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Executive Summary

Interarea and forced oscillations are emerging as operational concerns in modern power systems
because of the changing intermittent generation patterns, unusual transmission power flows, and
the integration of inverter-based resources with traditional power grid equipment. The project’s
objective is to develop rigorous statistical methods that can use widely available SCADA
measurements to detect and analyze power system oscillations. Even though millions of SCADA
measurements are available in a typical power utility company, they are used chiefly for quasi-
steady-state analysis in the present-day power system owing to their slow sampling rate. In this
project, we propose using SCADA to detect the source of problematic dynamic oscillations in the
power grid. This is accomplished by exploiting the asynchronous sampling inherent in SCADA
technology. While the oscillation period cannot be determined from SCADA data as implied by
the sampling theorem, the inferential statistical formulation enables estimating the oscillation
amplitude from the generation outputs and transmission line flows at a specified confidence level.
The proposed methodology has been tested using the archived SCADA data from RTE France and
has successfully identified the source of oscillations in those events.
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1. Introduction

1.1 Background

Recently, many algorithms have been proposed that utilize synchrophasors to identify potential
forced oscillation sources. However, due to the lack of sufficient Phasor Measurement Units
(PMUs) installments throughout the system, sometimes it might be challenging to pinpoint the
exact generators or loads from where the oscillation originated initially. In this regard, SCADA
data is helpful due to its abundance in the system. Although SCADA data has a much lower
sampling rate than PMU data, the asynchronous sampling nature of the SCADA data can be
capitalized on in identifying the problematic source of forced oscillations. Forced oscillations in
power systems are typically caused by external disturbances, such as cyclic outputs from generator
prime movers or persistent cyclic fluctuations in loads ([1]-[2]). Forced oscillations can interact
with natural electromechanical modes ([3]-[4]), and the resonant oscillations can be observed in
broad regions of the interconnections (e.g., January 11, 2019, eastern system event [5]).
Considerable research works have been done in the power system domain to investigate the
identification of the oscillation source through the analysis of measurements obtained from the
PMUs installed in the system [6]-[10]. Reference [11] also comprehensively reviews the existing
source location methods.

The low sampling nature of SCADA can preserve some of the features of the data when it is
sampled with PMU. The plot of MW output from a generating unit, measured by PMU and
SCADA, is given below in Figure 1 for comparison purposes. The SCADA sampling feature
preserves some characteristics, such as the amplitude of the PMU data, which can be utilized to
develop the statistical method to analyze the oscillation event. This sampling nature remains the
same even if the data are detrended, as seen in Figure 2. Different data-detrending methods can be
applied to remove a trend from the time series data for analysis.
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Figure 1: Comparison of raw PMU and SCADA data sampling



The duration of the measurements plotted in Figure 1 is 3 hours. The PMU data sampling rate was
30 Hz, whereas SCADA data had a sampling rate of 0.1 Hz (1 sample every 10 seconds). Although
PMU data are sampled synchronously, SCADA data are sampled asynchronously and randomly,
and this inherent quality of the SCADA samples preserves all the information needed to develop
a rigorous statistical technique for analyzing and detecting forced oscillation sources.
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Figure 2: Comparison of PMU and SCADA data sampling after detrending

1.2 Overview of the Problem

Partial synchrophasor coverage of power generation limits the scope of oscillations that can be
observed and analyzed for the source location of forced oscillations using these synchrophasor
measurements. On the other hand, when combined with intelligent analysis methods, the wide
availability of SCADA measurements can solve the oscillation monitoring and source location
problems by easy detection and analysis of these oscillations. By deriving a novel application
based on the SCADA infrastructure, the methodology provides additional value for power
companies on their existing investment. Currently, oscillations are monitored using
synchrophasors, which have a high sampling rate, typically 30 Hz in the North American power
systems and 50 Hz in the European interconnections. While the technology for oscillation
monitoring using synchrophasors is maturing, the installation cost and communication
requirements have implied that the observability of the power grid using synchrophasors remains
limited. On the other hand, SCADA technology has been in implementation since the 1970s, and
these measurements are available at almost every synchronous generator and at the bulk
interconnection interface for most of the renewable generators in the power grid due to the ample
number of installations.



1.3 Technical Overview

In this project, we organized the research problem into the following sections:

(a) Statistical method for oscillation detection and analysis using SCADA data:

The key feature of the SCADA data that motivates our project is that the SCADA data is sampled
asynchronously and in a somewhat random fashion in the sense of sampling time. That is, even
when the SCADA sampling rate is one per second, the sampling is not done every second apart
concerning any accurate timing signal. Instead, the sampling is done according to some polling
schedule, and the actual sampling may occur at any time within a quarter-second window. This is
significant for a signal exhibiting an oscillation because this random sampling schedule implies
that the sampling may “hit” any part of the oscillating signal. This forms the basis for applying
inferential statistical methods to derive probabilities for when the sampled value will be above a
prespecified magnitude in the sense of an oscillation. In other words, statistical tests can be
developed to ascertain whether a SCADA signal exhibits an oscillation of a certain amplitude for
a given significance level. In summary, SCADA measurements can be shown to be random
samples of the analog signals being monitored, and this forms the basis for applying inferential
statistical methods. We can use statistical theory to derive probabilities for when the sampled value
will exceed a prespecified magnitude in an oscillation. In other words, we can develop statistical
tests to ascertain whether a SCADA signal exhibits signatures of an oscillation above a certain
amplitude for a given confidence level.

The typical oscillation frequency of power plant oscillations ranges between 0.2 Hz to 2 Hz, while
subsynchronous oscillations associated with inverter-based resources typically range between 5
Hz and 50 Hz [12]. By sampling theorem, the sampling rate must be between 0.4 and 100 Hz for
analyzing such oscillations, respectively. On the other hand, the sampling rate of the SCADA data
varies between 0.1 Hz to 1 Hz. While this appears to be a contradiction, the random sampling
schedules discussed above in the context of the SCADA data enable the sampling to preserve
specific features of the oscillation, such as the oscillation amplitude in a probabilistic sense.
Another essential condition for observing high amplitude samples in the SCADA data is that the
transducer should not have a lower sampling frequency than the oscillation frequency present in
the signal. Otherwise, the oscillation would not be observable in the SCADA samples. The MW
and MVAR outputs of the generator units can measure how strongly the unit is participating in an
oscillation.

(b) Oscillation analysis of SCADA data using statistical method:

After developing the theoretical background, we implemented the algorithm, using filters and data-
detrending methods to preprocess the SCADA data. We analyzed the generation outputs and
transmission line flows for different test cases to detect the possible source of oscillations.

(c) Validation of the methodology on offline test cases:

We used various test cases from the RTE system's past events to test the methodology and
validated the results by discussing the findings with RTE.



(d) Open-source oscillation analysis toolbox OASIS:

We developed an oscillation analysis toolbox named OASIS using the Python Streamlit library
with the proposed algorithm.

1.4 Discussion

1.4.1 Potential Benefits

Oscillations have emerged as one of the main stumbling blocks in reliable power grid operation,
where the oscillations can appear from natural system modes or forced oscillations from control
failures, rough zone operation, or incorrect setting of control parameters. Such oscillations can
cause potential damage to expensive generator equipment, including rotor shafts. They can also be
a problem for power quality for the consumers and a safety hazard for power plant personnel. With
the increased adoption of renewable generation, the problem is primarily in integrating power
electronic-based intermittent energy resources into the power grid. There is an urgent need to
develop methods to detect and analyze the cause of these oscillations to quickly correct the
underlying problems.

Detection and efficient analysis of oscillations can help manage and accelerate the integration of
large numbers of renewable devices into the power grid. Also, timely correction of the oscillation
issues in fossil fuel and nuclear power plants can prevent unscheduled outages of these energy
sources and help avoid the need to dispatch power from less efficient power plants. Moreover, it
can help improve the overall economy of the power grid by preventing potential damage from
problematic oscillations and leading to a more operationally reliable power grid in the future.

1.4.2 Related Work

In [12], two slightly different methods named Pattern Mining Algorithm (PMA) and Maximal
Variance Ratio Algorithm (MVRA) were proposed, which use SCADA data for forced oscillation
source location wherein the oscillation detection was done using high-speed synchrophasor data.
PMA and MVRA methods require more parameters to tune for different test cases than the
proposed algorithm for accurate detection of the source. If those parameters are not set or tuned
properly for various oscillation events, it might be challenging to identify the sources. On the other
hand, those two methods are heuristic, whereas this proposed methodology applies inferential
statistical theory for the rigorous development of the algorithm.

1.5 Report Organization

The rest of the report is organized as follows: Section 2 introduces the inferential statistical theory
as the foundation for developing the algorithm. Section 3 summarizes the steps of the algorithm
for locating the sources of forced oscillations using SCADA data. Section 4 illustrates and
discusses the real forced oscillation events in the RTE systems. Section 5 provides an overview of
the OASIS toolbox, and section 6 concludes the report.



2. Statistical Method for Oscillation Detection and Analysis Using SCADA
Data

2.1 Statistical Theory

During a forced oscillation event, the amplitude of the source signals increases or decreases
compared to the other signals in the system in normal or ambient conditions. To introduce the
theory behind the algorithm, it is assumed that the oscillating signal behaves like a sine wave.
Although this assumption might differ in real cases, it can be handled by any proper data-
detrending method. For analyzing the SCADA samples, a pair of bands can be set up, which are
used as an indication to check how high the amplitude of the signal is. In the case of a forced
oscillation event, the oscillating signal will cross the bands, and the sampled data of the signal will
show transitions across the bands. This transition behavior among the data samples can be used to
formulate an algorithm to identify the system's high-amplitude signals. An illustration of data
samples transitioning across the bands for both ambient and oscillating conditions is shown in the
following Figure 3 with an ideal sine wave oscillation case. For example, the sine wave's amplitude
is 1 per unit (pu) in ambient conditions, and the band is set to 2. As a result, the samples do not
transition across the bands. On the other hand, when oscillation occurs, and the signal's amplitude
can go from 1 to 4, there would be transitions among the samples across the bands.
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Figure 3: Illustration of data transition in ambient (left) and oscillating condition (right) across
the transition bands

2.2 Analysis with One Sample

The algorithm is formulated by counting the number of transitions in the SCADA samples across
the upper and lower transition bands. Let x(k) be a random SCADA sample, which can lie
anywhere in the upper, middle, or lower region, as shown in Figure 5. Let the transition band be
represented by B. The sample space Q consists of three outcomes.

Q= {Ry, Ry, R3}
where, Ri: x(k) € (+,B), Ry: x(k) € (B,—B) and R3: x(k) € (—B, —).

The probability r can be defined as the probability of finding the sampled data x (k) in the upper
region which corresponds to the outcome R;. If the highest amplitude of the oscillation is



represented by A, and the transition band is set up at +B in the upper region, then for outcome R,
the probability  can be written as,

1 (A — B) 4 1 0 A—-B i
= — % | — — Xk =
=2 a0/ 72 2+ A @
Similarly, the probability of finding a sampled data x (k) in the lower region which corresponds to
the outcome R; can also be defined as r. In that case, if the transition band is set up at —B in the

lower region, and the lowest amplitude of the oscillation is —A, then for outcome R5, r can be
written as,

1 1 (—B—(-4) A—-B
r=—=*x0+=x =
2 2 0—(—-4) 2xA

which is same as (1).

The transition happens between two consecutive samples. For example, let the two successive
samples be x;(k) and x,(k). So, the transition between these two samples will occur if they
correspond to the following pair of outcomes: {R,, R,} or, {R,, R3} or, {R;, R3}. So, the probability
of transition, s can be written in terms of r as,

1\ 2
s=1—r2—r2—(1—2r)2=—6<r—§> +3 (2)
Equation (2) represents the parabolic relation between s and r. The following claims can be made
about probability r, probability of transition, s, and the transition band B.

Lemmal:r < 0.5
Referring to (1),
If, A > 0, then, B > 0. As aresult, r < 0.5.
If, A < 0, then, B < 0. Asaresult, r < 0.5.
If, B=0and A € R,r = 0.5.
Since B # 0, r must be constrained as 0 < r < 0.5.
The relationship between r and s can be visualized from the following Figure 4.
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Figure 4: Relation between r and s



It can be observed that the value of s increases with the increase of r at first. When r is 0.33, s
reaches its maximum value which is 0.66. After that, with the increase of r, s starts decreasing.
The unshaded region of Figure 4 is the considerable region for the proposed algorithm.

The probability of transition, s can be scaled with the following formulation.

3

p=5s (3)

Here, p is the scaled probability of transition, and the range of this scaled probability is0 <p < 1
according to (3).
Lemma 2: r is an increasing function respective to the amplitude of oscillation, A.

From (1),

dr_ B 4
dA~ 2% A? Q)

When the amplitude of oscillation increases and the band is kept fixed, the probability  will also
increase. For example, let the upper transition band be at 50 MW or MVVAR. Then, the lower
transition band would be set at -50 MW or MVAR. If the amplitude of oscillation is 80 MW or
MVAR, then r would be 0.1875. If the amplitude of oscillation is increased from 80 to 100 MW
or MVAR, then r would be 0.25. It is to be noted that increasing the value of r does not mean the
detection is better. Since the amplitude of oscillation is not known beforehand, the setting of the
band needs to be handled intuitively for the accurate detection of the source, which is discussed in
section 3.

Lemma 3: In an ideal case, A = 3B.

According to Figure 4, when r = 0.33, s = 0.66. Putting the value r = 0.33 in (1) resultsin 4 =
3B. So, for an ideal test case scenario, the amplitude of oscillation should be three times of the
transition band.

Lemma 4: If B > A, r = 0 and the probability of source detection is 0.

If the band is set up higher than the largest amplitude of the oscillation signal, there would be no
transitions between samples. As a result, in the event of forced oscillation, it would not be possible
to identify the source with the algorithm.

2.3 Testing for Detection of Source with Multiple Samples

Let K be the number of transitions across the +/—B band and n be the length of the sample window
for analysis.
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Figure 5: Sampled data transitions across the band

In the Figure 5 above, there are 10 samples in the sample window, and 7 transitions occurred
between the two consecutive samples. An assumption can be made on the distribution of the
number of transitions, K. Either there would be a transition between two samples, or there would
be no transition. So, these two occurrences can be modeled as success and failure outcomes from
the binomial distribution. Since the SCADA samples are discrete, we assume that K follows the
binomial distribution.

For the detection of oscillation from a test sample, a hypothesis test can be formulated with a null
hypothesis and an alternate hypothesis.

Null hypothesis (H,): There is no oscillation (high amplitude data) present in the power system
compared to the average amplitude in ambient conditions.

Alternate hypothesis (H;): Oscillation is present in the power system, and the amplitude
(absolute value) of the source signal during the oscillation period is higher than the average during
the non-oscillation period.

For the samples present in the analysis window, the binomial probability mass function for K, the
number of transitions among n samples can be expressed as in (5).

Pr(n,k,p) = () p*(1 = p)"™ )

Here, Pr, the binomial probability is a function of n, k and p, where n represents the total number

of samples in the oscillation window, k is the number of successes to the occurrence of transitions

in n trials, and p is the scaled probability of a transition between two successive samples and (Z) =
n!

kKl(n—-k)!

Clearly, smaller values of transition probability p are indicative of no oscillation in the process,
and when p is beyond a pre-specified value, say, p.in, then one concludes that oscillations are
present in the process. Thus, the null and alternative hypotheses can be equivalently expressed in
terms of p as:



Ho3p < Pmin
Hl:p > Pmin

The testing of Ho against Hz is carried out by identifying the number of transition thresholds under
the binomial probability distribution for K. As is done in any hypothesis testing problem, the
threshold number for transitions is obtained by assuming the null hypothesis Ho to be true. Thus,
under Ho, K follows a binomial distribution with parameters (n, p,in)- Itis well known that under
the binomial distribution, the observed sum is uniformly the most powerful statistic for the one-
sided hypothesis testing problem. Thus, for any given significance level «, one finds the threshold
number k, from the binomial distribution with parameters (n, ppi»). In this manner, a Uniformly
Most Powerful (UMP) test can be formulated. The time window during the oscillation event is
referred to as the oscillation window, and the non-oscillation duration of the time window is
referred to as the ambient or base window in this report. These hypothesis tests for both oscillation
and ambient windows would give high confidence to detect the source of forced oscillation
accurately and would further prevent any false detection.

Thus, pmin and significance level, a can be used to determine the number of transitions threshold,
K, that enables one to reject the null hypothesis H,. So, if the actual number of transitions among
the samples is denoted by K, then the test can be formulated for the oscillation window analysis
as,

Accept Hy if K < k,
Reject Hyif K > k,

Under the above accept/reject criterion, one can expect the following. Whenever H, is true, the
actual number of transitions K can be expected to be below k,, and except for a small proportion
a we would stay with the null hypothesis most of the time. However, if the alternative is true, then
the actual number of transitions will most likely be greater than the threshold value k,, and one
will make the right decision of rejecting the null hypothesis.

Let us consider an event where the oscillation duration is 10 minutes. If the SCADA sampling rate
is 0.1 Hz, there would be 60 data samples for that oscillation window. Let us also assume that the
value of p is 0.30 when the band is set up. So, there would be 59 pairs to check the transition
between two consecutive samples from those 60 samples, and each checking would be independent
of one another. The plots of Probability Mass Function (PMF) and Cumulative Distribution
Function (CDF) for this binomial distribution case are illustrated in Figure 6.
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Figure 6: Plot of PMF and CDF of binomial distribution

If the oscillation duration of an event is not extremely short, there would be large enough samples
where the normal approximation can also be used instead of the binomial distribution formulation
as per the central limit theorem. In our analysis, it is observed that if the expected value (E = np)
is greater than 1.5 when p = 0.3, the normal approximation and binomial PMF provide the same
threshold count k, for the test when the significance level is set to 5%. An illustration for the
normal approximation of the binomial distribution is shown in Figure 7.
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Figure 7: Normal approximation of binomial PMF for n=12 and p=0.4

2.4 Impact on High Amplitude Samples Due to Low Pass Filters

Low pass filters are commonly used in transducers within SCADA systems, particularly in the
signal conditioning stages for noise reduction and signal smoothing purposes. These filters may
suppress the high-amplitude data samples in the SCADA system. To illustrate this phenomenon,
let us consider a signal with both ambient and oscillating conditions for 10 minutes or 600 seconds,

10



as shown in Figure 8. The first 5 minutes of the signal is in ambient condition, and after that, the
oscillation starts where the frequency of the oscillating sinusoidal signal is 0.25 Hz, the amplitude
of oscillation 6 pu, and the transition bands are set at 2 and -2 pu. If the SCADA system samples
1 data in every 10 seconds, there would be 60 samples for the signal duration, and the sampling
would preserve the high amplitude samples in the oscillation window. In this case, due to the
transitions of the samples across the bands in the oscillation window, the proposed algorithm can
be implemented successfully.
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Figure 8: Emulated signal and the resulting samples from SCADA with transition bands

On the other hand, if the signal is passed through a low pass filter before the SCADA sampling,
the oscillating signal would be attenuated, and the resulting sampled data would not show any
transition. This is depicted in Figure 9, where the emulated signal is passed through a low pass
filter first with a cutoff frequency of 0.1 Hz. This is a necessary condition for the proposed
algorithm to work as intended; that is, the SCADA samples should not be attenuated due to the
implementation of any low pass filter design with a lower cutoff frequency.

11
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Figure 9: The resulting signal and samples after passing through a low-pass filter
2.5 Maximum Observable Oscillation Frequency

The maximum detectable oscillation frequency will depend on the transducer characteristics. Some
of the characteristics of the transducer used in RTE are provided below:

Table 1. Transducer characteristics

Device Name Sampling Number of
frequency (Hz) samples
Vendor 1 3200 192
Vendor 2 3000 300
Vendor 3 1000 500

The output of the transducer is based on a moving average on the sampled measures.

A moving average is a kind of low-pass filter for which the following formula approximates the -
3 dB cutoff frequency:

0.442947
VNZ -1

Fcutoff = - Fsampling

N is the number of samples.

Then, we can calculate the cutoff frequency for the devices above:
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Table 2. Transducer cut-off frequencies

Device Name Cutoff frequency
(Hz)
Vendor 1 7.38
Vendor 2 4.42
Vendor 3 0.88

From Table 2, we can conclude that, depending on the sampling frequency and number of samples
the transducer uses to elaborate the measurement, the observable frequency could be up to several
Hz. However, if the sampling frequency is insufficient and the number of samples used is too high,
the measurement obtained would be unable to detect modes above 1 Hz, common on synchronous

machines.
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3. Oscillation Analysis of SCADA Data Using Statistical 