
 

 

 

 

 

 
Integrating RTO and Utility Processes in Planning 

and Cost Allocation 
 

 

 

 

Final Project Report 

 

 

M-43 

 

 

 

 

 

 

 

 

 

 

 

  

Power Systems Engineering Research Center 
Empowering Minds to Engineer 

the Future Electric Energy System 
 



 

 

 

Integrating RTO and Utility Processes in Planning 

and Cost Allocation 

 
Final Project Report 

 

 

 

Project Team 

James McCalley, Project Leader 

Lizhi Wang 

Iowa State University 

 

Jacob Mays 

Cornell University 

 

Graduate Students 

Gustavo Cuello-Polo 

Iowa State University 

 

Han Shu 

Cornell University 

 
 

 

 

 

 

 

 

PSERC Publication 24-03 

 

 December 2024 



 

 

For information about this project, contact: 

 

James McCalley 

Iowa State University 

Department of Electrical and Computer Engineering 

Ames, IA 50011 

Phone: 515-460-5244 

Email: jdm@iastate.edu 

 

 

Power Systems Engineering Research Center 

 

The Power Systems Engineering Research Center (PSERC) is a multi-university Center 

conducting research on challenges facing the electric power industry and educating the next 

generation of power engineers. More information about PSERC can be found at the Center’s 

website: http://www.pserc.org. 

 

 

For additional information, contact: 

 

Power Systems Engineering Research Center 

Arizona State University 

527 Engineering Research Center 

Tempe, Arizona 85287-5706 

Phone: 480-965-1643 

Fax: 480-727-2052 

 

 

Notice Concerning Copyright Material 

 

PSERC members are given permission to copy without fee all or part of this publication for internal 

use if appropriate attribution is given to this document as the source material. This report is 

available for downloading from the PSERC website. 

 

 

© 2024 Iowa State University. All rights reserved. 

mailto:jdm@iastate.edu


 

i 

 

Acknowledgements 

We extend our sincere gratitude to our PSERC industry advisors for their unwavering support and 

invaluable feedback, which have significantly enhanced our work. Special thanks to Anthony 

Giacomoni (PJM), Wesley Hall (GE), Armando Figueroa-Acevedo (MISO), Shayan Behzadirafi 

(NYPA), Mohammed Osman (NERC), Parag Mitra (EPRI), Harvey Scribner (SPP), Patrick 

Panciatici (RTE), Miguel Ortega-Vazquez (EPRI), Hussam Nosair (NYISO), Casey Cathey (SPP), 

Haifeng Liu (CAISO), Sarah Carkner (NYISO), Afshin Salehian (SPP), and Shubo Zhang 

(NYISO). 

 

 



 

ii 

 

Executive Summary 

 
Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) are 

crucial in ensuring a secure operation, a fair, competitive market, and strategic planning for large-

scale power systems. The current grid planning processes employed by ISOs/RTOs face challenges 

due to the complexity of integrating renewable resources, ensuring resource adequacy, and 

managing cost allocation. Traditional planning methods, often deterministic in nature, are 

insufficient for managing the long-term uncertainties and the evolving dynamics of modern power 

systems. Effective transmission planning requires coordinated intraregional and interregional 

collaboration, supported by advanced computational tools, to effectively assess future scenarios 

and identify the most cost-effective investments that satisfy future grid needs. This project is 

motivated by the need to develop forward-looking, flexible, and robust planning frameworks that 

anticipate diverse future scenarios, enhance grid reliability and efficiency, and ensure equitable 

cost allocation. It seeks to mature expansion planning and reliability-related tools while identifying 

ways to facilitate coordination and integration of central ISO/RTO planning functions, including 

cost allocation. 

The project began with thoroughly examining current planning methodologies used by leading 

ISO/RTOs, identifying key practices, tools, and strategies in grid planning through an extensive 

review of public reports, studies, and tariffs, and engaging with planners within PSERC member 

organizations. This process helped characterize ISO/RTO planning processes, identify planning 

needs, and determine ways to address those needs with new planning tools. This examination 

culminated in the report “ISO/RTO Long-term Planning Processes.” Key findings revealed the 

need for better integration and coordination among primary ISO/RTO planning functions, the 

potential for interregional transmission projects, and the lack of established guidelines for long-

term planning that align with regulatory requirements. These findings highlight the necessity for a 

framework that integrates essential planning functions while promoting interregional coordination. 

The proposed framework enhances the integration of key planning functions. It fosters the creation 

of flexible portfolios, considering both cost-effectiveness and reliability in the face of high 

uncertainty. This approach will benefit ISO/RTOs by enabling exploration across a full spectrum 

of investment portfolios under a broader set of performance attributes, including energy cost, 

reliability, and adaptability. 

A prevailing trend among ISO/RTOs is employing scenario-based methods to consider diverse 

future conditions in their planning processes. To address the limitations of traditional deterministic 

approaches, this project emphasizes the adoption of stochastic methods that account for long-term 

uncertainties. This shift is crucial as traditional methods often fail to consider uncertain conditions 

adequately and require extensive time to analyze each scenario separately. Moving towards 

stochastic approaches allows for identifying flexible investment portfolios capable of adapting to 

multiple future scenarios. Advanced tools like the Adaptive Coordinated Expansion Planning 

(ACEP) optimizer, developed by ISU, exemplify this transition. ACEP employs stochastic 

programming methods to find a core investment portfolio that can flexibly adapt across various 

projected scenarios. This approach ensures robust planning and strategic adaptation in the face of 

evolving conditions within the power system landscape. 

Ensuring a reliable power supply amidst the growing integration of variable renewable energy 

sources and the retirement of conventional thermal resources also presents significant challenges 
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in power system planning. A key achievement of this project is the development of a software 

system that coordinates long-term expansion planning with reliability evaluations. The integration 

of ACEP with GE-MARS, a probabilistic resource adequacy tool, was developed by implementing 

an iterative loop that optimizes investment portfolios while meeting reliability requirements. By 

subjecting future portfolios to a range of realistic scenarios, we refined the ACEP formulation to 

improve accuracy and account for unreliability costs. Testing this application using a reduced 

model of the Eastern Interconnection demonstrated its effectiveness in balancing investment 

robustness, resource adequacy, and system adaptability. The integration of ACEP with a resource 

adequacy assessment is designed to streamline the decision-making process in power system 

management by incorporating advanced simulation and optimization techniques. 

A major challenge in the development of regional and interregional transmission infrastructure is 

determining who will pay for projects selected in the planning process. The basic legal principle 

guiding cost allocation in U.S. systems is “beneficiary pays,” the idea that those who benefit from 

a project (or group of projects) should pay. While this principle is simple conceptually, the 

complexity of power systems and uncertainty inherent to long-term planning make the 

identification of beneficiaries a difficult task.  In the final part of the project, we investigated the 

translation of planning model outputs into estimates of the benefits that will be seen by different 

market participants. Addressing the implications of uncertainty and risk in transmission expansion 

decisions is crucial for fair and mutually agreeable cost allocation. We analyzed the challenges 

posed by significant uncertainties in transmission investments, focusing on the divergence between 

ex ante cost allocation decisions and ex post benefits realization. This work provides valuable 

insights into cost allocation discussions and the equity and efficiency implications of transmission 

expansion. 

The project “Integrating RTO and Utility Processes in Planning and Cost Allocation” represents a 

meaningful step towards modernizing grid planning methodologies. By integrating advanced 

planning tools, supporting the integration of main planning activities, and addressing cost 

allocation challenges, our research provides a useful contribution to power system planning 

effectiveness. The proposed approaches and tools will equip ISO/RTOs with the capabilities to 

navigate the complexities of modern power systems, ensuring a reliable, cost-effective, and 

sustainable energy future. 
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1. The “ISO/RTO long-term planning process” report 

Independent system operators (ISOs) and regional transmission organizations (RTOs) play a 

crucial role in adapting bulk power systems to satisfy future needs. These entities conduct regional 

assessments, establish local resource adequacy standards, and analyze the impacts of new 

interconnections through technical and economic studies for planning purposes. They also support 

the demand and resource balance ahead of time while minimizing costs and aligning with public 

policy objectives. Coordinated and effective planning is critical for maintaining reliable service 

and promoting competitive power markets. 

 

Understanding the planning processes of ISO/RTOs, which are key in shaping the future grid, is 

beneficial for the community. Such knowledge enables developing strategies to improve these 

processes and foster contributions to grid development. This project produced the report 

“ISO/RTO Long-Term Planning Processes,” offering a detailed overview of planning activities, 

including technical and economic assessments, public policy integration, and cost allocation 

strategies. The report covers leading ISO/RTOs in North America and Europe, such as the 

California Independent System Operator (CAISO), the Electric Reliability Council of Texas 

(ERCOT), ISO New England (ISO-NE), Midcontinent Independent System Operator (MISO), the 

New York Independent System Operator (NYISO), PJM Interconnection (PJM), Réseau de 

Transport d’ Électricité (RTE), and Southwest Power Pool (SPP). It serves as a valuable resource 

for understanding the complexities of ISO/RTO planning and informs ongoing efforts to enhance 

grid development through improved planning tools and methodologies. 

 

The report was developed through a structured process involving three main steps. First, the project 

team formulated questions to benefit the planning community, gathering feedback from industry 

advisors to build the questionnaire. Next, initial responses to these questions were collected from 

publicly available sources, including reports, studies, and tariffs for each ISO/RTO. Finally, these 

findings were compiled into a comprehensive report and reviewed by ISO/RTO planners within 

PSERC member organizations. This report characterizes ISO/RTO planning processes, identifying 

needs and challenges and helping explore ways in which planning tools can contribute to them.  

 

Additionally, the paper “Enhancing Grid Development through Integration of ISO/RTO Planning 

Functions,” derived from the previously mentioned report, was accepted and presented as a 

proceedings paper at the 2024 IEEE PES General Meeting. This paper not only summarizes the 

current planning processes employed by leading ISO/RTOs but also introduces a framework for 

integrating key planning functions. The proposed framework offers a broader examination of the 

benefits associated with the identified transmission projects through traditional mid-term planning 

by considering a more extended planning horizon under uncertain conditions. It also guided the 

development of a software system integrating stochastic expansion planning optimization and 

resource adequacy assessments, as detailed in Part 2, “Integration of Expansion Planning 

Applications and Resource Adequacy Assessments,” of this report. 

 

The “ISO/RTO long-term planning processes” report is available online at: 

 

https://home.engineering.iastate.edu/~jdm/psercm43.pdf.  

 

https://home.engineering.iastate.edu/~jdm/psercm43.pdf
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1. Introduction 

Expansion planning (EP) tools serve as a useful approach to determining the most economically 

viable investments required in power grids to satisfy future system needs. This optimization 

problem can identify investments in generation (also known as generation expansion planning or 

GEP), transmission (also known as transmission expansion planning or TEP), or both combined 

(often referred to as co-optimized EP or GTEP) [1], [2], [3]. EP tools have become an integral 

complement of conventional reliability and economic studies carried out by transmission planners, 

aiding informed decision-making. Notably, several generation and transmission planners in North 

America and Europe rely on EP tools such as Aurora, UPLAN NPM, EGEAS, PLEXOS, MONA, 

and Antares-Xpansion in their planning processes [4][5][6][7]. In 2022, the Energy Systems 

Integration Group, sponsored by the U.S. Department of Energy, reviewed the modeling 

capabilities of available EP tools, emphasizing the need for their effective incorporation into 

transmission planning [8]. This collaborative effort with leading power system planners in the 

United States concluded that while high-level generation and transmission portfolios obtained 

from EP tools are valuable, they require robust linkage to downstream analyses for validation as 

economically and operationally sufficient. 

 
Integrating capacity expansion results with detailed studies such as resource adequacy (RA) 

assessment, power flow, and production cost models (PCM) is required for comprehensive power 

system planning, ensuring a broader capture of future investment benefits. This validation process 

can identify infeasibilities and weaknesses, thereby enhancing the development of more 

informative and practical expansion portfolios. In EP models, ensuring RA often involves 

imposing a planning reserve margin (PRM) constraint, requiring that the combined firm capacity 

of all resources meets or exceeds the peak demand plus an externally determined reserve margin 

[8]. While thermal generators typically contribute their full nameplate capacity, variable renewable 

energy resources are adjusted downwards through Effective Load Carrying Capability (ELCC) 

curves to reflect their availability during periods of highest loss of load probability (LOLP). This 

adjusted capacity contribution of renewable resources is also considered in EP models to 

approximate the more rigorous assessment offered by probabilistic RA modeling [8].  

 
There is a growing need to develop expansion planning (EP) tools that accurately account for 

unreliability costs through a probabilistic RA approach. This allows generation and transmission 

planners to make more informed decisions by identifying the most economical and reliable 

strategies for future scenarios. To enhance the accuracy of the Adaptive Coordinated Expansion 

Planning (ACEP) tool used in [9], [10], [11], particularly in terms of reliability, we propose 

extending ACEP's capabilities to consider a broader range of realistic scenarios using the Multi 

Area Reliability Simulation tool (GE-MARS) developed by General Electric. This section 

describes the integration approach we used to develop an iterative loop that coordinates long-term 

expansion planning with a reliability evaluation tool. Additionally, we present the results obtained 

from testing our methodology using a reduced model of the Eastern Interconnection. By 

integrating ACEP with a resource adequacy assessment, this approach aims to streamline decision-

making in power system management through advanced simulation and optimization techniques. 
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2. State-of-the-art approaches for integrating resource adequacy assessments 

in power system expansion planning 

Several efforts have been documented to improve the deterministic approach, traditionally used in 

EP tools, emphasizing the probabilistic nature of outages and resource availability. The different 

approaches to integrate RA assessment and EP tools include: (1) explicitly incorporating reliability 

constraints into the mathematical model, (2) using decomposition methods to simultaneously 

address expansion planning and reliability, and (3) employing an iterative approach with 

independent tools. The iterative approach involves a two-stage process: first, developing a cost-

effective expansion plan in terms of investment and operation, and then identifying additional 

investments required to meet specific reliability criteria (e.g., Loss of Load Probability (LOLP), 

Loss of Load Expectation (LOLE), or Expected Unserved Energy (EUE)). 

 
One of the most widely reported techniques is Benders’ decomposition, initially applied in [12] 

and subsequently in [13], [14], [15], [16]. his method reformulates the complex nonlinear program 

used for long-term planning into a series of linear programs (LP) or mixed-integer programs (MIP) 

that can be solved with existing probabilistic simulation algorithms. Benders’ decomposition 

includes a master problem that determines optimal capacity investments over the planning horizon 

and subproblems that calculate annual operating costs and system reliability. The process begins 

by generating trial solutions from the master problem. Subsequently, dual multipliers are computed 

for each subproblem, quantifying the impact of marginal changes in plant capacities on operating 

costs and reliability [12]. These multipliers are then fed back into the master problem, which is 

adjusted and solved again to produce a new trial capacity plan. This iterative process continues, 

with the master problem and subproblems being solved alternately until an optimal solution is 

reached. Recently, [17] applied Bender’s decomposition by integrating Branch-and-Bound (B&B) 

for solving the investment master problem (a MIP problem), Stochastic Dual Dynamic 

Programming (SDDP) for the operation subproblem, and Monte Carlo simulation for the reliability 

subproblem. This methodology was implemented using the OptGen software by PSR, which 

employs a scenario-based approach [17]. It was applied in a real-world context to optimize the 

expansion planning of the Bolivian power system [17]. 

 
Some authors have implemented an explicit incorporation of reliability constraints into the EP 

mathematical programming model. For example, [18] developed a chance reliability constraint 

based on LOLP incorporated into the EP mathematical model. The constraint was defined as a 

first-order approximation to the Gram-Charlier series representing the density function of available 

capacity minus load. Similarly, [19] applied two probabilistic reliability criteria (LOLE) as 

constraints: one addressing the overall reliability of the transmission system and another for 

individual buses or nodes. They solved the integer programming problem using a probabilistic 

B&B method that leverages a network flow approach and the maximum flow-minimum cut 

theorem. In another study, [20] also introduced a GEP model that incorporates LOLP as a 

reliability criterion. This model optimizes investment, operation, and maintenance costs by 

framing the LOLP-constrained GEP problem as a MIP problem. 

 
Authors in [21] proposed an integrated approach that combines EP tools and reliability assessments 

while considering the correlation between variable renewable energy (VRE) and load. The authors 

developed an iterative algorithm to generate a pool of candidate expansion schemes based on the 
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investment and operational costs of new lines with different topologies. They then calculated the 

reliability of each candidate scheme using criteria such as LOLP, Loss of Load Frequency (LOLF), 

and Expected Energy Not Supplied (EENS). This study utilized the IEEE RTS-79 system for 

simulation experiments using MATLAB 2017b and CPLEX 12.6, focusing on the Transmission 

Expansion Planning (TEP) problem without considering capacity expansion investments. In a 

different study, [22] propose an iterative modeling approach that integrates a customized GEP 

model with Probabilistic RA assessment and PCM. The GEP utilized in the study represents 

discrete generating units, considering grid operations such as unit commitment and economic 

dispatch for averaged hours of all weekdays and weekends each month (576 operating periods) 

without chronological linkage between periods. The study employs a nonsequential RA model 

called the Probabilistic Resource Adequacy Suite (PRAS) by the National Renewable Energy 

Laboratory (NREL) and uses PLEXOS as the PCM tool. A similar approach was implemented for 

distribution systems in [23].  

 

Recently, [24][3][11] proposed a stochastic-based EP model called the Adaptive Coordinated 

Expansion Planning (ACEP) model that co-optimizes generation and transmission investments and 

operation costs across multiple future scenarios, identifying a set of core investments over time 

that minimize specific adaptation investments required for future scenarios. In [6], the authors 

applied ACEP to provide useful insights into the Transmission Expansion Plan of the Midcontinent 

Independent System Operator (MTEP) using a reduced model of the Eastern Interconnection.  

Additionally, a validation technique called the folding horizon simulation (FHS), developed in 

[25], [26], is executed after running ACEP. This method helps expose the ACEP core solutions to 

out-of-sample uncertainties, giving a better understanding of how robust the plans are [11]. Given 

the significant advance of RA tools considering a wider set of probabilistic factors and EP tools 

co-optimizing generation and transmission investments while considering multiple futures, several 

benefits can be obtained from integrating separate but powerful modeling tools through interface 

software linking them. 
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3. The Adaptive Coordinated Expansion Planning (ACEP) tool 

Expansion planning (EP) tools offer a valuable alternative for analyzing current power grids in the 

context of future scenarios, helping utility companies, grid operators, and policymakers make 

informed decisions about how to meet future electricity demand in the most cost-effective, reliable, 

and sustainable way. These tools optimize the mix of generation technologies (e.g., coal, natural 

gas, nuclear, wind, solar, etc.) and transmission investments to meet future electricity demand at 

the minimum costs while also accounting for technical, societal, and environmental factors, as well 

as uncertain parameters. The challenge that long-term planners face is inherently uncertain, as it 

involves making predictions about the future. Traditionally, uncertainty has been addressed 

through deterministic approaches with sensitivity analysis, involving running simulations 

repeatedly for values that span the range of each uncertain parameter. The sensitivity-based 

deterministic method is time-consuming and suggests potential improvements in transitioning to 

stochastic methods, which aim to identify flexible investment portfolios. 

 

Research, such as that by [27], demonstrates that stochastic programming methods can reveal 

investment opportunities that deterministic models might miss. Stochastic-based EP models, like 

the ACEP model, optimize both investment and operational costs across various future scenarios. 

This tool has been developed using General Algebraic Modeling Systems (GAMS) software and 

involves developing a set of future scenarios that capture the effects of the uncertainties in the 

expansion planning problem, such as load growth, investment costs, fuel prices, and renewable 

portfolio standards. In general, ACEP helps identify two types of investments: core investments 

and adaptation investments. Core investments represent a set of investments throughout the 

planning horizon that most effectively transitions to a feasible solution for each future. Adaptation 

investments are those specific investments needed in each period to transition from the core 

investments to a certain future scenario. This method helps identify the most flexible system by 

minimizing future adaptation investments to any other future scenario. By using ACEP, the planner 

can also define the level of robustness and flexibility by carefully choosing a parameter that 

balances core and adaptive investments. This way, it offers flexible investment plans showing core 

and necessary adaptation investments over time, enabling a tradeoff between cost, robustness, and 

adaptation risk.  

 

The ACEP model, as introduced by [9], differs from traditional stochastic programs (TSP) in its 

investment planning approach. While both TSP and ACEP involve two decision stages, TSP 

establishes core investments at the start (t=1) and introduces scenario investments from period t=2 

onwards, incorporating inter-temporal memory where decisions build on previous ones. In 

contrast, ACEP establishes core investments as a trajectory over time, with scenario investments 

or "adaptations" extending from this core at each time period without inter-temporal memory. TSP 

uses non-anticipativity constraints to maintain consistent investments across scenarios, whereas 

ACEP does not require these constraints, as it calculates new adaptation investments each period 

[28].  

 

To illustrate the conceptual investment trajectories for these expansion planning models, Figure 

3-1 and Figure 3-2 provide a high-level overview of the different planning approaches. These 

figures are plotted within the generation and transmission investment space, with dashed lines, 

partitioning the space, representing different time steps within the planning horizon. Additionally, 
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𝑆 futures are represented to highlight differences in addressing uncertainty. Figure 3-1 depicts the 

deterministic approach, with multi-colored circles (𝐷𝑠 𝑆), representing deterministic investments 

made at each time step for each particular scenario. Figure 3-2 compares ACEP and TSP, with the 

larger red circles indicating “here and now” decisions or core investments and multi-colored circles 

(𝐴𝑠 𝑆) representing “wait and see” decisions. Due to the differences in the core investments, with 

the TSP core established at the t=1 time period and the ACEP core evolving as a trajectory over 

time, TSP is often seen as suitable for identifying immediate investment needs, while ACEP is 

considered better for long-term planning, focusing on what investments to make over time. 

 

 

Figure 3-1 Deterministic planning investment approach. 

 

Figure 3-2 Comparison of ACEP (left) and TSP (right).  
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The mathematical formulation of the ACEP model is detailed in [11]. A general formulation of the 

model considering a set of future scenarios 𝑠 𝑆 is presented in Equation (1). The core costs for 

each year 𝑦 𝑌, denoted as 𝐶𝑂𝑅𝐸𝑦, represent the main investments, while 𝐴𝑦,𝑠 and 𝑂𝑦,𝑠 represent the 

adaptation investment and operational costs for each year and future scenario. The model operates 

as a linear program but can be adjusted to a mixed integer linear program if binary variables are 

required. Equation (1 assigns a probability weight to each future scenario denoted as 𝑃𝑟𝑠. A key 

feature of the model is the β parameter, known as the robustness parameter, which is user-defined. 

This parameter allows the adjustment of the balance between core and adaptation costs. Figure 3-3 

illustrates two ACEP trajectories using the same set of axes as in Figure 3-2. The left trajectory 

shows a scenario with a small β value (< 1), where adaptive investments are more prominent, 

indicated by longer arrows extending from the core in red. In contrast, the right trajectory 

represents a scenario with a large β value (> 1), where the core investments, shown in red, 

dominate. This indicates a more robust but costlier portfolio with fewer future adaptations, 

represented by thicker adaptation arrows and smaller multi-colored circles. 
 

𝑚𝑖𝑛                          ∑ [𝐶𝑂𝑅𝐸𝑦 +  𝛽 ∗  ∑ 𝑃𝑟𝑠 ∗ (𝐴𝑦,𝑠)

𝑆

𝑠

+ ∑ 𝑃𝑅𝑠 ∗ (𝑂𝑦,𝑠)

𝑆

𝑠

]

𝑌

𝑦

           (1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡𝑠   𝑠  𝑆 

𝑃𝑜𝑙𝑖𝑐𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠   𝑠  𝑆 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒 𝑙𝑖𝑚𝑖𝑡𝑠  
𝐷𝐶 𝑝𝑜𝑤𝑒𝑟 𝑓𝑙𝑜𝑤 

𝑃𝑜𝑤𝑒𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡𝑠          

 

  

 

  

Figure 3-3 ACEP solutions illustrating the effect of varying the β parameter: low β (left) and 

high β (right). 
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3.1 Resource adequacy considerations in ACEP 

Most EP tools incorporate RA constraints to ensure that solutions meet demand at all times. These 

constraints typically involve the use of PRM values as measures to guarantee that generation 

portfolios have sufficient capacity to meet the system’s peak load under any circumstances. PRM 

is a standard metric in the power system industry, representing the amount of extra accredited 

capacity above the expected peak demand, usually expressed as a percentage (see Equation (2)). 

Accredited capacity is the portion of a power plant's total capacity considered reliable and available 

during peak demand periods, accounting for factors like maintenance schedules, generating unit 

performance, and the availability of intermittent resources such as wind and solar power. 

Currently, annual and local PRM values are calculated through probabilistic resource adequacy 

assessments using commercial tools like PRISM, SERVM, and GE-MARS. Simulations are 

conducted to evaluate different reserve levels until a desired RA criterion is achieved (e.g., LOLE 

 0.1 days/year). 

 

𝑃𝑅𝑀 =  
(𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑐𝑟𝑒𝑑𝑖𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑)

𝑃𝑒𝑎𝑘 𝐷𝑒𝑚𝑎𝑛𝑑
∗ 100% (2) 

 

In ACEP, the PRM constraint, as represented by Equation (3), s applied for each year and future 

scenario, using a fixed, system-wide PRM value across the entire planning horizon, all future 

scenarios, and local areas. However, this approach does not account for the spacial and temporal 

variations in capacity needs or the uncertainties associated with each particular future. On the left-

side of the equation, the capacity credit of a plant 𝑔 ∈ 𝐺  is denoted as 𝐶𝐶𝑔, and the plant’s installed 

capacity at a specific bus 𝑏 ∈ 𝐵𝑝 within a pool 𝑝 ∈ 𝑃 for a given year 𝑦 ∈ 𝑌 and future 𝑠 ∈ 𝑆 is 

denoted as 𝐺𝑏,𝑔,𝑦,𝑠. On the other side of the equation, PRM is a fixed value, while the peak demand 

at a given bus within the pool for a specific year and future is denoted as 𝐷′𝑏,𝑦,𝑠. 

 

∑ 𝐶𝐶𝑔 ∗ 𝐺𝑏,𝑔,𝑦,𝑠 ≥ (1 + 𝑃𝑅𝑀) ∗  ∑ 𝐷′
𝑏,𝑦,𝑠

𝐵𝑝

 ∀  𝑝 ∈ 𝑃, 𝑦 ∈ 𝑌, 𝑠 ∈ 𝑆

𝐵𝑝,𝐺

 (3) 

 

The improvement implemented through this project involves refining the ACEP formulation, 

specifically the RA constraint, to shift from using a fixed, system-wide PRM for all futures to a 

set of dynamic PRM values differentiated by geographical areas, futures, and years. Accurate PRM 

values are derived from RA assessments (externally calculated as explained in Section 4), ensuring 

the system's adequacy at any time for each future scenario. This approach more accurately reflects 

the variations in PRM based on geographical location, time, and future conditions. Equation (4) 

presents the modified constraint, where the PRM value for a given area 𝑎 ∈ 𝐴, year and future is 

denoted as 𝑃𝑅𝑀𝑎,𝑦,𝑠. Implementing this constraint enhances the accuracy of calculations, though 

it increases the ACEP computational burden, as it is now imposed more locally and must be 

satisfied by each area within the pool of interest. This improvement significantly impacts and 

enhances the precision of both core and adaptation investment calculations. 

 

∑ 𝐶𝐶𝑔 ∗ 𝐺𝑏,𝑔,𝑦,𝑠 ≥ (1 + 𝑃𝑅𝑀𝑎,𝑦,𝑠) ∗  ∑ 𝐷′
𝑏,𝑦,𝑠

𝐵𝑎

 ∀  𝑎 ∈ 𝐴, 𝑦 ∈ 𝑌, 𝑠 ∈ 𝑆

𝐵𝑎,𝐺

 (4) 
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It is important to note that ACEP identifies a set of core investments over time and specific 

adaptations for each period to transition from the core to a particular future. Equation 4 does not 

necessarily guarantee that implementing only core investments will ensure a reliable system. 

Instead, it ensures that adaptation investments account for specific capacity needs in addition to 

the core investments, thereby guaranteeing RA in each future scenario and period and improving 

the accuracy of both core and adaptation investment calculations. The robustness of the core 

solution is determined by adjusting the robustness parameter 𝛽, which balances costs and 

adaptation risks. This robustness can be evaluated using a technique called folding-horizon 

simulation (FHS), which iteratively tests the core solution against uncertainties not represented by 

the future scenarios considered in ACEP [11]. The primary goal of the ACEP improvement 

implemented in this project is to achieve more accurate calculations of core and adaptation 

investments by appropriately considering PRM values obtained from RA assessments for each 

future, period, and area. ACEP provides flexibility by identifying a set of core investments that 

minimize adaptation costs across various future scenarios, reducing dependence on the choice of 

scenario. Additionally, the planner can control the degree of robustness (i.e., the balance between 

core and adaptation investments) while ensuring resource adequacy across all considered future 

scenarios. 
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4. Integration of ACEP and resource adequacy assessments 

To enhance the accuracy of the ACEP tool, the current formulation has been refined by replacing 

the resource adequacy constraint that assumes a fixed, system-wide PRM value with a more 

dynamic approach that incorporates PRM values specific to different geographical areas, 

scenarios, and years. These PRM values are obtained through iterative probabilistic resource 

adequacy assessments conducted by an external RA tool. This refinement is designed to improve 

ACEP's ability to account for unreliability costs by subjecting select years within each future 

portfolio to a broader range of realistic scenarios. If a reliability index fails to meet the established 

criteria, necessary adjustments will be made to the PRM constraints in the ACEP formulation, 

thereby ensuring that the tool yields more accurate and reliable investment decisions. 

 

Options for incorporating PRM in the ACEP formulation in terms of area and time are illustrated 

in Figure 4-1, where the complexity of each method is evaluated on a scale ranging from 1 to 6. A 

complexity level of 1 indicates methods that offer lower accuracy but are less computationally 

demanding, while a level of 6 represents the highest degree of accuracy, though with significantly 

increased computational intensity. Our strategy focuses on adopting PRM values differentiated by 

area and evaluated annually, corresponding to level 4 on the complexity scale. This approach was 

selected to strike a balance between achieving sufficient accuracy in the model’s calculations while 

keeping the computational burden within reasonable limits. 

 

 

Figure 4-1 Computational complexity associated with the selection of PRM calculations by area 

and time frame. 

For this study, an exhaustive review of commercial tools available for conducting probabilistic RA 

assessments was initially conducted. Table 4-1 provides a summary of the reviewed tools and their 

key features. GE-MARS was ultimately selected due to its ability to integrate with external tools. 

Originally developed in Fortran, GE-MARS was enhanced in 2019 with the introduction of a 

Python Application Programming Interface (API) called Snappy. Snappy facilitates reading and 

writing model inputs, launching simulations, and preparing reports within Python. GE-MARS 

utilizes a full sequential Monte Carlo simulation to calculate RA indices at the area level, with 

pool indices derived from the individual areas within each pool. The tool performs chronological 

system simulations by combining randomly generated operating histories of units over time with 

hourly load cycles, load modifiers, and transmission links [29]. Simulations are generally run until 

either a convergence criterion is met or a predetermined number of samples have been completed. 
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Table 4-1 Summary of resource adequacy tools. 

Feature 

PSS-SINCAL 

(Siemens) 

[30], [31] 

PRAS 

(NREL) 

[32], [33], [34], 

[35] 

GE-MARS 

(GE) 

[36] 

MECORE  

(BC Hydro) 

[37], [38], [39] 

 

PRISM 

(PJM) 

[40] 

PowerSIMM 

Planner 

(Ascend 

Analytics) 

[41], [42] 

SERVM 

(Astrape 

Consulting) 

[43],  

TransCARE 

(EPRI) 

[44], [45],  

NH2 

(CEPEL) 

[46], [47], [48], 

[49] 

GridPath RA 

Toolkit  

(GridLab, 

Moment Energy 

Insights, and Blue 

Marble 

Analytics) 

[50], [51]. 
 

Method 
Convolution 

method. 

Convolution 

method and 

Hybrid Method 

(convolution and 

Monte Carlo). 

Monte Carlo 

method. 

Monte Carlo and 

convolution 

method. 

Convolution 

method. 

Monte Carlo 

method. 

Monte Carlo 

method. 

Convolution 

method. 

Convolution,  M

onte Carlo or 

hybrid method. 

Monte Carlo or 

weather-

synchronized 

simulations. 

Tool’s 

Capabilities 

Reliability indices 

calculated for load 

nodes, areas, or 

the entire 

network. 

Reliability indices 

calculated for 

areas. 

Reliability 

indices 

calculated for 

areas. It 

performs 

chronological 

hourly 

simulations. 

Up to 1,000 

buses and 2,000 

branches. 

Indices 

calculated for 

buses or overall 

system and 

monthly, 

seasonal, or 

annual. 

Up to 700 and 

4,500 units. 

Reliability 

indices are 

computed 

weekly, 

seasonally, and 

annually over a 

two-area model. 

Studies include 

production costs, 

power flow, 

financial analysis, 

and RA. 

It simulates 

hourly 

chronological 

simulations. 

Reliability 

indices 

calculated for 

areas. It is 

linked to SQL-

server. 

Up to one million 

contingencies 

and up to N-9 

contingencies 

(five lines and 

four generating 

units tripped) can 

be evaluated. It 

uses SQL-server 

database. 

Up to 3,000 

buses and 5,000 

circuits. 

Reliability 

indices can be 

disaggregated at 

the system, area, 

and bus level 

and classified 

by failure 

modes. 

Reliability indices 

are calculated 

daily, monthly, or 

annually for areas. 

It has been tested 

for a one-year case 

study. 

Indices 

Computed 

SAIDI, SAIFI, 

CAIDI. 
EUE, LOLE. 

LOLE, LOEE, 

frequency and 

duration of 

outages. 

LOLP, LOLE, 

LOEE, ENLC, 

EDLC, ADLC, 

ELC, EDNS, 

EDC, BPII, 

BPECI, BPACI, 

MBECI, SI. 

LOLE, LOLP. 
LOLP, LOLH, 

LOLE. 

LOLH, LOLE, 

EUE. 

SAIFI, LOLE, 

EUE. 

SPP, LOLP, 

LOLE, EPNS, 

EENS, LOLF, 

LOLD. 

LOLP, LOLE, 

LOLH, EUE, 

average event 

duration. 

Other 

Features 

- Compatible with 

SCADA, 

Distribution 

Management 

System (DMS), 

Meter Data 

Management 

System (MDMS), 

and GIS 

applications. 

- Modeling from 

basic balanced 

circuits and buses 

to four-wire 

circuits with full 

substation models. 

- Compatible with 

Regional Energy 

Deployment 

System Model 

(ReEDS) and the 

Resource 

Planning Model 

(RPM). 

- Results include 

regional shortfall 

and surplus, 

power transfer on 

interfaces, unit 

availability, and 

state-of-charge of 

storage. 

- ELCC and EFC 

calculation. 

- Automatic 

postprocessin

g calculations 

and report 

generation 

using Python.  

- It can model 

as many 

interconnected 

areas as 

needed. 

- The 

modeling 

includes 

transfer limits 

and long-term 

contracts. 

- Multiple unit 

derating states 

recognized. 

- It uses OPF to 

reschedule 

generation and 

avoid load 

curtailments if 

possible. 

- It is composed 

of an analytic 

engine (SAS) 

and a database 

tool (Oracle).  

- Outage 

statistics of 

generators can 

be represented 

with more than 

two states. 

- Maintenance 

optimized or 

manually 

specified by the 

user. 

- It integrates EP 

studies with 

reliability 

analysis. FORs, 

historical weather 

and load data, and 

future expectation 

of load growth 

are the main 

inputs. 

- It keeps 

correlation 

between variables 

(load-weather, 

generation-

weather) and 

across time. 

- ELCC 

calculation. 

- It integrates 

LOLE studies 

with an hourly 

and intra-hour 

chronological 

production cost 

model. 

- It quantifies 

the likelihood, 

magnitude, and 

economic cost 

caused by 

reliability 

events. 

- ELCC 

calculation. 

- Based on 

TRELSS (EPRI’s 

software for 

probabilistic 

studies).  

- Compatible 

with OFCT and 

cascading failure 

analysis tools.  

- Compatible 

with PSS/E. 

- Studies of the 

impact of 

variable 

resources on 

system 

reliability. 

- It works with 

MODCAR for 

data 

management 

and 

visualization. 

- NH2 integrates 

OPF to 

implement 

remedial 

actions. 

- Users can 

select the model 

of the 

performance 

analysis (AC or 

DC power 

flow). 

- Integrated with 

an open-source 

power system tool 

named GridPath 

which performs 

production-cost 

and capacity-

expansion 

modeling. 

- Dataset, 

algorithm, and 

instructions are 

publicly available. 

- Temporal and 

geographical 

correlations over 

the study area. 
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The proposed iterative approach to integrating ACEP and RA assessments conducted by GE-

MARS is described in Figure 4-2 and involves the following steps: 

 

1. ACEP run: The ACEP tool is initially run in GAMS with assumed PRM values for each 

future and year.  

2. ACEP results post-processing: Core investments and adaptation investments are 

identified and recorded for each iteration. Besides, given that the PRM constraint in ACEP 

is upper-limit unbounded (see Equation (4), the actual reserve values produced by ACEP 

for each future and year are also identified.  

3. Conversion to GE-MARS format: The investment portfolios produced by ACEP for each 

future and year (including both core and adaptation investments) are converted into a 

format compatible with GE-MARS.  

4. GE-MARS run: Specific years within the 20-year planning horizon are then assessed for 

each future using GE-MARS. 

5. Resource adequacy index check and PRM adjustment (if needed): RA indices are 

evaluated for each future scenario and year. If any RA index does not meet the specified 

criteria, the PRM value associated with that particular future and year is adjusted in the 

ACEP model, and the ACEP run is repeated (returning to Step 1). Equation (5) is used to 

adjust PRM values for the next iteration of the ACEP run.  

 
 𝑃𝑅𝑀𝑁𝑒𝑤 =  𝑃𝑅𝑀𝑂𝑙𝑑 + (𝐿𝑂𝐿𝐸𝑂𝑙𝑑 − 0.1) ∗ 𝛼 + 0.05 (5) 

           Where,  

𝛼 =  
Δ𝑃𝑅𝑀

Δ𝐿𝑂𝐿𝐸
=

0.01

2.5
 

 

 

6. Stopping condition: The simulations proceed iteratively until the resource adequacy levels 

for each area, future, and year are deemed acceptable. 

 

The resource adequacy criterion selected for steps 3 and 4 is LOLE < 0.1 days/year, a common 

industry metric. While the exploration of additional criteria (e.g., duration and frequency of 

outages, loss of energy expected (LOEE), etc.) could be considered in future studies, the overall 

approach remains unchanged. Python was chosen as the interface tool, enabling seamless 

integration that allows ACEP and GE-MARS to run iteratively until all futures and evaluated 

periods meet the resource adequacy criterion. This iterative approach ensures that ACEP and GE-

MARS are effectively integrated to produce reliable and optimized investment plans while 

accommodating variations in PRM and resource adequacy requirements. 

 



 

 12 

 

Figure 4-2 High-level diagram describing the integration of ACEP and RA assessments (GE-

MARS). 
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5. Implementation of ACEP with integrated resource adequacy assessments 

To test the ACEP/GE-MARS integration, we use a reduced model of the Eastern Interconnection, 

focusing on the MISO system and simplified versions of its first-tier neighbors, including SPP, 

PJM, the Southeast, and Canada. Even though five regions (referred to as pools in this study) were 

considered, the primary focus was on the MISO region, specifically its internal areas, MISO 

North/Central and MISO South. Consequently, expansion investments were allowed only within 

the MISO region, with no modifications in the external regions.  

 

The initial step involved developing a set of representative futures to capture the effects of 

uncertainties in expansion planning. A future is defined as a specific combination of uncertainties 

considered in the model. Defining these uncertainties and determining the number of futures is 

challenging because increasing the number of scenarios raises the computational intensity, and the 

selected scenarios must effectively represent uncertainties over the planning horizon. In this study, 

nine uncertainties were considered, with each taking a low, medium, or high value, resulting in a 

total of 39 = 19,683 possible scenarios. To manage this complexity and ensure a comprehensive 

representation of uncertainties, three futures (F1-F3) from the MISO Transmission Expansion Plan 

(MTEP) process were used, and the GAMS ScenRed2 function was employed to expand the set 

by identifying four additional representative futures (F4-F7). Figure 5-1 illustrates the reduced 

future subset and their associated uncertainty levels. 

 

 

Figure 5-1 Futures considered in the ACEP/GE-MARs integration. 

5.1 ACEP modeling development 

The Eastern Interconnection (EI) includes a large network of about 90,000 buses and 110,000 

branches, making it too complex for direct use in expansion planning models. To address this, the 

network model needs to be simplified and reduced in size so that planners can perform studies 
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efficiently while still capturing key characteristics of the system. For this study, a reduced 

representation of the EI with a focus on the MISO region that was developed by [11] was used. 

Figure 5-2 illustrates the network topology of the reduced system, including 936 transmission lines 

and 201 buses. 

 

 

Figure 5-2 Reduced model of the EI with a focus on the MISO region [11]. 

The network reduction process involved several key steps, starting by identifying buses to be 

retained in the MISO region based on voltage level (>345 kV) and their location within each Local 

Resource Zone (LRZ). The reduced MISO network was then obtained using Kron reduction. 

Subsequently, the reduced MISO network was integrated with the Interconnection Seams network 

by developing tie lines between MISO and external regions, with flow limits based on historical 

data. To map generation from the full network to the reduced one, thermal generators were moved 

from eliminated buses to retained ones according to the load factor matrix, while renewables were 

relocated to the geographically closest reduced bus. Economic data, such as Fixed O&M (FOM), 

Variable O&M (VOM), and heat rates, were collected from previous studies, including the 

Interconnection Seams study and NREL ERGIS database. Finally, renewable profiles, fuel 

forecasts, and load profiles were developed by extracting renewable data from NREL, fuel prices 

from EIA, and load profiles from FERC, ensuring the reduced network retained essential 

characteristics for accurate planning studies. More details about this process can be found in [11].  

Figure 5-3 shows the approximate location of the existing generation fleet in the EI. 
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Figure 5-3 Existing generation in the EI connection [11]. 

To estimate transmission investment costs in the reduced MISO/EI model, costs were averaged 

between the sending and receiving ends based on AC transmission line costs by voltage level and 

states within the MISO footprint [50]. These costs were then normalized by potential capacities, 

converting them into units of $/MW-mile. Figure 5-4 illustrates the normalized costs of 

transmission lines in units of $B/GW, taking into account both cost and circuit length. For lines 

outside MISO, costs were sourced from previous studies [52], [53].  

 

Regarding generation, a range of candidate technologies was evaluated, including natural gas 

combined cycle (CC), natural gas combustion turbine (Gas GT), natural gas CC with carbon 

capture and sequestration (CC CCS), utility-scale wind (Wind), utility-scale solar (Solar), 

distributed solar (DPV), battery storage, demand response (DR), and energy efficiency (EE) 

programs. Table 5-1 shows capacity credit values considered in ACEP for the candidate 

technologies. The generation investment costs were projected by considering their cost evolution 

over the planning horizon, with renewable technologies like wind and solar assigned low, medium, 

and high values to capture uncertainty across future scenarios. DR and EE programs were assumed 

to have no associated investment costs. The remaining investment costs were derived from the 

NREL Annual Technology Baseline (ATB) database [54]. Figure 5-5 presents the projected 

investment costs for each type of candidate technology.  
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ACEP simulations were conducted over a 20-year planning horizon, considering four investment 

years: 2026, 2032, 2038, and 2044. Since this study primarily focused on the MISO region, 

expansion investments were permitted only within the MISO footprint while aiming to minimize 

the operational costs of the entire EI. Additionally, 30-year end effects were considered to account 

for future operational costs and subsequent investments that could impact the overall solution. 

 

 

 

Figure 5-4 Line investment costs in the reduced network [11]. 

Table 5-1 Capacity credit values assumed in ACEP. 

Candidate technology Description Capacity credit 

CC_N Natural gas combined cycle 1 

CC_CCS_N Natural gas CC with carbon capture and sequestration 1 

Gas_GT_N Natural gas combustion turbine 1 

Solar_N Utility-scale solar 0.25 

STO_N Battery storage 0.94 

Wind_N Utility-scale wind 0.4 

DPV_N Distributed solar 0.4 

EE_N Energy Efficiency 1 

DR_N Demand Response 1 
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Figure 5-5 Investment costs for candidate technologies.  

5.2 GE-MARS modeling development 

While ACEP employs a nodal model, GE-MARS operates with a multiarea system representation. 

To integrate results from ACEP into GE-MARS, a format conversion is necessary. Both tools 

consider the same pools (MISO, SPP, Canada, Southeast, and PJM), but in GE-MARS, the MISO 

pool is subdivided into North/Central and South areas to more accurately identify expansion needs, 

as suggested by this study. Interface tie limits between areas and pools in GE-MARS were 

calculated by aggregating transmission line capacities used as inputs in ACEP. Given the seven 

future scenarios, GE-MARS requires seven simulations per iteration, each utilizing data from 

ACEP, particularly related to the generation fleet. 

 

Generation data from ACEP is converted to GE-MARS format based on the generation type, with 

the maximum capacity of units for each year serving as a common input across all unit types. Table 

5-2 details the modeling approach used in GE-MARS for each type of technology considered in 

this study. To ensure compatibility between the two tools, generation units from ACEP’s states or 

regions are mapped to the corresponding areas in GE-MARS. On the demand side, ACEP requires 

input data by bus, year, and season, while GE-MARS operates with annual peak and energy values 

per area, as well as an hourly load profile for a representative year for each area. To match GE-

MARS's requirements, demand data from buses within the same area in ACEP is aggregated. Both 

tools also incorporate low, medium, and high values for peak and energy demand, depending on 

the future scenario considered. Figure 5-6 shows a diagram of the main information needed to run 

GE-MARS, with required inputs highlighted in red. 
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Figure 5-6 Diagram of information needed to run GE-MARS with inputs in red.  

Table 5-2 Generation modeling in GE-MARS. 

Generation 

type 

GE-MARS 

model 
Description 

Biomass 

TH  
Thermal unit modeled through maximum rating and default parameters, 

including forced outage rate, number of transitions, and planned outage rate. 

CC 

Coal_ST 

Gas_GT 

Gas_IC 

Gas_ST 

Nuclear 

Oil_GT 

Oil_IC 

Oil_ST 

Waste 

CC_N 

CC_CCS_N 

Gas_GT_N 

Hydro EL2 
Energy Limited Unit (Type 2): Unit with specified capacity and available 

monthly energy scheduled deterministically. 

PS 
ES 

Energy Storage Unit: Unit with specified generating and charging capacity and 

storage capacity scheduled as needed subject to storage limitations. STO_N 

Wind_N 

DS 
Demand Side Hourly Modifier: Each unit specifies a net hourly load 

modification. 
Solar_N 

DPV_N 

EE_N 
EL3  

Energy Limited Unit (Type 3): Unit with specified capacity and available 

monthly energy scheduled as-needed. DR_N 
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Evaluating each year for each future would significantly increase the computational intensity of 

the loop. In order to manage this complexity, simulations were conducted for four selected years 

within the 20-year planning horizon: 2026, 2032, 2038, and 2044. The simulations used daily 

LOLE as the convergence index, with a convergence tolerance of 0.05 checked for the MISO pool. 

GE-MARS was configured to automatically schedule generation planned maintenance, and no 

forced outages in the tie interfaces or firm import and export contracts between pools and areas 

were modeled. 

 

The forced outage rate (FOR) and planned outage rate (POR) values used in this study were 

primarily derived from the MISO 2022-2023 LOLE Study Report [55]. FOR values, as shown in 

Table 5-3, were applied to both existing and new units without considering variations in plant size. 

In contrast, MISO employs four seasonal FOR and POR values for each unit based on the MISO’s 

Generator Availability Data System (PowerGADS) [55]. This study also utilized a single load, 

wind, and solar shape per area, differing from MISO's approach of using multiple shapes, which 

enhances model accuracy by better capturing geographical variations in these factors.  

 

Generally, more precise modeling of generation units and load leads to more reliable results. 

Nonetheless, despite limited available data for a more accurate model, this study aims to highlight 

the benefits of a holistic planning approach that integrates two essential planning tools. By 

considering multiple future scenarios and incorporating critical information from Resource 

Adequacy (RA) assessments, this methodology provides a broader perspective on expansion 

strategies. It simultaneously evaluates the potential impacts of various futures on investment 

decisions, demonstrating how strategic planning can effectively address uncertainties and guide 

robust investment decisions. This approach underscores the importance of a comprehensive and 

integrated assessment in expansion planning. 

 

Table 5-3 Default parameters used to model thermal units in GE-MARS. 
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6. Results 

To test the integration of ACEP with GE-MARS, two studies were conducted using different 

robustness parameters in ACEP. These studies represent distinct planning strategies, reflecting 

different levels of planners’ budgets and their willingness to take on risk. In the first study, a 

robustness parameter of β=1 was used, representing a planning strategy that prioritizes core 

investments over adaptation investments. In contrast, the second study used a robustness parameter 

of β=0.1, which explores a solution inclined to invest less in the core and more in adaptations 

compared to the β=1 scenario. For both cases (β=1 and β=0.1), the ACEP/GE-MARS simulation 

converged after eight iterations. This section presents the results of the first three iterations and the 

final iteration for each case. Detail analysis of key findings and their implications can be found in 

Subsection 6.3. 

6.1 Solution for a planning strategy using a robustness parameter β=1  

Figures Figure 6-1 to Figure 6-4 illustrate the main outcomes of the iterative process using β=1. 

With an initial assumed PRM of 17% across all areas and futures, ACEP produced the core 

investment portfolio, as shown in the first bar of Figure 6-1, and the adaptation investments, as 

displayed in the top-left graph of Figure 6-2. The investment portfolios from the first iteration 

resulted in the reserve values depicted in the top graph of Figure 6-3. Subsequently, RA 

assessments were performed, yielding the LOLE values shown in the top graph of Figure 6-4. 

Since the LOLE values in the first iteration exceeded 0.1 days/year, the PRM values in ACEP were 

adjusted, necessitating further iterations. This process continued until the eighth iteration, which 

achieved the required LOLE. 
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Figure 6-1 Total generation and transmission core investments (GB and $B) for each iteration 

using β=1. 

 

 

Figure 6-2 Time-averaged adaptation investments (GW) for each iteration using β=1. 
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Figure 6-3 Accredited capacity reserve for each iteration using β=1. 
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Figure 6-4 LOLE values for each iteration using β=1.  
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6.2 Solution for a planning strategy using a robustness parameter β=0.1  

Figures Figure 6-5 to Figure 6-8 present the key results from the iterative process when using a 

robustness parameter of β=0.1. Starting with an initial PRM assumption of 17% for all areas and 

future scenarios, ACEP generated an initial set of core and adaptation investments, as depicted in 

the initial bars of Figure 6-5 and Figure 6-6, respectively. These initial investment strategies 

produced reserve values, which are illustrated in the top graph of Figure 6-7. Following this, RA 

assessments were conducted, resulting in LOLE values shown in the top graph of Figure 6-8. In 

this case, similar to the previous scenario, the initial LOLE values exceeded the target threshold 

of 0.1 days/year, prompting adjustments to the PRM values and necessitating additional iterations. 

 

 

Figure 6-5 Total generation and transmission core investments (GB and $B) for each iteration 

using β=0.1. 
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Figure 6-6 Time-averaged adaptation investments (GW) for each iteration using β=0.1. 
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Figure 6-7 Accredited capacity reserve for each iteration using β=0.1. 
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Figure 6-8 LOLE values for each iteration using β=0.1.  
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6.3 Key findings and implications 

The results of this study reveal several important insights and key findings. The following 

subsections discuss the primary outcomes and their implications. 

6.3.1 PRM-constrained expansion planning 

Constraining generation investments to a fixed, system-wide PRM over the entire planning horizon 

can lead to a power system that is not consistently reliable across its footprint. The initial iteration 

showed that a 17% PRM for both MISO North/Central and South was insufficient to meet the 

desired LOLE. Through iterative ACEP/GE-MARS simulations, we identified the PRM values 

necessary to ensure system reliability, as shown in Figure 6-3 and Figure 6-7. 

 

An interesting observation is the close similarity between the PRM values identified using different 

robustness parameters, β=1 and β=0.1. The average difference between the PRM values obtained 

with these two strategies is less than 5%. This indicates that regardless of the planning strategy 

(whether prioritizing core investments over adaptations or vice versa), the reserves required to 

ensure capacity adequacy for each area, future scenario, and year remain largely unchanged. 

 

For the year 2026, both β=1 and β=0.1 scenarios resulted in a MISO-wide PRM value of 

approximately 28%. This value is close to the highest seasonal MISO-Wide PRM value (25%) 

reported in the LOLE study conducted by MISO [56]. The differences in results may be attributed 

to variations in modeling approaches used for resource adequacy assessments. 

 

PRM values are inherently dynamic; they evolve over time and differ across regions due to factors 

such as demand behavior, infrastructure topology, the composition of the operating generation 

fleet, and weather variations. Given the uncertainties associated with these factors, it is essential 

to conduct RA assessments that account for these uncertainties and help identify capacity needs 

under a wide range of future scenarios over a long-term planning horizon. 

6.3.2 Analysis of investment strategies through robustness parameter adjustment 

The results demonstrate the capability of the ACEP tool to simultaneously identify least-cost core 

and adaptive generation and transmission investments across multiple future scenarios. Figure 6-1 

and Figure 6-5 provide a breakdown of the cumulative core generation and transmission capacity 

investments, along with the associated core investment costs for robustness parameters β=1 and 

β=0.1, respectively. In general, as the value of β increases, both the cumulative core generation 

and transmission capacity and their costs rise, due to a reduced reliance on adaptive investments, 

which are typically more expensive. Consequently, the robustness of the core portfolio also 

increases with higher β values, as fewer adaptive investments are needed to meet the requirements 

across different future scenarios over the planning horizon. 
 

Figure 6-2 and Figure 6-6 present spider plots that depict the time-averaged adaptive generation 

and transmission investments for β=1 and β=0.1, respectively. These adaptive investments are 

those required by the core investments to adjust to specific scenarios. As the value of β decreases, 

the preference shifts towards adaptive investments, making the core investments less resilient to 
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uncertainties. From a planner’s perspective, the β parameter serves as a strategic tool to balance 

the trade-off between core and adaptive investments. A lower β value results in a less costly core 

but one that is less robust to the uncertainties assessed by the ACEP model. Conversely, a higher 

β value yields a more resilient but more expensive core investment. Thus, planners can adjust the 

β parameter experimentally to develop a range of robust core investment portfolios tailored to 

different levels of uncertainty and risk tolerance. 

6.3.3 Generation investments by type of technology 

The core investments from the final iteration reveal distinct preferences for generation 

technologies under different robustness parameters. For both β=1 and β=0.1, wind energy emerges 

as the most favored technology, accounting for 35% and 40% of total investments, respectively. 

Solar energy follows as the second most attractive option, comprising 22% and 26% of the total 

investments for β=1 and β=0.1, respectively. 

 

However, a notable difference appears in the third most invested technology. In the β=1 scenario, 

natural gas combustion turbines (CTs), referred to as Gas_GT_N in the study, occupy the third 

spot, accounting for 10% of the total investments (a significant increase from just 0.5% in the first 

iteration). In contrast, for β=0.1, natural gas CTs contribute only 1% to the total core investments. 

Despite this, natural gas CTs emerge as the most frequently chosen technology across all futures 

for β=0.1. 

 

This trend suggests that as the grid integrates more renewable energy sources and retires existing 

thermal units, there is a growing need for technologies that can provide flexible and reliable 

capacity to meet RA requirements. Results obtained by the ACEP/GE-MARS tool highlight a 

preference for natural gas combustion turbines as a least-cost conventional option to complement 

the integration of renewable energy resources, supporting system reliability while satisfying 

operational and policy requirements. These turbines are particularly valuable in providing quick-

start capabilities and dispatchable power, which are essential for compensating for the variability 

and intermittency associated with renewable energy sources, thereby ensuring the grid's 

adaptability to future uncertainties. 

6.3.4 Risk-averse investments 

ACEP helps identify risk-averse investments by analyzing their performance across various future 

scenarios over the planning horizon. Figure 6-2 and Figure 6-6 show that, except for Future 3, the 

additional investments needed to transition to different futures are fairly consistent. However, 

adaptation investments for Future 3 are significantly higher, indicating a higher level of risk. If 

substantial resources are allocated to address the uncertainties associated with Future 3 and these 

uncertainties do not materialize, it could result in over-investment. Unlike deterministic expansion 

studies, which analyze futures individually without considering their interactions, ACEP offers a 

flexible approach by identifying a least-cost core investment trajectory that can transition smoothly 

across multiple futures. This simultaneous analysis allows planners to develop more robust and 

cost-effective investment strategies that account for various uncertainties and avoid unnecessary 

expenditures, ultimately enhancing the efficiency and adaptability of power system planning. 
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6.3.5 Changes associated with the incorporation of RA assessments into ACEP 

Incorporating RA assessments into ACEP through iterative recalculation of PRM values by GE-

MARS leads to different investment strategies to meet the additional firm capacity required for the 

RA criterion, depending on the chosen robustness parameter β. For a higher robustness parameter 

(β=1), the adaptation investments remain relatively constant across iterations while core 

investments increase. Conversely, when a lower robustness parameter (β=0.1) is used, adaptation 

investments increase with each iteration, while core investments remain constant. This highlights 

that regardless of the RA requirements for expansion planning, the additional investments needed 

to meet the adjusted PRM will be allocated either core or adaptive investments, depending on the 

β value selected by the planner. Notably, there is a significant difference in the results between the 

first iteration and the final iteration when the LOLE requirements are met. This demonstrates the 

importance of incorporating RA assessments into ACEP, as it allows for more precise planning 

outcomes. By providing planners and stakeholders with detailed information about future capacity 

needs, the integrated approach supports the development of flexible investment strategies that are 

both adaptive and capable of meeting RA requirements across all potential futures and throughout 

the planning horizon. 
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7. Conclusions 

This study highlights the role of advanced expansion planning tools in identifying the most 

economically viable investments required to meet future power system constraints. Traditional 

power system planning often involves studying multiple future scenarios individually, which can 

be both time-consuming and limited in scope. ACEP offers a sophisticated framework that 

evaluates the integrated influence of various scenarios more effectively. By cooptimizing 

generation and transmission investments, ACEP helps identify the least-cost core plan that requires 

the minimum adaptive investment to satisfy the particular needs of multiple futures considered. 

ACEP enhances the ability to balance investment costs with system robustness, providing a more 

comprehensive understanding of how different planning strategies perform across multiple futures. 

 

Integrating the ACEP model with RA assessment through the GE-MARS tool represents a 

significant advancement in power system planning. This integration enhances the accuracy of 

investment calculations by ensuring that they are reliable across a range of future scenarios. By 

incorporating RA assessments into ACEP, we can more precisely determine the investments 

needed to maintain system reliability under multiple futures, thus providing planners with a clearer 

understanding of how to balance core and adaptation investments. This software system 

streamlines long-term planning efforts, empowering transmission system planners to make 

informed decisions and create flexible portfolios that prioritize both cost-effectiveness and 

reliability, considering uncertainties in the energy landscape. 

 

One of the primary benefits of ACEP is its application of the robustness parameter, β. This 

parameter provides that ACEP is a flexible tool for exploring a spectrum of investment strategies, 

enabling the optimization of core and adaptive investments based on varying robustness and risk 

tolerance levels. A lower β value results in a more economical core investment but with reduced 

robustness against uncertainties, making it less resilient to unforeseen future conditions. 

Conversely, a higher β value leads to a more robust but expensive core investment, enhancing the 

system's ability to handle a broader range of potential future scenarios. Adjusting β allows planners 

to tailor their investment portfolios to different risk profiles and budget constraints, ultimately 

supporting a more balanced and adaptable approach to power system expansion. This strategic 

flexibility is essential for developing investment plans that not only meet current needs but also 

accommodate future uncertainties, ensuring long-term cost-effectiveness and reliability in power 

system planning. 

 

Future research should focus on refining the ACEP model by integrating additional factors to 

enhance its accuracy. For instance, incorporating seasonal capacity credits for wind and solar 

resources would provide a more precise assessment of their contributions. On the GE-MARS side, 

improving the modeling of renewable generation by integrating more wind and solar profiles to 

reflect the geographical variations could further enhance the calculation’s accuracy. In terms of 

thermal generation, more precise FOR and POR values that account for a more historical database 

could also improve the modeling. Although these additions would increase computational 

complexity, it is likely to yield more reliable results by better modeling existing assets. 

Furthermore, evaluating the impact of interregional transmission investments through the 

ACEP/GE-MARS could offer valuable insights. Such an exploration would assess how 
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interregional transmission affects RA indices and could reveal benefits in terms of overall system 

reliability.  

 

As the power grid undergoes significant transformations driven by the integration of variable 

renewable energy sources, the retirement of conventional resources, and evolving regulatory 

demands, effective transmission planning becomes increasingly complex and crucial. Advanced 

computational tools are now essential for enhancing decision-making capabilities in this dynamic 

environment. This project addresses these challenges by developing a sophisticated software 

system integrating long-term expansion planning with probabilistic resource adequacy 

assessments. By combining the ACEP tool with GE-MARS, the system provides a robust 

framework for optimizing investment portfolios and ensuring reliability while addressing 

uncertainties and unreliability costs. The iterative approach employed demonstrates the tool’s 

capability to balance investment robustness, resource adequacy, and system adaptability. By 

offering advanced simulation and optimization techniques, this integrated solution empowers 

transmission planners to make more informed decisions, ultimately contributing to a more 

adaptable and efficient power grid. 
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1. Introduction 

1.1 Background 

A wealth of recent research finds that large-scale expansion of regional and interregional 

transmission infrastructure in the U.S. would bring economic, reliability, and environmental 

benefits [1]–[3]. Planned additions to transmission, however, currently fall well short of the level 

deemed beneficial in models, with studies of deeply decarbonized U.S. systems projecting a need 

to double or even triple transfer capacity in the coming decades [4], [5]. One of the major 

challenges holding up investment is cost allocation: since many stakeholders are likely to benefit 

from expanded transmission infrastructure, it is difficult to come to a consensus on how to divide 

project costs among them. While this issue is common to many types of shared infrastructure 

projects (see, e.g., [6]), it may be particularly acute in the case of meshed electricity networks due 

to the potential for a change in one element to affect power flows across the entire system. 

 

An underlying principle for cost allocation, codified by the Federal Energy Regulatory 

Commission (FERC) in Order 1000 [7] is that transmission costs should be allocated “in a manner 

that is at least roughly commensurate with estimated benefits.” In principle, sufficiently detailed 

planning models could be used both to establish the net social benefits of a project and to estimate 

a distribution of those benefits among users, and [8] argues that these models would be the best 

available basis for determining a reasonable cost allocation. At the same time, both our information 

and our models fall well short of what would be needed for a precise computation, leading others 

to question the approach [9]. Judge Richard Cudahy of the U.S. Court of Appeals, dissenting in a 

case connected to Order 1000, articulates the opposing view as follows: “The majority has 

expressed a need for more precise numbers about benefits, burdens and a variety of other aspects. 

Now it has enhanced that need by suggesting the use of cost-benefit analysis (a method, some 

think, of dressing up dubious numbers to reach more impressive solutions). I will say preliminarily 

that I think the majority is under the impression that somehow there is a mathematical solution to 

this problem, and I think that this is a complete illusion. Despite the frequency with which cost-

benefit analysis is used, it does not resolve the difficulty of accurately or meaningfully measuring 

the costs and benefits involved with these grid strengthening projects. Cost allocation, particularly 

at these extraordinarily high voltages, is far from a precise science, and there are no mathematical 

solutions to determining benefits region by region or subregion by subregion” [10]. This 

skepticism has perhaps been validated by the emergence since Order 1000 of a wide range of cost 

allocation methods that have all been determined to meet the “roughly commensurate” threshold, 

leading to inconsistent treatment of similar projects based on the process by which they were 

approved. Ongoing disputes led FERC to reopen the issue of cost allocation in a 2022 Notice of 

Proposed Rulemaking [11]. 

1.2 Overview of the Problem 

This chapter addresses several questions connected to the use of models in identifying beneficiaries 

of transmission expansion, calculating their benefits, and allocating cost in a manner consistent 

with the “beneficiaries pay” standard. Despite the challenges, [12] reflects that “In the absence of 

an economically and politically acceptable formula, a direct benefits modeling approach as 

advocated by Hogan may prove the only workable solution.” The Organization of MISO States 
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(OMS), which includes regulators from a politically diverse set of states in the Midcontinent 

Independent System Operator (MISO) region, largely endorses the approach in its Statement of 

Principles for cost allocation [13]. In this context, the chapter considers both how existing methods 

can create conflict by ignoring modeled benefits as well as the factors that may prevent a “direct 

benefits modeling” approach from being workable. 

 

At least three categories of issues affect the computation of benefits and the translation of modeled 

benefits to a mutually agreeable cost allocation. The first category relates to the models themselves. 

Transmission planners use a variety of software tools to inform planning, which can be broadly 

split into 1) security analysis tools, involving detailed power flow models but no economic criteria, 

2) production cost tools, which simulate market outcomes with a fixed resource mix, 3) expansion 

planning tools, which optimize the addition of new generation and transmission resources, and 4) 

resource adequacy tools, which evaluate the reliability provided by a given resource mix given 

simulated weather and outage scenarios. In principle, socially optimal transmission decisions could 

be given by an expansion planning model (number 3 above) that incorporated production cost 

simulations (2) on a number of scenarios comparable to that used in resource adequacy analysis 

(4) and including fully specified power flow constraints (1), while also considering the strategic 

behavior of market participants. The intractability of such a model means that benefit calculations 

must be performed on separate tools that are simplified along different dimensions, leading to the 

potential for benefits to be either omitted or duplicated. The second category relates to explicit 

disagreements on the value of particular benefits. While economic outcomes have a shared 

measure, benefits related to reliability and public policy are more difficult to quantify. In particular, 

different jurisdictions in the same regional market often assign different values to carbon reduction 

and air pollution mitigation. Additionally, some jurisdictions within a market may give more 

weight to producers of electricity (e.g., to support job creation), while others prioritize consumers. 

The third category relates to uncertainty in the input parameters required for planning models (e.g., 

future demand growth and technology improvements). Even if the benefits could be quantified in 

a straightforward way, the significant uncertainty inherent to the system means that the ex ante 

estimates of expected benefits could be very different from the actual benefits seen ex post. Since 

participants are unlikely to agree on the probability of potential future scenarios, and may even 

benefit from strategically misrepresenting their views on those probabilities, they are unlikely to 

agree on estimated benefits. 

 

We primarily address the first and third of these issues, leaving a more comprehensive discussion 

of the second to future work. Existing model-based approaches for cost allocation can be divided 

between those assessing benefits based on changes in power flows  [14]–[17] or in prices[8], [18]–

[22]. While physical approaches are sometimes used in practice, and it is possible that physical 

usage correlates with economic benefits, the connection is not clear and we take the more direct 

economic approach. The economics-based models can be further divided between those computing 

benefits directly [8], [18], [22] and those employing concepts from cooperative game theory to 

address the bargaining power of different participants [19]–[21]. Conceding the salience of 

bargaining power, we pursue the former approach due to its clearer connection to the “beneficiaries 

pay” principle. Among the models analyzed, none explicitly include uncertainty and only [21] 

includes recourse decisions in the form of generation investment. Along these lines, we extend the 

approach sketched on simple examples in [22] to a stochastic program co-optimizing the expansion 

of transmission and generation over a long time horizon. While such models have been considered 
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by many researchers [23]–[26], the primary focus in the literature has been identifying high-quality 

planning solutions rather than investigating the implications for cost allocation. Using our model, 

we establish beneficiaries and calculate benefits under many possible realizations of uncertainty, 

providing a more comprehensive understanding of the implications of network expansion for all 

involved parties. While we do not explicitly model the effect that cost allocation decisions may 

have on the network expansion decisions themselves, as in [27], these potential consequences are 

a theme throughout the discussion. 

1.3 Report Organization  

Through theoretical analysis and a numerical study on a stylized version of the Electric Reliability 

Council of Texas (ERCOT) system, we discuss five issues: 

1. How to construct a valid counterfactual against which to measure benefits of a transmission 

investment. Here, our primary argument is that at a minimum models must include the 

different generation and storage investments likely to arise in response to different 

transmission expansion decisions. 

2. When cost should be allocated to generators. While current practice in U.S. systems typically 

allocates cost to new interconnecting generators but then excludes them from subsequent cost 

allocation, we conclude that a direct benefits modeling approach would instead allow new 

generators to connect without cost but then allocate cost to them throughout their life. 

3. Whether to allocate costs on a project-by-project basis or as a portfolio. In the numerical 

study, allocation at the project level implies that positive cost is allocated to participants with 

negative net benefits overall; on this basis, we find that portfolio-based allocation is more 

consistent with the “beneficiaries pay” principle. 

4. The potential to compensate market participants who see negative expected benefits from 

expansion decisions. Here we suggest that the surplus gained from transmission expansion 

could in principle be used to compensate participants who see negative net benefits, 

potentially reducing conflicts. 

5. The potential that participant-level benefits realized ex post will be significantly out of 

alignment with ex ante estimates. Again with the intent of reducing conflicts, we suggest the 

possibility of defining financial contracts that would effectively reallocate cost ex post to 

market participants based on realized benefits.  

While the first three are topics of active debate among regulators and thus have near-term policy 

implications, the last two raise issues for longer-term consideration. 
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2. Stochastic Expansion Planning 

As a basis for analyzing the cost allocation problem, we construct a two-stage stochastic program 

optimizing expansion of generation and transmission over an extended horizon given an agreed-

upon set of scenarios. Capacity expansion can be posed either as a social planning problem [26], 

[28] or as a multi-agent game in a competitive market setting [23], [29]. Given the complexity of 

modeling strategic behavior, system operators at present rely on more straightforward optimization 

formulations [30]. We adopt the same approach, noting that because expansion of transmission 

tends to weaken the ability of generators to exercise local market power [31] inclusion of strategic 

considerations in our model would likely shift our estimates of the distribution of benefits away 

from generators toward consumers. The first stage of the stochastic program includes decisions for 

the present year, while the second stage includes decisions to be made in several subsequent years. 

While the analysis could also be extended to a multistage setting with each year corresponding to 

a stage, we use a two-stage approximation to ensure scalability in the numerical study. 

 

The problem is formulated as a mixed-integer programming (MIP) model with transmission line 

investment decisions as binary variables and generation investment decisions as continuous. 

Binary variables are needed to represent a key feature of transmission investments, namely, 

significant economies of scale. Further, it is typically impossible to build a transmission facility 

with a rating that exactly matches the need, as equipment is available only in a limited number of 

standardized voltage and power ratings. Transmission investments in the model can be selected 

from defined levels of expansion with costs reflecting economies of scale. For generation 

investments, we assume perfect competition and linear costs. These assumptions ensure that, 

conditional on the transmission network decisions, nodal electricity prices support a resource mix 

that maximizes long-term social welfare. 

 

Rather than the development of the planning model itself, the primary focus of this study is the 

translation of the planning model results to cost allocation determinations. Many debates in 

transmission planning concern the selection of scenarios and benefit–cost thresholds used to justify 

the investment, as well as the subjective valuation of non-quantified benefits [8]. We set aside 

these issues, as it is sufficient for the discussion to have a planning tool that recommends 

transmission investments with positive expected net benefits in sample. We assume that a 

stakeholder process is able to construct scenarios and associated probabilities for use in the model, 

but do not assume that these scenarios are exhaustive, that the selected probabilities are accurate, 

or that the chosen scenarios and probabilities match the beliefs of individual market participants. 

2.1 Notation 

Sets: 

y/Y: time index (years)  

n/N: nodes in a scenario tree  

b/B (B’): buses (without reference bus)  

t/T : time blocks 

l/L: lines  

g/G: all generators  

g/GR ⊆ G: renewable generators  
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g/GT ⊆ G: thermal generators  

q/Q: transmission capacity increment options  

i/I: power balance penalty curve segments 

Parameters:  

ζδ(n) (ζy): discount factor of node n (in time index y) 

Cn,g
INV: annualized generation investment cost of generation technology g in node n per unit 

capacity ($/MW) 

Cl,q
INV: annualized transmission investment cost of line l for expansion type q ($) 

Cg
FIX: per unit fixed operation and maintenance cost of generation technology g ($/MW-yr) 

Cg
VOM: per unit variable operation and maintenance cost of generation technology g ($/MWh)  

Cn,g
EN: per unit production fuel cost of generation technology g in node n ($/MWh)  

γi
PB: penalty value of power balance violation in segment i ($/MWh)  

γLINE: penalty value of transmission line violation ($/MWh)  

γVOLL: per unit benefit for serving load ($/MWh) 

Tt: duration of time block t (h) 

CAb,g,t: capacity availability of generation technology g located at bus b at time t 

RPSn: renewable portfolio standard in node n (%) 

Dn,b,t: demand at bus b in time block t in node n 

∆Lq: transmission capacity increment q  

SFl,b: shift factor matrix indexed by l ∈ L,b ∈ B 

φn: the probability of node n 

Zi: Maximum MW violation of power balance constraint for segment i 

Variables: 

ccap
n: the capital cost in node n ($)  

cop
n : the operation cost in node n ($) 

Gn,b,g: total cumulative generation capacity of generation g at bus b in node n (MW) 

∆Gn,b,g: generation investment in generation technology g at bus b in node n (MW) 

∆𝐺̅n,b,g: generation retirement of existing generation g at bus b in node n (MW) 

Ln,l: total cumulative transmission capacity of line l in node n (MW) 

wn,l,q: binary variable to decide transmission increment q in line l in node n (MW)  

pn,b,g,t: generation dispatch of generation technology g at bus b at time t in node n (MW)  

zn,b,t,i: load curtailment segment i at bus b at time t in node n (MW)  

NIn,b,t: power net injection at bus b in node n at time t (MW)  

sln,l,t: slack variable for power flow on line l in node n at time t (MW) 

Dual Variables: 

πn,b,t: locational marginal price (LMP) at time block t at bus b in node n ($/MWh)  

θn,b,g,t: marginal value of a unit of generation technology g ∈ G at time t 
(
$/MWh)  

νn: unit price for contributing to the renewable portfolio standard in node n ($/MWh) 

Outputs: 

Ub
load: the aggregated load surplus at bus b 

Ub,g
gen: the per unit generation surplus of generation technology g at bus b 

rb
load: cost allocation ratio of the transmission expansion to bus b (%)  
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rb,g
gen: cost allocation ratio of the transmission expansion to existing generation g at bus b (%) 

2.2 Formulation 

 

Figure 2-1   An illustration of a scenario tree with 7 scenarios and Y={1,2,3,4}. 

We employ a scenario tree with nodes n ∈ N to represent the investment trajectory for the two-

stage stochastic program. Each node represents a possible state of the world, associated with a set 

of data. The root node n = 0 in the first stage represents the current state of the world. The unique 

predecessor of any node n ≠0 is denoted as n− and the set of predecessors of node n on the path 

from n to the root node is denoted as P(n). The depth δ(n) of node n is the number of nodes on the 

path to node 0, with δ(0) = 1. The depth δ(n) of node n also corresponds to a time index y ∈ Y. We 

use φn to represent the probability that the path taken through the scenario tree includes node n, 

with Σn∈N:δ(n)=y φn = 1 ∀y ∈ Y. A visual representation of such a scenario tree with Y = {1,2,3,4} and 

7 scenarios is drawn in Figure 2-1. As indicated by the dashed lines, nodes at depth 2 and 3 have 

a unique successor, reflecting the two-stage simplification previously mentioned. This tree 

structure mimics the scenario-based planning performed by many system operators, but forces 

convergence to a single decision in the present year. The focus of the cost allocation discussion 

will be on transmission investments made in the present year. 

In each node n, the capital cost includes the transmission and generation investment costs incurred 

due to the cumulative investment decisions made on the path from node n to the root node, given 

by 

𝑐𝑛
cap

= ∑  

𝑛′∈𝒫(𝑛)

 ∑  

𝑙∈ℒ

 ∑  

𝑞∈𝒬

 𝐶𝑙,𝑞
INV𝑤𝑛′,𝑙,𝑞 + ∑  

𝑛′∈𝒫(𝑛)

  ∑  

𝑏∈ℬ

 ∑  

𝑔∈𝒢

 𝐶𝑛′,𝑔
INVΔ𝐺𝑛′,𝑏,𝑔 (1) 
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In other words, investments result in ongoing capital costs throughout the years are covered by the 

model. This formulation reflects the fact that resources built in the earlier nodes of the model will 

have completed a larger fraction of their useful lives by the end of the scenario tree. 

At node n, the operating cost is (2) 

𝑐𝑛
op

= ∑  

𝑏∈ℬ

 ∑  

𝑔∈𝒢

 𝐶𝑔
FIX𝐺𝑛,𝑏,𝑔 + ∑  

𝑏∈ℬ

 ∑  

𝑔∈𝒢

 ∑  

𝑡∈𝒯

 𝐶𝑔
VOM𝑇𝑡𝑝𝑛,𝑏,𝑔,𝑡 + ∑  

𝑏∈ℬ

 ∑  

𝑡∈𝒯

 ∑  

𝑔∈𝒢

 𝐶𝑛,𝑔
EN𝑇𝑡𝑝𝑛,𝑏,𝑔,𝑡 

where the first two terms are the ongoing fixed and variable operation and maintenance costs of 

generation, the third term is the fuel cost, and the last two terms are penalties for curtailed load 

and transmission constraint violations. 

 

The system planner seeks to maximize the net present value of expected benefits over the assumed 

scenario tree. With the penalty curve for curtailed load serving as a proxy for price-responsive 

demand, the model can be formulated as a minimization problem as follows: 

 max   ∑  

𝑛∈𝒩

 𝜙𝑛𝜁𝛿(𝑛) (∑  

𝑡∈𝒯

  ∑  

𝑏∈ℬ

 𝑇𝑡𝛾LOAD𝐷𝑛,𝑏,𝑡 − 𝑐𝑛
op

− 𝑐𝑛
cap

) (3𝑎)

 s.t.  𝐿𝑛,𝑙 = 𝐿0,𝑙 + ∑  

𝑛′∈𝒫(𝑛−)

 ∑  

𝑞∈𝒬

 𝑤𝑛′,𝑙,𝑞Δ𝐿𝑞 ∀𝑛 ∈ 𝒩 ∖ 0, 𝑙 ∈ ℒ (3𝑏)

𝐺𝑛,𝑏,𝑔 = 𝐺0,𝑏,𝑔 + ∑  

𝑛′∈𝒫(𝑛)

 Δ𝐺𝑛′,𝑏,𝑔 − ∑  

𝑛′∈𝒫(𝑛)

 Δ𝐺‾𝑛′,𝑏,𝑔 ∀𝑛 ∈ 𝒩, 𝑏 ∈ ℬ, 𝑔 ∈ 𝒢 (3𝑐)

(𝜙𝑛𝜁𝛿(𝑛)𝑇𝑡𝜃𝑛,𝑏,𝑔,𝑡):  𝑝𝑛,𝑏,𝑔,𝑡 ≤ 𝐶𝐴𝑏,𝑔,𝑡𝐺𝑛,𝑏,𝑔 ∀𝑛 ∈ 𝒩, 𝑏 ∈ ℬ, 𝑔 ∈ 𝒢, 𝑡 ∈ 𝒯 (3𝑑)

 

(𝜙𝑛𝜁𝛿(𝑛)𝜈𝑛):  ∑  

𝑡∈𝒯

  ∑  

𝑏∈ℬ

  ∑  

𝑔∈𝒢𝑅

 𝑇𝑡𝑝𝑛,𝑏,𝑔,𝑡 ≥ 𝑅𝑃𝑆𝑛 ∑  

𝑡∈𝒯

  ∑  

𝑏∈ℬ

 𝑇𝑡𝐷𝑛,𝑏,𝑡 ∀𝑛 ∈ 𝒩 (3𝑒)

(𝜙𝑛𝜁𝛿(𝑛)𝑇𝑡𝜋𝑛,𝑏,𝑡):   𝑁𝐼𝑛,𝑏,𝑡 = ∑  

𝑔∈𝒢

 𝑝𝑛,𝑏,𝑔,𝑡 + ∑  

𝑖∈ℐ

 𝑧𝑛,𝑏,𝑡,𝑖 − 𝐷𝑛,𝑏,𝑡 ∀𝑛 ∈ 𝒩, 𝑏 ∈ ℬ, 𝑡 ∈ 𝒯 (3𝑓)

 −(𝐿𝑛,𝑙 + 𝑠𝑙𝑛,𝑙,𝑡) ≤ ∑  

𝑏∈ℬ′

 𝑆𝐹𝑙,𝑏𝑁𝐼𝑛,𝑏,𝑡 ≤ (𝐿𝑛,𝑙 + 𝑠𝑙𝑛,𝑙,𝑡) ∀𝑛 ∈ 𝒩, 𝑙 ∈ ℒ, 𝑡 ∈ 𝒯 (3𝑔)

 ∑  

𝑏∈ℬ

 𝑁𝐼𝑛,𝑏,𝑡 = 0 ∀𝑛 ∈ 𝒩, 𝑡 ∈ 𝒯 (3ℎ)

Δ𝐺𝑛,𝑏,𝑔, Δ𝐺‾𝑛,𝑏,𝑔, 𝑝𝑛,𝑏,𝑔,𝑡 ≥ 0 ∀𝑛 ∈ 𝒩, 𝑏 ∈ ℬ, 𝑔 ∈ 𝒢, 𝑡 ∈ 𝒯 (3𝑖)

𝑧𝑛,𝑏,𝑡,𝑖 ≥ 0 ∀𝑛 ∈ 𝒩, 𝑏 ∈ ℬ, 𝑡 ∈ 𝒯, 𝑖 ∈ ℐ (3𝑗)

 ∑  

𝑏∈ℬ

  𝑧𝑛,𝑏,𝑡,𝑖 ≤ 𝑍‾𝑖 ∀𝑛 ∈ 𝒩, 𝑡 ∈ 𝒯, 𝑖 ∈ ℐ (3𝑘)

𝑠𝑙𝑛,𝑙,𝑡 ≥ 0 ∀𝑛 ∈ 𝒩, 𝑙 ∈ ℒ, 𝑡 ∈ 𝒯 (3𝑙)

𝑤𝑛,𝑙,𝑞 ∈ {0,1} ∀𝑛 ∈ 𝒩, 𝑙 ∈ ℒ, 𝑞 ∈ 𝒬. (3𝑚)
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Constraint (3b) states that the total cumulative transmission capacity is equal to the initial existing 

transmission capacity plus the sum of the transmission capacity expansion along the path from 

node 0 to node n−, while constraint (3c) states that the total cumulative generation capacity is equal 

to the initial existing generation plus the sum of generation capacity expansion minus generation 

retirement along the path from node 0 to node n. The delayed in-service date for new transmission 

relative to new generation is intended to capture the longer development timelines typical for 

transmission projects. Constraint (3d) states that power production is limited by the total installed 

capacity of a given technology multiplied by its availability in each time block. Constraint (3e) 

enforces a system-wide renewable portfolio standard (RPS), mandating a percentage of the total 

amount of power generation coming from renewable energy sources. Constraint (3f) calculates the 

net power injection at bus b, while constraint (3g) is a soft constraint limiting power flow on a 

transmission line. Constraint (3h) states the sum of the net power injection in the network should 

be zero. Constraints (3j) and (3k) state that each load curtailment segment is non-negative and the 

sum of load curtailment segment cannot exceed the maximum MW violation of that segment. After 

fixing binary variables w, we can query the dual variables of the constraints in the resulting linear 

program. Dual variables are scaled in order to produced unscaled prices and inframarginal rents. 

The dual variable θn,b,g,t of constraint (3d) can be interpreted as the marginal value of capacity of 

generation technology g at bus b in time block t. The dual variable πn,b,t of constraint (3f) is the 

locational marginal price (LMP). For completeness we define the linear program using the optimal 

values wn,l,q∗ found when solving model (3) as follows: 

max  (3𝑎) 

s. t.   (3b) − (3l) 

𝑤𝑛,𝑙,𝑞 = 𝑤𝑛,𝑙,𝑞
∗         ∀𝑛 ∈ 𝒩, 𝑙 ∈ ℒ, 𝑞 ∈ 𝒬.   (4a) 
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3. Establishing Beneficiaries 

Supposing that system planners use model (3) to identify transmission expansion decisions, this 

section addresses the question of how to define beneficiaries, as well as the challenges that arise 

even when all parties agree on the formulation and scenarios used in the model. 

3.1 Establishing a Counterfactual 

To measure the benefits brought by a certain transmission project, we first need to define a 

counterfactual against which benefits will be measured. Establishing a counterfactual to the 

construction of a particular transmission investment is complicated by the fact that subsequent 

transmission and generation investment, as well as operations, will change as a result of the 

investment under study. Some cost allocation schemes currently used in U.S. systems, especially 

those for investments motivated by reliability violations rather than economic efficiency, fail to 

establish a valid counterfactual because the models omit the possibility of operational changes or 

compensatory investments. As discussed in [32], the absence of a valid counterfactual is 

particularly clear in the case of interconnecting new generators. 

 

After solving model (3) and determining expansion decisions for the present year, there are at least 

three ways that a counterfactual might be established. In each case, re-solving model (3) with 

additional constraints leads to an alternate solution with a higher objective function value. We 

define three options as follows: 

1. Exclude the specific transmission investment and fix all other transmission and generation 

investments; benefits reflect the difference in operating cost between the solutions. 

2. Exclude the specific transmission investment, fix all other transmission investments, and 

allow generation investments to optimally readjust to the counterfactual network; benefits 

reflect the difference in investment and operating cost between the solutions. 

3. Exclude the specific transmission investment (at all levels q ∈ Q and for either all years y ∈ 

Y or just the present), but allow freedom in both generation and other transmission 

investments; benefits reflect the difference in investment and operating cost between the 

solutions. 

The primary issue with the first option is that it is unrealistic and unnecessarily restrictive. 

Excluding the transmission investment without allowing any compensatory investments could lead 

to a situation with unsolvable reliability violations, leading either to an infeasible model or large 

costs driven by penalty parameters. The primary issue with the third option is that in order to 

determine participant-level benefits for the projects of interest, cost allocation determinations also 

need to be made for the counterfactual transmission projects. Since these allocations would in turn 

be determined against a similarly defined counterfactual, allowing these alternatives introduces a 

recursive aspect to the problem. Since allocations based on the first are guaranteed to be inaccurate 

and those based on the third would be impractical, we suggest that analysis should pursue the 

second option. Since investment in generation (as well as storage and distributed resources) is 

often exogenous or excluded from current models, we note the contrast between our 
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recommendation and the claim in [8] that the information needed for cost allocation is already 

available in current planning models. 

 

Putting this suggestion into practice could be challenging, especially in the case of upgrades 

prompted by reliability violations not observable in the linear approximations to the power flow 

equations typically used in capacity expansion models. At the expense of additional complexity, 

more complicated constraints could in principle be brought into model (3), making the construction 

of a valid counterfactual more straightforward. In practice, it is more common in such cases to skip 

the step of establishing a counterfactual altogether, instead socializing the cost of related upgrades 

or relying on power flow analyses with unclear connection to economic benefits. Even if an 

optimization model is not used, however, a better approach to assess benefits would be specifying 

a plausible alternative to resolve the identified reliability violations and measuring cost against this 

alternative. Noting the challenge, for the remainder of this chapter we assume that benefits 

associated with the level of reliability are captured through penalties on power balance violations 

in model (3). 

 

We can formalize the construction of a counterfactual as follows. Suppose we are interested in 

allocating the cost of one or more transmission investments represented by a subset WINV ⊂ W = N 
× L × Q of the binary variables wn,l,q, where we assume that the investments of interest occur at 

node n = 0. Then counterfactual generation investments, along with counterfactual prices and 

production quantities, can be found by solving 

max  (3𝑎) 

s. t.   (3b) − (3l) 

𝑤𝑛,𝑙,𝑞 = 0               ∀(𝑛, 𝑙, 𝑞) ∈  𝒲𝐼𝑁𝑉   (5a) 

𝑤𝑛,𝑙,𝑞 = 𝑤𝑛,𝑙,𝑞
∗         ∀(𝑛, 𝑙, 𝑞) ∈  𝒲\𝒲𝐼𝑁𝑉 .   (5b) 

3.2 Generation 

We first consider the potential for generators to benefit from transmission expansion. An important 

distinction is between new and existing generators. At present, most U.S. systems allocate some 

cost to new interconnecting generators, but do not subsequently allocate cost to generators once 

they are built. The primary point of this subsection is to show that, in general, the current practice 

is the opposite of what is implied by the direct benefits modeling approach pursued in this chapter. 

 

Evaluated at node 0, the discounted operating profit expected by a unit of generation of type g at 

bus b can be calculated as 

𝔼(𝒰𝑏,𝑔
𝑔𝑒𝑛

) = ∑  𝑛∈𝒩   𝜁𝛿(𝑛)𝜙𝑛 (∑  𝑡∈𝒯  𝑇𝑡(𝜋𝑛,𝑏,𝑡 − 𝐶𝑛,𝑔
EN − 𝐶𝑔

VOM + 𝜈𝑛𝟙{𝑔∈𝒢𝑅})
𝑝𝑛,𝑏,𝑔,𝑡

𝐺𝑛,𝑏,𝑔
− 𝐶𝑔

FIX) (6)  

where 𝟙{𝑔∈𝒢𝑅} = 1  if the generator can sell renewable energy credits and 0 otherwise. With 

𝔼(𝒰𝑏,𝑔
∗𝑔𝑒𝑛

) indicating expected benefits assuming the socially optimal transmission configuration 

and 𝔼(𝒰𝑏,𝑔
′𝑔𝑒𝑛

) indicating expected benefits with the counterfactual transmission configuration, the 
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per unit expected benefit for generation of type g located at bus b from transmission expansion can 

then be calculated as the difference in expected operating profits: 

 

𝔼(Δ𝒰𝑏,𝑔
𝑔𝑒𝑛

) = 𝔼(𝒰𝑏,𝑔
∗𝑔𝑒𝑛

) − 𝔼(𝒰𝑏,𝑔
′𝑔𝑒𝑛

) (7) 

3.2.1 Existing generators 

We first consider the case of existing generators, which can more clearly benefit or be harmed by 

transmission expansion. The presence of new generation in either the socially optimal or the 

counterfactual case can indicate how existing generators of the same type and located at the same 

bus are affected by the expansion. We state three cases formally as Theorem (1) and Corollaries 

(1) and (2). 

 

Theorem 1. Suppose new generation of type g is constructed at bus b in both the expansion 
scenario, i.e., Δ𝐺0,𝑏,𝑔

∗ > 0, and the counterfactual scenario, i.e., Δ𝐺0,𝑏,𝑔
′ > 0. Then existing 

generation of that type at that bus neither benefits nor suffers losses from the expansion, i.e., 
𝔼(Δ𝒰𝑏,𝑔

𝑔𝑒𝑛
) = 0. 

Proof. For model (4), the KKT conditions on pn,b,g,t are 

0 ≤ 𝑝𝑛,𝑏,𝑔,𝑡 ⊥ 𝐶𝑛,𝑔
EN + 𝐶𝑔

VOM + 𝜃𝑛,𝑏,𝑔,𝑡 − 𝜋𝑛,𝑏,𝑡 − 𝜈𝑛𝟙{𝑔∈𝒢𝑅} ≥ 0 ∀𝑛 ∈ 𝒩, 𝑏 ∈ ℬ, 𝑔 ∈ 𝒢, 𝑡 ∈ 𝒯 (8) 

By the complementarity condition, if pn,b,g,t > 0, we have 𝜃𝑛,𝑏,𝑔,𝑡 = 𝜋𝑛,𝑏,𝑡 − 𝐶𝑛,𝑔
EN − 𝐶𝑔

VOM +

𝜈𝑛𝟙{𝑔∈𝒢𝑅}. 

Then the discounted operating profit (6) can be written as 

𝔼(𝒰𝑏,𝑔
𝑔𝑒𝑛

) = ∑  

𝑛∈𝒩

  𝜁𝛿(𝑛)𝜙𝑛 (∑  

𝑡∈𝒯

 𝑇𝑡𝜃𝑛,𝑏,𝑡

𝑝𝑛,𝑏,𝑔,𝑡

𝐺𝑛,𝑏,𝑔
− 𝐶𝑔

FIX) (9) 

By complementary slackness, when𝜃𝑛,𝑏,𝑡 > 0,
𝑝𝑛,𝑏,𝑔,𝑡

𝐺𝑛,𝑏,𝑔
= 𝐶𝐴𝑏,𝑔,𝑡 holds. When 𝜃𝑛,𝑏,𝑡 = 0, replacing 

𝑝𝑛,𝑏,𝑔,𝑡

𝐺𝑛,𝑏,𝑔
 with CAb,g,t would not affect the result. After replacement, the discounted operating profit 

(6) becomes 

𝔼(𝒰𝑏,𝑔
𝑔𝑒𝑛

) = ∑  𝑛∈𝒩   𝜁𝛿(𝑛)𝜙𝑛(∑  𝑡∈𝒯  𝑇𝑡𝜃𝑛,𝑏,𝑡𝐶𝐴𝑏,𝑔,𝑡 − 𝐶𝑔
FIX) (10)

For both models (4) and (5), the objective function and variable Gn,b,g are defined to include 

summation over the path P(n). Given that node 0 is on the path of every node to the root node in 

the scenario tree, it follows that the KKT condition on ∆G0,b,g would aggregate over all nodes within 

the tree, given by  

0 ≤ Δ𝐺0,𝑏,𝑔 ⊥ ∑  

𝑛∈𝒩

  𝜁𝛿(𝑛)𝜙𝑛 (𝐶0,𝑔
INV + 𝐶𝑔

FIX − ∑  

𝑡∈𝒯

 𝑇𝑡𝐶𝐴𝑏,𝑔,𝑡𝜃𝑛,𝑏,𝑔,𝑡) ≥ 0 ∀𝑔 ∈ 𝒢, 𝑏 ∈ ℬ (11) 

By complementary slackness, ∆G0,b,g > 0 implies 
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∑  

𝑛∈𝒩

𝜁𝛿(𝑛)𝜙𝑛 (𝐶0,𝑔
INV + 𝐶𝑔

FIX − ∑  

𝑡∈𝒯

 𝑇𝑡𝐶𝐴𝑏,𝑔,𝑡𝜃𝑛,𝑏,𝑔,𝑡) = 0 

When new generation of type g is constructed at bus b in the both expansion scenario and 

counterfactual scenario, i.e., Δ𝐺0,𝑏,𝑔
∗ > 0 and Δ𝐺0,𝑏,𝑔

′ > 0, we have 𝔼(𝒰∗ 𝑏,𝑔
∗𝑔𝑒𝑛

) = 𝔼(𝒰𝑏,𝑔
′𝑔𝑒𝑛

) =

∑𝑛∈𝒩  𝜁𝛿(𝑛)𝜙𝑛𝐶0,𝑔
INV. By the definition of benefits in (7), this leads to 𝔼(Δ𝒰𝑏,𝑔

𝑔𝑒𝑛
) = 0.                    

Corollary 1. Suppose new generation of type 𝑔 is constructed at bus 𝑏 in the expansion 
scenario, i.e., 𝛥𝐺0,𝑏,𝑔

∗ > 0 , but not in the counterfactual scenario, i.e., 𝛥𝐺0,𝑏,𝑔
′ = 0. Then existing 

generation of that type at that bus benefits from the expansion, i.e., 𝔼(𝛥𝒰𝑏,𝑔
gen 

) > 0. 

Proof. As shown in Theorem 1, Δ𝐺0,𝑏,𝑔
∗ > 0 implies 𝔼(𝒰𝑏,𝑔

gen 
) = ∑𝑛∈𝒩  𝜁𝛿(𝑛)𝜙𝑛𝐶0,𝑔

INV. Δ𝐺0,𝑏,𝑔
′ = 0 

implies 𝔼(𝒰𝑏,𝑔
′𝑔𝑒𝑛

) < ∑𝑛∈𝒩  𝜁𝛿(𝑛)𝜙𝑛𝐶0,𝑔
INV. Therefore, by (7), the difference in expected operating 

profits is positive, i.e., 𝔼(Δ𝒰𝑏,𝑔
𝑔𝑒𝑛

) > 0.                                                                                           

Corollary 2. Suppose new generation of type 𝑔 is constructed at bus 𝑏 in the counterfactual 

scenario, i.e., 𝛥𝐺0,𝑏,𝑔
′ > 0, but not in the expansion scenario, i.e., 𝛥𝐺0,𝑏,𝑔

∗ = 0. Then existing 

generation of that type at that bus suffers losses from the expansion, i.e., 𝔼(𝛥𝒰𝑏,𝑔
gen 

) < 0. 

Proof. As shown in Theorem 1, Δ𝐺0,𝑏,𝑔
∗ = 0 implies 𝔼(𝒰𝑏,𝑔

𝑔𝑒𝑛
) < ∑𝑛∈𝒩  𝜁𝛿(𝑛)𝜙𝑛𝐶0,𝑔

INV. Δ𝐺0,𝑏,𝑔
′ > 0 

implies 𝔼(𝒰′𝑔, g, n) = ∑𝑛∈𝒩  𝜁𝛿(𝑛)𝜙𝑛𝐶0,𝑔
INV. Therefore, by (7), the difference in expected 

operating profits is negative, i.e., 𝔼(Δ𝒰𝑏,𝑔
𝑔𝑒𝑛

) < 0.  

 

At a high level, it can be expected that generators in exporting regions will see benefits from 

transmission expansion while generators in importing regions will suffer losses. Clear examples 

of this effect are shown in [8] and [22]``````````````````````````, which analyze two-zone systems 

without subsequent generation investment. The more complex numerical study in this chapter 

largely matches this intuition. 

3.2.2 New generators 

We now turn attention to newly built generation. If these resources would have been built even 

without the transmission expansion occurring in node 0, then benefits can be defined similarly to 

existing generators. In this case, Theorem 1 applies and we conclude that the new generation does 

not benefit from the transmission. If the generation would not otherwise be built, the zero-profit 

condition on investment in the socially optimal expansion nevertheless holds. Given perfect 

competition, condition (11) implies that investment in generation technology g will continue until 

operating profits fall to the level of annualized investment costs. 

 

Under an optimization modeling approach, the implication of the zero-profit condition is that new 

generation cannot be identified as a beneficiary. We note that the assumptions of perfect 

competition and linear generation investment costs that underpin the zero-profit condition are 

standard in tools used for expansion planning. Exceptions to this rule may apply, e.g., if there is a 
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constraint on building generation, such that new capacity cannot be built to take full advantage of 

the new line. In this case, new generators would earn a rent associated with this constraint. Such 

exceptions are likely to be less important for large lines that would facilitate production across a 

wider region. Alternatively, it may be argued that the computation of excess profit in Eq. (7) 

reflects too narrow a conception of benefits, and the existence of a new generator could itself be 

considered a benefit regardless of its profitability. In this case, additional assumptions outside the 

planning tool would be needed to define benefit estimates. 

 

Given the recommendation not to allocate cost for network upgrades to new generators at the time 

of interconnection but then subsequently allocate cost to them throughout their life, the direct 

benefits modeling approach supports a significant change to current practice. The overall impact 

that such a change would have on the cash flows seen by generators over the course of their life is 

not clear. Suppose a new generator signs an interconnection agreement without any accompanying 

network upgrades, and then welfare-enhancing network upgrades are identified by a planning 

model. Since the model recommending these projects would assume the presence of the new 

generator, it would be more likely to recommend upgrades allowing the system to make use of the 

new generator’s energy output. Projects identified to make use of the new generator could very 

well be the same as those that would be identified under current, narrowly-focused interconnection 

procedures. Whereas current practice typically assigns the cost entirely to the new generator 

without accounting for externalized benefits, however, the proposed approach would allocate cost 

to other beneficiaries as well. As such, the overall effect would be to bring cost allocation in line 

with the beneficiaries pay principle. 

3.3 Load 

Benefits to different load zones can be defined much in the same way as benefits to generators. 

The major difference is that the planning model takes load as exogenous rather than as resulting 

from an expansion decision that may depend on transmission investment. We use an assumed value 

of lost load (VOLL) to compute the benefit consumers experience from a reduction in unserved 

energy. Since we are primarily interested in allocating cost between different zones, each of which 

comprises a diverse range of customers, it is reasonable to assume a single constant VOLL. 

However, we note that a more granular representation of price-responsive load from individual 

customers would enable a more targeted calculation of benefits. To simply notation, we represent 

load curtailment at bus b at time t by 𝑧𝑛,𝑏,𝑡 = ∑𝑖∈ℐ  𝑧𝑛,𝑏,𝑡,𝑖. Consumer surplus at bus b in node n is 

calculated as the difference between the value of energy consumed and payments made for energy 

and renewable energy credits. Evaluated at node 0, the expected value of consumer surplus can be 

written as 

𝔼(𝒰𝑏
load ) = ∑  

𝑛∈𝒩

 𝜁𝛿(𝑛)𝜙𝑛 (∑  

𝑡∈𝒯

 𝑇𝑡(𝛾LOAD − 𝜋𝑛,𝑏,𝑡 − 𝜈𝑛𝑅𝑃𝑆𝑛)(𝐷𝑛,𝑏,𝑡 − 𝑧𝑛,𝑏,𝑡)) (12) 

As with generation, we compute the benefits from transmission expansion to loads at bus b as 

the difference in surplus between the socially optimal case and the counterfactual case: 

𝔼(Δ𝒰𝑏
load ) = 𝔼(𝒰𝑏

∗ load ) − 𝔼(𝒰𝑏
load ) (13) 
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As with existing generators, the surplus difference 𝔼(Δ𝒰𝑏
load ) can be positive, zero, or negative 

for loads. 

3.4 Congestion Rents 

In addition to generator and consumer benefits, a third component of market surplus is transmission 

congestion rents, computed as the difference between the payments made by load and the revenue 

received by generators. Under idealized assumptions, the availability of congestion rents could 

make the problem of cost allocation easier to solve, since congestion revenues would be sufficient 

to support a socially efficient level of transmission expansion [8], [33]. In this case a “top-down” 

cost allocation would not be required as such, since risk-neutral investors would be willing to build 

transmission in exchange for the resulting valuable transmission rights. In practice, economies of 

scale and unpriced reliability constraints mean that congestion rents are well below what would be 

needed to support an efficient level of investment. For example, [34] estimates that U.S.-wide 

congestion rents averaged approximately $8.2B for 2016–2021, while U.S. Energy Information 

Agency estimates the average cost of transmission in 2022 at $15/MWh [35], implying a total 

annualized cost of roughly $63B for the current system. While imprecise, these estimates suggest 

that congestion rents are an order of magnitude lower than what would be required for investments 

in transmission to be sustained on a merchant basis. 

 

In principle, rights to congestion rents can be allocated as part of the cost allocation process, either 

proportional to market participant contributions or by auction. In general, empirical evidence in 

U.S. markets shows that current markets for financial transmission rights result in large transfers 

from consumers to financial traders [36], [37] suggesting opportunities for improvements in 

allocation [38]. In the numerical results for this paper, we compute generator and consumer 

benefits without adjusting for any assigned transmission rights, noting that future studies assessing 

the effects of financial transmission rights would likely require downscaling the results of our zonal 

network model to a more detailed nodal representation. 

3.5 Multi-value Planning 

Inconsistent and non-intuitive cost allocation outcomes in the U.S. context can stem from projects 

being designated as having a single primary purpose and being evaluated according to the benefits 

it provides only along that dimension. U.S. systems distinguish between projects undertaken for 

economics, reliability, public policy, and generator interconnection, while any transmission 

enhancement necessarily affects outcomes across all four areas [39]. As previously noted, we leave 

a more complete discussion of public policy interactions for future work. We note here, however, 

that an advantage of the direct benefits modeling approach is that all categories of benefits can be 

incorporated in a consistent manner as long as a valid counterfactual can be established. From a 

modeling perspective, the only requirement for establishing a valid counterfactual is that model 

(5) must have a feasible solution after transmission expansion decisions have been fixed. Because 

the model penalizes power shortfalls rather than implementing a hard constraint, and because entry 

of new generation is not restricted, reliability constraints cannot cause infeasibility. Our 

implementation of an RPS in Eq. (3e) could in principle lead to infeasibility. In practice, however, 

most states have implemented Alternative Compliance Payments to limit the potential cost of RPS 

policies, meaning that a soft constraint would more accurately reflect the public policy. Once a 
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counterfactual has been established, costs associated with reliability and public policy naturally 

flow into prices for energy and clean attributes, allowing straightforward inclusion in benefit 

calculations. 

3.6 Cost Allocation 

The analysis thus far leads to the conclusion that existing generation and load can be beneficiaries 

of transmission expansion over the long term, implying that both existing generation and load 

should share cost under the “beneficiaries pay” principle. In the numerical study we examine two 

different policies for allocating the cost of transmission investments made at node 0: allocating 

cost only to load, as in current practice, and allocating across both existing generation and load. 

When allocating cost only to load, the allocation ratio to load at bus b is determined using the 

following equation: 

𝑟𝑏
load =

[𝔼(Δ𝒰𝑏
load )]

+

∑  𝑏′∈ℬ   [𝔼(Δ𝒰𝑏′
load )]

+

(14) 

where [∗]+ denotes max{0,∗}. 

When allocating cost to both load and existing generation, with 𝐺𝑏,𝑔
0  representing the quantity of 

existing capacity of generation g at bus b, allocation ratios are determined using the following 

equations: 

𝑟𝑏
load  =

[𝔼(Δ𝒰𝑏
load )]

+

∑  𝑏′∈ℬ   ([𝔼(Δ𝒰𝑏′
load )]

+
+ ∑  𝑔∈𝒢   [𝐺𝑏,𝑔

0 𝔼 (Δ𝒰
𝑏′,𝑔

gen 
)]

+
)

(15𝑎)

𝑟𝑏,𝑔
gen 

 =
[𝐺𝑏,𝑔

0 𝔼(Δ𝒰𝑏,𝑔
gen 

)]
+

∑  𝑏′∈ℬ  ([𝔼(Δ𝒰𝑏′
load )]

+
+ ∑  𝑔∈𝒢   [𝐺𝑏,𝑔

0 𝔼 (Δ𝒰
𝑏′,𝑔

gen 
)]

+
)

(15𝑏)

 

The presence of the max operator ensures that market participants who do not benefit from a 

transmission investment are not allocated costs. However, it also implies that market participants 

that are harmed by an expansion project are not compensated as part of cost allocation. It would 

be straightforward mathematically to define negative allocations, i.e., compensatory payments to 

these participants. Since the planning model by assumption identifies a surplus-maximizing 

expansion plan, there would be sufficient surplus in the market to make these compensatory 

payments. Several recent cases in the U.S. show the potential for states or incumbents hurt by 

transmission expansion to intervene and prevent it from occurring (see, e.g., [40]), suggesting that 

compensatory payments or long-term financial rights that protected incumbents against the effect 

of transmission expansion could lead to fewer disputes in planning. 
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4. Numerical Study 

This section presents results of a numerical example on a simplified model of the ERCOT system. 

Building on the discussion of Section 3, we document the different benefits and losses seen by 

generation and loads in different parts of the system. One major conclusion of the numerical study 

is that allocating cost on a portfolio basis is likely to be more consistent with the beneficiaries pay 

principle than allocating on a project-by-project basis. Further, we contrast ex post benefits derived 

from out-of-sample tests against in-sample estimation, computing the range of possible 

distributional outcomes from transmission expansion to provide insight into the challenge posed 

by ambiguity in future scenarios and probabilities. 

4.1 Data and Study Assumptions 

The study employs an 8-Bus ERCOT DC Test Case introduced by [41], with the network shown 

in Figure 4-1. The generation technologies considered are natural gas combined cycle (CC), natural 

gas combustion turbine (CT), coal, nuclear, utility-scale solar, and land-based wind. Costs for these 

technologies are sourced from the NREL Annual Technology Baseline database [42]. The existing 

generation capacity mix is obtained from the ERCOT Capacity, Demand and Reserves (CDR) 

Report [43]. Existing generation capacity, reported in Table 4-1, is assigned to different buses in 

the test system in a manner consistent with the ERCOT resource siting methodology report 

[44][45] but should not be expected to match locations precisely. 

 

 

Figure 4-1   8-Bus ERCOT network. 
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Hourly load data for the year 2020 from [46] is used to represent the load profiles in the system. 

For each node n, load Dn,b,t is obtained by multiplying this profile by a demand growth factor βn. 

Hourly solar and wind availability profiles for the year 2020 are extracted from [47]) using 

methods described in [48], [49]. To ensure computational tractability and account for operation 

costs, a K-means method is employed to cluster the year of data based on the net load, from which 

20 representative days (480 hours) with varying weight, i.e., Tt, are selected to represent a 

simulation year. 

Table 4-1   Existing capacity of each generation type by bus. 

Generation type b1 b2 b3 b4 b5 b6 b7 b8 

GasCC 0 6,062 12,644 1,839 0 0 8,282 0 

GasGT 0 10,404 6,011 2,570 0 0 9,343 0 

Coal 0 2,514 7,023 0 4,031 0 0 0 

Nuclear 2,400 2,573 0 0 0 1,030 0 0 

Solar 0 468 1,073 0 0 0 850 6,611 

Wind 0 4,865 1,330 17,291 0 0 2,969 0 

In the long-term planning model, the uncertainties included are the presence of an RPS, load 

growth, technology investment costs for wind and solar, and fuel cost. For each uncertainty except 

the RPS, low, medium, and high values are estimated based on [42]; [45]. We note that given the 

high-quality solar and wind resources in Texas, the RPS constraint does not have a significant 

impact on the numerical results. A future scenario is defined as a subset of the uncertainty space 

that represents a specific combination of the five uncertainties. Considering a low, medium, and 

high value for each uncertainty, there will be a total of 35 = 243 possible future scenarios. To ensure 

computational tractability for the MIP model, the number of scenarios must be reduced. In this 

study, seven scenarios with varying probabilities were selected based on the methodology 

described in [26]. Since we wish to avoid making assumptions on underlying scenario 

probabilities, we do not claim that the transmission plan identified by the model is “optimal” as 

such. Out-of-sample tests show positive net benefits in all scenarios, however, suggesting that the 

chosen clustering and scenario selection procedures lead to a high-quality solution. 

A 20-year planning horizon is simulated with investment decisions made every 5 years, resulting 

in a tree with depth four and seven scenarios. A discount rate of 7.78% is applied to compute the 

net present value of the total investment cost and operational cost in the objective function. It is 

assumed that the operational costs for each successive 5-year interval remain constant. In light of 
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this assumption, the discount factor, denoted as ζy for time index y ∈ {1,2,3,4}, is determined 

through the following formula: 

𝜁𝑦 =
1

(1 + 7.78%)5(𝑦−1)
(1 +

1

(1 + 7.78%)1
+

1

(1 + 7.78%)2
+

1

(1 + 7.78%)3

+
1

(1 + 7.78%)4
) 

We use the power balance penalty curve shown in Table 4-2 and transmission line  violation 

penalty γLINE = 9251 $/MW for all lines, congruent with the practices in [50]. 

Table 4-2   ERCOT power balance penalty curve. 

MW violation ≤ 5 5 ∼ 10 10 ∼ 20 20 ∼ 30 30 ∼ 40 40 ∼ 50 50 ∼ 100 ≥ 100 

Penalty γi
PB 

($/MWh) 

250 300 400 500 1000 2250 4500 5001 

This case study assumes that there are seven types of transmission line expansion increments, with 

the same costs across all scenarios in each stage and for each corridor, as defined in Table 4-3. The 

per unit investment cost in Table 4-3 exhibits a significant decrease with increasing expansion 

capacity, reflecting economies of scale.  

Table 4-3   Transmission line capacity increment type and investment cost 

Type Expansion 

(MW) 

Amortized investment cost 

($M/yr) 

Per unit cost 

($M/MW) 

1 1400 68.93 0.61 

2 1800 72.64 0.50 

3 2300 78.34 0.42 

4 3000 89.59 0.37 

5 3600 98.79 0.34 

6 4200 101.70 0.30 

7 8000 154.96 0.24 

The models are implemented in Julia [51] using JuMP.jl [52] and solved with Gurobi version 

10.0.1 [53] using a MIP gap (where applicable) of 0.5%. The computations are performed on a 

Mac computer with an Apple M1 Max chip and 10 cores. 
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4.2 Expansion Plan 

The transmission line expansions resulting from model (3) for the developed test system are 

summarized in Table 4-4. In the first stage (year 2023), corresponding to node 0 of the tree in 

Figure 2-1, six transmission expansion projects are selected. The largest of these is on path l2, 

connecting the generation-rich zone b3 with the population center b1. Table 4-5 shows a weighted 

average of the total generation capacity additions made over the 20-year horizon in the seven 

modeled scenarios, as well as the same quantities in a counterfactual without any transmission 

expansion. In either case, the model builds new gas combustion turbines, solar, and wind, with no 

additions of coal, nuclear, or combined cycle gas in any scenario. While we expected new 

transmission to support the deployment of additional wind, the primary effect of expansion in our 

model was instead to reduce the requirement for gas turbines: the model builds roughly the same 

amount of wind in the counterfactual case, but substantially more gas turbines. At node 0 of the 

model, new gas turbines are built at b1 in the expansion scenario, while new gas turbines are built 

at b1 and b8 in the counterfactual. No wind or solar is built in node 0, potentially due to our 

assumption that transmission expansions will enter service only in the second year index. 

Table 4-4   Invested line capacity (MW) by scenario and by stage. Some scenarios with no 

line investment are omitted. 

Year Scenario l1 l2 l3 l4 l5  l6 l7 l8 l9 l10 l11 l12 l13 

2023 – 0 8000 2300 0 0 1800 3600 0 0 2300 0 2300 0 

2028 7 0 0 0 0 0 0 0 3000 0 0 0 0 0 

2033 1,2,6 0 0 0 0 0 0 0 3000 0 0 0 0 0 

2033 3,4 0 0 0 0 0 0 0 2300 0 0 0 0 0 

2033 5 0 0 0 0 0 0 0 3600 0 0 0 0 0 

2038 3 0 0 1800 1800 0 0 0 4200 4200 0 0 0 0 

Table 4-5   Average 20-year generation capacity investment across seven modeled scenarios 

(MW) 

Generation Type Expansion No Expansion 

Gas CC 0 0 

Gas CT 21,425 35,428 

Coal 0 0 

Nuclear 0 0 

Solar 9,859 14,938 

Wind 38,382 38,433 

4.3 Portfolio vs. Project-by-Project Allocation 

The first policy question we address is whether to assess the benefit of the six projects selected at 

node 0 on a portfolio or project-by-project basis. In our notation, the question is whether to 

compute a single instance of the counterfactual model (5) with WINV including all six projects as a 
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portfolio, or six separate instances of model (5) with a single element each in WINV . For purposes 

of this subsection, we allocate costs according to Eq. (14), i.e., only to loads and only to those with 

positive benefits, without compensating those harmed by the expansion. We conclude that 

assessment at the portfolio level results in a cost allocation more consistent with the beneficiaries 

pay principle. 

 

Table 4-6 shows the benefits calculated for each project evaluated separately as well as the 

portfolio, along with an allocation percentage across the 8 buses. The first observation is that, for 

each individual project except the expansion on l6, the total expected benefit across all buses is 

negative. As a consequence, individual projects would not pass a benefit–cost test when assessed 

as such, and it may be difficult to convince loads to accept any resulting cost allocation. While not 

guaranteed, each project has at least one bus with positive benefits, allowing a cost allocation to 

be defined under our formula. 

Table 4-6   Expected nodal benefits and cost allocation ratios when allocating solely to loads. For 

“Projects Sum,” the allocation ratio for each bus is calculated based on the sum of allocated cost 

across all projects calculated individually. For “Portfolio,” the allocation ratio for each bus is 

calculated from portfolio benefits. 

Project  b1 b2 b3 b4 b5 b6 b7 b8 Sum 

 load ratio(%) 33.95 28.67 1.83 1.85 15.89 0.93 8.21 8.67 100.0 

l2 8000 MW 
∆Ub ($M) 

rb (%) 

4,904 

92.27 

-1,488 

0.0 

-1,509 

0.0 

-171 

0.0 

-831 

0.0 

-15 

0.0 

-2,015 

0.0 

411 

7.73 

-715 

100.0 

l3 2300 MW 
∆Ub ($M) 

rb (%) 

3,668 

100.0 

-2,279 

0.0 

-61 

0.0 

-625 

0.0 

-2,233 

0.0 

-104 

0.0 

-908 

0.0 

-2,170 

0.0 

-4,710 

100.0 

l6 1800 MW 
∆Ub ($M) 

rb (%) 

-67 

0.0 

2,600 

93.32 

-2 

0.0 

1  

0.04 

53 

0.0 

-9 

0.0 

-1,887 

0.0 

132 

1.90 

822 

100.0 

l7 3600 MW 
∆Ub ($M) 

rb (%) 

-456 

0.0 

-1,714 

0.0 

-912 

0.0 

304 

25.68 

85 

7.18 

-159 

0.0 

-1,525 

0.0 

795 

67.15 

-3,583 

100.0 

l10 2300 MW 
∆Ub ($M) 

rb (%) 

181  

7.33 

-2,333 

0.0 

-10 

0.0 

-149 

0.0 

-1,439 

0.0 

-146 

0.0 

-910 

0.0 

2,288 

92.67 

-2519 

100.0 

l12 2300 MW 
∆Ub ($M) 

rb (%) 

12  

0.66 

196 

10.72 

-5 

0.0 

77 

4.21 

1,195 

65.37 

12 

0.65 

-1848 

0.0 

336 

18.38 

-25 

100.0 

Projects Sum 
∆Ub ($M) 

rb (%) 

8,242 

40.54 

-5,018 

13.57 

-2,499 

0.0 

-563 

5.11 

-3,170 

10.39 

-421 

0.09 

-9,093 

0.0 

1,792 

29.69 

-10,730 

100.0 

Portfolio 
∆Ub ($M) 

rb (%) 

6,215 

57.17 

2,281 

20.98 

-1,379 

0.0 

-453 

0.0 

-120 

0.0 

15 

0.14 

-3,250 

0.0 

2,360 

21.71 

5,669 

100.0 

Figure 4-2 shows the benefit–cost ratio for the portfolio for each bus under each allocation method. 

The result of the project-by-project allocation is that some loads, namely, those at b4 and b5, can 

be assigned positive cost despite having negative benefits from the overall portfolio. These positive 
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allocations result from the positive benefits found for expansion on l6, l7, and l12 when assessed 

individually. The benefits used for both subplots are from the “Portfolio” row in Table 4-6. As 

should be expected, the benefit–cost ratio is consistent across all load zones in the case of the 

portfolio-level allocation, but drops below zero for b4 and b5 in the project-byproject allocation. To 

avoid this issue, we suggest that it is preferable to allocate costs for a portfolio rather than 

individual projects. 

4.4 Generator Impacts 

While the previous subsection considered the impacts on load only, we now turn to impacts on 

generation. A summary of the aggregate allocation across all generators and loads, calculated with 

Eqs. (15a) and (15b), is shown in Table 4-7. We note that the aggregate benefits are substantially 

larger for generators than for loads in our case study, but we cannot make a general claim regarding 

how benefits are likely to be split in other instances. Consistent with intuition, we observe that the 

largest line expansion selected by the model, l2, connects the zone in which the largest benefits 

accrue to generators, b3, with the zone in which the largest benefits accrue to loads, b1. 

 

As discussed in Section 3.2, generators can also experience significant losses from expansion. The 

total expected benefits that accrue to existing generation of different types across buses is shown 

in Figure 4-3. 

 

Figure 4-2   Benefit–cost ratio for different loads. While the benefit–cost ratio is consistent 

across all buses when cost allocation is determined on a portfolio basis, the project-by-project 

allocation can lead to cost being allocated to loads that do not benefit from the overall portfolio. 
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Table 4-7   Expected load and generation nodal benefits and cost allocation ratios for 

transmission expansion portfolio when allocating expansion cost to both load and existing 

generation. Generation benefit ∆Ubgen is the aggregation of positive benefits of all generation at 

bus b. Sum is the sum of positive benefits across buses. 

Participants (%) b1 b2 b3 b4 b5 b6 b7 b8 Sum 

load rb
load 12.99 4.77 0.0 0.0 0.0 0.03 0.0 4.93 22.72 

gen rb
gen 0.0 0.01 46.48 11.2 0.03 0.07 17.3 2.19 77.28 

 

 

Figure 4-3   Expected benefits of existing generation of different generation technologies across 

buses derived from portfolio. 

Whereas the allocation in Table 4-7 aggregates only the positive benefits, Figure 4-3 includes the 

negative impacts. Just as loads at b1 and b2 see the largest benefits from expansion, generators in 

those zones see the largest losses. The largest generator benefits occur at b3, concentrated in 

existing thermal generators at that location. 

4.5 In-Sample vs. Out-of-Sample Tests 

The cost allocations defined above are calculated based on in-sample results, i.e., the expected 

zonal benefits determined as the weighted average across various scenarios where scenarios and 

scenario probabilities are taken from the planning model covering the whole planning horizon of 

20 years. Table 4-6 and Table 4-7 show the in-sample cost allocation ratios under two policies. As 

discussed above, however, the scenarios and probabilities determined for the planning model do 

not reflect the full range of possible outcomes or participant beliefs. Accordingly, a key question 

is the validity of these estimates and the extent to which out-of-sample results might diverge from 

the in-sample expected value. 

 

Estimating the benefits out of sample for the whole 20-year horizon is complicated 

computationally, because it would require definition of a complete policy describing how 
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transmission and generation investments after the first stage will be made based on realizations of 

uncertainty that are not contained in our original planning model. In our context, such a policy 

cannot be defined: we rely on a stakeholder process to determine the scenarios and probabilities to 

be used in our planning model, and cannot fully specify the outcomes of future stakeholder 

processes. To avoid this issue, we instead perform out-of-sample tests for both cost allocation 

ratios on a single operating year. Specifically, we perform an out-of-sample analysis for y = 2, i.e., 

year 2028, to assess benefits of transmission expansion projects determined in y = 1, computing 

the distribution of realized benefits against the ex ante allocation. In out-of-sample tests, we used 

load and renewable availability data from 2022, sourced and processed in a manner consistent with 

the procedures outlined in Section 4.1. Since our out-of-sample tests do not have transmission 

investment, we employ a linear program covering the entire year of data instead of selecting 

representative days as in the MIP planning model. Benefits are computed for all 35 = 243 possible 

realizations of uncertainty described above. The aggregated generation and load benefits on each 

bus across different scenarios in year 2028 are shown in Figure 4-4. The scenarios are ordered by 

the gross social benefits from the transmission expansion. It is noteworthy that while not 

generalizable, in our case study the expansion is beneficial under all realizations of uncertainty. It 

can also be observed that, while the rank ordering of zones is relatively stable overall, there are 

wide swings in the absolute benefits realized in each zone. 

 

The overall distribution of benefits evaluated ex post for generators and loads is shown in Figure 

4-5, with generation of all types aggregated at each bus. The blue bars indicate the number of times 

(out of the 243 scenarios) ex post benefits are calculated to be in each range, while the red dashed 

line indicates the cost allocation determined ex ante (as in Table 4-7). Here, the consequences of 

uncertainty are apparent, as the ex post distribution of benefits in some cases does not contain the 

red dashed line. In absolute terms, the deviation can be quite significant: for example, generators 

at b3 may see almost 70% of total benefits from the portfolio after being allocated 46% of costs. 

One possible reason for biased estimates is that ex ante benefits are estimated over a longer horizon 

than those calculated ex post. Even if a less biased ex ante estimate could have been produced with 

a more targeted computation, however, the significant variance observed in realized benefits would 

remain. 

 

 

 

 

Figure 4-4   Benefits of the portfolio on out-of-sample tests in year 2028 ranked by social 

benefits. Left: Nodal existing generation benefits. Right: Nodal load benefits. 
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Figure 4-5  Distributional allocation ratio of the transmission expansion portfolio for all buses on 

out-of-sample scenarios in year 2028. Red dashed line is the portfolio allocation ratio in Table 4-

7. Left: Distributional allocation ratio on load. Right: Distributional allocation ratio on 

generators. 

To test how the benefits of the portfolio may evolve over the life of the new lines, we construct an 

additional test using realizations of uncertainty for the year 2038 and assuming that a 3000 MW 

capacity expansion on l8 has subsequently been added to the system. Referring back to Table 4-4, 

an expansion on l8 is chosen in each of the seven scenarios in the planning model, with the timing 

and size varying by scenario. With this 3000 MW expansion added to the system, we re-compute 

the benefits of the original portfolio of six transmission lines. Figure 4-6 shows the distribution of 

benefits when allocated only to load for the years 2028 and 2038. In year 2038, benefits shift away 

from loads at b1 to those at b2, b5, and b8. The shift exhibited in Figure 4-6 suggests an extension 

of the argument in Section 4.3 that a portfolio-level allocation should be preferred to a project-

level allocation. Suppose two projects with 50-year expected lives are selected and built in 

consecutive years. Given that they will coexist in the network for 49 out of their 50 years, their 

benefits will necessarily be interdependent and could be better assessed jointly. Extending the 

argument further, estimates of the aggregate benefits of the network may be more accurate than 

estimates of the benefits provided by any subset of network elements. 

Overall, the results confirm the potential for uncertainty to cause challenges in cost allocation 

given the disagreements that market participants will inevitably have on the probability of future 

scenarios. In the context of the “beneficiaries pay” standard, the distribution of possible outcomes 

makes it clear that an allocation of costs determined ex ante will not be commensurate with the 

benefits realized ex post. Economic theory offers a potential resolution to the resulting conflicts in 

the form of financial contracts issued ex ante that would effectively reallocate cost to the ultimate 

beneficiaries [54]. Given the complications involved in defining such contracts, we defer the effort 

to future work. 
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Figure 4-6   Distributional allocation ratio of the transmission expansion portfolio for all buses 

and generation on out-of-sample scenarios. Red dashed line is the portfolio allocation ratio in 

Table 4-6. Left: Distributional allocationratio in year 2028. Right: Distributional allocation ratio 

in year 2028 with additional 3000 MW expansion on l8. 
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5. Conclusions 

Given the numerous ways in which motivated parties can intervene to prevent transmission 

expansion, disputes over cost allocation can hold up investment in regional and interregional 

projects. Out of fairness and to forestall such interventions, U.S. system planners have sought 

methods to allocate costs according to the estimated benefits that projects will bring. In a direct 

benefits modeling approach, planners could in principle solve an optimization model that both 

established the social benefits of a project and enabled an estimate of benefits at the participant 

level. However, inadequacies in both the models available and the information used in them can 

lead to significant disagreements about the fairness of the resulting allocations. 

 

This chapter identifies several challenges in the use of models to establish cost allocations. Given 

the complexity of the modeling task, planners typically use a combination of software tools to 

evaluate proposed projects. One consequence is that it may be difficult to establish a valid 

counterfactual against which benefits can be measured and to calculate all categories of benefits 

that could result from an expansion project. The challenge is even greater when assessing benefits 

out of sample, since a full calculation would require not only determining the range of scenarios 

to be tested but also specifying a policy for future expansion decisions given the realization of 

uncertainty. 

 

Without fully resolving these challenges, the theoretical analysis and numerical study lead to five 

observations connected to the “beneficiaries pay” principle. First, benefit estimates should include 

some attempt to account for the change in the resource mix that is likely to occur with any change 

in the network. Second, cost should in general not be allocated to new entrants, but should be 

allocated to incumbents that benefit from transmission expansion. Third, allocations made on the 

basis of portfolios of projects are likely to be more defensible than those made on individual 

projects. Fourth, conflicts might be lessened with greater effort to compensate the losers from 

socially beneficial transmission expansion. Fifth, conflicts might be lessened with greater effort to 

address the risk that participant-level benefits will diverge significantly from ex ante allocation 

decisions. 
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