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Executive Summary  

The advances in machine learning/artificial intelligence (ML/AI) over the last 10 years have 

enabled development and implementation of effective algorithms for the detection and 

classification of events using phasor measurement unit (PMU)/synchrophasor data. While many 

solutions have been proposed, there is a critical need for automated tools that are accurate, cost-

effective, and computationally efficient when applied to large historical and streaming datasets 

captured by multiple PMUs. By leveraging over 20 years of research that used physics-based 

analysis to correlate synchrophasor data to disruptive events, this project has developed automated 

tools that combine various data-based and physics-based solutions in real-time to help system 

operators detect and classify three types of events, namely, faults, frequency, and oscillation 

events, that may lead to system emergencies. 

The objectives of this project were attained by making progress on four fronts: 1) Development of 

data handling and sorting techniques for collecting large historical synchrophasor datasets to 

improve bad data detection, feature engineering, and event label assignment for automated ML/AI 

solutions; 2) Identification of the most effective ML/AI techniques for unsupervised, semi-

supervised, and supervised learning associated with faults, frequency, and oscillation events, 3) 

Seamless integration of ML/AI-based and physics-based solutions for cost-effective and 

computationally efficient automated event characterization, and 4) Development and selection of 

appropriate transfer learning (TL) methodologies associated with detection and characterization of 

faults, frequency, and oscillation events that provided high accuracy when applied to datasets for 

which the ML/AI algorithm was not trained on.  

The diversity of system topologies and changing PMU data distributions with each new dataset, 

which may even be from different grids, are challenging problems for traditional power system 

event detection and characterization techniques. To ensure validity of the detection and 

characterization methodologies developed in this project, they were applied to a wide range of 

datasets with diverse operating conditions. The proposed methodologies were found to 

significantly reduce the training effort while maintaining high accuracy of prediction. A unique 

challenge that was identified and subsequently addressed in this project was the analysis of new, 

small datasets that exhibited a scarcity or lack of event labels. These datasets were provided by 

industry partners but were often found to be insufficient for training robust ML/AI models. To 

overcome this challenge, the ML/AI models were developed for each event type and then TL 

techniques were utilized to transfer the models to the new datasets. 

In the following paragraphs, a brief description of the research methodology starting with the 

datasets that were used in this analysis, is provided. This is followed by a summary of the main 

results as well as a discussion of their implications, including recommendations based on the 

project’s findings. 

Field-recorded synchrophasor measurements from various regions of the US and France were the 

primary sources of “real” data used in this study. However, the recorded measurements suffered 

from data-quality issues; these issues were tackled in the data preprocessing stage. The real-world 

measurements also lacked the occurrence of all three events that were the focus of this study. 

Training ML/AI models with an incomplete dataset could introduce bias and failure in accounting 
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for major, infrequent events that could significantly impact the system. Therefore, a wide range of 

“simulated” datasets were created for all three types of events to create a balanced training dataset 

for the ML/AI algorithms. 

Feature engineering, which is an important step in the overall task of decoding power system events 

of interest using ML/AI models, was focused on next. It was observed that although synchrophasor 

data could be used directly or replaced by their simple statistical descriptors to be used as features, 

the extraction of relevant contrasting features for various events usually gave better results. As 

such, careful consideration was given in this study to select features that appropriately represent 

the underlying application (line fault events, frequency events, and oscillation events). To that end, 

features for fault, frequency, and oscillation events were extracted using principles of protection 

studies, modal decomposition, and image recognition, respectively.  

The focus then shifted towards the development of the ML/AI models, particularly their training 

and testing. The developed ML/AI-based algorithms exploited the steps of data preprocessing and 

feature engineering to create useful training and testing datasets. These datasets were used as input 

to several supervised learning algorithms to form the base classifiers for each event type. TL 

methods were then explored to transfer the knowledge gained by models trained on simulated 

datasets or large, diverse field-recorded datasets to smaller, less diverse field-recorded datasets.  

Next, the results obtained using the different ML/AI models were explored, and conclusions were 

drawn about suitability of the different models and approaches. The team found that correlation 

alignment (CORAL)-based TL with support vector machine (SVM) classifiers was particularly 

effective for line fault detection, while extreme gradient boosting (XGBoost) classifiers with fine-

tuning based on Prony features demonstrated good performance for frequency event detection. 

Image-based ML/AI approaches showed promise for oscillation detection and classification as 

they were matched with neural network (NN)-based TL. The direct application of the base ML/AI 

classifiers trained using simulated datasets to field measurements during testing resulted in poor 

performance. However, exploring the TL capability of ML/AI models by utilizing simulated 

datasets along with limited field-recorded labeled events significantly improved the performance 

in classifying unlabeled field-recorded events. 

Finally, the major study findings from this project along with reflections on some of the challenges 

that the team experienced with synchrophasor data quality in the datasets that were made available 

to them, was presented. The report concludes with some recommendations that stand out based on 

the team’s learning experience over the duration of this project and past experiences in a similar 

space and outlines the expected outcomes if these recommendations are considered. 
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1. Introduction 
 

1.1 Background 

Synchronized phasor measurements enable efficient detection and classification of critical power 

system events. With the widespread deployment of phasor measurement units (PMUs), there is 

now an abundance of high-resolution data streams that significantly improve event analysis [1]. 

However, the vast volume of real-time PMU data streaming presents a challenge for operators and 

engineers, as manually interpreting critical grid events through visual inspection is time-

consuming. Furthermore, variations in the topologies and data distributions of PMU data sources 

in different grids necessitate reliable methods for transferring knowledge from one dataset to 

another [2]. The critical events targeted in this study are line fault events, frequency events, and 

oscillation events. Each of the three event types has been explored in previous work and can be 

analyzed using empirical methods [3]-[7]. This project presented the unique opportunity to study, 

identify, and analyze these event types using machine learning/artificial intelligence (ML/AI) 

techniques based on field-recorded PMU measurements provided by industry partners at different 

geographical locations with varied power system characteristics.  

ML/AI methods are being applied to various areas of power systems operation and control due to 

their ability to recognize patterns and perform big data analysis automatically and efficiently in the 

cases where humans may have difficulties dealing with such a complex analysis in a short 

timeframe. In the case of critical event detection, using ML/AI can replace the manual 

interpretation of such events typically done through visual inspection and empirical tools. However, 

the effective use of machine learning (ML/AI) tools to automatically analyze field-recorded PMU 

data encounters constraints due to data quality issues such as significant missing data, unreasonable 

measurement values, and inaccurate labels and timestamps. Additionally, event labels 

accompanying raw PMU measurements are often scarce, inaccurate, or imprecise, hindering the 

direct application of simple, open-source supervised ML/AI algorithms [8]. Previous work has 

addressed the issue of label quality and scarcity through the use of simulated data, as is also done 

in this project. However, merely simulating more data for training is insufficient for creating a 

robust ML/AI model applicable to any new dataset. ML/AI models have to be designed 

meticulously to fit the task of analyzing such events through data preprocessing, feature 

engineering, and ML/AI algorithm choice and tuning. Finally, the knowledge transfer gained by 

these ML/AI models from one dataset to another from different power systems must be done 

through the appropriate use of transfer learning techniques that best fit the type of data, features, 

and ML/AI algorithms used for the original dataset. The need to apply transfer learning to new 

datasets is due to the difference in data distributions as well as the scarcity or lack of labels for 

these datasets. The reason TL was chosen as a means to overcome this challenge is also due to the 

small size of these datasets, which prevents the direct application of methods such as unsupervised 

learning or reinforcement learning. Chapter 4 of this report provides the reasoning behind the 

decisions made in terms of the use ML/AI base models and TL models. Subsections 1.1.1, 1.1.2, 

and 1.1.3 present a review of the available literature pertaining to the detection and classification 

of line faults, frequency events, and oscillation events, respectively. 



2 

1.1.1 Line Fault Detection and Classification 

Extensive research has focused on utilizing ML/AI techniques for line fault detection. For example, 

decision trees (DTs) have been employed to distinguish between various fault types, including 

single-line to ground (SLG), line-to-line (LL), three-phase (TP) faults, and normal system 

conditions as discussed in [9]. Additionally, the effectiveness of several ML/AI algorithms, 

including Bayesian networks, support vector machine (SVM), multi-layer perceptron (MLP), and 

DTs, in identifying and predicting SLG and TP faults using simulated PMU data was examined in 

[10]. Another study that compared the performance of several ML/AI algorithms included linear 

discriminant analysis (LDA), artificial neural networks (ANN), SVM, k-nearest neighbors (kNN), 

and DTs applied to PMU data, did so by simulating the IEEE 123-bus system [11]. The main goal 

of the study in [11] was to differentiate between load loss, generation dip, and line faults, for which 

an online event-classifier based on quadrant discriminant analysis (QDA) was developed. To avoid 

overfitting the models during training, the features in [12] were selected using sequential forward 

selection (SFS). One common aspect among most of the studies is the use of simulated data to train, 

validate, and test the developed ML/AI models. One field-recorded PMU dataset has appeared in 

several studies and was made available by the Bonneville Power Administration (BPA). This 

dataset made the testing of these ML/AI models more practical. The ML/AI algorithms developed 

using BPA data include DTs [9], hierarchical clustering and k-means clustering [13], and DBSCAN 

[14]. While there is ample work done in the use of ML/AI to detect and classify line faults, this 

project presented a unique situation in which new field-recorded datasets with varied data 

distributions and conditions pertaining to data quality and labels exist. This setting inspired the 

team to search for a different approach to this problem. 

The performance of ML/AI models can degrade when applied to datasets with differing attributes 

and distributions from those that they were trained on. Transfer learning (TL), a subset of ML/AI, 

addresses these issues. Reference [15] demonstrated an extensive application of TL to classify 

power system events using simulated data to create a comprehensive training dataset. However, 

transferring knowledge from one dataset to another introduces challenges such as event label 

scarcity, as noted in [16]. In this project, the new datasets are smaller and less varied in line fault 

types compared to those used in [16], necessitating a different TL approach to leverage the new 

test dataset effectively while maintaining the success of previously developed classifiers. TL was 

chosen among other ML categories in order to take advantage of the successful line fault 

classification and detection models created by the team in previous work [6]-[7], which could not 

be directly applied to the new datasets due to the difference in data distributions. To enhance prior 

efforts and adapt to the limited datasets from various sources, this report integrates TL with SVM 

and random forest (RF) techniques. Several methods and choices will appear throughout the report 

regarding line fault detection and classification that are built on the team’s previous experience 

during previous project [6]-[7]. The previous project focused on the use of the field-recorded 

dataset, which will be introduced later in this report and referred to as PNNL1. This large dataset 

was provided by PNNL and included anonymized PMU measurements recorded over the span of 

two years across the US Western Interconnection.  
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1.1.2 Frequency Event Detection and Classification 

Fundamental frequency deviations occur in power systems due to the mismatch between power 

generation and demand. When the total generation is lower than the total demand, the system 

frequency drops and vice versa. Figure 1 shows the frequency balance phenomenon at a high-level 

by analogy to a beam balance - with supply (generation) and demand (load) at opposite ends [17]. 

In the bulk power system, real-time power demand and generation power exhibit stochastic 

behavior. Subsequently, the frequency of the power system is never constant at the designated 

nominal value but varies closely around it. Guidelines for operational and statutory frequency limits 

are usually established by state, regional, or federal authorities to keep the power system operating 

in a secure and reliable manner. An instance of such a guideline is given in [18] by the Western 

Electricity Coordinating Council (WECC) in the US, which is a recommendation to its members 

who agree to adopt these operating procedures during contingent frequency behavior to keep the 

Western Interconnection efficient and reliable. Additionally, the modern trend of increase in the 

generation mix of renewable sources by displacing the use of conventional synchronous generators, 

cause the rotational inertia of the entire system to decrease resulting in a decline of the primary 

frequency response [19]. This can cause an increase in the probability of occurrences of frequency 

events which is evident by some recently reported events in Great Britain [20]. Figure 2 shows an 

example of a sudden load increase or a generation trip (both of which are frequency events) and 

depicts a power system's frequency response after the disturbance [21]. 

 

Figure 1:  Power Balance and Nominal Frequency 
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Figure 2: Generation trip/Load addition in a 50 Hz nominal frequency system 

Although small perturbations in frequency are expected to occur during normal operation, also 

called the quasi-equilibrium state, sudden or significant frequency deviations due to generation 

rejection, load loss, or line trips/faults can cause the system to shift from a normal state to alert or 

emergency states quickly. These deviations are detected by one or more PMUs through frequency 

and rate of change of frequency (ROCOF) measurements. In this work, we leverage PMU data that 

contains captured frequency behavior in the recorded frequency and ROCOF information and use 

it for studies encompassing detailed analysis of frequency events.  

Previous research utilizing PMU data to identify abnormal frequency events has employed 

dimensionality reduction techniques such as principal component analysis (PCA) [22]  and 

independent component analysis (ICA) [23], while modal features from PMU data were used in 

ML/AI models such as logistic regression (LR) and SVM to distinguish abnormal frequency 

scenarios [24]. Other data-driven approaches for frequency event detection can be supervised or 

unsupervised approaches based on whether they require labels for event identification or 

classification. Even though unsupervised algorithms can distinguish event clusters [25]-[27], they 

cannot map real-world interpretation to those clusters [24] which is a considerable disadvantage. 

Supervised approaches, on the other hand, need carefully designed accurate labels to achieve any 

meaningful inferences from their use. Supervised approaches can be further divided into physics-

based and model-free methods. A combination of several of these approaches can be well-suited 

depending on the type of application at hand, hence users need to test various approaches for their 

specific task. Despite these efforts, a comprehensive study to identify and characterize frequency 

events is lacking. The challenge of insufficient event labeling also affects frequency events [27]. 

The study facilitated by this project addresses this by decoding frequency events in field data both 

with and without descriptive event labels from more than one system using TL approach called 

fine-tuning (FT).  

TL approach is specifically suitable for this task among other techniques in ML as alternatives 

because of availability of synchrophasor data from various utilities that have distinct system design 

and operational practices (60 Hz US system and 50 Hz European system) and may have inherent 
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differences in data distribution of electrical quantities of interest. Additionally, without comparable 

data sizes of significant quality which is the case in this project with RTE datasets not being as 

comprehensive as PNNL, an ML/AI model cannot be trained satisfactorily as an independent entity 

across systems. Furthermore, it is seldom true that an ML/AI model trained on one system is 

directly applicable to identify and discriminate similar events in an entirely different system 

without first learning some subtle unquantifiable differences that system variation has to offer. FT, 

which is a type of parameter transfer approach under inductive transfer learning, overcomes the 

aforementioned challenges by updating pre-trained models to decode frequency events on a 

different dataset than what it was originally trained for. In this work, we use FT by updating pre-

trained ML/AI classifiers on simulated data with event instances from field recorded datasets viz. 

PNNL2 and RTE1+RTE2 to improve the classifiers’ generalization ability. 

1.1.3 Oscillation Event Detection and Classification 

Analyzing oscillatory behavior in power systems is crucial for maintaining the stability and 

reliability of the grid. These oscillations are inherent to system dynamics and can significantly 

affect the entire power system [28]. The widespread deployment of PMUs has made real-time grid 

data readily available. This wide-area data can be used to detect and classify oscillation events 

based on their characteristics including their frequency, damping, and mode shape. To date, various 

identification methods including spectral and correlation methods, ringdown methods, and 

parametric mode estimation from ambient data, have been employed to study oscillation events 

[29]-[33]. In recent years, ML/AI has made significant progress in classifying problems using 

extracted features from large historical datasets. A recent paper [34] proposed a framework that 

transformed multivariate time series data into two-dimensional colored images, which were 

concatenated into a larger image and input into a convolutional neural network (NN) to classify 

oscillation events. TL with convolutional neural network was implemented on the medical image 

classification to overcome the data scarcity problem as well as save hardware resources [35]. A 

deep neural network (DNN) with a sparse autoencoder was used in [36] to extract features from 

the measured power system signal for detecting a power quality disturbance. A practical approach 

for power oscillation classification using real-time identification was presented in [37], where the 

Hilbert transform was utilized to derive envelope curves as features for training and testing an SVM 

model. The sub-synchronous oscillation classification was studied using an SVM-based data-

driven method [36]. In this report, a TL-based NN that enabled the transfer of extensive oscillation 

knowledge from simulated datasets to the model is presented. This approach aims to improve the 

model's performance in analyzing real-world, field-captured events, which, although rare, can have 

significant impacts and cause considerable economic losses. TL-based NNs extract the features 

from pixelated oscillation images. 
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1.2 Report Outline 

This report aims to describe the process followed during the course of this project.  

• Chapter 2 details the data that was utilized in this study. This includes field-recorded and 

simulated PMU data.  

• Chapter 3 delves into the methods of feature extraction explored for each event type. 

Feature engineering became the first focus of the project considering the potential benefits 

of designing features based on domain knowledge. 

• Chapter 4 discusses the choice of ML/AI models, and later, TL models. First, ML/AI 

models were developed using simulated data and event-rich field-recorded data. Then, TL 

methods were investigated for transferring the knowledge learned by these ML/AI models 

to smaller, less diverse datasets. 

• Chapter 5 evaluates the results, performs subsequent analysis, and outlines the lessons 

learned both generally and specifically for each event type. 

• Chapter 6 presents the conclusions and insights gained from this project. 
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2. Data Availability, Preprocessing, and Applications 
 

2.1 Introduction 

Data availability and quality are the most integral factors for successful ML/AI model development. 

An ML/AI algorithm, whether supervised or unsupervised, benefits from the availability of large 

quantities of data that is diverse enough to give the (ML/AI) model numerous instances of each 

class type. Event detection and classification models have long depended on simulated PMU data 

for the possibility of creating balanced datasets that contain similar instances of each scenario that 

the models need to identify that were not captured by the field-recorded data. Also, simulated data 

cannot fully replicate the dynamics and disturbances that may exist in field-recorded data, which 

may lead to high levels of error when applied directly to field-recorded data. Conversely, field-

recorded data cannot solely solve this dilemma due to the imbalance that exists in the different 

event classes.  

To elaborate, most of the field-recorded PMU data represent normal operation, and even when 

event-related data is isolated, a clear imbalance is found between different event classes. One 

solution is to integrate simulated and field-recorded PMU data to derive a balanced dataset. Data 

quality is another important consideration second to data availability. Section 2.2 discusses the 

steps taken to ensure that the PMU data is ready to use with the ML/AI algorithms. That process 

entails performing statistical analysis to reveal any bad data as well as checking the quality of the 

event labels, if any are provided. Section 2.3 presents the qualities of the available field-recorded 

PMU data. Section 2.4 then explains the choices made to simulate event type-specific data and use 

it together with field-recorded data to train and test task-specific ML/AI models.  

2.2 Data Preprocessing 

Data preprocessing is essential for ensuring that accurate and reliable data is available for training 

ML/AI models. The process involves several steps to clean, transform, and prepare the data for 

further analysis. The cleaning process involves the handling of inaccurate time-stamping and 

missing PMU measurements. Inaccuracies in event timestamping were resolved by visually 

inspecting and manually adjusting the timestamps. The PMU signals with 60% or more missing 

values were dropped from the analysis. The missing measurements or the not-a-number (NaN) 

values were replaced by their estimates using the linear interpolation method [38]. The 

preprocessing method also addresses data integrity, mislabeling, and incompleteness due to sparse 

PMU locations by detecting and correcting inconsistencies, relabeling data accurately, and 

compensating for gaps in data coverage. The cleaned synchronized measurements were normalized 

and standardized before feature extraction. 

2.3 Field-recorded PMU Data  

The field-recorded PMU measurements were collected from different regions of the United States 

and the Réseau de Transport d'Électricité (RTE), the France-based transmission system operator. 
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The measurements were used to detect and classify frequency events, line faults, and oscillation 

events. Table 1 summarizes the details of the available datasets. PNNL1 and PNN2 datasets were 

obtained from the Pacific Northwest National Laboratory (PNNL). The datasets consist of two 

years (2016 and 2017) of PMU readings from two U.S. interconnections. The events in the PNN1 

datasets were labeled after various data quality issues were resolved by the data preprocessing 

methods discussed in subsection 2.2.  The PNNL2 datasets were not accompanied by event log 

files. These datasets were used for the analysis of frequency and oscillation events. The possible 

frequency events were labeled using the steps outlined in subsection 2.3.1. Probable ringdown 

oscillation events were found using the standard deviation approach applied to sliding data analysis 

windows [39]. The third dataset consists of 118 PMU measurements from the WECC. These 

WECC datasets were used to study the oscillation events, and they included two generator brake 

test events, each leading to system-wide oscillations. These oscillation events were classified as 

well-damped using physics-based approaches such as Prony, matrix pencil, and eigen-value 

realization.   

Table 1: Field Recorded Datasets 

Source PNNL1 PNNL2 WECC RTE1 RTE2 

No. of PMUs 43 40 118 10 12 

Length 2 years 2 years 30 mins 
7 days, 40 mins 

each 
6 days 

System Frequency 60 Hz 60 Hz 60 Hz 50 Hz 50 Hz 

Data Types 
3P V, I 

Vp, Ip, f, df/dt 

Vp, Ip, f, 

df/dt 

3P V, I 

Vp, Ip, f, 

df/dt 

3P V, I 

“+, -, 0” seq V, 

I, f, df/dt 

3P V, I 

“+, -, 0” seq V, 

I, f, df/dt 

Reporting Rate 30, 60 fps 30 fps 30 fps 50 fps 50 fps 

Availability of 

Labels 
Yes No No Yes Yes 

Application F Fr, O Fr, O F, Fr, O F, Fr, O 

RTE provided the fourth and fifth datasets, designated as RTE1 and RTE2. The RTE1 dataset 

consists of 10 PMU measurements over seven non-consecutive days. There were 16 events 

recorded in the RTE1 dataset. Despite being smaller in scale compared to the other datasets, the 

RTE dataset furnished critical insights into PMU locations, facilitating in-depth event location 

studies. RTE2 dataset was unlabeled and was primarily utilized for the testing of the trained ML/AI 

models for all three types of events discussed in this report. 

2.3.1 Handling absence of labels for frequency events 

We define a ‘unique frequency event’ as an under-frequency or over-frequency event detected by 

one or more PMUs. However, such events were not labeled in any field PMU dataset. Since the 

task of labeling events (frequency-related or otherwise) in a huge volume of granular PMU data is 

arduous, the following steps were taken to obtain the unique frequency events in a dataset that 
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contains captured frequency behavior in the form of frequency and rate of change of frequency 

(ROCOF) measurements. 

Step 1: From all hourly files for a PMU, the minimum and maximum values of frequencies and 

their indices are obtained. The maximum absolute value of ROCOF and its index is also obtained. 

Step 2:  The results are sorted in descending order of ROCOF, and a threshold is picked to filter 

potential frequency events. We use a ROCOF threshold of 0.49 Hz/s to be in alignment with IEEE 

Std 1547-2018 [40], which states that distributed energy resources (DERs) shall ride through and 

not trip for a minimum ROCOF of 0.5 Hz/s. 

Step 3: The maximum ROCOF index is checked against both the maximum and minimum 

frequency indices to determine if the minimum or maximum frequency reported occurs at the same 

time as the maximum value of ROCOF. 

Step 4: As frequency in contingencies excluding blackouts, does not deviate by ±5 Hz, events 

violating this criterion are excluded. 

Step 5: For events with maximum and minimum frequencies within close range, another filter is 

applied where maximum and minimum frequencies occur in around 1-minute intervals to consider 

all possible power system responses originating from the same initiating event. 

Step 6: Lastly, multiple PMUs are grouped together if they show similar responses within 5 

timestamps. 

Figure 3 shows the steps outlined as a flowchart. These events were labeled, and these labels were 

used to obtain a prediction from the pre-trained classifiers, and the discussion is presented in detail 

in Chapter 4.  
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For all hourly PMU data:
A) Obtain minimum and maximum frequencies and their indices

B) Obtain maximum absolute value of RoCoF and its index

IS
|RoCoF|
 >= 0.49

Hz/s?

Exclude these events.

IS
 Max |RoCoF| Index

 = 
Max F Index 

OR
 Max |RoCoF| Index

 = 
Min F Index?

Exclude these events.

IS
|Frequency – 

Nominal Frequency|
 <= 5 Hz?

Exclude these events.

IS
Duration 
Between

 Max F and Min F 
< 1 min?

Exclude these events.

Frequency 
Events List

Do 
multiple PMUs
 respond to a

 frequency
event?

Unique Event has multiple PMU 
response.

Unique Event has only 1 PMU 
response.

YES

NO

NO

YES

NO

NO

YES

YES

NO

YES

 

Figure 3: Flowchart to find unique frequency events in a PMU dataset 
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2.3.2 Duration of Unique Frequency Events 

A sliding window over the frequency data around the occurrence of unique frequency events is 

used to compute the approximate starting point, ending point, and duration of unique frequency 

events thus obtained. A simple flowchart of the process to compute the duration of the unique 

frequency events is outlined below in Figure 4. 

 

Figure 4: Flowchart to compute start point, end point, and duration of frequency events 

2.4 Simulated Data 

Simulated datasets were created to facilitate the training process of the ML/AI models since the 

field-recorded datasets may not contain a sufficient number of classes of events. The field-recorded 

datasets are also known to often miss event labels. Simulated event datasets were generated with 

precise and accurate labels, which significantly enhanced the training process of supervised ML/AI 

models. Unlike reinforcement learning and unsupervised learning, supervised learning utilizes the 

labels for the training. These datasets also provide clear and well-defined examples of events, 

allowing the models to learn from accurately labeled data, thereby improving their ability to 

classify and predict similar events in real-world scenarios. However, these datasets may not capture 

the same noise and dynamics of field recorded data. Thus, simulated data was used in conjunction 

with field data (and not as a replacement of field data), for each critical event type as described 

below. 
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2.4.1 Simulated Data for Line Faults 

An obvious data imbalance exists in the types of line faults that occur in field-recorded PMU data. 

This data imbalance is attributed to the fact that three-phase (TP) faults are the rarest fault type, 

followed by line-to-line (LL) and line-to-line-to-ground faults (LLG). The most commonly 

occurring fault type is single-line-to-ground (SLG) faults. Such a data imbalance may negatively 

affect the performance of any supervised ML/AI algorithm, as it is not provided with enough 

samples of every class that it is meant to detect and classify. Hence, simulated datasets were 

generated to improve the training data by compensating for the classes that are more rarely seen. A 

PSCAD [41] simulation based on a model that was designed by an IEEE Power System Relaying 

and Control Committee (PSRC) working group titled “EMTP Reference Models for Transmission 

Line Relay Testing” [42] is chosen for this simulation. This model perfectly fits the requirements 

of the simulation as it was originally developed to test relays under realistic power system 

conditions. Utilizing the model shown in Figure 5, a series of fault simulations were conducted, 

adjusting PMU locations and systematically varying fault types along the lines to produce a diverse 

set of fault scenarios. 

 

Figure 5: PSCAD simulation model 

The ten fault types listed in Table 2 were simulated on each of the four lines repeatedly at 10% 

increments of the line length to create a comprehensive training dataset. Based on this team’s 

experience in previous line fault studies [6]-[7], the LL and LLG faults were combined and 

represented using a single label when preparing the training dataset. This decision came after 

extended testing of several classifiers and the conclusion that these fault types are not easily 

distinguishable in the field-recorded PMU data [6]. For the same reason, three-phase and three-

phase-to-ground faults were represented using only three-phase-to-ground faults. The result was a 

set of 400 line fault events whose PMU data was collected at 7 different PMU locations. As 

expected, the signature left by the line fault varied from PMU to PMU due to their locations relative 

to the location of the fault. These differences, which are illustrated in Figure 6 inspired a sensitivity 



13 

study to reveal the effects of PMU location on the performance of an ML/AI model trained using 

the simulated data and tested using field-recorded PMU data. 

Table 2: Simulated Line Fault Types 

  

 

 

 

 

 

 

 

 

Fault Number Fault Type Final Label 

1 A-G 1 

2 B-G 2 

3 C-G 3 

4 AB 4 

5 BC 5 

6 CA 6 

7 AB-G 4 

8 BC-G 5 

9 CA-G 6 

10 ABC-G 10 

Figure 6: Example of A-G fault as seen by 7 PMUs at different locations 
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To test the sensitivity of ML/AI models to the PMU location from which simulated data is 

collected, seven training datasets were created, one for each PMU location shown in Figure 5. Such 

a study is important for line fault detection since line faults are local events. If a PMU is located 

further away from a fault, the impact of the fault on the PMU measurements may not be significant 

enough to detect and classify the fault accurately. PNNL1 data was used for testing during this 

sensitivity study considering that it contained a more diverse set of line faults compared to the other 

field-recorded datasets. Because the goal of this study is to test the sensitivity only with respect to 

PMU location, the ML/AI model was chosen to be a SVM model, which has proven to be the most 

successful ML/AI algorithm during previous line fault detection studies [4]. The lines on which the 

faults were simulated were also limited to lines 1 and 2 between Bus 1 and Bus 2 to create more 

distance between the simulated faults and certain PMUs. The results of this sensitivity 

demonstrated in Table 3 indicates that PMU 7 is the optimal location for collecting data to train a 

ML/AI model intended for use on a different dataset. This is likely due to PMU 7's strategic 

positioning at the midpoint between Bus 1 and Bus 2, where the line faults for this part of the 

experiment were created. PMU 7’s position may have allowed it to observe faults in a more 

balanced and uniform manner. In contrast, other PMUs might perceive some faults more intensely 

due to their closer proximity to these events. The main takeaway from this sensitivity study is that 

if only one PMU was available for data collection, the best location for such a PMU would be at 

the location of PMU 7. 

Table 3: Results of PMU Location Sensitivity Study 

Training Data (PMU) 1 2 3 4 5 6 7 

Weighted F1-Score 0.90 0.91 0.91 0.90 0.90 0.91 0.92 

2.4.2 Simulated Data for Frequency Events 

To simulate frequency events and gather corresponding events’ dynamic data, GE’s (General 

Electric) PSLF software was used [43]. The test system is a large WECC test case containing 18457 

buses, 3360 generators, and 9023 loads (see Table 4). Contingencies such as generator loss, load 

loss, and line faults along with normal scenarios were simulated to obtain valuable data required to 

complement the field-recorded data and train suitable ML/AI models for the detection and 

classification of frequency events.  
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Table 4: Summary of the large WECC test case 

 

All the event dynamics were simulated for a total of 10 seconds (with 2 seconds of flat start 

followed by 8 seconds of event dynamics).  To capture the event spread, electrical quantities such 

as positive sequence voltage magnitudes, positive sequence voltage angles, frequency, and RoCoF 

were monitored (recorded) from all the neighboring buses up to three hops from the point of 

contingency. The reporting rate used for simulation was 30 frames/s similar to US field PMU 

recordings available for the project. Table 5 shows the number of simulated events for each 

contingent category of frequency events. 

Table 5: Number of simulated events for frequency event categories 

Type Number  Label 

Normal Scenario 5430 1 

Generator Loss 2478 2 

Load Loss 8749 3 

Line Fault 4705 4 

Total number of events = 21362 

For the brevity of presentation in this document, plots of four electrical quantities (from PSLF) 

from neighboring buses are shown in Figure 7 for an instance of generator loss. The generator loss 

event is the loss of a large generator in WECC which had a power generation of 1410 MW. 
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Figure 7: Positive sequence voltage magnitude and angle, frequency, and RoCoF of neighboring 

buses for a generator loss scenario at Paloverde in a large WECC test case 

2.4.3 Simulated Data for Oscillation Events 

Field-recorded measurements often do not encompass a sufficient variety of oscillation events, 

leading to datasets that may not fully represent the range of scenarios required for robust training. 

Simulated datasets supplement field data by providing comprehensive, controlled, and diverse 

scenarios required for effective training. In the oscillation study, simulated datasets were generated 

by providing a step input to a second-order system as shown in the equations below: 

𝑌(𝑠) =
𝜔2

𝑠2+2𝜁𝜔𝑠+𝜔2
𝑋(𝑠)              (1) 

𝑥(𝑡) = 𝐿−1[𝑋(𝑠)] = 1(𝑡) + 𝜙(t)             (2) 

𝑦̃ = 𝐿−1[𝑌(𝑠)] + 𝛹(𝑡)                                               (3) 

In the equations above, X(s) shows the input signal in the Laplace domain,  𝐿−1 represents the 

Laplace inverse function. Similarly, 𝜙(t) represents white Gaussian noise, Ψ(𝑡) is a measurement 

noise, and 𝜔 stands for the natural frequency of the system. For a closer resemblance to field-
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recorded conditions, a 10% noise label was incorporated into the simulated training datasets. 

Similarly, to enhance the diversity of oscillatory scenarios, the frequency band was randomly 

varied between 0.1 Hz and 1.5 Hz, and the damping ratio was randomly adjusted from 0 to 100 to 

create a vast library of oscillation events with known labels. These training datasets were evaluated 

as a part of the initial research [44]. 

 

Figure 8: Training oscillation dataset with single-mode 

In subsequent studies, improvements were made to these datasets by incorporating multiple modes 

in the system. A step input to a fourth-order system was used to generate data associated with two 

oscillatory modes with varying frequency and damping ratios as shown below:  

𝑌(𝑠) = 𝐻1(𝑠)𝐻2(𝑠)𝑋(𝑠)             (4) 

where, 𝐻1 =
𝜔𝑖

2

𝑠2+2𝜁𝑖𝜔𝑖𝑠+𝜔2
 and 𝐻2 =

𝜔𝑗
2

𝑠2+2𝜁𝑗𝜔𝑗𝑠+𝜔2
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Figure 9: Training oscillation dataset with multiple modes 

2.5 Summary 

PMU measurements from different regions of the US power system and the RTE system were used 

in this study. The measurements suffered from data quality issues that were handled using different 

data preprocessing methods. The field-recorded datasets do not sufficiently contain all classes of 

events and often have missing event labels. A wide range of simulated event datasets were 

generated for line fault events, frequency events, and oscillation events with precise and accurate 

labels, in order to facilitate the training process of the ML/AI models described in subsequent 

chapters.    
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3. Feature Engineering 
 

3.1 Introduction 

Various types of features may be extracted from PMU data, but this project focused on utilizing 

the domain knowledge and experience of the team to extract features that carry the most useful 

information for each application. Line faults, frequency events, and oscillation events create 

different signatures in PMU data with regard to the intensity, type of response, and duration. For 

instance, oscillation events generally happen over longer periods of time than line faults and 

frequency events. Similarly, distinguishing different line faults requires the use of three-phase 

voltage measurements. Finally, features extracted from frequency measurements alone may not be 

sufficient for frequency event analysis. This chapter demonstrates the feature engineering process 

for each critical event type.  

Distinct features were extracted from the PMU data for each event type depending on the expected 

characteristics of the PMU measurements during these events. Features for line faults were 

extracted from three-phase voltage measurements, while oscillation event features were extracted 

from frequency measurements, for instance. Frequency event features were extracted using positive 

sequence voltage magnitude and phase angle in addition to frequency and ROCOF measurements. 

Having such diverse feature extraction methods required the team to consider several ML/AI 

algorithms to investigate the one that worked best for the features at hand. Subsections 3.2, 3.3, 

and 3.4 describe the feature extraction process for line faults, frequency events, and oscillation 

events, respectively. 

3.2 Feature Engineering for Line Faults 

The success of any ML/AI model largely depends on the quality of the features fed into it. For line 

fault events, physics-based features derived from power system protection principles were utilized 

[6]-[7]. These features were calculated as the normalized sum of the differences between the 

maximum and minimum voltage magnitudes recorded within each 2-second time window, as 

illustrated in (5) and (6).  

∆(𝑉∅) = 𝑚𝑎𝑥(𝑉(∅)𝑀𝐴𝐺) − 𝑚𝑖𝑛 (𝑉(∅)𝑀𝐴𝐺)        (5)            

SUM(V∅) = ∑
∆(V(∅))

Number of PMUs

#PMUs

i=1
                           (6) 

This feature computation was chosen knowing that the most significant aspect of the PMU 

measurements during a line fault is the voltage drop seen as a result and visualized in Figure 10. 

This voltage drop, when averaged across all the available PMUs, can become more significant, 

slightly mitigating the issue of PMU location relative to the line fault. Averaging also ensures that 

the features are normalized, which is especially important since the field-recorded datasets include 

PMUs at different nominal voltage levels. Line faults occurring at lower voltage levels may have 

otherwise been misclassified due to having lower impact on the data than those at high voltage 

levels. The time window for feature extraction was chosen to be a 2-second sliding time window. 
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This decision results from extensive previous studies in which 5-minute, 1-minute, 10-second, 2-

second, and 1-second time windows were explored [6]. The 2-second time window is where the 

performance of the ML/AI model plateaued and was consequently set as the most efficient choice. 

Figure 10 highlights a 2-second window in which the maximum and minimum voltage values are 

obtained for each PMU in the PSCAD model as shown. The final features are then computed across 

all PMUs and for each phase separately. 

 

Figure 10: Visual representation of line fault feature computation 

3.3 Feature Engineering for Frequency Events 

As the temporal effects in a power system are driven by the interacting dynamics of system 

components [24], features for this application are obtained from modal decomposition of the 

relevant electrical quantities such as positive sequence voltage magnitudes and phase angles, 

frequency, and RoCoF, all recorded by PMUs. Modal decomposition explains the contents of a 

PMU data stream after an event by identifying the underlying dominant modal features. We use 

the Prony method [45] to obtain the most dominant modes from each signal of interest. An instance 

of frequency signal reconstruction and its intermediate steps during generator loss at a bus in the 

WECC system using the Prony method is shown in Figure 11. 
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11(a) 

 

11(b) 

 

11(c) 
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11(d) 

 

11(e) 

Figure 11: Frequency signal reconstruction using modal decomposition for a generator loss event 

(Figures 11(a) – 11(e)) 

 

Table 6 shows the mode numbers along with their amplitude, damping, frequency, and energy. 

These modal parameters were used to reconstruct the post-disturbance frequency signal recorded 

at the bus considered as shown in Figure 11. 

Table 6: Dominant Modes Used for Signal Reconstruction in Figure 11 and their details 

Mode # Amplitude Damping Frequency Energy 

1 9.2e-03 -3.7e-01 3.6e-01 8.7e-04 

2 9.2e-03 -3.7e-01 3.6e-01 8.7e-04 

3 8.7e-03 -2.1e+01 0.0e+00 2.5e-05 

4 7.7e-03 -1.0e+00 8.7e-01 2.3e-04 
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5 7.7e-03 -1.0e+00 8.7e-01 2.3e-04 

6 6.9e-03 -1.1e+00 1.1e+00 1.7e-04 

7 6.9e-03 -1.1e+00 1.1e+00 1.7e-04 

8 5.6e-03 -5.1e-01 5.5e-01 2.3e-04 

9 5.6e-03 -5.1e-01 5.5e-01 2.3e-04 

10 5.0e-03 -1.1e+00 1.5e+00 8.6e-05 

11 5.0 e-03 -1.1e+00 1.5e+00 8.6e-05 

12 4.6e-03 1.6e-01 1.5e-01 6.1e-03 

13 4.6e-03 1.6e-01 1.5e-01 6.1e-03 

The features used for this work are the frequency and damping ratio of the dominant modes 

followed by the amplitudes and energies of the residual coefficients of those modes. 

Mathematically, this can be expressed as: 

𝐹param = [Frequency, Damping, Amplitudes(1 … #PMUs),Energies(1 … #PMUs)]             (7)                                

where, param is a variable that represents one of the four signals used to generate modal features: 

positive sequence voltage magnitude and voltage angle, frequency, and RoCoF, i.e., param ∈ 

{Vmag, Vang, Frequency, RoCoF}. Note that Fparam will be a row vector of size 1-by-DIM where 

DIM = N + N + N*#PMUs + N*#PMUs, and N represents the number of dominant modes selected. 

Finally, the feature row vector (FRV) for an event will have a size of 1-by-(4*DIM), which is 

mathematically written as: 

                          𝐹𝑅𝑉 = [𝐹Vmag,  𝐹Vang,  𝐹Frequency,  𝐹RoCoF]                                             (8) 

3.4 Feature Engineering for Oscillation Events 

For oscillation events, the feature engineering was formulated as an image recognition problem for 

classifying oscillation events. An oscillatory pixelated image was created by using the positive 

voltage magnitude signal, but flexibility also exists to utilize signals such as active power flows, 

reactive power flows, and bus voltage phase angle. The simulated datasets were used to create 

pixelated oscillation images for training the ML/AI models. The pixelated image captures the 

damping and frequency characteristics of the oscillation event. In initial work, single-mode 

oscillation training datasets were used to create pixelated images as shown in Figure 12. 
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Figure 12 shows the pixelated images for the poorly damped (a) and well-damped oscillation (b). 

The image size of each pixelated oscillation picture is 120x120 pixels. In further study, the 

simulated training data was made more comprehensive by designing signals containing multiple 

modes. The pixelated oscillation for a multiple-mode signal is shown in Figure 13. The pixelated 

images are used as a feature for training the ML/AI approach for oscillation classification. 

 

  

 

Figure 12: (a) Poorly damped pixelated oscillation image with single mode (b) Poorly damped 

pixelated oscillation image with single mode 
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3.5 Summary 

Although the PMU data can be fed directly to an ML/AI model, extracting relevant contrasting 

features for various event types is usually preferred. In this project, the designed features are chosen 

to provide appropriate representation of the underlying application. Features for line faults 

leveraged the principles of protection studies and represented event impact on voltages in the 

network. Next, features for frequency events leveraged the principles of modal decomposition 

signifying wide interacting dynamics in the system generally associated with frequency. Finally, 

features for oscillation events leveraged principles of the image recognition problem as it helped 

the qualitative analysis of oscillations into well-damped versus poorly damped types. This process 

of feature engineering across applications signifies the carefulness needed in selecting physics-

based features that data-driven applications using ML/AI lack at times.   

Figure 13: Pixelated oscillation image with multiple modes system 
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4. Data Model Development, Training, and Validation 

 

4.1 Introduction 

The choice of the ML/AI algorithm and training dataset affects the overall performance of the final 

model. Since different features were chosen for each event type in this study, the ML/AI algorithms 

that work best with the associated feature type were examined first. That is, each critical event 

classification problem was treated as a separate task initially. Then, the possibility of adapting one 

solution to tasks different from the one it was developed for was considered. Different supervised 

learning-based classifiers were considered after overcoming the scarcity of labels using simulated 

data. In addition to creating a balanced training dataset using simulated data and integration of 

simulated and field-recorded data, testing datasets for each event type were chosen based on the 

availability of instances of the respective event type. Section 4.2 discusses the process of 

developing the base classifiers for each event type. 

The new datasets that were obtained from industry partners provided a unique opportunity for 

validating the new ML/AI models on different datasets. However, the number of instances of each 

event type and their subcategories was limited in these new datasets. In other words, it would not 

be possible to retrain a new ML/AI model for each new dataset. This situation is expected since 

PMU data might not be readily available for extended periods, and even large amounts of historical 

PMU data may not be accompanied by accurate labels. The most practical solution is to then train 

the base classifiers developed using appropriate datasets to be transferred to new datasets while 

maintaining their performance. Several transfer learning (TL) algorithms were considered for each 

event type, recognizing the differences in features and base classifiers. Section 4.3 provides the 

details of every TL algorithm, and the datasets used for training and testing. Finally, in Section 4.4, 

the adaptability of these TL algorithms is tested by applying them to the alternative event types.   

4.2 ML/AI Model Development  

4.2.1 Line Faults 

The base ML/AI model created for the detection and classification of line faults largely builds upon 

the team’s experience studying PNNL1 data in a previous project [6]-[7]. During that extensive 

study, the dataset was analyzed for daily statistics of each measurement type in order to reveal the 

PMUs that exhibit high amounts of missing data and unreasonable values. The waveforms 

corresponding to the events listed in the event log were visually inspected in order to correct any 

inaccuracies in timestamps and event labels. This extended process proved to significantly improve 

the performance of any ML/AI model, not only the ones targeting line faults. The effects of these 

two crucial preprocessing steps are detailed in [3], [6]-[7], [16], and [46]. The feature engineering 

and selection of ML/AI classifiers were guided by the top-performing methods identified in [6]-

[7]. 
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Preprocessing the RTE datasets involved eliminating continuous missing data, NaN values, and 

faulty PMU signals. A sliding data window technique was employed, and any windows that 

surpassed predefined missing data thresholds were excluded from further analysis. A detailed 

description of the final set of features extracted for every 2-second time window are explained in 

Section 3.2 of this report. Additionally, SVM-based models were found to be most successful when 

classifying line faults in previous studies [6].  

The main goal of this stage of the project for the category of line faults analyzed, was to validate 

the utility of the methods that resulted from previous studies [6]-[7], and introduce the new 

simulation model for line fault data.  The new model, developed in PSCAD, was expected to 

improve the performance of the model by providing a closer representation to real PMU data. 

However, this assumption required validation through testing. Therefore, the first test was 

performed by comparing the results of using the new simulated data from PSCAD to train the SVM 

model versus using the simulated dataset developed for the previous project [6]. The RTE1 dataset 

was utilized for this validation as a testing dataset. According to the weighted F1-score, the ML/AI 

model trained with the new simulated data achieved an accuracy of 0.91, outperforming the 

previous simulated dataset, which had an accuracy of 0.88.  

The use of simulated data to support the training process here is approached as an enhancement to 

the regular supervised learning approach that may have only utilized the field-recorded data. 

Supervised learning was preferred over unsupervised or reinforcement learning due to the 

availability of some labels, despite the need of further processing due to possible inaccuracies that 

exist in the event logs, and the knowledge that the team retains on the targeted events. Given that 

the new PSCAD dataset was more useful as a training dataset, the next question addressed was 

whether it was sufficient. To answer this question, the PNNL1 dataset was brought in as a candidate 

training dataset. The experiment was repeated three times by varying the training dataset between 

PSCAD, PNNL1, and an integration of both. The details of this stage of the experiment are as 

follows: 

• Time-window: 2 seconds 

• Features: voltage difference-based features described in Section 3.2. 

• ML Algorithm: SVM 

• Testing dataset: RTE1 

• Training dataset: PSCAD only / PNNL1 only / PSCAD+PNNL1 

4.2.2 Frequency Events  

After extracting the modal features obtained as explained in Section 3.3, five open-source ML 

algorithms were applied in a supervised setting using off-the-shelf packages in Python. Supervised 

machine learning algorithms were selected over unsupervised or reinforcement models for this task 

considering the availability of labeled frequency events in the simulated dataset from PSLF, and 

the advantages that supervised learning offers in terms of increased interpretability in mapping 

input features to output and their scalability with big data problems. Each of the algorithms used in 

this study is briefly explained next. 
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1) Support Vector Machine (SVM) 

SVM is one of the most effective algorithms in supervised ML. Its core objective is to identify an 

optimal hyperplane that effectively segregates two distinct classes. Given the multiclass nature of 

line fault classification, the implementation of SVM necessitated a conversion into a series of 

binary classifications, employing the one-vs-one strategy. This approach involved deploying 

separate classifiers, each responsible for differentiating between a pair of classes. By combining 

the outcomes of these binary classifiers, a robust multiclass classification framework was 

established [47]. 

2)  Random Forest (RF) 

RF is a type of “ensemble” classifier. The architecture of RF consists of numerous decision trees 

(DTs), each evaluating incoming events independently. Every tree contributes a singular vote 

towards classifying each input under the category it deems most likely. The ultimate classification 

decision is derived from the aggregation of these votes, with the class receiving the majority of 

votes being chosen [48]. Critical to the optimization of the RF model are the hyperparameters, such 

as the number of trees in the forest and the maximum depth of these trees, which require careful 

selection tailored to the specifics of the problem at hand. The choice to use the RF classifier in our 

research is attributed to its quick processing capabilities, resilience against noisy data, and its 

proficiency in detecting nonlinear relationships within the dataset. 

3) Extreme Gradient Boosting (XGBoost) 

XGBoost is a gradient boosting algorithm that sequentially adds DTs to an ensemble to improve 

on previous errors. It can handle imbalanced data effectively, assign higher weights to misclassified 

samples, and adjust the class distribution during training [49]. This capability makes XGBoost 

particularly useful in scenarios where the classes are unevenly distributed, as it can adapt its 

learning process to give more attention to minority classes, leading to improved model performance 

and better generalization on imbalanced datasets.  

4)  K-Nearest Neighbors (kNN) 

kNN labels an unknown instance by utilizing the distance of the point to the labeled data. The 

distances are usually defined by a distance metric such as the Euclidean distance or Manhattan 

distance. The choice of the value of k can define underfitting, overfitting, or optimal classification, 

and is tuned to solve a specific problem at hand. For a binary classification problem, it is usually 

advantageous to pick an odd number for the value of k, to overcome the ambiguity of information 

from the neighbors. 

5) Gaussian Naïve Bayes 

The Gaussian Naïve Bayes algorithm uses Bayes’ theorem by assuming the likelihood of features 

to be Gaussian to classify different instances of data. 
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4.2.3 Oscillation Events 

A possible oscillation event was found in the measured field recorded measurements using a sliding 

window approach. A ratio of the standard deviation of the ringdown event window to the standard 

deviation of the ambient window was calculated in a sliding window fashion as shown in Figure 

14. 

 

 

Once the standard deviation ratio threshold exceeded the set threshold for five consecutive 

windows, the datasets were considered for the oscillation study. The recorded ringdown events 

were then converted into pixelated images as discussed in Chapter 3.4. The supervised neural 

network (NN) approach is considered best suited for image classification and has been explored in 

our study to classify oscillation events based on their frequency and damping characteristics. Unlike 

Unsupervised and RL, NN utilizes the labels of the oscillation for effective training. The simulated 

datasets were created with accurate labels which aided the learning process of NN.  An image-

based oscillation detection classification process was studied using the following supervised 

learning methods. 

1) Multi-layer Neural Network (MLNN): 

MLNN consists of a multilayer perceptron including an input layer, hidden layers, and an output 
layer as shown in Figure 15 

Figure 14: Sliding window analysis 
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Figure 15: Multilayered -neural network model 

The pixelated image data was fed into the MLNN feedforward layer. The backpropagation error 
minimization technique is used to compute the gradient of the loss function. The loss function in 
our case is Mean Squared Error (MSE),  

𝐿 =
1

𝑁
 ∑ (𝑦𝑖 − 𝑡𝑖)2

𝑖    (9) 

where N is the number of data points, yi is the predicted output from the MLNN and ti is the targeted 
value of the classification. The goal is to minimize the MSE by adjusting the network’s weight and 
biases. The general weight update is carried out by taking the gradient of the loss function with the 
weight and hence updating the weight using the following equation, 

∆𝑊𝑖 = −𝜂 ∗
𝜕𝐿

𝜕𝑊𝑖
   (10) 

where, 𝜂 is the hyperparameter controlling the step size of the update known as learning rate. The 
SoftMax function is utilized in the output layer of neural network models as the activation function 
to achieve feature classification. The output of the SoftMax function is the vector of probabilities 
of all possible outcomes. Mathematically, the SoftMax formula is expressed as follows: 

𝑆𝑖 =
exp(𝑦𝑖)   

∑ exp(yi)𝑛
𝑘=1

    (11)  

2) Convolutional Neural Network: 

Convolutional neural network (CNN) is a deep learning model that is well-known for image 
classification and pattern recognition. The main components of the CNN model are shown in Figure 
16. CNN takes a pixelated oscillation image as an input signal and then goes to the convolution 
layer. A convolutional layer defines a filter that gets convoluted with each input matrix. The design 
of the convolutional filter for CNN is critical since it extracts the features from the input matrix. 
The result of the convoluted input passes into the pooling layer. The pooling layer performs the 
mean/median pooling and reduces the dimension of the feature. After several iterations of pooling 
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and convolution, the result of the pooling layer is passed to the fully connected layer, which 
performs the classification similar to the MLNN as outlined above.   

 

Figure 16: Convolutional neural network model 

4.3 Transfer Learning (TL) Model Development 

TL is a specialized area within ML that addresses the complexities associated with varying dataset 

distributions. Typically, when a new dataset (known as the target domain) is introduced for a 

particular task, relying solely on an ML model trained on an initial dataset (referred to as the source 

domain) may not be sufficient. This limitation is particularly pronounced when there are substantial 

differences in the data distributions between the source and target domains. These differences can 

lead to poor model performance if the model is directly applied to the new dataset without 

adjustments. One of the primary challenges in re-training an ML/AI model on a new dataset is the 

scarcity or complete absence of labeled data, which is crucial for supervised learning. Additionally, 

changes in feature extraction methods between the source and target domains can further 

complicate the transfer process. For instance, the features that were effective in the source domain 

may not be as informative or relevant in the target domain, necessitating modifications to the 

feature extraction process. 

TL was selected at this stage because the small size of these datasets impedes the direct application 

of other methods, such as unsupervised learning or reinforcement learning. To elaborate, using 

reinforcement learning with these new datasets would require a new simulation to represent the 

environment (the power system) and create fault scenarios to drive the training process. This 

approach would negate the advantage of having multiple sets of historical PMU data, effectively 

reducing the problem back to a supervised learning scenario. Consequently, TL is the most suitable 

approach under these circumstances, as it allows for the effective adaptation of pre-trained models 

to new, unlabeled (or scarcely labeled) datasets without the need for extensive additional 

simulations or further data collection. 
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4.3.1 TL for Domain Adaptation for Line Faults 

For addressing line faults, the chosen TL technique involved domain adaptation methods designed 

to align the feature spaces of both the source and target datasets. Domain adaptation focuses on 

minimizing the discrepancies between different domains, thus allowing the model to effectively 

apply the knowledge it gained from one dataset to another with different characteristics. Two TL 

algorithms were used in this study to achieve domain adaptation.  

1) Correlation Alignment (CORAL) 

CORAL is an unsupervised TL technique that relies on feature alignment. In other words, CORAL 

aligns the second order statistic (covariance) features of the data. Aligning the second order 

statistics of the source and target domains involves a linear transformation, A, that minimizes the 

distance between them using the Frobenius norm [50]. Using matrix transformations, the problem 

can be stated as expressed mathematically as shown in (12) below,  

min
𝐴

‖𝐴𝑇𝐶𝑆𝐴 −  𝐶𝑇‖𝐹
2         (12) 

where 𝐶𝑆 and 𝐶𝑇 are the source and target domain covariance matrices, respectively. A detailed 

derivation for finding A can be found in [50]. Figure 17 illustrates the effect of applying CORAL 

to the features extracted from PSCAD+PNNL1 (source) and RTE1 (target), where the distance 

between the distributions decreases while maintaining the general shape. As observed on the right-

side figure, the feature distributions seem to overlap more uniformly after applying CORAL. 

 

Figure 17: TL by CORAL on PNNL1 and RTE1 data 

2) Transfer Component Analysis (TCA) 

TCA is a feature mapping technique that learns a linear mapping that maps the features of the 

source and target domains onto a low-dimensional feature space. TCA is achieved by minimizing 

the distance between the marginal probability distributions of the source and target domains, 𝑃(𝑋𝑆) 
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and 𝑃(𝑋𝑇) . First, the algorithm uses a reduction method called maximum mean discrepancy 

embedding (MMDE) to embed the source and target domains on a low-dimensional latent space 

and learns its kernel matrix K: 

𝐾 = [ 
𝐾𝑆,𝑆 𝐾𝑆,𝑇

𝐾𝑇,𝑆 𝐾𝑇,𝑇
]   ∈  ℝ(𝑛1+𝑛2)×(𝑛1+𝑛2)        (13) 

where 𝑛1  and 𝑛2  are the sizes of the learning samples from the source and target domains. A 

transformation matrix W is then learnt that transforms the kernel matrix K that is guaranteed, as 

described by the derivations in [51], to be of a lower dimension than (𝑛1 + 𝑛2). Figure 18 illustrates 

the effect of applying TCA to the features extracted from PSCAD+PNNL1 (source) and RTE1 

(target). TCA maps the features onto a common space, where the features are realigned. As 

observed on the right-side figure, the feature distributions are altered and centered in order to 

overlap but have lost their original shape. 

 

Figure 18: TL by TCA on PNNL1 and RTE1 data 

4.3.2 TL via Fine-tuning (FT) for Frequency Events 

FT is a specific form of TL that takes a pre-trained ML/AI model and continues the training process 

for a different, often smaller, target dataset [52]-[54]. FT falls under the parameter transfer branch 

of inductive transfer learning which assumes that although highly useful, model parameters 

obtained for the source dataset must be trained with a limited target data for better adaptability 

instead of directly using them [54]. The ML/AI model pre-trained on a source dataset usually has 

some optimal hyperparameters associated with it. At the same time, the target dataset often lacks 

sufficient data/labels in comparison to the source. FT uses a small number of known samples from 

the target dataset to fine-tune (by using a process such as grid search for this work) the attributes 

of the ML/AI model trained exhaustively on the source dataset to ensure that the resulting new 

ML/AI model has good performance on unseen samples of the target dataset. This technique helps 
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in providing a warm start to train the new ML/AI model for the target dataset and eventually saves 

considerable time which would otherwise have been required if the training was done from scratch. 

In the context of the frequency event detection and classification problem, the source would be the 

simulated data created in PSLF, while the target would be the smaller field-recorded PMU datasets 

such as PNNL2, RTE1, and RTE2. 

4.3.3 TL with Neural Networks (NNs) for Oscillation Events 

TL for NNs has been explored in this study to leverage existing knowledge from the simulated 

oscillation datasets to enhance the performance of the NN methods discussed in Chapter 4.2.3. TL 

with CNN on medical image classification showed that the limited data and resources could be 

utilized to improve the performance of NNs [35].  TL with deep learning was also utilized to 

classify jamming signal power spectral density in the imaginary domain [55]. Similarly, CNN-

based TL was implemented to classify the micro-seismic event waveform [56]. In [57], 

synchrophasor measurements were used to identify the power system event using a neural classifier 

with TL.  In this work, offline training was performed on the NN models using simulated datasets 

that consist of different ranges of oscillations with a wide range of oscillation events with varying 

frequencies and damping ratios and their respective labels. The trained NN models were then fine-

tuned and tested on field-recorded synchrophasor measurements from different regions of the US 

and RTE, France. The output layer of the trained model was adjusted to classify field-recorded 

event data based on damping characteristics. In addition, the moving window was continuously 

monitored, and an event was flagged when oscillation was detected in three consecutive sliding 

windows.  The TL-based NNs capture complex patterns and features. This capability is leveraged 

after the network undergoes training with extensive sets of simulated datasets, enabling it to 

effectively generalize and apply the acquired knowledge to new, unseen field-measured datasets. 

4.4 Transfer Learning (TL) Model Adaptability 

In this phase of the study, the central question being investigated is whether each TL algorithm, 

which has been specifically tailored for its respective event type and associated features, can 

seamlessly adapt and maintain high performance when applied to the other two types of events. 

This exploration is crucial for determining the versatility and robustness of these TL algorithms 

across different scenarios. The primary goal is to ascertain whether vendors and potential users of 

such algorithms can employ any single TL algorithm as a universal solution capable of effectively 

handling all three types of events—line faults, oscillation events, and frequency events. To achieve 

this, each TL algorithm is rigorously tested across all available field-recorded datasets, 

encompassing a wide range of real-world conditions and variations. This comprehensive testing 

helps to identify if the adaptability and performance of the TL models are consistent across different 

datasets or if their effectiveness is dependent on specific data characteristics. Additionally, this step 

of the study sheds light on the potential limitations and strengths of each TL algorithm when faced 

with varying data distributions and event characteristics. 
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To answer this question, the following actions were taken: 

i. Feature extraction was performed for line faults, frequency events, and oscillation events 

as described in Chapter 3. 

ii. Line fault features are used to train and test the NN-based and FT-based TL models. 

iii. Frequency event features were used to train and test the CORAL-based and NN-based TL 

models. 

iv. Oscillation event features were used to train and test the CORAL-based and FT-based TL 

models. 

4.5 Summary 

This chapter presented the methodology to develop base ML/AI models to detect and classify the 

three event types with which this project is concerned. In several instances, open-source ML/AI 

algorithms have been employed after the critical steps of data preprocessing and feature extraction 

were completed. As a base classifier, the model to detect and classify line faults is SVM-based. For 

frequency events, several classifiers were tested: SVM, RF, XGBoost, k-nearest neighbors, and 

Gaussian Naïve Bayes. Due to the image-based nature of the features extracted for oscillation 

events, the base classifiers for those were using convolutional and multi-layer NNs.  

To transfer the knowledge gained by these models to new datasets with different distributions of 

data, several TL algorithms were explored. For line faults, SVM was combined with both CORAL 

and TCA to evaluate which domain adaptation algorithm performed better. Fine-tuning was used 

to transfer the knowledge of frequency event classifiers, whereas an offline training method was 

used to transfer the knowledge of oscillation event classifiers. Finally, the adaptability of the 

developed TL models was tested by applying the developed models to the event types for which 

they were not originally developed. The results obtained are described in the next chapter.  
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5. Results and Discussion 
 

5.1 Introduction 

This chapter presents the outcomes of the experiments conducted to evaluate the performance of 

the ML/AI models developed in this study. The results are structured to highlight the effectiveness 

of the chosen algorithms, and the impact of various strategies employed, including supervised 

learning-based classifiers and transfer learning (TL) techniques, to detect and classify line faults, 

frequency events, and oscillation events. Each section of this chapter targets one event type, and 

within each section the results are presented for the supervised-learning models supported by 

simulated data first, followed by the results of applying TL methods to those base classifiers. The 

results of the developed models are also compared against two main open-source algorithms, SVM 

and RF, to demonstrate the utility of the new models. The results highlight the suitability of specific 

classifiers for particular event types, considering the unique features associated with each type.  

The results of applying these TL algorithms to the new datasets and alternative event types are 

presented, focusing on their ability to maintain or improve the performance of the base classifiers. 

Detailed analyses are provided to illustrate how the differences in features and base classifiers 

influenced the outcomes of the TL algorithms. This leads to the results of the study on TL model 

adaptability in which the TL models developed for each task are tested for the task of detecting and 

classifying the other two event types. This section highlights the strengths and limitations of the 

models in real-world applications. The results for fault, frequency and oscillation events are 

presented in sections 5.2, 5.3, and 5.4 respectively.  

5.2 Results of Detection and Classification of Line Faults 

The approach took on two main stages to create and test ML/AI models for detecting and 

classifying line faults as outlined in Chapter 4 of this report: ML/AI model development and TL 

model development. At first several ML/AI models were evaluated to understand the effects of the 

use of different training and testing datasets on the performance of these ML/AI models. Next, the 

problem of varying data distributions that have emerged with each new dataset was tackled through 

the use of TL.  

5.2.1 ML/AI Model Development Results 

The first question to be answered by the new ML/AI models developed using the PSCAD simulated 

data as a training dataset was the effect of using this data specifically versus using a field-recorded 

dataset for training. Three models were created in which the training datasets were PSCAD data, 

PNNL1 data, and an integration of PSCAD and PNNL1 data. The testing dataset was RTE1 for all 

three cases and the ML/AI algorithm was set to be SVM. The results in each case were evaluated 

using the event log provided by RTE for all the events that were correctly detected. Misclassified 

instances were evaluated using visual inspection. In this stage of the project, only event instances 

were used to train and test these ML/AI models. The inclusion of normal operation time windows 

occurs in the TL stage. Including normal operation adds another layer of complexity to the problem 
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where random disturbances and noise may be misclassified as an event, which explains the 

difference in F1-Score in Table 7 compared to Table 8. 

The results of this experiment are presented in Table 7. This study revealed the importance of the 

availability of field-recorded data to train the classifier models. Although the simulated data 

provided a more balanced training dataset, it did not reflect the noise and random disturbances that 

exist in field-recorded PMU data. In this case, the data provided by PNNL (PNNL1) was large 

enough to offer several instances of each line fault type. Nevertheless, obtaining such large amounts 

of PMU data (spanning 2 years) proved to be more challenging with each new dataset received. 

This amount of data might not be regularly stored and collecting it requires further time and effort. 

Under the circumstances, it cannot be concluded that field-recorded data is always the best source 

for training data. The scenario that provides both a realistic representation and a more balanced 

dataset is the use of an integrated dataset of both simulated and field-recorded data.  

Table 7: Training dataset study for line fault detection and classification 

Training Dataset Testing Dataset Weighted F1-Score 

PSCAD  RTE1 0.91 

PNNL1 RTE1 0.95 

PSCAD+PNNL1 RTE1 0.95 

The best performing SVM model, using PSCAD+PNNL1 data for training, showed promising 

success when tested on RTE1 data. This success was highlighted by the detection and classification 

of five-line faults that were not included in the original event log provided by RTE for this data. 

One of these five events is shown in Figure 19. One possible reason that this event, among others, 

was detected by the SVM model is the fact that the event was only observed well by one PMU. 

This result highlights the benefits of feature engineering and understanding the nature of each event 

type.  
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5.2.2 Transfer Learning (TL) Model Development Results 

As mentioned in Chapter 4, the TL technique chosen for line faults was the use of domain 

adaptation methods that realign the feature spaces of the source and target datasets. These TL tools 

ensure that the work done to engineer a physics-based feature specific to line faults is preserved 

but those feature distributions are brought closer together to facilitate the transfer of knowledge 

gained by the model from one dataset to another. The two domain adaptation techniques explored 

were CORAL and TCA. CORAL and TCA were applied to transfer the knowledge gained by the 

Figure 19: top to bottom: phases a, b, and c of a sample unlabeled event from RTE1 
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SVM model trained on the PSCAD+PNNL1 dataset to the RTE1 and RTE2 datasets. 

PSCAD+PNNL1 was used as the source dataset since it is the most comprehensive and diverse 

dataset, whereas RTE1 and RTE2 are both limited in size and class diversity. Table 8 summarizes 

the results of this experiment. 

Table 8 also shows the comparison between applying TL to the SVM model and simply using the 

SVM model as is, to test on the RTE datasets. As a benchmark, SVM and RF were chosen as the 

base classifiers against which the results of TL are assessed. The F1 scores highlighted for SVM 

and RF in rows 1 and 3 show that these two base classifiers perform best when the training and 

testing datasets originate from the same source. In the following rows, a considerable decline in 

performance is visible due to the difference in distributions between the training and the testing 

datasets. Using TL, both CORAL and TCA, achieve better results when combined with SVM. 

However, CORAL exhibits the highest F1 score for both RTE1 and RTE2. A possible explanation 

for CORAL’s superiority might be the fact that TCA involves a transformation to lower 

dimensional space to realign the features while CORAL does not. 

Table 8: TL model development results for line fault detection and classification 

Algorithm Training Data Testing Data F1-Score 

SVM PSCAD + PNNL1 PSCAD + PNNL1 0.98 

PSCAD + PNNL1 RTE1 0.77 

PSCAD + PNNL1 RTE2 0.35 

RF PSCAD + PNNL1 PSCAD + PNNL1 0.98 

PSCAD + PNNL1 RTE1 0.64 

PSCAD + PNNL1 RTE2 0.21 

SVM with CORAL PSCAD + PNNL1 RTE1 0.93 

PSCAD + PNNL1 RTE2 0.90 

SVM with TCA PSCAD + PNNL1 RTE1 0.78 

PSCAD + PNNL1 RTE2 0.86 

5.3 Results of Frequency Event Detection 

5.3.1 Frequency Events Identification Using the Empirical Approach 

Using the empirical approach described in Chapter 2.3.1, 89 unique frequency events were 

identified in the PNNL2 dataset. The maximum number of PMUs that captured a unique frequency 

event in this dataset was 19. A total of 5 unique frequency events were identified in the RTE1 

dataset and 12 unique frequency events were found in the RTE2 dataset. 
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The unique Frequency Event #39 from the PNNL2 dataset is analyzed next. Table 9 shows the 

details of the 19 PMUs that respond to this event. Specifically, maximum and minimum frequency, 

maximum RoCoF, and their instance of occurrence are specified. The positive sequence voltage 

magnitude, positive sequence current magnitude, and frequency plots for Unique Event #39 are 

shown in Figure 20. Figure 21 and Figure 22 depict the disturbance recorded in frequency 

information captured by two PMUs for Unique Event #39 with the highest and lowest values of 

RoCoF response, respectively. 

Table 9: PMU responses to unique Frequency Event # 39 in the PNNL2 dataset and its details 

PMU 

ID 

Date Hour Max F 

Index 

Max F 

(in 

Hz) 

Min F 

Index 

Min F 

(in 

Hz) 

Max 

|RoCoF| 

Index 

Max |RoCoF| 

(in Hz/s) 

C708 20161008 10 26606 60.129 26605 59.913 26606 7.38 

C827 20161008 10 26607 60.059 26605 59.936 26605 4.37 

C151 20161008 10 26607 60.071 26605 59.926 26605 4.31 

C730 20161008 10 26607 60.055 26605 59.942 26605 4.3 

C175 20161008 10 26607 60.06 26605 59.937 26605 4.27 

C110 20161008 10 26607 60.059 26605 59.938 26605 4.25 

C211 20161008 10 26607 60.055 26605 59.943 26605 4.24 

C277 20161008 10 26607 60.059 26605 59.938 26605 4.24 

C313 20161008 10 26607 60.055 26605 59.943 26605 4.22 

C722 20161008 10 26607 60.058 26605 59.943 26605 4.21 

C837 20161008 10 26607 60.07 26605 59.929 26605 4.19 

C526 20161008 10 26607 60.056 26605 59.946 26605 3.95 

C865 20161008 10 26607 60.051 26605 59.953 26605 3.88 

C143 20161008 10 26607 60.052 26605 59.955 26605 3.6 

C397 20161008 10 26607 60.053 26605 59.954 26605 3.59 

C396 20161008 10 26607 60.046 26605 59.964 26605 3.22 

C250 20161008 10 26607 60.046 26605 59.964 26605 3.18 

C682 20161008 10 26607 60.046 26605 59.964 26605 3.17 

C893 20161008 10 26607 60.045 26605 59.969 26605 2.78 
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Figure 20: Voltage, Current, and Frequency recorded by PMUs for Unique Frequency Event #39 

 

 

Figure 21: Frequency recorded by PMU C708 (highest RoCoF) for Unique Frequency Event #39 
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Figure 22: Frequency recorded by PMU C893 (lowest RoCoF) for Unique Frequency Event #39 

The duration of frequency events is estimated next by computing the initiation time of frequency 

events and their end, by using the successive difference of the average value of frequency technique 

as described in Chapter 2.3.2. Figure 23, for instance, shows the approximate start and end times 

of the unique frequency event #44 in the PNNL2 dataset.  

 

Figure 23:  Frequency behavior showing start and end by different PMUs for Unique Frequency 

Event #44 
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5.3.2 ML/AI Classifier Results  

Modal features previously extracted using the Prony method for frequency events from the 

simulated PSLF data were used to train ML/AI classifiers described in Chapter 4.2.2. The number 

of PMUs used for creating Fparam was determined by analyzing performance of the base classifiers 

as the number of neighboring PMUs was varied; the best performance was seen with 10 PMUs. If 

10 PMUs are not present for a particular contingency, appropriate number of zeros were padded to 

Fparam. Note that the features were extracted from the post disturbance time-series data for the four 

signals of interest (Vmag, Vang, Frequency, RoCoF). 

Table 10 shows the performance in terms of accuracy, precision, recall, and F1-score which are 

standard metrics to assess a classifier’s performance. It was seen from the table that the XGBoost 

classifier had the best performance among the five classifiers that were evaluated.  

Table 10: Performance of ML Classifiers on the PSLF dataset containing 21362 post-processed 

frequency events 

Classifier Type Accuracy Precision Recall F1-Score 

XGBoost 0.968 0.968 0.968 0.967 

Random Forest 0.903 0.909 0.903 0.889 

Support Vector Machine 0.892 0.887 0.892 0.886 

K-Nearest Neighbors 0.836 0.838 0.836 0.835 

Gaussian Naïve Bayes 0.417 0.607 0.417 0.378 

The confusion matrix for the XGBoost classifier for the frequency events in the simulated PSLF 

dataset is shown Figure 24. Labels 1, 2, 3, and 4 correspond to events representing a normal 

scenario, generator loss, load loss, and line fault, respectively. 
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Figure 24: Confusion Matrix using XGBoost Classifier:  for Simulated dataset from PSLF 

The three best base classifiers SVM, RF, and XGBoost in the training stage were used with the 

tuned hyperparameters directly and tested on the events in the PNNL2 and the combined RTE 

datasets. The performance is shown in Table 11. However, all three classifiers performed poorly 

when tested on PNNL2 and combined RTE datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

From the results obtained in Table 11, it can be inferred that even the best performing ML models 

on one dataset are unable to achieve a satisfactory performance on similar events in a different 

dataset. This motivated us to use transfer learning via fine-tuning as explained in Section 4.3.2 and 

the results are presented for the same in the following section. 

Table 11: Testing on unseen events in the PNNL2 and RTE datasets 

Classifier Event Type Training Data Testing Data F1-Score 

SVM Frequency 

Events 

PSLF PSLF 0.88 

PSLF PNNL2 0.52 

PSLF RTE1+ RTE2 0.29 

RF Frequency 

Events 

PSLF PSLF 0.89 

PSLF PNNL2 0.51 

PSLF RTE1+ RTE2 0.50 

XGBoost Frequency 

Events 

 

PSLF PSLF 0.97 

PSLF PNNL2 0.09 

PSLF RTE1+ RTE2 0.47 
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5.3.3 Fine-Tuning (FT) Results for Frequency Events 

Since XGBoost outperformed SVM and RF classifiers on the simulated PSLF data for frequency 

events (see Table 11), this classifier was fine-tuned to predict labels for the PNNL2 and combined 

RTE datasets. Labels for these datasets were found through the empirical approach explained in 

Section 2.3.2. The results obtained are shown in Table 12 and Figure 25. The confusion matrices 

are shown in Figure 25 and a comparison of Table 12 with the results obtained in Table 11 indicate 

the superiority of FT in successfully classifying the frequency events in both the PNNL2 and 

combined RTE datasets. The results also reaffirm the usefulness of the PSLF simulated data 

(created from a large 60 Hz WECC system) in aiding the data driven and fine-tuned XGBoost 

model to make it capable of distinguishing field recorded events in real systems with different 

system frequency (50 Hz European system). 

 

 

 

 

 

 

 

Figure 25: Confusion matrices using fine-tuned XGBoost on the field recorded datasets PNNL2 

(left) and RTE1+RTE2 (right) 

The underlying workflow and results for frequency events described in this study can be 

represented pictorially by Figure 26 shown below. 

 

TL 

Algorithm 

Event Type Training Data Testing Data F1-

Score 

XGBoost         

with                

Fine-tuning 

Frequency 

Events 

PSLF + PNNL2 PNNL2 1.0 

PSLF + RTE1 + RTE2 RTE1 + RTE2 1.0 

 

 

Table 12: Results using Fine Tuning for frequency events 
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Figure 26: Model Development Workflow and Results for Frequency Events 

5.4 Results of Oscillation Events Classification 

5.4.1 Neural Network (NN) Results 

In this work, the NN approach for oscillation classification was implemented in two stages. In the 

first stage of the work, NN models were solely trained with the datasets consisting of a single mode. 

In the process of training, 80% of the simulated datasets were used as the training sets, and 20% 

datasets were used for the testing. Figure 27 shows the confusion matrix for the MLNN when 

trained with the single-mode oscillation datasets.  

 

 
Figure 27: Confusion Matrix for MLNN 
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A trained MLNN model was used to test the field-recorded measurements from the US and RTE. 

Table 13 shows the performance of MLNN where WD stands for well-damped, MD stands for 

medium damping, PD stands for poorly damped, M stands for misclassified, and C stands for 

confidence. The confidence of the classification shows that the trained model was able to classify 

7 out of 10 signals as well-damped in the RTE event case. Similarly, for the WECC ringdown 

events, confidence in the testing from the trained MLNN model was found to be greater than 90% 

Table 13: Oscillation classification using MLNN 

Labels WD MD PD M C 

Number of signals (RTE) 7 0 0 3 70% 

Number of signals (US), first ringdown 

event 

106 0 0 10 90% 

Number of signals (US), second ringdown 

event 

109 0 0 13 92% 

The confidence of the field-recorded measurements from the trained model was validated using a 

well-established physics-based oscillation modal analysis method [44]. In our testing, we used the 

Hankel total least squares (HTLS) to find the modal parameters of the ringdown events recorded 

in the RTE and the US datasets. The results obtained are shown in the tables below. 

From Table 14 and Table 15, we noticed that the ringdown events in the RTE and the US datasets 

were well-damped which validated the confidence shown by the trained models aligned with the 

physics-based approach.  

Table 14: Modal results for the RTE data 

Mode Frequency (Hz) 0.76  0.25 

Mode Damping Ratio (%) 17.23 3.83 

Mode Relative Energy 

(%) 

90.61 9.39 

Table 15: Modal results for the US data 

Mode Frequency (Hz) 0.41 0.69 0.82 

Mode Damping Ratio (%) 9.72 8.78 9.29 

Mode Relative Energy (%) 66.47 16.51 12.59 

5.4.2 TL Model Development Results 

In the second stage of the work, the improved training datasets consisting of multiple modes for 

ML training were utilized. Figure 28 and Figure 29 shows the performance of the MLNN and CNN 

using multiple modes oscillation training datasets. From the confusion matrices, it is observed that 
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the performance of the multiple modes training has significantly improved in comparison to the 

single-mode training. 

 

Figure 28: Confusion Matrix for MLNN using multiple modes training datasets 

 

Figure 29: Confusion Matrix for CNN using multiple modes training datasets 

Table 16 shows the performance of the multiple modes trained NN models in terms of F1-score.  

The F1 score achieved by TL for CNN surpassed 0.95, while TL for MLNN's F1 score was below 

0.9. This observation highlights the superior performance of TL for CNN in the field of oscillation 

image classification. 
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Table 16: F1-score of MLNN and CNN on different testing datasets 

 

5.5 Results for TL Model Adaptability  

In this subsection, testing was conducted to evaluate the features extracted from one event by 

applying them to another ML model, which had shown good performance with different event 

features, to understand the feature transfer capability between the ML models. Figure 30 shows the 

performance of the CORAL TL when tested on features relevant for frequency events and 

oscillation events. Similarly, Figure 31 shows the result of line faults and frequency events features 

when tested on the TL-MLNN. A similar cross-comparison as Figure 30 and Figure 31 was 

infeasible with the frequency event’s model for line fault and oscillation event features as there 

were not enough events of all classes in the test cases to apply FT of the XGBoost algorithm after 

training on the respective base datasets. It was observed that the features designed for individual 

TL models were unique and could not be transferred to other models. This is due to the fact that 

the training process of each ML model is specific to that event, and the nature of events and duration 

of each event is different. 

 

Figure 30: TL using CORAL results for oscillation and frequency events 
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Figure 31: TL using NN results for line faults and frequency 

5.6 Summary 

ML/AI models were trained for different types of events with their respective features. The 

performances of the ML/AI models were measured in F1-score and confusion matrices. Simulated 

datasets along with field measurements were utilized for training the ML/AI models. Field-

recorded events from the US and the RTE datasets were tested on the trained models. Offline 

training with a wide range of events and TL capability of ML/AI models shows great potential of 

using trained models for real-time monitoring of events in the system. The key takeaway from the 

results section is that the features are unique for each type of event and cannot be transferred from 

one event to another.  
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6. Conclusions 
 

This section offers insights into the unique experiences that the project team has gained through 

the course of this project. The conclusions reflect on the major study findings, challenges with data 

quality, and finally make some recommendations for the best industry practices on handling the 

synchrophasor data so that it can be more useful for subsequent ML/AI applications. 

6.1 Major Study Findings 

The major findings of this project are the following: 

• The process of developing ML/AI models that precedes training and testing different 

algorithms is the most crucial. It includes data preprocessing, feature engineering, and the 

choice of training and testing algorithms. A step that proved to have the most influence is 

the preparation of labels. Label accuracy in terms of class type and timestamp may be the 

factor that determines whether all the ML/AI models considered will perform as expected. 

Ensuring that the labels are of high quality is achieved either through the visual inspection 

of field-recorded labels or through the manual creation of labels that accompanies the 

simulations. 

• Developing models for the detection and classification of line fault events, frequency 

events, and oscillation events benefit most from the use of an integrated dataset containing 

both simulated and field-recorded PMU data for training. Such training datasets ensure that 

there is a balance in the number of events of each class which can be achieved through the 

simulation flexibility and that the noise and disturbances that exist in field-recorded PMU 

data are represented in the overall training process. 

• Transfer learning (TL) using CORAL, which is a well-developed TL algorithm, with an 

SVM-based classifier was shown to be the most successful method to transfer the 

knowledge learned by an SVM model for line fault detection from a large, diverse dataset 

to a smaller, less-diverse dataset. The availability of limited line fault event labels made this 

TL approach unique for line faults as opposed to the use of neural networks, for example, 

which require larger amounts of labeled events.  

• Modal-based (Prony) features with a fine-tuned XGBoost classifier successfully 

demonstrated the usefulness of temporal dynamics as features to detect and classify 

frequency events in field-recorded data. 

 

• Oscillation detection and classification using the image-based ML/AI approach showed 

promising results on simulated datasets and field-recorded measurements. The results show 

that the training process can be carried out offline with a wide range of simulated oscillation 

events with different damping ratios and frequencies, and the trained model can be utilized 

to test PMU measurements from different regions independent of system topology and 

number of PMUs in the system.  



52 

 

• This study mainly emphasizes classifying oscillation types based on their damping status 

rather than estimating the frequency of oscillation modes. However, this approach could 

potentially be extended in the future to classify the nature of oscillations, such as 

distinguishing between slow electromechanical oscillations and fast sub-synchronous 

oscillations. 

 

• The extracted features for each application type worked best with the algorithms they were 

originally engineered for, which proves that the feature engineering process needs to be 

tuned to specific applications of interest. 

 

6.2 Reflecting on Data Quality Issues 

Additionally, data quality issues were prevalent across all sources of PMU data. With the aim that 

our experiences of highlighting them will enable better practices for synchrophasor data 

measurement and storage, some of the issues that were ubiquitous and presented challenges 

including but not limited to feature design for ML/AI models are listed below: 

• Missing blocks of data: There were missing blocks of data in the PNNL dataset. The 

duration of missing ranged from a few milliseconds to nearly the entirety of an hour (in the 

hourly files available). In those cases, the number of frames per hour was less than expected 

for a typical hour (108000 frames in total for a 30 frames/s reporting rate). 

• Stale data: Despite having a good status word (which represents data quality at a timestamp 

level), the data did not refresh after a certain measurement for a period. This was prevalent 

across both PNNL and RTE datasets. 

• Channels with all zero values: This problem was similar to the case with stale data but with 

an additional observation that all data points took zero values. This was seen mainly in the 

RTE dataset. 

• Imprecise timestamps: Event logging practices were found to be inconsistent between 

different data sources. Some events were only timestamped up to the minute in which the 

event occurred. In other instances, the timestamps identifying the event start times were 

incorrect, often a couple of seconds before or after the actual event.  

• Inaccuracy/lack of labels: One of the most significant challenges encountered with most 

new datasets was the lack of event labels. Additionally, when labels were present, some 

labels were identified to be incorrect after visual inspection. 

6.3 Recommendations 

It is important that the root causes for the aforementioned data quality issues are found and an 

attempt must be made to eliminate/mitigate them so that future synchrophasor based ML/AI 

applications can achieve an improved event detection and classification compared to what is 

possible today. The following are some recommendations inferred from this team’s experience: 
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• Data storage and management must become a priority for field-recorded PMU data. The 

development of reliable ML/AI models requires large amounts of “useful” data containing 

several instances of each event that is of interest. Therefore, databases must be constantly 

updated and maintained to be used to train for new ML/AI tools that are being deployed by 

vendors.  

• A standardized event labeling method must be implemented at every level of the power 

system such that the need to modify and relabel event logs is eliminated from the data 

preprocessing stage. A systematic list of event label syntax must be adopted so as to avoid 

having two labels describing the same event, for example, “3P” and “ABC”. 

• Timestamps that accompany event labels must be checked for accuracy before entering 

these labels into the event log. When these checks are performed regularly, the quality of 

the training process for ML/AI models can be significantly enhanced, and less time can be 

spent on improving these labels. 

Regular data quality checks must be performed to mitigate any data quality issues that arise 

during the regular operation of PMUs or after major events in the system. These data quality 

checks must focus on missing data, stale data, unreasonable values, missing/incorrect event 

labels, and imprecise timestamps.  

6.4 Expected Outcomes  

Following the recommendations in Section 6.3 is expected to significantly enhance the 

effectiveness of synchrophasor-based ML/AI applications in detecting and classifying power 

system events. Prioritizing data storage and management would ensure the availability of a rich 

dataset containing multiple instances of each event, which leads to the development of more 

reliable ML/AI models. Implementing a standardized labeling system would reduce the time and 

effort required to prepare data for training ML/AI models usually spent modifying inaccurate 

labels. Additionally, conducting regular data quality checks can mitigate issues such as missing 

data, stale data, unreasonable values, incorrect timestamps, or missing event labels. These are often 

the obstacles faced during the data preprocessing stage.  

The use of simulations might still be needed in order to bring balance to data by creating enough 

instances of rarely occurring events. High-quality, well-labeled, and abundant datasets would 

enable the direct training of ML/AI models, potentially minimizing the need for TL to adapt models 

to new datasets. However, following the recommendations is not expected to change the result of 

the model adaptability study, as the TL models developed in this project were task-specific, 

performing best when applied to the event types they were created for.  
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