider an event where the oscillation duration is 10 minutes. If the SCADA sampling rate 

is 0.1 Hz, there would be 60 data samples for that oscillation window. Let us also assume that the 

value of 𝑝 is 0.30 when the band is set up. So, there would be 59 pairs to check the transition 

between two consecutive samples from those 60 samples, and each checking would be independent 

of one another. The plots of Probability Mass Function (PMF) and Cumulative Distribution 

Function (CDF) for this binomial distribution case are illustrated in Figure 6. 
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Figure 6: Plot of PMF and CDF of binomial distribution 

If the oscillation duration of an event is not extremely short, there would be large enough samples 

where the normal approximation can also be used instead of the binomial distribution formulation 

as per the central limit theorem. In our analysis, it is observed that if the expected value (𝐸 = 𝑛𝑝) 

is greater than 1.5 when 𝑝 = 0.3, the normal approximation and binomial PMF provide the same 

threshold count 𝑘𝛼 for the test when the significance level is set to 5%. An illustration for the 

normal approximation of the binomial distribution is shown in Figure 7. 

 

 

 

Figure 7: Normal approximation of binomial PMF for n=12 and p=0.4 

2.4  Impact on High Amplitude Samples Due to Low Pass Filters 

Low pass filters are commonly used in transducers within SCADA systems, particularly in the 

signal conditioning stages for noise reduction and signal smoothing purposes. These filters may 

suppress the high-amplitude data samples in the SCADA system. To illustrate this phenomenon, 

let us consider a signal with both ambient and oscillating conditions for 10 minutes or 600 seconds, 
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as shown in Figure 8. The first 5 minutes of the signal is in ambient condition, and after that, the 

oscillation starts where the frequency of the oscillating sinusoidal signal is 0.25 Hz, the amplitude 

of oscillation 6 pu, and the transition bands are set at 2 and -2 pu. If the SCADA system samples 

1 data in every 10 seconds, there would be 60 samples for the signal duration, and the sampling 

would preserve the high amplitude samples in the oscillation window. In this case, due to the 

transitions of the samples across the bands in the oscillation window, the proposed algorithm can 

be implemented successfully. 

 

 

Figure 8: Emulated signal and the resulting samples from SCADA with transition bands 

On the other hand, if the signal is passed through a low pass filter before the SCADA sampling, 

the oscillating signal would be attenuated, and the resulting sampled data would not show any 

transition. This is depicted in Figure 9, where the emulated signal is passed through a low pass 

filter first with a cutoff frequency of 0.1 Hz. This is a necessary condition for the proposed 

algorithm to work as intended; that is, the SCADA samples should not be attenuated due to the 

implementation of any low pass filter design with a lower cutoff frequency. 
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Figure 9: The resulting signal and samples after passing through a low-pass filter 

2.5  Maximum Observable Oscillation Frequency 

The maximum detectable oscillation frequency will depend on the transducer characteristics. Some 

of the characteristics of the transducer used in RTE are provided below: 

Table 1. Transducer characteristics 

Device Name Sampling 

frequency (Hz) 

Number of 

samples 

Vendor 1 3200 192 

Vendor 2 3000 300 

Vendor 3 1000 500 

 

The output of the transducer is based on a moving average on the sampled measures. 

A moving average is a kind of low-pass filter for which the following formula approximates the -

3 dB cutoff frequency:  

𝐹𝑐𝑢𝑡𝑜𝑓𝑓 =
0.442947

√𝑁2 − 1
∙ 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

N is the number of samples. 

Then, we can calculate the cutoff frequency for the devices above: 
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Table 2. Transducer cut-off frequencies 

Device Name Cutoff frequency 

(Hz) 

Vendor 1 7.38 

Vendor 2 4.42 

Vendor 3 0.88 

 

From Table 2, we can conclude that, depending on the sampling frequency and number of samples 

the transducer uses to elaborate the measurement, the observable frequency could be up to several 

Hz. However, if the sampling frequency is insufficient and the number of samples used is too high, 

the measurement obtained would be unable to detect modes above 1 Hz, common on synchronous 

machines. 
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3.  Oscillation Analysis of SCADA Data Using Statistical Method 

For the algorithm formulation, the start time and end time of the oscillation event, that means the 

oscillation duration needs to be known beforehand. The knowledge of the start and end times is 

used to distinguish between the presence versus absence of the oscillations in the SCADA data. 

This information can be gathered from any oscillation detection engines, such as FFDD [13], 

which use PMU-based synchrophasor data to find the start and end times of the oscillation. Once 

the start and end time information of the oscillation are known, the algorithm uses the SCADA 

data for detecting the source. 

3.1  Processing the Data 

The data set is processed first before applying the algorithm. Some generators might have empty 

columns or contain “NaN” values, and a filter is applied to remove these generators. Again, some 

generators might have very low outputs. These generators can be ignored by checking them against 

the minimum output threshold, which can be set as an input parameter in the initial stage. For 

example, a filter can be designed that removes these types of generators whose maximum output 

is less than 10 MW or MVAR. Moreover, some generators might have minimal variation in 

amplitude from the samples. Another filter can also be applied that removes the generators whose 

maximal difference for the whole data set is less than, say, 5 MW or MVAR. 

3.2  Detrending the Data 

In the algorithm proposed in this report, two different data-detrending methods have been applied. 

For the first detrending method, a median filter is applied to the raw data. Then, the difference 

between the raw data and filtered data is measured to check any oscillating activity in the SCADA 

signals. For the second detrending method, the difference between two consecutive samples is 

measured for detrending the whole data set. It is observed that both detrending methods work well 

with the proposed algorithm in locating the accurate forced oscillation source. 

3.3  Setting Up the Transition Band 

The lower and upper transition band values are difficult to set up since the SCADA signals that 

contain oscillating samples might have different amplitudes in different cases. To resolve this 

issue, an iterative process is introduced in the algorithm where the 𝑝 value of the respective 

oscillation window and the ambient window does not change in the iteration process. The transition 

band starts with a lower value and is increased by a fixed number in each iteration, resulting in a 

larger transition band in the end. From the first iteration, many generators can be flagged as 

oscillating sources. As the number of iterations goes up and the transition band increases, the 

generators that are flagged initially with the lowest transition band will be removed, and only a 

few generators with high amplitude of data may remain, which will point towards the actual 

sources of oscillation. In this regard, a ranking of the generators is also done in the algorithm based 

on their participation in the oscillating event. The formula used to rank the generators is as follows. 
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 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑁𝑢𝑚𝑜𝑠𝑐

𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑠𝑐
 (6)

Here, 𝑁𝑢𝑚𝑜𝑠𝑐 denotes the number of actual transitions among the samples in the oscillation 

window of the detrended measurements, and 𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑠𝑐 represents the lengths of the oscillation 

duration or in this case, the total number of samples in the oscillation window. In a similar fashion, 

𝑁𝑢𝑚𝑎𝑚𝑏 will represent the number of transitions among the samples in the ambient or base 

window of the detrended measurements, and 𝐿𝑒𝑛𝑔𝑡ℎ𝑎𝑚𝑏 will represent the total number of 

samples in the ambient window. 

3.4  Number of Samples and Transition Threshold for the Analysis 

The transition threshold 𝑘𝛼 for both ambient and oscillation windows is calculated using the 

binomial distribution formulation until the cumulative probability reaches the pre-specified 

confidence level. For example, if the confidence level is set to be 95% and the scaled probability 

of transition is chosen as 𝑝 = 0.3 for the analysis window, the threshold for the number of 

transitions for the analysis window needs to be at least 3 to find the number of samples 𝑛 using 

(7). In this case, the number of samples in the analysis window would be 5. If the SCADA 

sampling rate is 0.1 Hz or 1 sample in every 10 seconds, the duration of the analysis window 

needs to be at least 50 seconds for the proposed algorithm. 

 0.95 ≤ ∑ (
𝑛

𝑖
) 0.3𝑖(1 − 0.3)𝑛−𝑖

𝑘

𝑖=0

  (7) 

Table I shows the number of samples against the transition threshold to reach the 95% confidence 

level, with 𝑝 being 0.3. For example, if the analysis window has 30 samples, the number of 

transition threshold would be 13 when calculated with the stated parameters. Referring to Fig. 8, 

there are 20 transitions in the oscillation window between 300 and 600 seconds. So, this signal 

would pass the oscillation window test with respect to the transition bands set there. It is also to be 

noted that the condition for the hypothesis is strict regarding the transition threshold when the 

number of samples is small, or the duration of the analysis window is short. This condition 

becomes a little relaxed when the sample number increases as evident from the sample numbers 

25 and 30 in Table I. 

Table 1: Number of samples and transitions to reach 95% confidence level when p=0.3 

Number of Samples Transition Threshold

5 3 

10 5 

15 8 

20 9 

25 11 

30 13 
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3.5  Summarizing the Steps of the Algorithm 

The main steps of the algorithm are summarized below. 

1) Input SCADA data and the start and end time of oscillation event. 

2) Find the oscillation and ambient window length. 

3) Detrend the data either using the median filtering method or the differencing detrending 

method. 

4) Count the thresholds of transitions for both oscillation and ambient windows separately 

using the pre-specified 𝑝 values and significance levels for both windows. 

5) Process the SCADA data based on the empty column or “NaN” values, minimum output 

threshold, and minimum variations of the generator data. 

6) Set up the minimum transition bands value and count the actual number of transitions for 

both oscillation and ambient window respective of that transition bands. 

7) Compare the actual transition count against the thresholds for each signal for both windows 

separately. If the number of transitions found in the oscillation window is lower than the 

oscillation window threshold count, reject the signal and move on to the next signal. If not, 

then check whether the number of transitions found in the ambient window is higher than 

the ambient window threshold count. If yes, reject the signal and move on to the next signal. 

In summary, for a signal to qualify for the ranking, the number of transitions in the 

oscillation window must be higher than the oscillation window threshold, and the number 

of transitions in the ambient window must be lower than the ambient window threshold. 

8) Rank the signals according to (6) and store the results in a result index. 

9) Increase the transition band for the next iteration and repeat steps 6 to 8. 

10) The generating units flagged where the transition band is largest at the end of the iteration 

process will point toward the accurate source of oscillation. 
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4.  Validation of the Methodology on Offline Test Cases 

4.1  Analysis with Archived SCADA Data 

In this section, various real-world oscillation events with different scenarios are analyzed with the 

proposed algorithm to test the effectiveness of the proposed algorithm by finding the oscillating 

sources. The data for the first three test cases presented here are provided by RTE from the 

European interconnection system. The findings were discussed with RTE, and it was verified that 

the proposed algorithm was successful in identifying the accurate sources of oscillation for all the 

cases. The fourth case is from the Western system with a low amplitude oscillating source. For 

each of the cases presented below, the starting point of the transition band is set at 3 after 

detrending the data, and the maximum transition band is set at 100 with a step increase of 10 in 

each iteration. The transition band values, as well as the step increase of the iteration process, can 

be modified in the algorithm according to user preference. 

4.2  Test Case 1 

This event occurred on August 10, 2022. The event duration was approximately 19 minutes. The 

oscillation starts at approximately 2:04 PM and ends at 2:23 PM. It occurred in a nuclear power 

plant during the ramping down of active power of a generation unit. The SCADA data set, which 

was used for finding the source generator, contains approximately 50 minutes of data and about 

2250 signals consisting of real and reactive power measurements. The following table shows the 

ranking of the generators in ascending order with selected iterations where the highest ranked 

generator is shown at the top and so on. The transition band values increase in each iteration step. 

The generators found in which the transition band is largest (in this case, 83) are the sources of 

forced oscillation.  

 

Table 2: Ranked sources for test case 1 

Transition Band ±43 ±53 ±63 ±73 ±83 ±93 

Generator 

378 378 378 377 377 NA 

1512 1512 1512 375 375 NA 

379 379 379 376 1511 NA 

380 380 376 378 376 NA 

375 376 377 1511 378 NA 

1511 375 375 1512 1512 NA 

377 377 1511 379 NA NA 

376 1511 380 NA NA 
NA 

 

It is to be noted that when the transition band is small at the starting point, many generators can be 

flagged as possible sources of oscillation. But these initially flagged generators will go away with 

the increase of the band, and only those with the potential of being possible sources will remain. 

That is why the above table enlists the generators when the transition band is of a substantial large 

value. In some test cases, it is found that when the oscillation amplitude is low, the lower transition 
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band can provide the correct possible sources from the beginning of the iteration process. Such 

examples are given in test case 3, where the sources are located with a few number of iterations. 

 

 
(a) Rank 1 

 
(b) Rank 2 

 
(c) Rank 3 
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(d) Rank 4 

 
(e) Rank 5 

 
(f) Rank 6 

Figure 10: Outputs of the top-ranked generators for test case 1 
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By observing the above generator outputs in Figure 10, it can be seen that generators 377, 375, 

1511, and 376 point towards the same generator. Upon discussing the result with RTE, it was 

found that the data of this generator was measured from multiple different SCADA units. The 

same goes for generators 378 and 1512. It also alternatively verifies the consistency of the result. 

 

The same event is analyzed with the transmission line flow data from SCADA measurements to 

check the consistency of finding the forced oscillation source with the data acquired from the 

generation side. As shown in Table 3, the algorithm correctly ranks the transmission lines that are 

adjacent to the source generator. 

 

Table 3: Ranked lines for test case 1 

Transition Band ±53 ±63 ±73 ±83 ±93 

Transmission Line 

1208 1208 1204 1204 NA 

1206 1206 1203 1205 NA 

1207 1203 1205 1203 NA 

1203 1204 1208 1208 NA 

1204 1205 1206 NA NA 

1205 1207 NA NA NA 

444 NA NA NA NA 

 

Line numbers 1203 to 1208 correspond to the MW and MVAR flow of the transmission lines 

adjacent to the oscillating generator. The line measurements were also coming from multiple 

SCADA units, and instead of showing all of them, line 1204 flow is given in Figure 11. 

 

 

Figure 11: Transmission flow of the top-ranked line for test case 1 

The line flow analysis provides another interesting insight in this case. When the transition band 

is at 53 for the analysis, line 444 also gets included in the ranking. Lines 1203 to 1208 correspond 

to region 1, and line 444 corresponds to region 2 in the transmission network map of RTE, as 
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shown in Figure 12. Line 444 is connected between France and its neighboring country. As 

discussed with RTE, an interarea mode is present in this region 2, and it was observed several 

times from the past events. For this particular event on August 10, 2022, the mode was mildly 

resonating with the local mode in region 1. This type of ranking and analysis from the proposed 

algorithm might provide useful information from the oscillation events in the day-to-day operation 

of any power system network. 

Figure 12: Transmission network of RTE, France 

4.3  Test Case 2 

This event occurred on September 30, 2017. The oscillation lasted approximately 2 hours and 12 

minutes. The oscillation starts at approximately 3:17 AM and ends at 5:29 AM. The SCADA set 
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which was used for analysis contains approximately 3 hours of data and about 1995 signals 

consisting of real and reactive power measurements. The following table shows the ranking of the 

generators in a similar fashion as shown in Table 2. The generators found in which the transition 

band is largest (in this case, 93) are the sources of forced oscillation. 

Table 4: Ranked sources for test case 2 

Transition Band ±43 ±53 ±63 ±73 ±83 ±93 

Generator 

1047 822 822 822 822 822 

822 1047 1047 823 823 823 

823 823 823 1047 1047 1047 

825 825 825 825 824 824 

824 824 824 824 825 825 

828 829 1048 1048 1048 NA 

829 828 828 828 NA NA 

1048 1048 829 829 NA NA 

The algorithm flags multiple generators to be the possible sources of oscillation. Similar to test 

case 1, generators 822, 823, 824, and 825 are basically one generator where multiple SCADA units 

are connected to it. The output of generators 822 and 1047 are shown below in Figure 13, where 

the oscillation can be inspected visually. 

(a) Rank 1
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(b) Rank 2

Figure 13: Outputs of the top-ranked generators for test case 2 

4.4  Test Case 3 

This event occurred on April 11, 2021. The event duration was approximately 9 minutes. The 

oscillation starts at approximately 1:56 AM and ends at 2:05 AM. The SCADA set which was used 

for finding the source generator contains approximately 30 minutes of data and about 895 signals 

consisting of real and reactive power measurements. This test case is different in the sense that the 

oscillation amplitude is much smaller compared to the previous two test cases. Thus, it is expected 

that the source would be found with the smaller transition bands and with the first few iterations. 

Table 5: Ranked lines for test case 3 

Transition Band ±3 ±13 ±23 

Generator 

618 618 NA 

714 NA NA 

622 NA NA 

715 NA NA 

In this case, the source generator 618 is identified with only two iterations. 
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Figure 14: Output of the source generator for test case 3 

4.5  Sensitivity of Data Detrending Methods 

All the cases were also tested with both the median filter-based data-detrending method as well as 

the differencing detrending method, and it was found that the proposed algorithm identifies the 

accurate source of forced oscillation regardless of which data detrending method is used. For 

example, the algorithm was run with another real event with both median filter and differencing 

data-detrending methods, and it pointed to the same source both times, which are illustrated in 

Figure 15 and 16. 

Figure 15: Source identification with the median filter-based detrending method 
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Figure 16: Source identification with the differencing detrending method 

The event shown in Figure 15 and 16 occurred on January 29, 2021. The start time of the oscillation 

was 5:08 AM, and the end time was 6:00 AM. The source of the oscillation was generator 718, 

which was accurately identified with both median filtering and differencing data-detrending 

methods. 
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5.  Open-Source Oscillation Analysis Toolbox OASIS 

The toolbox is developed using the Python Streamlit library, and it can be run by the streamlit run 

command with the file location directory in the command prompt in the Windows operating system 

or the terminal in macOS with any Python Integrated Development Environment (IDE). This web-

based application will open a new tab in the default browser of the system where the user can 

upload the SCADA data file. The first and last date and time information from the data set would 

be displayed automatically after uploading the data set. The user will then need to provide the 

oscillation event start and end time as inputs. The application will read the other input parameters 

from the “Settings” file located in the directory, and it will show the results when the “Run 

Algorithm” button is clicked. 
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Figure 17: OASIS toolbox for oscillation analysis 
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6.  Conclusion 

Oscillations have emerged as one of the main stumbling blocks in the reliable operation of the 

power grid. Such oscillations can cause potential damage to expensive generator equipment, 

including rotor shafts, and can also be a problem for power quality for the consumers, in addition 

to being a safety hazard for power plant personnel. With the increased adoption of renewable 

generation, the problem is especially showing up in integrating power electronic-based intermittent 

energy resources into the power grid. Detection and efficient analysis of the oscillations can help 

the smooth integration of large numbers of renewable devices into the power grid. Also, timely 

correction of the oscillation issues in fossil fuel and nuclear power plants will prevent unscheduled 

outages of these energy sources and will help avoid the need for dispatching power from less 

efficient power plants. From the real cases presented in this report, it is observed that the proposed 

algorithm can detect the source regardless of the duration of oscillation, the size of the data set, 

and the amplitude of oscillation. In the future, there are scopes for more investigations to modify 

the proposed algorithm in this report or to search for statistical approaches on how SCADA data 

can be utilized for detecting the start of the oscillation so that the algorithm does not need to rely 

on synchrophasors for the oscillation timestamp information. 
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