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Executive Summary 

There is increasing pressure on power system operators and electric utilities to utilize the existing 

grid infrastructure to the maximum extent possible. This mode of operation leads the system to 

operate close to its limits and can lead to instability problems. There are several forms of voltage 

instability, and each type requires different techniques to monitor and control.  

According to MISO’s Renewable Integration Impact Assessment (RIIA) Report, as the penetration 

of Inverter-based Resources (IBRs) approaches greater than 30%, voltage and converter-driven 

stability concerns arise in the system. Fault-induced delayed voltage recovery (FIDVR) occurs 

when the post-fault voltage recovers to a pre-fault voltage very slowly. If left untreated, FIDVR 

can lead to a complete voltage collapse. Inverter-based resources (IBRs) have the potential to 

improve delayed voltage recovery by providing dynamic reactive power support. This work 

investigates the potential of IBRs to enhance power system voltage performance. 

This project is divided into three major research thrusts: 

Thrust 1: (V. Ajjarapu, Iowa State University) 

• Thrust-1 focuses mainly on identifying control set-points for the hybrid-PV plants and 

DERs. It deals with the questions: 

o How do we coordinate hybrid PV plants and DERs with load control for the optimal 

voltage response? 

o How to properly exploit the capability of several inverters within a single hybrid 

power plant (PV + battery)? 

o How do we measure the effect of GFL/GFM inverter controls on the FIDVR 

performance? 

Thrust 2: (Hugo Villegas, Iowa State University) 

• Grid forming inverter controls to improve FIDVR while respecting inverter current 

limitation. 

Thrust 3: (Sanjeev Pannala, Washington State University) 

• Validation utilizing realistic T&D co-simulation testbed using RTDS and Opal-RT 

 

Part I:  Data-driven Hybrid PV Plant Control for mitigation of short-term 

voltage instability 

As the bulk electric system operation is moving into an operation regime where the economics are 

more important than in the past, the system operates close to the operating points with more chance 

of voltage instability. An essential type of voltage instability is the short-term large disturbance 

voltage instability that is caused by increasing penetration of the induction motor and electronic 

loads.  

The problem of monitoring and mitigating Fault-Induced Delayed Voltage Recovery (FIDVR) is 

addressed by utilizing the high sampling rate of PMUs and using data-driven control techniques 

to orchestrate hybrid PV plants to provide optimal dynamic var support to the system.  
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To find the optimal control settings of IBRs for dynamic reactive power support, the problem can 

be formulated as an optimal control problem. Due to the high dimensionality and high non-linearity 

in power systems, optimal control problems are computationally expensive to solve. So, a data-

driven approach that only depends on the sensor measurements can overcome the curse of 

dimensionality. The data-driven agent can be trained in offline simulation and then can operate 

and control the system online. 

To improve short-term voltage stability, deep RL-based control is used to train on the synthetic 

PMU measurements from the system. A deep RL agent requires an observations tuple, an action 

tuple, and a scalar reward function to evaluate each action. For voltage stability improvement, the 

observations are voltage measurements at specific buses. Control actions are real and reactive 

power setpoints for IBRs and the amount of flexible load to be controlled. 

The key takeaway from this part is that utilizing PMU measurements and offline training of the 

deep RL agent will enable the utilities to detect the FIDVR phenomenon and automatically 

compute the control setpoints for hybrid PV plants to mitigate delayed voltage recovery. This 

capability, combined with flexible load control of the single-phase induction motors, can ensure 

that the FIDVR recovery meets the transient voltage criterion set by the reliability coordinators.  

Part II:   Grid forming Inverter Controls to Improve FIDVR While respecting 

Inverter Current Limitations 

At present, grid-forming (GFM) inverter-based resources (IBRs), such as wind and solar, are 

expected to power the U.S. grid-like synchronous machines. However, one problem with this 

transition is that GFM IBRs powered by hybrid resources are still under research. Further, a major 

concern is that GFM IBRs cannot source over-rated currents, jeopardizing the starting up of SPIMs 

and the riding through of FIDVR events. Grid-forming inverters must optimally transfer power 

from dc-coupled photovoltaic arrays and batteries into an ac grid. Further, they must be able to 

restore single-phase induction motors (SPIMs) and withstand fault-induced delayed-voltage-

recovery (FIDVR) events. 

These resilience and reliability challenges are addressed here by:  

(i) engineering a controller to operate dc-coupled hybrid resources optimally. 

(ii) modeling   residential air-conditioning compressors for restoration/FIDVR studies; and  

(iii) analyzing SPIM thermal-relay performance under limited inverter currents and designing 

an electronic protection for stalled SPIMs. 

These contributions are demonstrated via electromagnetic-transient simulations to satisfy 

recommendations by the North American Electric Reliability Corporation. 

 

Part III:  Real-Time Synchrophasor Measurements Based Long Term Voltage 

Stability Monitoring and Control 

The WSU team worked on three topics under this task to validate the system using a real-time 

simulation testbed. The first task considered the ZIP load estimation from the distribution system 

to produce the aggregated load models to reflect accurate models at bulk power system levels 
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considering DERs. Solar PV and Battery energy storage systems are considered within the 

distribution system and created an equivalent simulation model for different operating conditions. 

Besides, the team also worked on network-level aggregation to complement different feeder levels 

to generate a single equivalent network. 

T&D co-simulation analysis was performed using benchmark systems from transmission and 

distribution sectors and applied different testing conditions from a distribution systems perspective 

to understand how noisy DER control impacts power system behavior. 

Finally, the IEEE 9 bus system replicates the typical fault-induced delayed voltage recovery 

(FIDVR) from single-phase induction motors with and without a Hybrid Solar PV system. A 

detailed discussion with results is included in the report under specific sections. 
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1. Introduction 

1.1 Background and Motivation 

Electric power systems worldwide are undergoing a transformative phase, increasingly 

incorporating renewable energy resources, like photovoltaic (PV) systems and distributed energy 

resources (DERs), into the traditional grid. The promise of these technologies, coupled with data-

driven approaches, brings forth the possibility of enhanced grid reliability and efficiency. This 

research delves deep into leveraging such opportunities, especially in the domain of voltage 

stability and coordination between transmission system operators (TSOs) and distribution system 

operators (DSOs). 

In recent years, there has been a noticeable surge in the penetration of inverter-based resources in 

power system, particularly solar power plants, in the power system. This trend is primarily driven 

by a combination of technological advancements, decreasing costs, subsidies by federal & state 

governments, and global commitments to sustainable and renewable energy.  

With the increasing penetration of renewable energy sources, power systems face new challenges 

in terms of voltage stability, especially during disturbances and high variability scenarios. DERs, 

including hybrid PV plants with storage, offer a promising solution by providing real-time 

active/reactive power support to stabilize voltage levels. However, effective control and 

coordination of these resources remain a significant challenge due to the intricate interplay 

between TSOs and DSOs, rapid changes in solar irradiance affecting PV outputs, and the real-time 

demands of the modern grid. 

Solar power, while promising, presents inherent challenges such as intermittency and 

unpredictability. Hybrid PV plants, which couple solar PV plants with battery storage, are 

emerging as a promising solution. By storing excess energy produced during peak solar hours, 

these systems can provide a more consistent and reliable power supply. This integration effectively 

addresses the seasonal variations of solar generation, ensuring a smoother power curve and 

mitigating grid instability issues. 

The US Energy Information Administration (EIA) anticipates a significant increase in the 

deployment of hybrid PV plants in the coming years as shown in Figure 1.1. Of the 14.5 gigawatts 

(GW) of battery storage power capacity planned to come online in the United States from 2021 to 

2024, 9.4 GW (63%) will be co-located with a solar photovoltaic (PV) power plant. These forecasts 

are based on an increasing recognition of the benefits of combining solar generation with storage. 

As per EIA's estimates, this rise can be attributed to various factors, including economic 

advantages, grid resiliency, and federal/state incentives promoting renewable integrations. 

Regional trends also follow the EIA’s estimated, as shown from MISO’s generation 

interconnection queue of hybrid resources, as shown in Figure 1.2.  
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Figure 1.1 Planned capacity of renewable energy resources in the US according to US Energy 

Information Administration [1] 

 

Figure 1.2 MISO's Generation Interconnection queue shoring the planned capacity for hybrid 

generation [2] 

1.2 Problem Statement 

As the bulk electric system operation is moving into an operation regime where the economics are 

more important than in the past, the system is operating close to the operating points with more 

chance of instability. Figure 1.3 provides the classification of power system stability as defined by 

the IEEE and CIGRE task force. 
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Figure 1.3 Classification of the various stability phenomenon in power systems [3] 

As the percentage of renewable energy resources increases the power system, converter-driven 

and voltage stability issues arise in the system. According to MISO’s Renewable Integration 

Impact Assessment (RIIA) Report [4], as the penetration of Inverter-based Resources (IBRs) 

approach greater than 30%, voltage and converter-driven stability concerns arise in the system. It 

is estimated that more than 90% of investments will be made to mitigate voltage and converter-

driven stability problems for systems with greater than 30% penetration of IBRs. Fault-induced 

delayed voltage recovery (FIDVR) occurs when the post-fault voltage recovers to a pre-fault 

voltage very slowly. If left untreated, FIDVR can lead to a complete voltage collapse. 

Inverter-based resources (IBRs) have the potential to improve delayed voltage recovery by 

providing dynamic reactive power support. To find the optimal control settings of IBRs for 

dynamic reactive power support, the problem can be formulated as an optimal control problem. 

Due to the high dimensionality and high non-linearity in power systems, optimal control problems 

are computationally expensive to solve. So, a data-driven approach which only depends on the 

sensor measurements can overcome the curse of dimensionality. The data-driven agent can be 

trained in offline simulation and then can operate and control the system in an online manner. 

1.2.1 Objectives and Scope 

As discussed in the previous section, this research focuses on the optimal utilization of hybrid PV 

to improve power systems voltage performance. The fundamental challenge is twofold: First, 

developing a controller for hybrid PV plants that reliably delivers the required active/reactive 

power to the bulk grid while being robust to disturbances and PV variability. Second, leveraging 

data-driven control techniques to develop a system-level control scheme to provide optimal 

dynamic voltage support from the hybrid PV plants. Addressing these challenges requires a data-

driven approach that can make the most of real-time measurements from Phasor Measurement 

Units (PMUs) and accommodate the dynamics of hybrid PV plants while respected the physical 

limits of each inverter. 
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This research aims to: 

• Detailed investigation of the delayed voltage recovery problem for solution through deep 

reinforcement learning  

• Development of deep reinforcement learning (DRL) based control framework utilizing 

open-source libraries and industry-standard power system solver. A case study using the 

framework is given for optimal load control to mitigate FIDVR. 

• Integration of hybrid PV plants using generic inverter-based resources control with 

conventional power system 

• To characterize the delayed voltage recovery, an index based on the probability density 

function of the voltage waveform is studied, and two such indices are compared. It is shown 

that these indices fully characterize the voltage recovery of the system after a motor 

stalling.  

• Moreover, this work analyzes different dynamic voltage support controls for PV plants and 

BESS and measures their impact on FIDVR using the indices developed.  

• Use physics-based, data-driven techniques to exploit the full potential of hybrid PV plants, 

particularly storage, in mitigating voltage instability. 

The scope of this project encompasses both the development of control strategies and their 

practical implementation, considering real-world challenges like noisy measurements and 

communication delays. 

1.3 Report Organization  

The report is organized as follows. Section 2 describes the Fault Induced Delayed Voltage 

Recovery phenomenon in detail and illustrates the various requirements by the reliability 

coordinators to ensure the compliance with voltage recovery criterion. The load model that can 

demonstrate FIDVR in software simulations (composite load model) and generic positive-

sequence hybrid PV plant modes approved by WECC are also discussed in detail to illustrate the 

various components involved in the phenomenon. Section 3 gives the metric to characterize and 

quantify FIDVR using entropy-based measures. Section 4 describes the role of inverter-based 

resources in mitigating FIDVR. We explore different control modes to measure their impact on 

the delayed voltage recovery. Section 5 details of the data-driven control based on Deep 

Reinforcement learning and how it is used to mitigated FIDVR. Section 6 gives the conclusion 

and future extensions of this work.  
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2. Fault-Induced Delayed Voltage Recovery 

Short-term large disturbance voltage stability is an increasing concern for industry because of the 

increasing penetration of induction motors and electronically controlled loads. While it is not 

analytically proven which power system components cause angle and voltage instability, recent 

work based on an information transfer metric in dynamical systems [5] seems to suggest that the 

induction motor loads are very much related to voltage instability. The short-term voltage 

instability is mainly caused by the stalling of induction motor loads and can manifest in the form 

of fast voltage collapse or delayed voltage recovery. One form of voltage stability is Fault Induced 

Delayed Voltage Recovery (FIDVR), which is the phenomenon in which the recovery of the 

voltage after a disturbance is delayed, resulting in sustained low voltages for several seconds (~15 

sec). 

2.1 Literature Review 

The FIDVR phenomenon causes slow recovery of post-fault voltage and can cause a voltage 

collapse if the system is already operating on the verge of voltage stability. With faster converter 

response from inverter-based resources like PV plants and battery energy storage systems (BESS), 

the FIDVR response of the system can be improved. So, the central thesis of this research is that 

the output of hybrid PV plants (PV plants with BESS) can be controlled to enhance voltage 

response after a severe fault and decrease the voltage recovery time. 

The problem of providing reactive power support using PV plants and BESS has attracted much 

interest from the research community. Reference [6] analyzes the impact of increasing penetration 

of PV generation on the power system. Although, the authors have not considered BESS in this 

paper. 

2.1.1 Detection and Mitigation of FIDVR 

The phenomenon of FIDVR has been studied by the authors of [7] and [8] using a simplified 

version of the WECC (Western Electricity Coordinated Council) Composite Load Model (CMLD) 

[9]. A delayed voltage recovery mitigation scheme using smart thermostats has been derived and 

tested using numerical simulations. Reference [10] proposes a dynamic voltage support capability 

using PV systems to improve short-term voltage stability. The proposed approach injects active 

and reactive power coordinated as a function of the terminal voltage.  

A delayed voltage recovery mitigation scheme using linear optimization-based load control is 

given in [11]. PV inverters are used to inject additional reactive power to support the grid and 

improve post-fault voltage response [12]. 

Authors of reference [13] proposed a decentralized adaptive control system to prevent power 

system voltage instability. Intelligent agents monitor bus voltage and relative generator power in 

each zone to detect any possibility of voltage collapse when the system is stressed. In [14], a smart 

PV inverter has been developed to improve system response to frequency and voltage excursions. 

Different control schemes have been tested and validated to use smart PV inverters, and their 

effects on voltage and frequency are presented.  
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Since planning and commissioning a battery energy storage system is dictated mainly by either 

financial benefit or to provide reliability support mandates by regulatory authorities, it is 

imperative to look at the financial aspects of the battery energy storage system. A techno-economic 

analysis of the PV plants with a battery storage system is given in [15], [16]. 

NERC conducted a study to analyze the impact of electrochemical utility-scale BESS on the bulk 

power system [17]. The detailed report emphasizes some potential reliability benefits BESSs can 

provide, such as delivering peaking capacity, minimizing the need for the new generation and 

transmission infrastructure, and providing essential reliability services (e.g., frequency response, 

ramping, and voltage support).  

Volt-var support by hybrid PV plants is an attractive strategy explored by researchers in the power 

system community. This technique intends to utilize the existing inverter installed for PV and 

BESS to provide dynamic voltage support to the bulk power system for improved system stability 

and reliability. The problem of volt-var support by hybrid PV plants needs further exploration in 

light of the NERC reliability guideline for inverter-based resources [18] and the latest IEEE Draft 

Standard for Interconnection and Interoperability of Inverter-Based Resources (IBR) 

Interconnecting with Associated Transmission Electric Power Systems [19]. 

2.1.2 Optimal Decision-Making in Power System 

Current decision-making for emergency power system control can be categorized into  

1) conventional optimal control [20],  

2) conventional machine learning, such as decision trees [21], deep learning [22], and conventional 

reinforcement learning (RL) [23].  

Optimal control methods are generally hard to scale to handle large-scale power systems with an 

increasing number of control devices as the distribution system is becoming more active. RL 

methods have been recently applied to various decision-making and control problems in power 

systems, including demand response [24], energy management, automatic generation control, and 

emergency control [25].  

Conventional reinforcement learning is not salable for problems with high dimensional states and 

action spaces. Also, the quality of conventional RL methods is dependent on handcrafted features. 

So, they are generally not suitable for large, complex problems where an accurate system model 

is not available, e.g., power system dynamic control problems. 

Recently, significant progress has been made in solving challenging large-scale problems using 

deep reinforcement learning (DRL), a combination of deep learning and conventional RL. 

Conventional RL uses hand-crafted features from input (such as Q-table); however, DRL uses 

deep learning for automatic high-dimensional feature extraction, thus dealing with large-scale 

complex environments efficiently. 

Authors of [26] have explored the application of deep reinforcement learning (DRL or Deep RL) 

methods on power system emergency control to improve system short-term voltage performance 
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using under-voltage load shedding (UVLS). The developed framework uses InterPSS [27] to 

simulate the power system.  

The use of industry-standard software in DRL applications is very limited in literature and thus 

limits the adaptation by industry of any proposed solutions. 

2.2 The phenomenon of Delayed Voltage Recovery in Power Systems 

FIDVR is mainly caused in systems with a moderate amount of single-phase induction motor loads 

(25% ~ 30%). After a large disturbance (fault, etc.), these motors, which are connected to 

mechanical loads with constant torque, stall and typically draw 5-6 times their nominal current, 

and this leads to the depression of the system voltage for a significant amount of time. The low 

voltages in the system inherently lead to some load being tripped by protection devices close to 

the fault. However, even after this, the concern is that the sustained low voltages (>10 s) can lead 

to cascading events in the system, steering toward a blackout. A typical delayed voltage response 

after a fault, along with the various features, is shown in Figure 2.1. 

 

Figure 2.1 Conceptual delayed voltage recovery waveform at a bus. 

Most single-phase induction motors are used in residential air-conditioners, and so the FIDVR 

phenomenon has been historically observed in systems where a large number of residential ACs 

are operational at the same time (e.g., summer in California or Arizona). Most of these devices do 

not use Under Voltage protection schemes and are only equipped with thermal protection with an 

inverse time-overcurrent feature, delaying the tripping up to 20s. 

 

Description of several FIDVR events observed in the field are listed in [28], and almost all of the 

occur in high residential load areas during a period of high temperature. As an example, Figure 2.2 

shows an FIDVR event on a 115kV bus in Southern California on July 24, 2004. The sustained 

low voltage is likely caused by stalled AC IMs, and the voltage finally recovered to pre-

contingency voltage around 25s after the fault. Out of the substation load of 960 MW, 400 MW of 

load was tripped by protection devices in residential and commercial units to recover the voltage. 
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Figure 2.2 Recorded delayed voltage recovery waveform at a 115kV bus in Southern California 

on July 24, 2004 [28]. 

2.2.1 Transient Voltage Recovery Criteria 

To prevent uncontrolled loss of load in the bulk electric system, NERC, WECC, and other 

regulatory bodies have specified transient voltage criteria that utilities and system operators need 

to satisfy after a fault has been cleared. Figure 2.3 provides a pictorial representation of the WECC 

criteria and the PJM criteria. 

 
(a)                                                                         (b) 

Figure 2.3 (a) WECC transient voltage criteria [29] (b) Simplified voltage criteria [30]. 

The WECC transient criteria are defined as the following two requirements [29] 

1. Following fault clearing, the voltage shall recover to 80% of the pre-contingency voltage 

within 20 seconds of the initiating event. 

2. Following fault clearing and voltage recovery above 80%, the voltage at each applicable 

bulk electric bus serving load shall neither dip below 70% of pre-contingency voltage for 

more than 30 cycles nor remain below 80% of pre-contingency voltage for more than two 

seconds. 
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A simplified voltage criterion is generally used by utilities, and the trajectory of the recovering 

voltage must be above the curve in Figure 2.3(b), where 𝑉1 = 0.5, 𝑉2 = 0.7 & 𝑉3 = 0.95 and 𝑇1 =
1 𝑠, 𝑇2 = 5 𝑠 & 𝑇3 = 10 𝑠. The ERCOT criteria for transient voltage response requires that 

voltages recover to 0.90 p.u. Within 10 seconds of clearing the fault [31]. 

 

The utilities ensure that the voltage recovery satisfies the guidelines specified by their regulatory 

authority during their planning phase and operational phase by either installing VAR devices 

(STATCOM, SVC, etc.) in critical regions and by ensuring that sufficient dynamic VARS are 

available during operation. 

2.3 Load Modelling for Simulation  

2.3.1 WECC Composite Load Model 

To enable the utilities and system operators to simulate the FIDVR phenomenon to estimate the 

amount of VAR support required, a dynamic load model has been developed recently by WECC 

called the Dynamic Composite Load Model. The composite model essentially aggregates the 

various kinds of dynamic loads in the sub-transmission network into several 3-𝜙 IM (representing 

high, medium, and low inertias) and an aggregate 1-𝜙 IM (representing the AC loads). 

Furthermore, the protection schemes that trip a proportion of the loads are also implemented for 

each of the motors, representing the Under Voltage and Under Frequency protection policies. An 

equivalent feeder is also present that tries to emulate the impact of voltage drop in the distribution 

system when a large current is drawn. The overall structure of the composite load model is shown 

in Figure 2.4, and the performance-based model of the 1-phase induction motor that is used in 

compositive load is shown in Figure 2.5. 

 

Figure 2.4 Structure of the composite load model [9] 

This model has 132 parameters and has been implemented by vendors in commercial software 

such as PSSE, PSLF, and PowerWorld. More details, along with descriptions of the various 

parameters, can be found in [9]. As part of this project, the CMLD model is studied in detail in 

order to understand the behavior and simplify the model for control schemes to mitigate FIDVR 

Load Shedding Schemes ZIP Load Aggr.

Large 3-𝜙 Motor Aggr.

Medium 3-𝜙 Motor Aggr.

Small 3-𝜙 Motor Aggr.

All 1-𝜙 Motors Aggr. 

Exponential Load Aggr.
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or to ensure that the FIDVR phenomenon is taken care of within the time as specified by the 

corresponding operator (ERCOT/PJM/WECC). 

 

Figure 2.5 1-ph A/C motor performance-based model [9] 

2.4 Examination of the WECC Composite Load Model 

As the composite load model has a comparatively large number of parameters and discrete controls 

compared to a conventional load model, understanding the model and how the various parameters 

impact the voltage performance is important. Moreover, the model specifications [9] only mention 

the behavior of most of the components and do not specify the actual equations used. Thus, 

engineering judgment needs to be made with regard to developing equations for analysis. For this 

purpose, understanding the 3-phase IM model and the 1-phase IM model, along with their 

protection components, is key. These are detailed in the following sub-section. 

2.4.1 3-Phase Motor Modelling 

The 3-phase motor model block diagram is shown in Figure 2.6. The input parameters for this 

model are as follows: 

• LFm --Loading factor –used to set motor MVA base 

• Rs –Stator resistance (pu) 

• Ls –Synchronous reactance (pu) 

• Lp –Transient reactance (pu) 

• Lpp –Subtransient reactance (pu) 

• Tpo –Transient open circuit time constant (sec.) 

• Tppo –Subtransient open circuit time constant (sec. 
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Figure 2.6 3-ph motor performance-based model for composite load [9] 

A detail that is often overlooked is the behavior of the motor when a percentage of the load is 

tripped by UV relays. An intuitive method to achieve this is by reducing the mechanical torque by 

the same percentage to reflect this loss of load. While this indeed reduces the active power 

demanded, it does not reduce the reactive power demand. Some of the 3-𝜙 motors are 

disconnected, and to properly reflect this physical scenario, the resistances of the equivalent circuit 

must be proportionally increased along with the reduction in the load torque. This ensures a 

reduction in both the active and reactive power demand.  

2.4.2 1-Phase Motor Modelling 

The 1-𝜙 induction motor is the main reason why the FIDVR is observed. The 1-𝜙 IM model has 

representations of the AC compressor motor, compressor motor thermal relay, under-voltage 

relays, and contactors. Depending upon the input voltage, the motor operates either in a ‘running’ 

or ‘stalled’ state. The behavior of the motor as a function of the voltage can be understood based 

on the power consumption of the motor, and Figure 2.7 plots the active and reactive power demand 

as a function of the voltage for the normal operation and stalled operation. 
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Figure 2.7 Active power (left) and Reactive power (right) versus the voltage for the normal 

operation and stalled operation for the 1 − 𝜙 induction motor [9]. 

From Figure 2.7, it can be seen that in the stalled state, the active power demand is 3 times the 

nominal amount, and the reactive demand is 6 times the nominal amount compared to the normal 

‘running’ state. This large demand is the reason why the voltage reduces at the substation, causing 

FIDVR. This demand is naturally reduced via thermal protection, which takes around 10-15 

seconds.  

2.5 Modeling of IBRs (utility-scale and DERs) for Stability Studies 

With the increasing penetration of Inverter-Based Resources (IBRs) in power systems, the 

complexity of power system dynamic response has increased due to intermittent characteristics of 

renewable energy resources and lower inertia. This restructuring of the power system has 

drastically impacted the system's dynamic performance, resulting in inter-area oscillations, lower 

synchronous coupling, frequency response, and voltage stability issues. Regulatory and balancing 

authorities have started mandating voltage support functionality from the hybrid PV plants to 

overcome some of these issues. 

Traditionally, voltage regulation mainly relies on bulk synchronous generators' reactive power 

support, and FACTS devices-based voltage regulators, and load-side reactive power 

compensation. With increasing weather severity during summer, air conditioning load stresses the 

system due to increased reactive power demand and complicates the fault dynamics. As AC loads 

majorly consist of 1-phase induction motors, they have very peculiar post-fault load 

characteristics. After a fault, 1-phase motors stall and draw about 6-8 times more current than the 

nominal load current. This increased current further exacerbates the situation and causes a slow 

post-fault voltage recovery, formally known as Fault-Induced Delayed Voltage Recovery 

(FIDVR).  

Voltage instability, often occurring in the form of a progressive decline or increase in voltage 

(long-term voltage stability), can lead to major system disturbances or blackouts if not addressed 

in a timely manner. In this context, the intrinsic characteristics of Hybrid PV Plants play an 

important role, especially with high inverter penetration. In this context, modeling of IBRs in the 

system plays an important role in studying the phenomenon of delayed voltage recovery. 

3x the Nominal MW
at 0.8 p.u.

6x the Nominal MVAR
at 0.8 p.u.
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To model hybrid PV plants for stability studies, we have followed WECC and EPRI guidelines 

using generic renewable energy converters (REGCA), electrical controllers for PV/BESS 

(REECB/REECC), and plant controllers (REPCA) included in PSS/E [32]. The topology of these 

controllers to model a utility-scale BESS or PV plant is shown in Fig. 2.8. 

 

 

Figure 2.8: Block Diagrams of Different Modules of the WECC Generic Models for PV 

plant/BESS [32] 

For DER modeling, we have considered aggregation at the composite load level. So, all the DERs 

within a distribution system have been aggregated on the transmission side in the form of DER in 

composite load. This reduced the computational complexity in the simulation. The block diagram 

of the plan and inverter level controllers are given in Figures 2.9 and 2.10. 

 

Figure 2.9 Plant level controller showing reactive and real power control loops based on 

REPC_* [32] 

Q/V based reactive power control 

Frequency droop control 
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Figure 2.10 Inverter level controller based on REEC_* [32] 

2.5.1 Grid Following (GFL) vs. Grid Forming (GFM) Inverters 

Grid following and grid forming inverters differ in their operations, and this difference impacts 

the power system stability. Grid forming inverters use, e.g., a speed droop control law, to 

synthesize autonomously an artificial phase angle. Grid-following inverters use a phase-locked 

loop (PLL) to track the phase angle of externally generated voltages that are assumed to have stiff 

regulation, e.g., a set of synchronous machines in an interconnection (some are being displaced by 

inverters). A comparison of GFM vs. GFL inverters is given in Table 2.1. 

Table 2.1 Comparison of grid-forming and grid-following inverters 

 
Grid-Forming 

Inverters 

Grid-Following 

Inverters 

Independency on externally generated 

voltages to operate? 

yes (+) no (-) 

Semiconductor limitations to provide 

overrated currents? 

yes yes 

Regulation of voltage waveform 

magnitudes? 

yes yes (if PLL is locked) 

Reactive current control loop 

Active current control loop 
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Regulation of voltage waveform angular 

frequency? 

yes no 

Require stiff voltage sources for parallel 

operation? 

no yes (-) 

2.5.2 EMT and Positive Sequence Domain Modeling 

An EMT model for Grid Forming Inverter (GFM) was developed as part of the Thrust-2 of this 

project after prototyping and testing the GFM inverter model. It was converted to a positive 

sequence model for testing in the positive-sequence stability simulation in PSSE. The whole 

procedure for deducing the positive sequence model from the EMT model is shown in Figure 2.11-

2.14. 

 

 

Figure 2.11 EMT model of hybrid PV plant 

 

Figure 2.12 Positive sequence model of hybrid PV plant 
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Figure 2.13 PSSE to python interface for custom developed positive sequence model 

 

Figure 2.14 Comparison of dynamics of GFM inverter and the rest of network  

ac capacitor 
voltages 

To bulk 
power 
system 

grid currents 

(Slow dynamics) 

(Fast dynamics) 
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3. Metrics for FIDVR Monitoring 

This section introduces the metrics to detect and measure the occurrence of Fault-Induced Delayed 

Voltage Recovery (FIDVR) at the early onset. We also discuss the metrics to characterize and 

quantify the FIDVR and its use in the detection of mitigation of delayed voltage recovery. 

To characterize the performance of the voltage response, WECC has provided guidelines to 

analyze the voltage performance following a fault. However, the criterion is a pass/fail criterion 

and does not give any means to quantify the deviation from a normal voltage recovery waveform. 

In the literature, there are generally two methods used to quantify voltage recovery in FIDVR 

events [33]: 

• Slope-based methods are based on the slope or derivative of the voltage after fault 

clearance. Slope-based methods have a major disadvantage as these are not suitable for 

discontinuous or sudden changes in the voltage. 

• Integral-error-based methods measure the integral of the difference between pre-fault 

voltage and actual voltage after fault-clearance. However, these methods cannot 

distinguish between a voltage that recovers to about 0.8 pu and then takes a long time to 

recover to pre-fault voltage. The voltage initially recovers to a lower value, say 0.5 pu, then 

quickly recovers to the nominal value. An integral-error metric might quantify both 

voltages recovers as the same.  

To deal with the limitations of the methods described in the literature, we utilize a PDF-based 

voltage recovery index known as the Kullback-Liebler divergence. The proposed index can 

differentiate the voltages that take longer to recover as described previously and also provides a 

critical value that demarcates a sharp boundary indicating non-compliance of voltage with a given 

voltage recovery criterion. The index was first proposed by the authors of [33] and is used here 

with some modifications. 

To quantify the system's performance with different control schemes, a voltage recovery criterion 

is considered to compare and determine the acceptable post-fault voltage recovery with respect to 

time. We have used the North American Electric Reliability Corporation (NERC) voltage recovery 

criteria as given in [34] and shown in Figure 3.1. 

 

Figure 3.1 NERC voltage recovery criteria as per NERC PRC-024-2 [34] 
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3.1 Kullback-Liebler Divergence 

To estimate the severity of FIDVR, we have used an entropy-based metric to compare the deviation 

of voltage from the transient voltage recovery criterion. This was inspired by the KL distance 

proposed to quantify FIDVR for planning of reactive reserves [33]. The divergence is the statistical 

distance between the probability distribution of the original voltage waveform and the probability 

distribution of the reference. A pictorial representation of the slow and fast voltage recovery with 

their respect probability density functions (PDFs) is shown in Figures 3.2 and 3.3. This specific 

probability density function is for the time after the fault (1.1 sec) to the end (5 sec). We use the 

idea in smaller time-windows to get a real-time implementation. 

 

Figure 3.2 Slow and fast recovery of voltage post-fault [33] 

 

Figure 3.3 Discrete PDF of voltages in figure 3.2 

The KL divergence measures the relative entropy between two probability density functions 

(PDFs). Borrowing the term from information theory, we call this relative distance the Kullback-

Liebler (KL) divergence. We can define the KL divergence for the given PDF of a voltage 

waveform 𝑝(𝑥).  
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To calculate the KL divergence, the Probability Density Function (PDF) of the voltage waveform 

is computed and compared with the PDF of an ideal voltage recovery.  

Since KL divergence is a relative entropy between two PDFs, we first define the entropy of a 

function, denoted by 𝐻(𝑝, 𝑇), with probability density function 𝑝(𝑥) as: 

 𝐻(𝑝, 𝑇) = − ∫ 𝑝(𝑥) ln 𝑝(𝑥) 𝑑𝑥

 

𝑥

 (3.1) 

The actual PDF 𝑝(𝑥) can be approximated by discretized PDF �̃�(𝑛) over 𝑁 discrete intervals, thus 

entropy 𝐻(. ) becomes: 

 𝐻(�̃�, 𝑇) = − ∑ �̃� ln (�̃�)

𝑁

𝑖=1

 (3.2) 

The Kullback-Liebler divergence between two PDFs, 𝑝(𝑥) 𝑎𝑛𝑑 𝑞(𝑥), denoted by 𝐷(𝑝||𝑞), is 

defined by: 

 𝐷(𝑝||𝑞) = ∫ 𝑝(𝑥) ln (
𝑝(𝑥)

𝑞(𝑥)
) 𝑑𝑥

 

𝑥

 (3.3) 

The KL divergence is a scalar value that is always non-negative and is zero only when both PDFs 

are equal. KL divergence gives a measure of relative entropy (or relative distance) between two 

PDFs. So, we will utilize this property of KL divergence to measure the voltage recovery when 

compared to an ideal or required voltage recovery. The value of KL divergence will increase when 

the difference between two PDFs is greater.  

The absolute value of KL divergence can give a quantitative measure of the difference between 

the PDFs of voltages, but we are interested in comparing the voltage recovery performance against 

a voltage recovery criterion, i.e., the NERC voltage recovery criterion (𝑉𝑊𝐸𝐶𝐶). To accomplish 

this, we define a critical value of KL divergence below which the voltage satisfies 𝑉𝑊𝐸𝐶𝐶. We 

divide the voltage recovery criterion according to different timeframes and voltage constraints.  

The voltage satisfies the following condition for the time instants, 𝑇1 and 𝑇2, such that 𝑇𝑐𝑙 < 𝑇1 <
𝑇2 < 𝑇𝑓: 

 

𝓔

≔ {

𝒗(𝒕) ≥ 𝑽𝟏;     𝑻𝒄𝒍 ≤ 𝒕 < 𝑻𝟏                

𝒗(𝒕) ≥ 𝑽𝟐;     𝑻𝟏 ≤ 𝒕 < 𝑻𝟐, 𝑽𝟐 > 𝑽𝟏

𝒗(𝒕) ≥ 𝑽𝟑;     𝑻𝟐 ≤ 𝒕 ≤ 𝑻𝒇, 𝑽𝟑 > 𝑽𝟐

 
(3.4) 

where  ∆𝑇1 ≔ 𝑇1 − 𝑇𝑐𝑙, ∆𝑇2 ≔ 𝑇2 − 𝑇𝑐𝑙, ∆𝑇𝑓 ≔ 𝑇𝑓 − 𝑇𝑐𝑙 and  

𝓔  Voltage envelope set of WECC voltage recovery 

criterion 

𝑻𝒄𝒍  Fault clearing time 

𝑻𝟏  Time till the first voltage constraint 
𝑻𝟐  Time till the second voltage constraint 
𝑻𝒇  Final simulation time 

𝑽𝒊  𝒊𝒕𝒉
 voltage constraint, ∀ 𝒊 = 𝟏, 𝟐, 𝟑 
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The critical value of KL divergence, 𝓚∗, that shows compliance with the transient voltage recovery 

criterion is calculated using: 

  (3.5) 

If a post-fault voltage trajectory, 𝑣(𝑡), satisfies the given condition defined by envelope 𝜖, then 

𝒦 ≤ 𝒦∗ where  

𝓚  KL divergence between discrete PDFs 

𝓚∗  The critical value of KL divergence 

Note that the value of 𝒦∗ depends on 𝑇𝑐𝑙 , 𝑇1, 𝑇2, 𝑇𝑓, 𝑎𝑛𝑑 𝑉𝑖. For using specific values of voltages 

and times for 𝑉𝑊𝐸𝐶𝐶 and 𝑇𝑓 = 20 𝑠, the critical value of KL divergence is 9.75. This means that 

any voltage trajectory that follows the 𝑉𝑊𝐸𝐶𝐶 will have a 𝒦 of less than 9.75. Also, the critical value 

of KL divergence can change when the parameters of calculation change or the transient voltage 

recovery criterion changes. 

3.2 Impact of Operating Conditions on Severity of FIDVR 

The higher the IM percent, the longer they take to recover to their pre-fault voltage. Also, the 

response with the least amount of IM has the most negative KL, while the response with the largest 

amount of IM is the least Negative and goes positive for a small amount of time. The slope of the 

KL index can be used to estimate the time required for the FIDVR to recover; this cannot be done 

directly on the voltages due to the oscillations. However, there are sharp transitions in the KL 

index due to the logarithm function, and this needs to be improved as well for predictive 

capabilities. 

As the system loading or the ratio of the SPIM in the load changes, the delayed voltage recovery 

characteristics of the system also change. This phenomenon is shown in Figure 3.4. 
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Figure 3.4 Severity of FIDVR with base case, load scaling and motor-D ratio change 
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4. Impact of IBR Controls on Voltage Stability 

In this section, we give details of the impact of inverter-based resources on short-term voltage 

stability. We consider the phenomenon of delayed voltage recovery and show different control 

modes of IBRs can impact delayed voltage recovery. If not properly mitigated, the delayed voltage 

recovery can extend to a sudden voltage collapse.  

We have developed a case study to study the impact of high penetration of utility-scale PV 

generation in the transmission system. More specifically, the objective is to develop a dynamic 

voltage support control to improve fault-induced delayed voltage recovery (FIDVR) and compare 

different mitigation techniques to import the system’s short-term voltage stability by improving 

voltage recovery after a fault.  

The system developed by the IEEE PES Power System Dynamic Performance Committee is used 

for testing different control modes [35]. The standard Nordic 74-bus system for voltage stability 

is modified by replacing some of the synchronous generators with hybrid PV plants, and the system 

performance is assessed with increased penetration of solar PV plants. 

We replaced some of the synchronous generators with hybrid-PV plants as follows: g6 and g7are 

replaced with 5 hybrid PV plants (130 MVA each) connected to buses 1041 to 1045; g14 replaced 

3 hybrid PV plants (240 MVA each) connected to buses 4042, 4043 and 4046; and g17 is replaced 

with 2 hybrid PV plants connected to bus 4061 and 4062. Some of the connected shunts are 

adjusted to make the system operate like the one described as operating point-B in [35]. The system 

diagram after replacing synchronous generators with hybrid PV plants is shown in Figure 4.1. 
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Figure 4.1: Modified Nordic voltage stability test system 

To capture the Fault Induced Delayed Voltage Recovery (FIDVR) phenomenon, the load has been 

modeled as a composite load model to include the dynamics of single-phase induction motors, 

which are the primary cause of FIDVR due to stalling when the voltage drops due to a fault. The 

topology of a typical composite load model (CMLD) is given in Section 2.3. In this study, we have 

not included aggregated distributed generation with the composite load model, so only the CMLD 

(and not CMLDWG) model is used. 

In the Nordic voltage stability test system, several loads in the system have been modeled as 

composite loads. For this case study, buses 42, 43, and 46 have been taken as composite load buses.  

To quantify the performance of the system with different control schemes, a voltage recovery 

criterion is considered to compare and determine the acceptable post-fault voltage recovery with 

respect to time, as given in Section 3. The model of hybrid PV plants used is shown and discussed 

in Section 2.5. 

Hybrid  

PV plants 

Fault location 

Replaced 

Synch. Gen 

CMLD at Bus 

42,43,46 
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4.1 Comparison of different control models of hybrid PV plants 

As described in the previous section, time-domain simulations for the system are carried out to 

measure the impact of dynamic voltage support on the FIDVR. 

The impact of different control parameters and control strategies is tested on the system for specific 

faults in the system. A 3-phase fault is considered on lines 4032-4044 close to bus 4032. The fault 

is applied for 100 ms and cleared by opening the line between bus 4032-4044. This fault location 

is selected because it influences the hybrid PV systems and causes the motor to stall on the nearby 

loads; thus, the FIDVR phenomenon is observed. 

4.1.1 Hybrid PV Plant with Const. P&Q 

In this case, we consider composite loads on Bus 42,43,46 in the Central area of the Nordic voltage 

stability test system. The BESS and PV plants are operated while fulfilling LVRT requirements, 

but no dynamic voltage and reactive power injection support are provided by any of the inverters 

in hybrid PV plants.  

The results indicate significantly delayed voltage recovery in this case because of single-phase 

induction motor stalling in the buses close to the fault location. When compared to the NERC 

voltage recovery criterion, not only the buses close to the fault (Bus 42) show FIDVR but also 

neighbor buses that are not equipped with the CMLD model. 

Also, since the hybrid PV plants operate in constant real and reactive power mode, for which 

setpoints are fixed from load flow during initialization, no extra reactive power support is provided 

by the PV plant to recover the voltage. The voltage profiles at the composite load buses and 

neighbor buses are shown in Figures 4.2-4.3 

 

 

Figure 4.2 Voltage profile at the buses showing FIDVR 
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Figure 4.3 Voltage at the neighbor buses 

4.1.2 Voltage Control Mode 

In this case, both BESS and PV plant inverters have been included with a controller to control 

terminal voltage at the Point of Interconnection (POI). So, reactive power is injected at the POI 

proportional to the voltage deviation from the nominal voltage after the fault is cleared. Due to 

extra reactive power support from the hybrid PV plant, the voltage at the POI shows a significantly 

better recovery rate compared to the base case. The voltage profiles for this case are shown in 

Figures 4.4-4.5. 

 

Figure 4.4 Voltage profile at the buses showing FIDVR 
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Figure 4.5 Voltage at the neighbor buses 

4.1.3 Motor-D Tripping – 20% 

As seen in previous cases, the reactive power injection capability of the hybrid PV plants is not 

fully utilized unless we optimally set the real and reactive power set points of the system.  

When a single-phase induction motor (usually installed in residential AC units) stalls, it doesn’t 

restart automatically. So, the motor is tripped by the thermal relays, which take some time in order 

of a few seconds to tens of seconds. Old motors are usually equipped with thermal relays but not 

Undervoltage (U/V) relays.  

But the newer AC units are also equipped with U/V protection, which can trip the motor in a few 

cycles when low voltage is detected at the terminals.  

In the next study, we assume that 20% of the single-phase motors (AC units) are equipped with 

U/V protection, which trips the motor almost immediately (within a few cycles) after the fault and 

thus prevents the loads from demanding huge amounts of reactive power. So, tripping of induction 

motors helps in voltage recovery, as evident in the results shown in Figures 4.6-4.7. 
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Figure 4.6 Voltage profile at the buses showing FIDVR 

 

Figure 4.7: Real and reactive power demand by composite load 

4.1.4 Entropy-based measurement of severity of FIDVR 

As described in the previous section, time-domain simulations on the Nordic voltage stability test 

system are carried out to measure the impact of dynamic voltage support on the FIDVR. 

The impact of different control parameters and control strategies is tested on the system for specific 

faults in the system. A 3-phase fault is considered on lines 4032-4044 close to bus 4032. The fault 

is applied for 100 ms and cleared by opening the line between bus 4032-4044. This fault location 

is selected because it influences the hybrid PV systems and causes the motor to stall on the nearby 

loads; thus, the FIDVR phenomenon is observed. 
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Table 4.1  Case study scenarios with different controls 

Case Description 

Case-A Const. real and reactive power injection 

Case-B REPCA voltage control and Inverter-level Q/V control 

Case-C Inverter-level coordinate Q/V control (No plant-level controller involved) 

Case-D Case-C + 25% Motor-D tripping for all CMLD loads 

Table 4.1 gives the description of different control cases for the hybrid PV plants. Table 4.2 gives 

numerical values of the voltage recovery indices for all the case studies. The entropy value of a 

better voltage recovery case is less, so from Case-A to Case-D, the voltage recovery becomes 

better, as evident from Fig. 4.8, and 4.9. For more details, interested readers can refer to our paper 

[42]. 

Also, for KL divergence, the value decreases, and for Case-D, the value is less than 9.75, i.e., the 

critical value of KL divergence; this shows that the last case complies with the NERC voltage 

recovery criterion. 

Table 4.2 Voltage recovery characterization indices for all case studies 

Case Entropy KL Divergence 

Case-A 1.1196 25.3434 

Case-B 1.0641 19.4609 

Case-C 0.9108 13.7850 

Case-D 0.8149 9.5197 

 

 

Figure 4.8 Voltage profile comparison for all control cases [42] 
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Figure 4.9 Reactive power injection by PV plant for different controls [42] 
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5. Data-driven control strategies using hybrid PV plants 

In this task, we are developing data-driven online control strategies for DERs and hybrid PV plants 

to mitigate voltage instability. During the last two quarters, we have been investigating the impact 

of utility-scale solar PV power plants with Battery Energy Storage System (BESS), hereby referred 

to as hybrid PV plant, on the short-term voltage stability of the system. We developed a case study 

to study the impact of high penetration of utility-scale PV generation in the transmission system. 

More specifically, the objective was to develop a dynamic voltage support control to improve 

fault-induced delayed voltage recovery (FIDVR) and compare different mitigation techniques to 

import the system’s short-term voltage stability by improving voltage recovery after a fault. The 

details are given in the previous report. 

We worked on a Deep Reinforcement Learning (DRL) based data-driven load control by optimally 

tripping stalled induction motor loads to recover the voltage quickly in a FIDVR event. The amount 

of load tripping depends on system operating conditions, so the data-driven framework gives 

optimal load control adaptable to the system conditions. The results from numerical simulations 

show that the dynamic reactive power injection and DRL-based load control improve the voltage 

recovery and significantly decrease the amount of load tripped. 

First proposed in [33], entropy-based metrics were used to quantify delayed voltage recovery. The 

KL divergence measures the relative entropy between two probability density functions (PDFs).  

To calculate the KL divergence, the voltage waveform’s Probability Density Function (PDF) is 

computed and compared with the PDF of an ideal voltage recovery. The Kullback-Liebler 

divergence between two PDFs, 𝑝(𝑥) 𝑎𝑛𝑑 𝑞(𝑥), denoted by 𝐷(𝑝||𝑞), is defined by: 

 𝐷(𝑝||𝑞) = ∫ 𝑝(𝑥) ln (
𝑝(𝑥)

𝑞(𝑥)
) 𝑑𝑥

 

𝑥

 (5.1) 

During FIDVR events, some load is tripped in a controlled manner to constrain the impact of 

delayed voltage recovery. Usually, it is done using under-voltage load shedding (UVLS) relays, 

which cannot adapt to the changing operating conditions and varying output by renewable energy 

resources. So, the optimal amount of load tripping is dependent on several factors, including but 

not limited to system loading conditions, location of the fault, percentage of motor-D in composite 

load, etc. 

5.1 Reinforcement Learning for Power System 

To optimally find out the amount of load to be tripped, the problem can be formulated as a dynamic 

programming problem. Due to the high dimensions of states in a power system, dynamic 

programming is computationally expensive to solve. So, a data-driven approach in which the 

system model is not needed can be used. The data-driven agent can be trained in offline simulation 

and then can operate and control the system in an online manner. 

For large-scale power systems, the emergency control problem is a highly non-linear, non-convex 

optimal decision-making problem and can be formulated as follows:  
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5.1.1 Objective function: 

 (5.2) 

Here 𝐶(. ) represents cost function, 𝑑(𝑡) represents any disturbances, 𝑥𝑡 is a vector of dynamic 

state variables (rotor angles and speed, etc.), 𝑦𝑡 is a vector of algebraic state variables (e.g., 

voltages at the buses), at are the control actions (reference change or load tripping, etc.), [𝑇0, 𝑇𝑐] 
is the time horizon. The control problem given in the objective function can be formulated as a 

Markov Decision Process (MDP) and solved by Reinforcing Learning (RL) methods. Not all 

system states are observable, so this is a partially observable MDP problem. 

5.1.2 Markov Decision Process 

In RL, the agent learns to make optimal decisions by interacting with the environment through 

exploration and exploitation [36], as shown in Figure 5.1. The environment is modeled as a 

(partially observable) Markov decision process (MDP), defined by:  

• A state space S that could be continuous or discrete.  

• an action space A that could be continuous or discrete;  

• an environment transition function P: S × A → S;  

• a reward function 𝑅: 𝑆 ×  𝐴 →  𝑅;  

• a discount factor γ ∈ [0, 1].  

 

In this setting, at each time step t, the agent can observe the state 𝑠𝑡 ∈  𝑆 and receive reward 

signals 𝑟𝑡 ∈  𝑅 from the environment. At the same time, the agent can select an action at time t, 

𝑎 ∈ 𝐴 to change the environment. The goal is to apply the optimal action given the current state 

so that the agent can accumulate the most rewards over time, which are generally defined as 

discounted future return 𝑅𝑡.  

  (5.3) 

where T means the time step when the interaction with the system ends.  
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To evaluate the result of the action based on the current state, the action-value function, also known 

as the Q function, is proposed as 𝑄(𝑠, 𝑎). We define the optimal Q-value of the state-action pair 

(𝑠, 𝑎) as 𝑄∗(𝑠, 𝑎), which represents the maximum discounted future return after taking action at 

states. The Q function is updated by the iteration algorithm in the Bellman equation, defined by 

[36].  

 (5.4) 

The iteration will converge to the optimal solution 𝑄∗(𝑠, 𝑎) as t → ∞ if the state signals have the 

Markov property. Q-Learning is a value-based RL algorithm that finds the optimal action-selection 

policy using: 

  (5.5) 

where η represents the learning rate.  

 

Figure 5.1: Reinforcement Learning at a Glance 

5.1.3 Deep RL for Power System 

For the power system environment, the system states are given by the solution from the differential 

and algebraic equations at each time step. For the load control problem, the system inputs are the 

voltages at the specified buses, which are continuous, and control actions are the percentage of 

load to be tripped at 𝑡 = 2.1 sec (1 second after the fault clearance time), so the control action is 

also continuous. The overall framework of the deep reinforcement learning framework for the 

power system is shown in Figure 5.2 [41].  
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Figure 5.2. Deep Reinforcement Learning (DRL) framework for power system [41] 

The Q-learning algorithms can only be applied to environments with discrete observation and 

action spaces. So, we used the continuous-space variant of Deep Q Networks (DQN), which is 

known as Deep Deterministic Policy Gradient (DDPG), first proposed in reference [36]. The 

algorithm for DDPG is shown in Figure 5.3.  

 

Figure 5.3: Deep Deterministic Policy Gradient (DDPG) algorithm [36] 

To build the DRL framework for the power system for voltage stability studies, PSSE python API 

[37] is used as an environment to simulate the power system. OpenAI gym [38] is used to integrate 

the power system environment as a valid environment for reinforcement learning training. The 

algorithm for Deep RL is implemented using StableBaselines3 [39]. The complete workflow of 

the framework is shown in Figure 5.4. 
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Figure 5.4 Framework of Deep RL studies using PSS/E, OpenAI Gym, and StableBaselines3 

5.1.4 DRL Reward Function to Mitigate FIDVR 

To evaluate the quality of action taken at each time instant, a reward function is designed 

considering the physical parameters and transient voltage recovery criterion by NERC. 

The reward function is given by: 

 (5.6) 

where 𝑇𝑐𝑙 is the fault clearing time instant.  

The reward function has two parts: 1) total bus voltage deviation below the lower voltage envelope 

given by transient voltage recovery criterion. 2) total load shedding amount, where △ 𝑃𝑗(𝑝𝑢) is 

the amount of load tripped in per unit at bus j at the time step t. 𝑐1 and 𝑐2 are weight factors for the 

two components of reward and are tuned heuristically combined with the prior knowledge of the 

environment. 

5.2 Case Study 

The developed deep reinforcement learning framework is used for optimal undervoltage load 

shedding to mitigate FIDVR. The DDPG algorithm is tested on the modified Nordic voltage 

stability system with select locations for grid-forming inverters, is shown in Figure 5.5. The 

OpenAI Baselines3 tool is used with PSS/E python API to learn a closed-loop control policy based 
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on DDPG. The objective is to determine the amount of Motor-D load tripping at buses 42, 43, and 

46, which are modeled as composite loads and thus cause delayed voltage recovery after fault 

clearance. The inputs to the algorithm are the voltage magnitudes at the high voltage side of the 

transformer connected to composite load buses. The coefficients for the reward function are taken 

as 𝑐1 = 260 and 𝑐2 = 150. 

 

Figure 5.5 Modified Nordic voltage stability test system showing the location of GFL & GFM 

inverters in the system [35] 

The control action is applied 1 second after the fault-clearing time (𝑇𝑐𝑙 = 1.1𝑠) to account for the 

communication, sensing, and computation delays. The maximum percentage of Motor-D loads 

that can be tripped is 60% of the initial Motor-D load. Other important hyperparameters are as 

follows: total interaction steps in training are 50,000; nodes in hidden layers Nh1 = Nh2 = 256; 

learning rate η = 0.00005; minimum exploration rate ϵmin = 0.02. Also, the learning starts at the 

300th time step to give enough time to the DRL agent to explore the environment. During offline 

training, each episode begins flat for 1 second. A fault is applied at 1 second, lasting for 100 ms. 

The DRL agent takes observation and applies actions to the environment at 0.1 s time steps. Note 

that the DRL time step is different from the environment simulation time step, which is set to 
1

120
s. 

GFL Hybrid PV plant 

GFM Hybrid PV plant 

Replaced Synch. Gen 
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The model of hybrid PV plants used is shown and discussed in Section 2.5. 

5.2.1 Case Study Results 

The impact of different control parameters and control strategies is tested on the system for specific 

faults. A 3-phase fault is considered on lines 4032-4044 close to bus 4032. The fault is applied for 

100 ms and cleared by opening the line between bus 4032-4044. This fault location is selected 

because it influences the hybrid PV systems and causes the motor to stall on the nearby loads; thus, 

the FIDVR phenomenon is observed. Table 5.1 describes different control cases for the hybrid PV 

plants.  

Table 5.1 Case study scenarios with different controls using GFL & GFM inverters 

Case Description 

Case-A 
Const. real and reactive power injection  

(GFL Inverters) 

Case-B REPCA voltage control and Inverter-level Q/V control (GFL Inverters) 

Case-C 
Inverter-level coordinated reactive power/voltage (Q/V) Control Loop 

(GFL Inverters) 

Case-D Case-C + Load Control + DERs 

Case-E Grid Forming Inverters + Load Control + DERs 

5.2.2 Optimal Load Tripping with Deep Reinforcement Learning 

To comply with the voltage recovery criterion at all the buses, 50% of all motor-D loads need to 

be tripped. However, this load trip doesn’t consider the sensitivity of the load trip to the voltage 

magnitude at each bus. Thus, the amount of load trip may be an over-design for the system. 

Since the amount of load percentage needed to trip depends on the voltage sensitivity of that bus 

w.r.t system operating conditions, the same amount of load trip at all the composite load is not a 

suitable action. So, we employ the deep reinforcement learning framework to determine the 

amount of optimal load tripping. 

The system is simulated using the Case-C control for hybrid PV plants since it provides the best 

dynamic voltage support to improve delayed voltage recovery. Thus, combining Case-C inverter 

controls with optimal load control using DRL will produce the best results for improvement in 

FIDVR. 

The system is simulated as per the hyperparameters given in the previous section. The reward 

function converges as the training proceeds, as shown in Figure 5.6. The low reward value around 

the 5000th time-step indicates a bad exploration by the DRL agent. The optimal control action is 

tested on the system, and it gives a value of 2%, 38%, and 52% load trip for Loads 42,43,46, 

respectively. The voltage waveforms for the load are shown in Fig. 5.7. 
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Figure 5.6: Moving average reward for the agent during training 

Table 5.2 gives numerical values of the voltage recovery indices for all the case studies. The 

entropy value of a better voltage recovery case is less, so from Case-A to Case-D, the voltage 

recovery becomes better, as evident from Fig. 5.7. Also, for KL divergence, the value decreases, 

and for Case-D, the value is less than 9.75, i.e., the critical value of KL divergence, this shows that 

the last case complies with the NERC voltage recovery criterion. 

Table 5.3 shows the comparison of load control for non-optimal load tripping, i.e., 50% of Motor-

D tripping with the optimal tripping computed with the trained DRL agent. The optimal load 

tripping reduced the total amount of load tripped by about 30% compared to the non-optimal load 

trip. Also, as Case-D and Case-E simulate grid following vs. grid forming inverters, respectively, 

the results show a decrease in the amount of load while still complying with the transient voltage 

recovery criterion. 

Table 5.2 Entropy & Kullback-Liebler Divergence values for different cases with GFL & GFM 

Inverters 

Case Entropy KL Divergence 

Case-A 1.1196 25.3434 

Case-B 1.0641 19.4609 

Case-C 0.9108 13.7850 

Case-D 0.8149 9.5197 

Case-E 0.8085 9.4989 
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Table 5.3 Comparison of the amount of load tripping with and without optimal load control 

    Case-D (GFL) Case-E (GFM) 

Bus # 
P 

(MW) 

Motor-

D (30%) 

Non-Optimal 

tripping 

(MW) 

Optimal 

tripping 

% 

Optimal 

tripping 

(MW) 

Optimal 

tripping 

% 

Optimal 

tripping 

(MW) 

42 400 120 60 2 2.4 2 2.4 

43 900 270 135 38 102.6 31 83.7 

46 700 210 105 52 109.2 43 90.3 

   
300  214.2  176.4 

 

 

 

Figure 5.7 Voltage profile comparison for all control cases 

VRCN
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Figure 5.8 Voltage profile with optimal load tripping control 

5.3 Discussion on results 

The results given in the previous section give some good insights into the role of grid-forming 

inverters and data-driven control in mitigating delayed voltage recovery in a stressed power system 

with high penetration on IBRs. Based on the comparison of results for Case-D (with grid-following 

inverters) and Case-E (with grid-forming inverters), it is evident that grid-forming inverters 

mitigate the FIDVR to a greater extent compared to grid-following inverters. This is based on the 

difference in the inherent control structure of both types of inverters. 

To comply with the transient voltage recovery criterion, grid-forming inverters decrease the 

amount of load needed to be tripped while reaching the same level of KL measure index as given 

by grid-following inverters. 

The technical results underline the critical role of inverter operational principles in shaping delayed 

voltage recovery dynamics. While grid-forming inverters present a promising avenue, especially 

for grids with high inverter penetration, considerations around control strategies, integration levels, 

and the broader grid environment are important in ensuring voltage stability. 
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6. Conclusions 

6.1 Summary 

The rapid integration of renewable energy sources, especially photovoltaic systems, into the global 

energy grid necessitates innovative solutions to maintain and improve grid stability. This research 

has shown that data-driven controls, when combined with traditional power system methodologies, 

can provide effect solutions to enhance voltage stability through effective TSO-DSO interactions. 

Our novel controller for hybrid PV plants has demonstrated its capability to reliably deliver the 

requested active/reactive power to the main grid. By leveraging physics-based, data-driven 

techniques, we've harnessed the full potential of IBRs, particularly storage units, for the mitigation 

of voltage instability. We used an entropy-based measure (KL measure) to quantify the severity of 

fault-induced delayed voltage recovery and used this metric to identify the most suitable and 

effective control mode for mitigation of FIDVR. 

Moreover, we have developed a deep reinforcement learning (DRL) framework for power system 

control using an industry-standard power system solver. The DRL framework is tested on a 

modified IEEE Nordic74 voltage stability system for improvement in FIDVR. We selected a 

dynamic voltage support control for the hybrid PV plant in the system to provide maximum 

reactive power support. Hybrid PV plants have been shown to improve short-term voltage recovery 

performance using the selected voltage support control. Furthermore, we developed a deep 

reinforcement learning framework to compute the optimal amount of load tripping and dispatch 

set points for Hybrid PV plants to improv in FIDVR. We also investigated the role of grid-forming 

inverters in improving the short-term voltage response compared to grid-following inverters. 

Numerical simulations using the proposed framework show that adaptive load tripping, along with 

optimal control of grid-forming inverters, reduced the total amount of load tripped and improved 

the delayed voltage recovery by a significant margin when compared to grid-following inverters.  

6.2 Future Work 

While our research has paved a promising path toward a more resilient and efficient grid system, 

several avenues can be explored further: 

 

• Dynamic voltage control areas for IBRs: Finding a control area around a hybrid PV 

(HPV) plant in which voltage during selected contingences can be influenced by dynamic 

Q-support from the Hybrid PV plant. 

• Identifying candidate locations for GFM inverters: Most of the inverters in the power 

system are legacy inverters with grid-following control. Identifying the locations of the 

candidate inverters, which can be upgraded from grid-following to grid-forming control, is 

another future extension we are looking forward to. 

• Exploring frequency regulation with Hybrid PV plants: With high penetration of non-

synchronous generation, system inertia is diminishing rapidly, thus making the system 

prone to higher frequency deviations. While the current work explores the voltage support 

aspects of hybrid PV plants, we plan to extend the data-driven control technique to 

frequency and inertia regulation.  
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• Integration with Other Renewable Energy Sources: Extending our work to incorporate 

other renewable sources like wind and hydroelectric power could present a holistic solution 

for future green grids. 

• Consideration of Cybersecurity Challenges: With an increasing reliance on data-driven 

and communication-based controls, future work should also factor in potential 

cybersecurity vulnerabilities and solutions. 

The evolving landscape of power grids demands continuous research and innovation. It is hoped 

that this project will serve as a step towards building more resilient and sustainable energy grids 

for the future.  
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1. Introduction 

1.1 Background 

The U.S. Department of Energy reported that solar technologies could generate as much as 40% 

of the U.S. electricity supply by the year 2035 and 45% by 2050 [1]. Notably, 42% of the 2022 

U.S. solar projects were to employ hybrid resources: photovoltaic (PV) arrays and battery energy 

storage (BES) [2]. Nevertheless, there are several challenges to be solved for the reliable 

integration of solar assets [1], [3], [4]. For instance, hybrid PV solar resources will be challenged 

to energize single-phase induction motors (SPIMs) after a black-out and ride through fault-induced 

delayed voltage recovery (FIDVR) events [1, p. 73]. 

Historically, restoration of SPIMs has been easily accomplished by synchronous generators [5], 

[6]. These generators have also been critical to source over-rated currents during FIDVR events to 

heat up SPIM thermal relays for their disconnection [7, pp. 846–849], [8]. FIDVR events 

materialize in the form of sustained low voltages that emerge from grid faults that cause the stalling 

of SPIMs driving residential air-conditioning (A/C) compressors [9]. Techniques to alleviate 

FIDVR include under-voltage load shedding [10]–[13], var-compensators [14], [15], 

admittance/impedance detection [16],[17], and motor under-speed tripping [18] to name a few. 

1.2 Literature Review 

At present, grid-forming (GFM) inverter-based resources (IBRs), such as wind and solar, are 

expected to power the U.S. grid-like synchronous machines [19]–[22]. However, one 

The problem with this transition is that GFM IBRs powered by hybrid resources are still under 

research [22], [23]. Further, a major concern is that GFM IBRs cannot source over-rated currents, 

which can jeopardize the starting up of SPIMs and the riding through of FIDVR events [4], [22]. 

Notably, SPIM restoration and FIDVR problems are likely to persist because residential A/C units 

are used in 87% of U.S. homes [24]. 

For the reliable integration of hybrid PV solar resources into the U.S. grid, which also extrapolates 

worldwide, it is critical to address the following research needs: (C1) A controller for dc-coupled 

hybrid resources that power GFM IBRs. Present GFM strategies do not consider IBRs powered by 

dc-coupled PV array and BES, e.g., see [22], [23], [25], [26]. (C2) A realistic compressor model 

to study restoration and FIDVR events of clusters of SPIMs. Behavioral models [27]–[29] do not 

capture the compressor nature during SPIM acceleration from a stall. Notably, detailed models are 

crucial for electromagnetic transient (EMT) studies, as recommended by the North American 

Electric Reliability Corporation (NERC) [30]. (C3) An analysis to ascertain whether SPIM thermal 

protection is still viable to mitigate FIDVR events. Present literature has not elucidated the impact 

of IBRs current-limitation on thermal protection [22], [23], [31]. (C4) A realistic analysis of the 

EMT performance of distribution feeders powered by hybrid GFM IBR during restoration and 

FIDVR events. Classical EMT studies consider that feeders are energized by stiff power sources 

[32], [33]. Notably, a recent positive-sequence study reports the instability of GFM IBRs during 

FIDVR events [31]. These challenges are addressed here via three contributions:  
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1) A controller for dc-link voltage regulation of GFM IBRs with dc-coupled PV array and 

BES, q.v. Section 2.1.1. The novelty is the engineering of simple anti-windup proportional-

integral (PI) regulators to optimally charge and discharge the BES under varying solar 

irradiance.  

2) A physics-based and computationally light compressor model with four compression 

stages, q.v. Section 2.2.2. The novelty is that it captures both SPIM acceleration and 

deceleration in EMT simulations, which contrasts behavioral ones for deceleration only 

[27]–[29].  

3) A demonstration that IBR’s current limitations will delay the tripping of SPIM thermal 

relays, implying longer FIDVR events, q.v. Section 3.1.1. Hence, protection is engineered 

to disconnect stalled SPIMs by estimating impedance and deceleration, q.v. Section 3.1.3.  

These contributions are: (i) built on the reliable GFM technology using two-axis anti-windup PI 

regulators [34]; (ii) demonstrated via detailed EMT simulations of a classical distribution feeder 

[28], but powered only by hybrid IBRs; (iii) significant to achieve local energy-assured generation 

which NERC identifies as necessary for reliability and resilience [35, 2 p. 3]; (iv) crucial to satisfy 

NERC recommendations on EMT simulations [30]; and (v) important to address NERC guidelines 

on hybrid PV plant performance [36]. Here, GFM IBRs can stably withstand SPIM restoration and 

FIDVR transients.  

1.3 Preliminaries 

Figure 1.1 shows a GFM IBR powered by dc-coupled PV arrays and BES. It has a buck-boost 

converter (BBC), a dc-link capacitor, Cdc, a grid-side inverter (GSI), ac inductive capacitive (LC) 

filter, and step-up transformer (XFMR). The BBC switches are driven by a buck-boost modulator 

(BBM). The GSI switches are steered by ac voltage/current controllers and an extended sine 

triangle modulator (ESTM) [37, pp. 483– 485]. A set of IBRs are used to restore the feeder of Fig. 

1.2. 

 

 

Figure 1.1 Grid-forming subsystem including PV array, battery energy storage (BES), buck-

boost converter (BBC), buck-boost modulator (BBM), grid-side inverter (GSI), extended sine-

triangle modulator (ESTM), and step-up transformer (XFMR) [36]. 
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Figure 1.2 Radial feeder with clusters of single-phase motor and resistive 

1.3.1 Grid-Forming Strategy 

To control the GSI of Fig. 1.1, this work adopts the GFM technology of [34] which is illustrated 

in Fig. 1.3. The voltage and current controllers use qd-axis anti-windup PI regulators. In Figs. 1.3a 

and 1.3b, 𝑣𝑞𝑑𝑓
𝑐 = 𝐾𝑣(𝜃𝑐)[𝑣𝑎𝑏𝑓, 𝑣𝑎𝑏𝑓]𝑇, 𝑖𝑞𝑑𝑥

𝑐 = 𝐾𝑖(𝜃𝑐)[𝑖𝑎𝑥, 𝑖𝑏𝑥]𝑇, for𝑥 ∈ {𝑓, 𝑔},𝑖𝑞𝑑𝑓
ϯ

=

3𝐶𝑓𝜔𝑏𝑣𝑞𝑑𝑐
𝑐 + 𝑖𝑞𝑑𝑔

𝑐 , and  𝑣𝑞𝑑𝑓
𝑐 = [𝑣𝑑𝑓

𝑐 , −𝑣𝑞𝑓
𝑐 ]𝑇. The matrices 𝐾𝑣(𝜃𝑐) and 𝐾𝑖(𝜃𝑐) are from [37, pp. 

112–113]. The command 𝑣𝑞𝑑𝑓
⋆ = [√2/3𝑉𝑓

⋆, 0] where 𝑉𝑓
⋆is the rms line-to-line voltage set-point. 

The reference frame angle 𝜃𝑐 ∈ [0,2𝜋) is from Fig. 1.3c. There, 𝑘𝜔 is a droop constant, 𝜔𝑏 is the 

base angular frequency, 𝑃𝑒,𝑚𝑥 is rated electric power, and 𝑃�̃� is a filtered version of 𝑃𝑒 =
3/2(𝑣𝑞𝑓

𝑐 𝑖𝑞𝑔
𝑐 + 𝑣𝑑𝑓

𝑐 𝑖𝑑𝑔
𝑐 ).  The set points  𝜔𝑐

∗ and  𝑃𝑒
∗ in Fig. 1.3c are used for frequency control and 

power dispatch. 

In Fig. 1.3a and 1.3b, the function 𝜉: ℝ2 x ℙ →  ℧ 

𝜉(𝑢𝑞𝑑
∗ ,𝑈𝑚𝑥) =  {

𝑈𝑚𝑥

𝑈
        𝑖𝑓 𝑈 > 𝑈𝑚𝑥 ≠ 0

𝑢𝑞𝑑
∗          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

                (1) 

With 𝑈 =  (𝑢𝑞
∗2 + 𝑢𝑑

∗2)1/2 serves to bound 𝑢𝑞𝑑
∗  within an origin-centered circle of radius 𝑈𝑚𝑥 . 

This functionality maintains GSC current commands within ratings during large transients while 

automatically stopping PI integration to prevent instability [34]. The ESTM commands 𝑣𝑎𝑏𝑐𝑓
⋆ =

[𝑣𝑎𝑓
⋆ , 𝑣𝑏𝑓

⋆ , 𝑣𝑐𝑓
⋆ ]𝑇 in Fig. 1.1 are mapped from 𝑣𝑞𝑑𝑓

⋆  in Fig. 1.3b [37]. 
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Figure 1.3 Grid-forming voltage and current PI regulators, as well as droop-control 

1.3.2  Restoration of Distribution Feeders  

GFM IBRs are challenged to start up clusters of SPIM loads and withstand FIDVR during 

restoration because of GSI current limitation [31], [39]. Notably, FERC and NERC have reported 

that restoration plans do consider instances of locked rotor currents by motors [5, p. 34]. In Fig. 

1.2, for example, eight 2.5-MVA GFM IBRS as the one in Fig. 1.1 are challenged to energize 6.6-

MW c.a. of SPIMs driving (compressors and condenser fans) and 1.4-MW of resistive loads. 

A possible restoration plan for the grid in Fig. 1.2 is: (i) energize the 12-MVA 34.5/138-kV ∆-Yg 

transformers of each PV plant by closing their circuit breakers; (ii) energize the 138- kV overhead 

transmission lines by closing H1–H4 which in turn power the Yg-Yg transformer and buses ‘0’ to 

‘8’; and (iii) sequentially energize each cluster of 177 SPIMs driving A/C compressors and 

resistive loads by closing breakers C1 to C7. The on-load tap changer (OLTC) [next to the bus ‘0’ 

in Fig. 1.2] serves to compensate for voltage drops in the 138-kV transmission lines as well as the 

∆-Yg and Yg-Yg transformers. Next, this work develops the technology to materialize the 

restoration of feeders using hybrid IBRs. 

1.4 Report Organization  

The remainder of this report is as follows. Section 2 discusses the control of hybrid PV plants with 

grid-forming control as well as restoration and FIDVR events. Section 3 develops controls for 

motor stalling protection and compares the response of IBR and synchronous generators. Section 

4 develops three case studies, and Section 5 concludes the report. 
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2. Control of Hybrid Resources 

The main novelty of this section is a control strategy to charge or discharge the BES by using the 

BBC and the BBM, q.v. Fig. 2.2. From Fig. 1.1, one can realize that the battery may be charged 

if: (i) the power transferred to the ac grid 𝑃𝑒 (plus losses) is less than the maximum PV power 𝑃𝑝𝑣 

and (ii) the state of charge (SoC), 𝑠𝑐 is less than the maximum SoC, 𝑠�̅�. Conversely, the battery 

may be discharged if: (i) 𝑃𝑒  (plus losses) is greater than the maximum 𝑃𝑝𝑣 and (ii) 𝑠𝑐 is greater 

than the minimum SoC, 𝑠𝑐. This task is achieved by calculating an optimal dc voltage set point, as 

explained next. 

2.1 Dc Voltage Set-Point for Optimal Hybrid Operation 

To optimally harvest PV array power 𝑃𝑝𝑣 of Fig. 1.1 for ac generation and battery usage during 

grid-forming operation, it is necessary to estimate the voltage set-point 𝑣𝑑𝑐
∗  so that 𝑃𝑝𝑣 (𝑣𝑑𝑐) is 

maximum when 𝑣𝑑𝑐 → 𝑣𝑑𝑐
∗ . As done in [40], such estimation is achieved by using an abstract 

model of the PV array as well as the measured voltage 𝑣𝑑𝑐 and current 𝑖𝑝𝑣 in Fig. 1.1. The PV 

array in Fig. 1.1 comprises of Np parallel-connected strings, each of which has Ns series-connected 

PV modules. Each module is modeled using a single-diode equivalent circuit [41]. From measured 

𝑣𝑑𝑐 and 𝑖𝑝𝑣 in Fig. 1.1, an estimation of the light-generated current, 𝑖𝑔, of each PV module is [40]: 

𝑖�̂� =  𝑖𝑑 +  𝑖𝑠ℎ +  𝑖𝑝𝑣/𝑁𝑝     where     𝑖𝑑 =  𝑖0 (𝑒
𝑣𝑑
𝑣𝑇 − 1)       (2) 

𝑣𝑑 =
𝑣𝑑𝑐

Ns
+ 𝑅𝑠𝑖𝑝𝑣   and        𝑖𝑠ℎ =

𝑣𝑑

𝑅𝑠ℎ
                    (3) 

 Which serves as input to calculate the 𝑣𝑑 =  𝑣𝑑
∗   that maximizes: 

 𝑃𝑝𝑣(𝑣𝑑)

𝑁𝑠𝑁𝑝
=  𝑣𝑑𝑖𝑔𝑑(𝑣𝑑) −  𝑅𝑠 (𝑖𝑔𝑑(𝑣𝑑) − 

𝑣𝑑

𝑅𝑠ℎ
)

2
−

𝑣𝑑
2

𝑅𝑠ℎ
      (4) 

Where 𝑖𝑔𝑑(𝑣𝑑) =  𝑖𝑔 −  𝑖0 (𝑒
𝑣𝑑
𝑣𝑇 − 1)    (5) 

In (2)–(5): (i) the parameters 𝑣𝑇 , 𝑖0, 𝑅𝑠  and 𝑅𝑠ℎ and (ii) the variables 𝑖𝑔, 𝑣𝑑, and 𝑖𝑑 are defined in 

[41]. The maximizer 𝑣𝑑  = 𝑣𝑑
∗    is unique because  𝑃𝑝𝑣(𝑣𝑑) of (4) is concave on 𝑣𝑑   [40]. Hence, 𝑣𝑑

∗  

is uniquely determined by computing the zero of 𝑑𝑃𝑝𝑣(𝑣𝑑)/𝑑𝑣𝑑 via convergent Newton Raphson 

iterations [40]. The optimal 𝑣𝑑𝑐
∗  is obtained from: 

                      𝑣𝑑
∗ =

𝑅𝑠ℎ

𝑅𝑠+𝑅𝑠ℎ
(

𝑣𝑑𝑐
∗

𝑁𝑠
+ 𝑅𝑠𝑖𝑔𝑑(𝑣𝑑

∗ )) (6) 

Please, recall that 𝑖𝑔𝑑(𝑣𝑑) is defined in (5) 
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2.1.1 Dc-Link Voltage Control 

The novelty of this subsection is a control strategy to regulate the dc-link voltage, 𝑣𝑑𝑐, of the GFM 

in Fig. 1.1. The strength of the proposed dc-link voltage control strategy is its simplicity which is 

important for industry adoption. In particular, 𝑣𝑑𝑐 is regulated by steering the dc-link capacitor 

energy 𝐸𝑑𝑐
∗ =  

1

2
𝐶𝑑𝑐𝑣𝑑𝑐

2  so that it follows the set-point 

𝐸𝑑𝑐
∗ =  

1

2
𝐶𝑑𝑐max {(𝑣𝑑𝑐

∗ )2, (𝑣𝑚𝑛)2} (7) 

where  𝑣𝑑𝑐
∗  is from (6) for maximum PV power harvesting. Here, 𝑣𝑚𝑛 ensures maintaining 

minimum dc-link voltage during low irradiance events for GSI control [40]. Specifically, the 

regulation of 𝐸𝑑𝑐 (or 𝑣𝑑𝑐) is achieved by steering 𝑖𝑙 of Fig. 1.1 so that it follows: 

𝑖𝑙
⋆ =  ℐ(𝑖𝑙

∗, 𝑖𝑙
⋆, 𝑖𝑙

⋆) with 𝑖𝑙
∗ =  𝑘𝑑𝑐(𝐸𝑑𝑐

⋆ − 𝐸𝑑𝑐) + 𝑧𝑑𝑐          (8) 

              and         
𝑑

𝑑𝑡
𝑧𝑑𝑐 =  

1

𝜏𝑑𝑐
(-𝑧𝑑𝑐 +  𝑖𝑙

⋆)  (9) 

This control law, shown in Fig. 4, is a one-axis or univariate PI regulator with anti-windup 

capability [34]. The parameters 𝑘𝑑𝑐 and 𝜏𝑑𝑐 are the proportional and integration-time constants, 

respectively.  The saturation function: ℐ: ℝ x ℝ x ℙ→ ℝ: 

ℐ(𝑥, 𝑥, 𝑥) =  {

    𝑥          𝑖𝑓 𝑥 ∈ [𝑥, 𝑥]

  𝑥          𝑖𝑓  𝑥 < 𝑥   

𝑥           𝑖𝑓  𝑥 > 𝑥

                      (10) 

of (8) serves to: (i) ensure the BES SoC 𝑠𝑐 ∈ [𝑠𝑐, 𝑠𝑐] and (ii) ensure the command 𝑖𝑙 ∈ [𝑖𝑙, 𝑖𝑙]. 

Specifically, for (8): 

𝑖𝑙
⋆ =  {  

0       𝑖𝑓   𝑠𝑐 ≤ 𝑠𝑐   

𝑖𝑙      𝑖𝑓  𝑠𝑐 > 𝑠𝑐   
     and    𝑖𝑙

⋆ =  {  
𝑖𝑙        𝑖𝑓   𝑠𝑐 < 𝑠𝑐   

0        𝑖𝑓  𝑠𝑐 ≥ 𝑠𝑐   
    (11) 

In this research work, it is assumed that 𝑠𝑐 is observable; 𝑠𝑐 and 𝑠𝑐 are minimum and maximum 

SoC limits. Next, 𝑖𝑙 of (8) steers the BBC of Fig. 1.1 for charging or discharging the BES. 

 

Figure 2.1 Dc-link voltage PI regulator to control v_dc of Fig. 1.1 
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2.1.2 Buck-Boost Control 

The novelty of this subsection is the current controller and the BBM of Fig. 2.2 as using one-axis 

anti-windup PI regulators. They are engineered to steer the BBC of Fig. 1.1 for charging and 

discharging the BES as well as the seamless grid-forming operation of the GSI. In particular, the 

mission of the current controller in Fig. 2.2a is to drive 𝑖𝑙 → 𝑖𝑙
⋆  of (8) by generating modulation 

index commands, 𝑑𝑏
⋆  or 𝑑𝑐

⋆, for boost or buck operation. 

The modulator in Fig. 2.2b generates PWM commands to turn on and off the switches S1 and S2 

in Fig. 1.1 to discharge and charge the BES, respectively. 

 The buck or boost mode in Fig. 5b is selected via: 

𝛾⋆ = {
  0        𝑖𝑓 𝑖𝑙

⋆ ≥ 0   𝑓𝑜𝑟 𝑏𝑜𝑜𝑠𝑡 𝑚𝑜𝑑𝑒  

 1     𝑖𝑓 𝑖𝑙
⋆ < 0   𝑓𝑜𝑟 𝑏𝑢𝑐𝑘 𝑚𝑜𝑑𝑒     

                (12) 

For boost mode, the modulation index set-point satisfies: 

𝑑𝑏
⋆ =  ℐ(𝑑𝑏

∗ , 0, 𝑑𝑏
⋆) with 𝑑𝑏

∗ =  𝑘𝑏(𝑖�̃� − 𝑖𝑙
⋆) + 𝑧𝑏         (13) 

              and         
𝑑

𝑑𝑡
𝑧𝑏 =  

1

𝜏𝑏
(-𝑧𝑏 +  𝑑𝑏

⋆)   (14) 

which is the anti-windup PI regulator on the top of Fig. 2.2a. The parameters  𝑘𝑏 and 𝜏𝑏 are      

proportional and integration-time constants. The filtered current 𝑖�̃� in (13) [and (16)] satisfies: 

𝑑

𝑑𝑡
𝑖�̃� =  

1

𝜏𝑙
(-𝑖�̃� +  𝑖𝑙)                        (15) 

with 𝑖𝑙 in Fig. 1. For buck mode, the modulation index: 

𝑑𝑐
⋆ =  ℐ(𝑑𝑐

∗, 0, 𝑑𝑐
⋆) with 𝑑𝑐

∗ =  𝑘𝑐(𝑖𝑙
⋆ − 𝑖�̃�) +  𝑧𝑐         (16) 

              and         
𝑑

𝑑𝑡
𝑧𝑐 =  

1

𝜏𝑐
(-𝑧𝑐 +  𝑑𝑐

⋆)   (17) 

which is the anti-windup PI regulator in the bottom of Fig. 2.2a. The parameters 𝑘𝑐 and 𝜏𝑐 are 

proportional and integration-time constants. 

The limits 𝑑𝑏
⋆  of (13) and 𝑑𝑐

⋆ of (16) satisfy: 

𝑑𝑏
⋆ = {

  1        𝑖𝑓 𝑠𝑐  >  𝑠𝑐  𝑎𝑛𝑑 𝑖𝑙
⋆ > 0    

 0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           
          (18) 

𝑑𝑐
⋆ = {

  1        𝑖𝑓 𝑠𝑐 <  𝑠𝑐  𝑎𝑛𝑑 𝑖𝑙
⋆ < 0    

 0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           
           (19)   

They serve to not overcharge the BES if the SoC, 𝑠𝑐, is too high and block battery discharging if 

𝑠𝑐 is too low. Please note in Fig. 2.2a that the modulation indices 𝑑𝑏
⋆of (13) and 𝑑𝑐

⋆ of (16) are 
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commands to the BBM in Fig. 2.2b. Also note in Fig. 2.2b that each modulation index is compared 

against a triangular waveform w with switching period τsw for activation of S1 and S2. The switch 

activation commands, S1 and S2, are delayed by τd to prevent shoot-through [37, p. 420]. 

 

Figure 2.2 Buck-boost current controller and its modulator. 

2.2 Compressor Model 

The novelty is a computationally-light physics-based model of a residential A/C compressor, q.v. 

Fig. 2.2. This model is critical for EMT studies of restoration and FIDVR events involving GFM 

IBRs. Compressor modeling is labeled as complicated [28]; thus, behavioral models are used [27]–

[29]. 

2.2.1 Behavioral Compressor Model 

A motor-compressor subsystem is depicted in Fig. 2.3. A SPIM is used to drive two piston-cylinder 

assemblies [42]. In Fig. 2.3a, the rotor angular speed, 𝜔𝑚, and position, 𝜃𝑚 meet: 

𝑑

𝑑𝑡
𝜔𝑚 =  

1

𝐽
(𝑇𝑒 − 𝑇𝑚)   and 

𝑑

𝑑𝑡
𝜃𝑚 = 𝜔𝑚                  (20) 

The inertia constant, J, aggregates the impact of the rotor, pistons, and counterweights [42] on 

rotor dynamics; assume rigid connecting rods of length 𝑙.2 The nature of electrical torque, 𝑇𝑒, is 

rigorously modeled [28], [44]; but, the mechanical torque, 𝑇𝑚, is behaviorally represented [8], 
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[28]. Because 𝑇𝑒 and 𝑇𝑚 in (20) are algebraically additive, they are both important for restoration 

and FIDVR analyses.  

Behaviorally, 𝑇𝑚 ≈ 𝑇𝑠𝑝𝑒𝑒𝑑 + 𝑇𝑎𝑣 for (20) where [28]: (i) 𝑇𝑠𝑝𝑒𝑒𝑑 is proportional to 𝜔𝑚
2  and (ii) 𝑇𝑎𝑣 

(of triangular shape) is dependent on 𝜃𝑚 and a user-defined amplitude. In an EMT implementation, 

𝑇𝑎𝑣 is kept at zero until the SPIM rotor has surpassed a certain speed in time [27, p. 26–27]. This 

practice constraints engineers to simulate SPIM impacts on restoration and FIDVR events if the 

rotor does not accelerate due to high compressor torque, low ac voltage, or wrong choice of start-

run capacitors. A realistic compressor model follows. 

2.2.2 Realistic Compressor Model 

 

 

Figure 2.3 Motor and compressor assembly and compressor pressure vs. volume characteristic. 

Only one piston-cylinder set out of two is illustrated. 

The parameters and variables to model a reciprocating compressor are shown in Fig. 2.3a. The 

torque 𝑇𝑚 of (20) meets: 

𝑇𝑚 =  𝐷𝑝𝜔𝑚
2 + 𝑇(𝜃𝑚, 𝜔𝑚) +  𝑇(𝜃𝑚 + 𝜋, 𝜔𝑚)        (21) 

if |𝜔𝑚| > 0; otherwise 𝑇𝑚 = 0. In (21): (i)  𝐷𝑝𝜔𝑚
2  is from an oil pump and (ii) 𝑇(𝜃𝑚, 𝜔𝑚) and 

𝑇(𝜃𝑚 + 𝜋, 𝜔𝑚) are by two twin compressor pistons that are π rad out of phase [42]. Specifically:   

𝑇(𝜃𝑚, 𝜔𝑚) = (sin 𝜃𝑚 𝑐𝑜𝑠𝛽 −
𝑟𝑠

2𝑙
sin 2𝜃𝑚)𝑟𝑠𝑓𝑙          (22) 

Where  𝑓𝑙𝑐𝑜𝑠𝛽 =  𝐷𝑓𝑣 + 𝑓𝑝                (23) 

                             𝑐𝑜𝑠𝛽 =  √1 −
𝑟𝑠

2

𝑙2 𝑠𝑖𝑛2𝜃𝑚                  (24) 

under the assumption of stiff connecting rods of length 𝑙, each transmitting force 𝑓𝑙 , q.v. Fig. 2.3a. 

Note that (22) is from the component of 𝑓𝑙 that is perpendicular to the radius 𝑟𝑠. Also, the horizontal 

projection of 𝑓𝑙 in (23) transmit the forces developed by piston friction 𝐷𝑓𝑣 and cylinder pressure 

𝑓𝑝. In (23), 𝐷𝑓 is a friction constant and 𝑣 is the piston speed: 
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𝑣(𝜃𝑚, 𝜔𝑚) =  𝑟𝑠𝜔𝑚 sin 𝜃𝑚 −  
1

2

𝜔𝑚𝑙

𝑐𝑜𝑠𝛽

𝑟𝑠
2

𝑙2  sin 2𝜃𝑚        (25) 

Further, the  force 𝑓𝑝 , developed by the gas-refrigerant pressure 𝑝 in a sealed compressor for (23) 

satisfies: 

𝑓𝑝  =  𝜋𝑟𝑝
2 (𝑝 −  𝑝𝑠).           (26) 

In Fig. 2.3b, the behavior of 𝑝 𝑣𝑠. Ѵ  for isentropic 3 compression, discharge, expansion, and intake 

stages satisfies: 

𝑝 =  {
min {𝑝𝑠 (

Ѵ

Ѵ1
)

𝑚12

, 𝑝𝑑}    𝑖𝑓 |𝜃𝑚| ∈ [0, 𝜋)

max {𝑝𝑠 (
Ѵ

Ѵ4
)

𝑚34

, 𝑝𝑠}             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (27) 

      With  Ѵ =  Ѵ3 −
Ѵ1−Ѵ3

2𝑟𝑠
(𝑥 − 𝑟𝑠),                         (28) 

      𝑚12 =  
ln (

𝑝𝑑
𝑝𝑠

)

ln (
Ѵ2
Ѵ1

)
 , and 𝑚34 =  

ln (
𝑝𝑑
𝑝𝑠

)

ln (
Ѵ3
Ѵ4

)
  (29) 

In (26) and (27), 𝑝𝑠 is the suction pressure and 𝑝𝑑 the discharge pressure. The min and max 

operators in (27) serve to automatically switch the discharge-to-expansion and intake-to-

compression processes at |𝜃𝑚| = π and |𝜃𝑚| = 2π, respectively, q.v. Fig. 2.3b. This novelty relieves 

the complex task of modeling the dynamics of discharge and intake valves, e.g., see [42]. In (28), 

the piston position  𝑥  ∈ [0, 2𝑟𝑠] is from: 

𝑥(𝜃𝑚) =  𝑟𝑠 −  𝑟𝑠𝑐𝑜𝑠𝜃𝑚 + 𝑙𝑐𝑜𝑠𝛽 − 𝑙                       (30) 

Please, note that 𝑝 of (27) and Ѵ of (28) depend on 𝜃𝑚 of (20). Also, note that (22) require 

computationally light operations via (23)–(30) for given 𝜃𝑚 and 𝜔𝑚 from (20) 
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3. Motor Stalling Protection

It is shown here that thermal relays will face longer tripping times to disconnect stalled SPIMs 

when powered by IBRs than by synchronous machines. Thus, an electronic protection is 

engineered by estimating SPIM impedance and acceleration. 

3.1 Classical Thermal Protection 

The tripping time of a thermal relay is [46]: 

𝑡𝑟𝑙𝑦 = 𝜏𝑟𝑙𝑦 ln (
𝐼𝑚

2 − 𝐼𝑚,𝑜𝑝𝑟
2

𝐼𝑚
2 − 𝐼𝑚,𝑟𝑙𝑦

2 )      𝑓𝑜𝑟 𝐼𝑚 >  𝐼𝑚,𝑟𝑙𝑦 (31) 

Here, 𝜏𝑟𝑙𝑦 is the relay thermal time constant, 𝐼𝑚 is the present rms current of the SPIM undergoing

stalling, 𝐼𝑚,𝑜𝑝𝑟 is the rms current of a SPIM previous to stalling, and 𝐼𝑚,𝑟𝑙𝑦 is the pickup current of

the thermal relay. In this work, 𝐼𝑚  ∈ {𝐼𝑚
◇, 𝐼𝑚

◁} where 𝐼𝑚
◇  and 𝐼𝑚

◁  are respectively the SPIM rms

currents produced by an IBR and a machine, q.v. Fig. 3.1a and 3.1b. 

In Fig. 3.1a, the SPIM current when powered by an IBR is: 

𝐼𝑚
◇ =  

1

1+𝑗𝐵𝑓(𝑗𝑋𝑔+𝑗𝑋𝑙+𝑍𝑚)
𝐼�̃� (32) 

Where 𝐼�̃� = min{𝐼𝑓
∗, 𝐼𝑚𝑥} ∠ ϕ𝑓 is from the current command:

𝐼𝑓
∗∠ ϕ𝑓 =  

𝑗𝐵𝑓(𝑗𝑋𝑔+𝑗𝑋𝑙+𝑍𝑚)+1

𝑗𝑋𝑔+𝑗𝑋𝑙+𝑍𝑚
𝑉𝑓

∗̃ (33) 

for 𝑉𝑓
∗̃ =   𝑉𝑓

⋆∠0 . Here, 𝑉𝑓
⋆ and 𝐼𝑚𝑥 are respectively the IBR voltage set-point and its rated current.

To the Authors’ understanding, (32) and (33) have not been posed in the literature for analysis of 

thermal relays because they are a consequence of Section 1.3.1. The parameter 𝑋𝑙 encapsulates the

reactances of transformers and transmission lines and 𝑍𝑚 models the impedance of the SPIM.

From (32)–(33), the rms voltage magnitude of: 

 𝑉�̃� = (𝑗𝑋𝑔 +  𝑗𝑋𝑙 + 𝑍𝑚)𝐼𝑚
◇̃  (34) 

in Fig. 3.1a is maintained at 𝑉𝑓
⋆ only if 𝐼𝑓

∗ ≤ 𝐼𝑚𝑥 as a result of the voltage regulator with current

limiter discussed in Section 1.3.1. Otherwise, the voltage magnitude of (34) drops because of (32) 

and (33). In the proposed technique,  𝐼𝑚
◇̃ of (32) and Fig. 3.1a is contrasted against the one in Fig.

3.1b: 

𝐼𝑚
◁ =  

�̃�

𝑗𝑋𝑑
′ +𝑗𝑋𝑙+𝑍𝑚

(35) 

With �̃� = 𝐸 ∠0 the voltage behind a transient reactance, 𝑋𝑑
′  ,  of a classical synchronous machine 

model [7]. 



12 

In Fig. 3.1c,  𝐼𝑚
◇ and 𝐼𝑚

◁ can be as high as 2.25 p.u. and 4.83 p.u., respectively. Hence, the thermal

relay can trip only as fast as 𝑡𝑟𝑙𝑦
◇ = 13.24 s and 𝑡𝑟𝑙𝑦

◁ = 1.44 s if 𝜔𝑚= 0 (i.e., when the motor stalls)

for the inverter and machine cases, respectively. Notably, a tripping time of 𝑡𝑟𝑙𝑦
◇  = 13.24 s is

relatively long with respect to 𝑡𝑟𝑙𝑦
◁  = 1.44 s. Hence, an approach to stalling protection for converter-

based grids is proposed in Section 3.1.3 and tested in the EMT domain in Section 4. In Fig. 3.1, 

the ratings of the IBR and the synchronous machine are assumed to be twice of that of the SPIM. 

To generate Fig. 3.1c, 𝐸 = 1.05, 𝑋𝑑
′  = 0.075,  𝑋𝑙= 0.05, 𝑋𝑔 = 0.025, 𝐵𝑓= 0.48, 𝑉𝑓

∗ = 1.0, 𝐼𝑚𝑥 = 2.0,

𝐼𝑚,𝑜𝑝𝑟 = 1.0, τrly = 10 s, and 𝜔𝑚 = 0 p.u. The value of Zm is from Fig. 3.2; its calculation for any

𝜔𝑚  follows.

Figure 3.1 SPIM current when powered by IBR vs. synchronous generator 

3.2  Asymmetrical Motor Impedance 

The impedance 𝑍𝑚 of an asymmetrical motor with start-run capacitor for (32)–(35) as function of

𝜔𝑚 of (20) is :

𝑍𝑚(𝜔𝑚) =  
𝑉𝑠�̃�

𝐼𝑠�̃�+𝐼𝑠�̃�
 (36) 

where the currents 𝐼𝑠�̃�  and 𝐼𝑠�̃� =  𝑁𝑚𝑎𝐼𝑠𝑎
′̃  sa respectively model the main and auxiliary winding

ones (q.v. Fig. 3.2a) and meet: 

[
𝑉𝑠�̃�

𝑉𝑠𝑎
′̃

] = [
𝑍11(𝜔𝑚) 𝑍12(𝜔𝑚)
𝑍21(𝜔𝑚) 𝑍22(𝜔𝑚)

] [
𝐼𝑠�̃�

𝐼𝑠𝑎
′̃

]  (37) 

The entries of this 2-by-2 matrix derive by studying in the frequency domain the two-axis circuit 

of [44, Fig. 1.3]. The entry 𝑍22(𝜔𝑚) encapsulates the switching of  𝐶𝑚 in Fig. 9a for start 𝐶𝑚 =

𝐶𝑠𝑡𝑎𝑟𝑡 if 𝜔𝑚 < 0.75 p.u. and run 𝐶𝑚 = 𝐶𝑠𝑡𝑎𝑟𝑡 + 𝐶𝑟𝑢𝑛 if 𝜔𝑚 ≥ 0.75 p.u. In (36) and (37), 𝑉𝑠𝑎
′̃ =

Nma 𝑉𝑠�̃� and 𝑉𝑠�̃� = Vm,rtd∠0  where Nma = Nm/Na is the main-to-auxiliary winding turn ratio

and Vm,rtd is the rms rated voltage. The SPIM and capacitor parameters are from Table 4.3 in 
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Section 4. There, |𝑍𝑚| is relatively low even if 𝜔𝑚 = 0.85 p.u. The jump of ∠|𝑍𝑚| occurs when 
𝜔𝑚 = 0.75 p.u. because 𝐶𝑚 = 𝐶𝑠𝑡𝑎𝑟𝑡 + 𝐶𝑟𝑢𝑛→ 𝐶𝑠𝑡𝑎𝑟𝑡 [q.v. 𝐶𝑚 in Fig. 3.2] when d𝜔𝑚 /dt < 0.

3.3 Proposed Electronic Stalling Protection 

An electronic approach is proposed to disconnect a stalled SPIM powered by IBRs before under-

voltage load shedding relays disconnect a complete feeder [11]. In Fig. 3.2b, the principle is to 

open the contactor when the SPIM impedance is relatively low and its rotor is decelerating. The 

novelty is that deceleration is estimated from impedance which is feasible only if impedance is 

monotonically increasing on rotor speed. 

The estimated SPIM impedance with start-run capacitor is: 

|𝑍𝑚 |̃ =
√𝛷𝑣

√𝛷𝑖+𝜀
(38) 

𝑑

𝑑𝑡
𝛷𝑣 =  

1

𝜏𝑐
(−𝛷𝑣 + 𝑣𝑚

2 )    𝑎𝑛𝑑 
𝑑

𝑑𝑡
𝛷𝑖 =  

1

𝜏𝑐
(−𝛷𝑖 + 𝑖𝑚

2 ) (39) 

The respective states 𝛷𝑣 and 𝛷𝑖 serve to filter the squares of the time-domain values of 𝑣𝑚 and 𝑖𝑚

in Fig. 3.2a. The time constant 𝜏𝑐 = 10/𝜔𝑏 where 𝜔𝑏 is the rated electrical angular frequency. The

parameter  𝜀 in (38) is a relatively small value to prevent division by zero when 𝑖𝑚(𝑡) = 0.

To determine whether the rotor is decelerating, e.g., after a fault, consider the indicator function 

ℐ: ℝ → ℝ: 

ℐ (
d𝜔�̃�

𝑑𝑡
) =  {

 1  𝑖𝑓 
d𝜔�̃�

𝑑𝑡
< −𝜖𝜔

 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (40) 

𝑑

𝑑𝑡
𝜔�̃� =  

1

𝜏𝑓
(−𝜔�̃� + 𝜔𝑚

ϯ
)    with 𝜔𝑚

ϯ
=  ℒ(|𝑍𝑚 |̃) (41) 

where 𝜖𝜔 > 0 is a small parameter and 𝜔�̃� is the filtered version of the estimated rotor speed, 𝜔𝑚
ϯ

,

which is obtained from |𝑍𝑚 |̃  of (38) via (41). In (41), ℒ : Z → Ω is a lookup table that is

constructed offline from calculated coordinated pairs (||𝑍𝑚|, 𝜔𝑚), q.v. Section 3.1.2. Ascertaining

acceleration/deceleration is possible only if |𝑍𝑚| is monotonically increasing on 𝜔𝑚 which applies

here, q.v. Otherwise, deceleration could be wrongly determined. 

Lemma 1: 
𝑑|𝑍𝑚|

𝑑𝑡
≠ 0  and 

𝑑𝜔𝑚

𝑑𝑡
 have the same signs only if |𝑍𝑚|is monotonically increasing on

𝜔𝑚.

Proof: From the chain rule of time-domain quantities: 

𝑑|𝑍𝑚|

𝑑𝑡
= 

𝑑|𝑍𝑚|

𝑑𝜔𝑚

𝑑𝜔𝑚

𝑑𝑡
(42) 

the time-derivative signs are equal only if   
𝑑|𝑍𝑚|

𝑑𝜔𝑚
> 0.
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The stalling protection of Fig. 3.2b steers the status of the two-pole contactor in Fig. 3.2a via the 

following command: 

𝑐∗ =  {
0          𝑖𝑓  |𝑍𝑚 |̃ < |𝑍𝑚|∗ 𝑎𝑛𝑑 ℒ (

𝑑𝜔�̃�

𝑑𝑡
) = 1 

ℎ∗                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             
       (43) 

The contactor is open when 𝑐∗ = 0 and closed if 𝑐∗ = 1. The parameter |𝑍𝑚|∗ in (43) is a minimum 

permissible motor impedance when the rotor is decelerating. Please, recall from (41) that ℒ (
𝑑𝜔�̃�

𝑑𝑡
) 

of (40) can be determined from impedance as long as Lemma 1 holds. The command 𝑐∗ of (43) is 

delayed by 𝜏𝑝 seconds in Fig. 3.2b using a binary off delay for relay coordination proposes. Motors 

that are electrically far from a substation may be set to trip faster than closer ones. During normal 

operation, 𝑐∗ of (43) follows the command, ℎ∗ ∈ {0, 1}, from a home controller, q.v. Fig. 3.2b. 

 

 

Figure 3.2 A/C-compressor motor including a two-pole contactor, a thermal relay, start-run 

capacitor C_m ∈ {C_start, C_start + C_run}, and proposed protection. 
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4. Case Studies 

The dynamic performance of two hybrid PV power plants energizing the 13.8-kV radial feeder in 

Fig. 1.2 is analyzed via three case studies. Each power plant of Fig. 1.2 has four 2.5-MVA/0.69-

kV IBRs as the one in Fig. 1.1. The dc-link of each IBR is powered by a 2.0-MW PV array and a 

2.0-MWh BES. The first case study shows restoration performance under varying solar irradiance. 

The second and third case studies demonstrate the performance of the realistic compressor model 

in Section 2.2, the classical thermal relay in Section 3.1.1, and the proposed electronic stalling 

protection in Section 3.1.3 during FIDVR instances because of a fault in the 138-kV transmission 

circuit, q.v. Fig. 1.2. The sequential times when the breakers of Fig. 1.2 close, tc, and open, to, are 

in Table 4.1. The circuit breakers of both power plans are closed at t = 0.6 s. 

 These studies are conducted via a detailed EMT model of Fig. 1.2 which was implemented on 

PSCAD v5.0. The PSCAD simulations, using a 2 µs time step, were conducted on a desktop with 

32 GB of RAM and a four-core 3.5-GHz Intel® Xeon® i3 processor. The time to simulate 40 s of 

reality was 50 min ca. The optimal set-point 𝑣𝑑𝑐
∗ from Section 2.1.1 is computed using a custom 

FORTRAN script which is executed every 50 ms in PSCAD. In Fig. 1.2, the PV power plants are 

connected to the distribution feeder via two 138-kV sub-transmission lines and represented with 

frequency-dependent models [47]. Each distribution line of Fig. 1.2, e.g., the one connecting buses 

‘0’ and ‘1,’ is modeled using a Π-section as in [28]. The physical and control parameters of the 

PV subsystem in Fig. 1.1 are in Table 4.2. Table 4.3 reports the parameters of the reciprocating 

compressor in Fig. 2.3 and the SPIM parameters. The SPIM is rated for 4.524 kW, 230 Vrms, and 

60 Hz; the parameters are scaled from the ones explained in [44]. The compressor model is 

implemented via a custom FORTRAN script in PSCAD. 

Table 4.1 Timed circuit breaker events for Fig. 1.2 

 
 

Table 4.2 Parameters for a hybrid PV inverter and its controls 
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Table 4.3 Compressor and SPIM parameters 

 

4.1  Case I : Restoration Under Varying Solar Irradiance 

The restoration of Fig. 1.2 is conducted as in Section 1.3.2. It considers the realistic compressor 

model in Section 2.2. Because the behavioral model is not suited to represent SPIM acceleration, 

q.v. Section 3. 

The results of this case study are reported in Figs. 4.1–4.3. Figure 4.1 illustrates the dynamic 

performance of one hybrid GFM IBR as the one in Fig. 1.1 during step-wise variations of solar 

irradiance, Ir, in per unit of 1, 000 W/m2 . In particular, one can learn from Fig. 4.1 that: (A) Ir 

steps up from 0.5 to 1.0 at t = 10.0 s, then drops to 0.0 at t = 15.0 s to challenge control of the 

hybrid system. (B) At t = 15.0 s, the PV-array power Ppv → 0 MW because Ir → 0. (C) The dc-

link voltage drops from 1.6 kV to vmn = 1.2 kV as a consequence of (B); recall vmn is defined in 

Section 2.2. (D) The battery SoC, sc, increases because Ppv > Pe for t ∈ [0, 15]s, q.v. Section 2. 

(E) sc decreases because Ppv < Pe for t ∈ (15, 20]s. (F) sc is almost constant because Ppv ≈ Pe for 

t ∈ (20, 30]s. (G) Battery power [q.v. Fig. 1.1] changes at t = 15.0 s from Pb = −1.75 MW charging 

[buck mode in Section 2.1.2] to Pb = 0.7 MW discharging [boost mode] because of (B). (H) The 

short-lived overshoots in ac power Pe [q.v. Fig. 1.1] are because of the start-up of SPIMs. 
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Figure 4.1 Case I: Performance of one IBR as in Fig. 1 during restoration. 

The behaviors of voltages, currents, motor speeds, and OLTC of Fig. 1.2 during the restoration are 

reported in Fig. 4.2. Each 𝑉 𝑖 and 𝐼 𝑖 with i ∈ {0, 1, 2, . . . , 7} are: (i) the rms single phase voltage 

observed at the i-th 13.8-kV bus and (ii) rms single-phase current flowing into the SPIM and 

resistive load cluster, e.g., V3 and I3 in Fig. 1.2 correspond to phase ‘b’ (or φb). Each per-unit 

rotor speed 𝜔𝑚,𝑖 in Fig. 4.2 corresponds to one machine within the Mi motor cluster of Fig. 1.2. 

In Fig. 4.2, one can learn that: (A) The rms phase voltages V1–V7 are as high as 1.08 p.u. when 

the feeder energizes because of the feeder capacitors. (B) The voltage dips for each Mi is because 

of the SPIM start-up current. (C) The start-up current of SPIM cluster M1, for example, is a high 

as 0.39 p.u. (1.0-kA base) which contrast its steady state current of 0.085 p.u. (D) The rotor speed 

of one motor in cluster M7 slowly rises from stand still in contrast to the others because V7 is 

relatively low. (E) The frequency, 𝑓𝑒, drops from 1.0 p.u. of 60 Hz to 0.991 p.u. at t = 19 s because 

of SPIM M5 acceleration, then it rises to 0.996 p.u. because the SPIMs reach about rated speed. 

Note 𝑓𝑒 gradually deviates from the set-point 𝜔𝑐
∗ = 1.02 p.u. of Fig. 1.3c because load is gradually 

energized. The fast transients of 𝑓𝑒, e.g., by t = 5.0 s, is because of transmission-line energization. 

(F) The OLTC tap increases to keep the voltage of bus ‘0’ of Fig. 1.2 around 1.075 p.u. which is 

selected so to compensate for the voltage drop impacting M7. 
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Figure 4.2 Case I: Behavior of voltages, currents, motor speed, grid frequency, and OLTC tap of 

Fig. 1.2 during the restoration. 

Figure 4.3 reports the physical variables of one compressor in M7. During start-up, the compressor 

slowly changes its piston position 𝑥, pressure 𝑝, and volume Ѵ because 𝑇𝑒 of (20) is relatively low 

due to V7 in Fig. 4.2. 

 

 

Figure 4.3 Case I: Behavior of a realistic compressor during M7 cluster start-up. 

4.2 Case II : FIDVR Event with Realistic Compressor  

This study contrasts the performance of Fig. 1.2 when the compressors are represented via: (i) the 

realistic model in Section 2.2.2 and (ii) the behavioral one in Section 2.2.1. The FIDVR event is 

triggered by a fault between phase ‘c’ and ground at the middle of the line between the breakers 

H3 and H4 in Fig. 1.2. The SPIMs are equipped with thermal relays having τ𝑟𝑙𝑦= 10.0 s and I𝑚,𝑟𝑙𝑦 

= 2.0 p.u. in its SPIM base, q.v. Section 4.1. The results are reported in Figs. 4.4–4.6. 

One can learn from Fig. 4.4 that: (A) The realistic compressor model leads to voltage recovery at 

t = 36.9 whereas the behavioral counterpart at t = 37.5 s because mechanical torque impacts the 
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current observed by the thermal relay. (B) Current withdrawn by the SPIMs driving the behavioral 

compressor model can be higher than when driving the realistic one. (C) After stalling, the SPIMs 

that drive the realistic compressor try to re-accelerate which contrasts the fully stalled state by 

SPIMs driving the behavioral compressor model. (D) The per unit temperature Θ of motor M7 is 

relatively high due to the longer start-up time, q.v. Fig. 4.2. In contrast, when using the behavioral 

model, the temperature of all motors is relatively low because the compressor is disconnected 

during startup [27, p. 26–27]. The motors trip when Θ reaches Θ*= 1.0 p.u. 

 

 

Figure 4.4 Case II: FIDVR performance using the realistic and behavioral compressor models. 

Figure 4.5 reports the mechanical and electrical torques of one motor within the cluster M5. The 

realistic 𝑇𝑚 resembles a combination of sinusoidal waveforms (q.v. Section 2.2.1) whereas the 

behavioral 𝑇𝑚 is a triangular waveform. Notably, the electromagnetic torque 𝑇𝑒 is different for the 

realistic and behavioral cases as depending on rotor speed and position which is impacted by 𝑇𝑚.  

 

 

Figure 4.5 Case II: SPIM mechanical and electrical torque performance when using realistic and 

behavioral compressor models during a FIDVR event. 
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Figure 4.6, on the other hand, reports the currents and voltages at the terminals of one GSI of Fig. 

1. In Fig. 4.6: (A) After the fault at t = 33.0 s, the instantaneous currents, 𝑖𝑎𝑓 , can be as high as 

3.7 kA which is 20% higher than the inverter rating 3.0 kA; inverters can withstand such short-

lived currents. (B) The voltage waveforms do not recover to their rated values after the fault is 

cleared at t = 33.1 s because of motor stalling and GFM current limitation. (C) Reactive power, 

𝑄𝑒, automatically rises from 0.3 Mvar to 1.7 Mvar after the fault in phase ‘c’ is cleared because 

the IBR controls of Section 1.3.1 are engineered to regulate terminal voltages which remain 

relatively low during the FIDVR event, hence currents are steered to rated values. 

 

Figure 4.6 Case II: Inverter currents (i_af, i_bf , i_cf ) voltages (v_abf , v_bcf , v_caf ) and 

reactive power (Q_e) injected during the fault, q.v. Fig. 1.1. 

4.3 Case III : FIDVR Event with Electronic Protection 

This subsection contrasts the response of the electronic protection in Section 3.1.3 against the 

thermal relay in Section 3.1.1. It also considers the realistic compressor model in Section 2.2.2 

during a FIDVR event. Here, each off delay time 𝜏𝑝,𝑖= 1.0 + 0.25 · (7 − i), i = 1, 2, . . . , 7 (q.v. 𝜏𝑝 

in Fig. 3.2b) is used in each Mi motor cluster of Fig. 1.2. This delay is judiciously selected so that, 

for example, the 6- th motor cluster trips after 0.25 s of the 7-th one if stalling happens in both 

clusters; note that M7 is at the feeder tail, hence coordinated for relatively fast tripping. 

The results of this case are in Fig. 4.7 and 4.8. Figure 4.7 reports that: (A) The electronic relay 

leads to voltage recovery at t = 35.0 whereas the thermal relay counterpart at t = 37.5 s because 

electronic approach does not require heating for tripping. (B) When using the electronic protection, 

the rotor speed of clusters M1, M2, and M3 recover. In contrast, none of the cluster speeds recover 

when using the thermal relay 
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Figure 4.7 Case III: FIDVR performance using electronic and thermal relays. 

In Fig. 4.8, one can recognize that: (A) The estimated impedance |𝑍𝑚,𝑖
̃ | via (38) is lower than the 

set-point |𝑍𝑚
∗ | = 0.27 p.u. for (43) after the fault at t = 33.0 s because the SPIM speeds are 

decreasing. (B) The impedances of the SPIM clusters that have tripped (M4, M5, M6, M7) are 

relatively large which is expected, q.v. (38). (C) Deceleration is correctly estimated on all motors 

after t = 33.0 s ( q.v. (41), 𝜖𝜔 = 0.01) which enables SPIM tripping during the FIDVR event. Recall 

that low-impedance and deceleration causes SPIM tripping, q.v. (43). Overall, the electronic relays 

contributed to the recovery of three SPIM clusters, i.e., 3×177 = 531 A/C units, q.v. Fig. 1.2. In 

contrast, the thermal relay did not support the speed recovery of any SPIM cluster. 

 

Figure 4.8 Case III: Estimated impedance and rotor deceleration/acceleration. 
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5. Conclusions 

This work has engineered the technology for hybrid GFM IBRs so that they can: (i) optimally 

transfer power from a dc-coupled photovoltaic array and battery into an ac grid during restoration 

and (ii) stably withstand FIDVR events because of SPIM stalling. To that end, it was engineered 

in Section 2.1.2 anti-windup proportional-integral (PI) regulators to optimally charge and 

discharge the BES. It was shown in Section 4.1 that the controller performs well under varying 

solar irradiance during restoration. In Section 2.2.1, it was also derived a physics-based and 

computationally light compressor model for EMT studies of FIDVR events of grids with GFM 

IBRs and residential A/C units. In Section 4.2, the physics-based compressor model contrasts the 

performance of the behavioral representation discussed in Section 2.2.1. In Section 3.1.1, it was 

shown that IBR current limitations would delay the tripping of SPIM thermal relays which implied 

longer FIDVR events. Hence, an electronic protection was set forth in Section 3.1.3 to disconnect 

stalled SPIMs by estimating impedance and rotor deceleration. It was showcased in Section 4.3 

that several A/C units can recover when using the electronic relay. 

Overall, the developments and analyses of Sections 1.3-4.3 are instrumental to: (i) design hybrid 

PV plants for local reliability and resilience [35], [36] and (ii) conduct realistic EMT simulations 

of feeder restoration and FIDVR events 10 involving SPIMs and residential A/C compressors [30]. 

Future work will address hybrid configurations including wind and hydrogen fuel cells and FIDVR 

co-simulation in the EMT and phasor domains with a variety of A/C subsystems. 
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1. Introduction 

WSU team worked on three different topics including the ZIP load model estimation and network 

aggregation, T&D co-simulation, and FIDVR problem with hybrid Solar PV system. 

Project team validated the developed approaches using a real-time simulation testbed that 

incorporates the sensing and communication delays involved in the monitoring and control 

strategy. The testbed utilized RTDS and OPAL-RT based co-simulation framework to exchange 

data between transmission-distribution operations for analyzing various operating conditions. 

Tests system was also used to synthesize the data required to validate the ZIP Load model 

estimation and verify the hybrid solar PV-assisted voltage support to address the FIDVR from 

single-phase induction motors within HVAC systems. 

1.1 Report Organization  

The remainder of this report is as follows. Section 2 discusses validation using a real-time 

hardware-in-the-loop (HIL) transmission-distribution testbed. Section 3 gives conclusion of this 

part of this report along with possible future extensions of this work.  
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2. Validation utilizing a real-time hardware-in-loop (HIL) transmission-
distribution testbed 

WSU team worked on three different topics including the ZIP load model estimation and network 

aggregation, T&D co-simulation and FIDVR problem with hybrid Solar PV system. 

Project team validated the developed approaches using a real time simulation test bed that 

incorporates the sensing and communication delays involved for the monitoring and control 

strategy. The testbed utilized RTDS and OPAL-RT based co-simulation framework to exchange 

data between transmission-distribution operations for analyzing various operating conditions. 

Tests system was used to synthesize the data required for validating the ZIP Load model estimation 

and also verifying the hybrid solar PV assisted voltage support to address the FIDVR from single-

phase induction motors within HVAC systems. 

2.1 ZIP Load Model Estimation and Network Aggregation 

Power system operation, planning and control relies heavily on accurate system load modelling. 

Load modelling in power systems has largely involved load models in transmission systems and 

aggregated load models for distribution systems at the substation level. However, with the advent 

of power electronics, distributed generation units and advanced automation, distribution systems 

can often act as generating sources thereby changing the traditional one-directional power flow 

model to a bi-directional one. Moreover, with the presence of different types of generating units 

in the form of renewables and other power electronic loads, distribution system load models are 

bound to be varying throughout the day. All this makes control and planning of the distribution 

grid a hard task to undertake from a transmission standpoint. 

Load modelling in distribution systems is hence an important subject of research in recent years. 

Load modelling assists in various power system applications like Volt-Var control, power system 

planning, demand response, voltage stability, power system management, optimal power flow etc. 

Without accurate load modelling, power system operators will come up with non-optimal and even 

infeasible control setpoints which can be detrimental to reliable and safe power system operation 

and control. Generally, load models are of two types -(a) static, (b) dynamic and (c) composite. 

Static load models represent load models whose behavior is time-invariant in nature and which 

assists in steady state power system operation and control. Dynamic load models, on the other 

hand, are time-varying and assists in power system dynamics and stability issues. Composite load 

models are a combination of static and dynamic load models and are often used for a more realistic 

analysis of power systems. Finding accurate parameters in load models are classified in - (a) 

component-based and (b) measurement based [1], [2]. While component based methods involves 

mathematical or statistical models of load behavior, measurement based methods rely on 

measurements taken at the load level to assess its behavior on power systems. The major advantage 

of measurement based approaches is that load models can be derived for any type of loads 

integrated to the network once local measurements are available. However, input measurements 

need to be robust and clean to assess the parameters. The literature vastly provides methods to find 

equivalent load models for distribution systems aggregated at the transmission level [3]–[5]. The 

aggregated models are useful to the power system operators for taking decisions and control power 

system operation reliably in real-time. The aggregated load model is often represented in two major 
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formulations depending on power system states like voltage and frequency- (a) ZIP (Z=constant 

impedance, I=constant current and P=constant power) form and (b) Exponential form. In this 

paper, we focus on ZIP model based load modelling using measurements obtained in distribution 

power systems.  

Most of the literature involves aggregated ZIP load models of distribution systems from the 

transmission standpoint [6]. Our work, however, focuses mostly on accurately modelling 

distribution systems in presence of voltage dependent loads and distributed energy resources 

(DERs). This paper produced accurate ZIP load models that can be used to represent equivalent 

distribution load at bulk power system level. 

This work provides two novel techniques to model distribution systems as a ZIP element utilizing 

field power and voltage measurements. The first technique is a least square estimation based, and 

the second one is a machine learning assisted load estimation approach. Both techniques are 

validated in IEEE 33 bus distribution system modeled in HYPERSIM Opal-RT, while the nodal 

power and voltage measurements are inputs to the approaches. The impact of DERs on load 

parameter estimation is captured in the estimation studies by considering different penetration 

levels. The estimated load parameters are tested with respect to the extended model in HYPERSIM 

Opal-RT, and both techniques provide reasonably good accuracy. The techniques are then 

validated considering the presence of Gaussian noise in measurement data. 

 

Figure 2.1 ZIP load model estimation 
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2.2 System Modeling   

2.2.1 IEEE 33 Bus Distribution System without DER 

The IEEE 33 bus radial feeder is considered in this work as shown in Fig. 2. Certain bus loads are 

modified and are made voltage dependent following the ZIP impedance representation. The loads 

represented in ZIP form consists of a load-fraction proportional to bus voltage, the other load 

fraction proportional to voltage squared and the rest is a constant power load. Both active and 

reactive power loads are modified to include voltage dependency in the feeder. As can be observed 

that loads in bus 21,22, 14, 15, 16, 17, 18, 29, 30, 31, 32, 33, 23, 24, 25 are modified to become 

voltage dependent loads.  

 

 

Figure 2.2 IEEE 33 bus feeder with voltage dependent loads 

2.2.2 IEEE 33 bus feeder with DERs  

Four photovoltaic systems (PV1, PV2, PV3, PV4) are integrated in the IEEE 33 bus feeder at buses 

22, 18, 33 and 25 to represent the network with DERs. The capacities of the PV units are (PV1=930 

kVA, PV2= 360 kVA, PV3= 1.32 MVA, PV4=1.1 MVA) respectively. C. Equivalent model of 

IEEE 33 bus feeder The IEEE bus feeder in Fig. 2 and the modified feeders with DERs in Fig. 3 

are utilized as power system models to validate the proposed algorithms. Nodal power and voltage 

measurements from these models are input to the algorithms which then generate estimated load 

parameters. The load parameters are then used to reduce the extended models to reduced models 

as in Fig. 4. As can be observed that the sections 2-22, 6-18, 6-33 and 3-25 of the actual models 

are reduced to ZIP load equivalents connected at buses 2, 6, 6 and 3 respectively.  
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Figure 2.3 IEEE 33 bus feeder with voltage dependent loads and DERs 

 

Figure 2.4 IEEE 33 bus feeder with voltage dependent loads and DERs 

2.3 Approach 

This section presents brief mathematical description of ZIP parameter estimation approaches and 

the estimation window extraction approach. The first approach is a least squares regression-based 

method called LSVE. The second method describes ML-based load parameter estimation and the 

framework for supervised learning-based estimation. Detailed information can be found in the 

paper that was archived for the project [7]. 
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2.3.1 LS regression assisted with Variable Elimination (LSVE) 

 In this sub-section, we present the least squares problem for estimating ZIP load parameters, 

followed by the formulation of the regression problem with variable elimination. Given a set of 

voltage and power measurements from a µPMU at a specific bus between times tstart and tend, the 

least-squares regression parameter estimation problem is specified as: 

 

2.3.2 ML-based Load Parameter Estimation (ML-LPE) 

This sub-section outlines the formulation of the load parameter estimation problem using 

supervised machine learning. The training data is labeled with target variables and numerical 

features. The ML learners are trained to predict the load parameters (αz, , αi , αp) once labeled 

training data is available. The ML based parameter estimation problem is mathematically defined 

as follow 

 

 

Detailed discussion of formulations can be found in the archived paper [7]. 

2.4 Test Cases and Results Summary: 

The IEEE 33 bus network along with DERs are modelled in OPAL-RT HYPERSIM. Thereafter, 

a system disturbance over a certain time period is introduced whereby the the system states change 

over the same time period. In this work, we introduce substation voltage change over a period of 

10 seconds as the only system-level disturbance whereby loads are fixed and DER power outputs 

are fixed depending on their penetration levels. Power measurements in the form of active power 

flow and reactive power flow at branches (2-19), (3- 23), (6-7), (6-26) are recorded at 120 samples 
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per seconds which is a standard sampling rate for phasor measurement units. Voltages at buses 2, 

3, 6 are also recorded at the same sampling rate. The power and voltage measurements are then 

utilized by both approaches LSVE and MLLPE to estimate ZIP parameters.  

In this work ML-LPE is implemented using random forest regressor trained using training data 

generated from large number of offline simulations. Consequently, these ZIP parameters are 

replaced in the actual model to get a reduced model. A steady state comparison of the actual and 

reduced model is also performed in this section. Both these evaluation approaches are considered 

for three scenarios - (a) IEEE 33 bus system without DERs ,(b) IEEE 33 bus system with DERs 

with 40% penetration and (c) IEEE 33 bus system with DERs with 100% penetration. 

 

Case a): Without DERs 

Table 2.1 Comparison of Bus voltages- (No DERs) 

 
 

Case b): With DERs and 40% penetration 

 

Table 2.2 Comparison of Bus voltages- (DERs +40%) 

 
 

Case c): With DERs and 100% penetration 

 

Table 2.3 Comparison of Bus voltages- (DERs +100%) 
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2.4.1 Network Aggregation 

This work aims to improve the observability of a given distribution system while providing a 

reduced-order system that can be reflected in the transmission side and save computational costs. 

In this task, we made network reduction for the distribution system and provide an aggregated 

DER/IBRs equivalent model, aggregated loss equivalent model that can be used for network 

reduction. Currently, we have selected the ZIP load model as a preliminary test and validated it. 

The ZIP load model is a static model to represent voltage dependency, which is defined as: 

 

𝑊𝑃 = 𝑃𝑏(𝑉(𝑡)2𝑍𝑃 + 𝑉(𝑡)𝐼𝑃 + 𝑃), 

𝑊𝑄 = 𝑄𝑏(𝑉(𝑡)2𝑍𝑄 + 𝑉(𝑡)𝐼𝑄 + 𝑄), 

where 𝑊𝑃 and 𝑊𝑄 are the real and reactive power. The mathemtical model for real power satisfies 

the constraint 𝑍𝑃 + 𝐼𝑃 + 𝑃 = 1 for 𝑍𝑃 ≥ 0, 𝐼𝑃 ≥ 0, and 𝑃 ≥ 0. Similarly, the conditions are also 

satisfied for 𝑊𝑄. The purpose is to find the optimal parameters of the equivalent load model by 

parameter estimation and investigate the possibility of using ZIP parameters for the model 

aggregation and network reduction. Detailed netwrok aggregation results and analysis can be 

found in the paper [8]. 

2.5 T&D Co-Simulation Analysis 

we have developed the transmission and distribution systems on two real-time simulators i.e RTDS 

and Opal-RT. As mentioned in the previous report, our work was to create an IEEE 9-bus 

transmission system on a Real-Time Digital Simulator (RTDS) and an IEEE 33-bus distribution 

feeder on OPAL-RT. In addition, the developed distribution system contains μ-PMUs, loads, and 

hybrid PV plants.  The modeled PMUs on the testbed include virtual PMUs by processors  in both 

simulators. For Transmission and Distribution (T&D) ElectroMagnetic Transient (EMT) co-

simulations, we created a communication layer through TCP/IP  for data exchange between the 

transmission and distribution systems.  

Aggregated modified 33-node distribution network connected to Bus-6 of transmission system. 

Aggregated DER capacity of 10 MW is also connected to bus-6. Total Distribution system netload 

without DERs is 19.5MW.  T&D co-simulation test setup can be seen in Fig.5 
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Figure 2.5 T&D Co-Simulation test setup. 

2.5.1 Test performed for T&D co-simulation. 

LLLG fault of 100 ms introduced in both cases on a line between bus6 and bus9 with and without 

DER. In later case, random noise with scaling 0.05 is introduced in simulations to DER control 

commands dispatched from the Transmission system. High noise produces PQ control error that 

causes oscillation in net load at bus6, which can be seen in the Fig. 7. There is no change in voltage 

waveform as the plan capacity is small compared to total transmission system load. 

 

 

Figure 2.6 Net load power at Bus-6 without DER for fault at 2s 
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Figure 2.7 Net load power at Bus-6 with DER for fault at 2s 

2.6 FIDVR with and without Hybrid Solar PV System 

We worked on the delayed voltage recovery problem from single phasor motor pump load 

including agriculture pump, heating ventilation and air conditioning (HVAC) systems.  

IEEE 9 bus system is considered as transmission system to reproduce the bulk power system 

characteristics, we worked with ISU team to get the FIDVR voltage behavior in digital real-time 

simulations. At bus-5, 27 MVA single phase HVAC motor load, three phase motor of 40 MVA 

and 67 MVA PQ load are connected to represent composite load from real-world scenario. Test 

system was modeled in RSCAD/RTDS software for transient simulations with 50 microsecond 

timestep for mimicking the true transient behavior of transmission systems. Standard capacities of 

IEEE 9 bus system are not altered for better comparison with ISU results. Test system in RSCAD 

is shown in Figure 2.8. 

There are two cases considered for the study to verify the faster voltage recovery with hybrid solar 

PV systems. 

Case 1: without hybrid solar PV 

Case 2: with hybrid solar PV  

 

A representative hybrid PV unit (5 MW PV+ 1.2 MW BESS) was placed at bus-3, which close to 

bus-9. 
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Figure 2.8 IEEE 9 Bus Transmission system with hybrid Solar PV system in RSCAD. 

2.6.1 Transmission System Without Hybrid Solar PV  

A LLLG fault of 100 ms is introduced at Bus-5 without enabling the hybrid solar PV plant. System 

bus voltage waveforms are shown in the Fig. 9. Fault induces delayed voltage recovery in bus-5 

voltage as it consists of HVAC loads and there is minimal deviation in remaining bus voltages.  
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Figure 2.9 Bus voltage waveforms without Hybrid PV 

2.6.2 Transmission System With Hybrid Solar PV   

In this case, same LLLG fault of 100 ms is introduced at Bus-5 by including hybrid solar PV plant. 

System bus voltage waveforms are shown in the Fig. 10. Solar PV unit is operating in grid 

following mode and BESS was also activated in case of fault. Improved voltage recovery can be 

seen in the Fig. 10. A zoomed window captured in Fig. 12 clearly showcases improvement in 

voltage recovery with hybrid PV. Voltage enhancement was low due to limited hybrid PV plant 

capacity. There is a possibility of improving voltage better with higher hybrid solar PV units.  Due 

to the limited processing capabilities of RTDS at WSU, low scale hybrid PV plant capacity was 

simulated in real- time simulators. 
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Figure 2.10 Bus voltage waveforms with Hybrid PV 

 

Figure 2.11 Comparison bus-9 voltage with and without Hybrid PV 
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Figure 2.12 A zoomed window of Fig. 11 
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3. Conclusion 

WSU team developed the ZIP load model estimation algorithms using LSVE and ML methods 

and also validated them using modified IEEE 33 bus system with DERs. T&D co-simulation was 

performed with IEEE 9 bus and 33 bus systems with help of RTDS and Opal-RT simulators. An 

enhanced voltage recovery of transmission system with hybrid PV plant is also demonstrated using 

real time digital simulators. WUS team worked with ISU team for model developments and 

successful validation. 

3.1 Future work 

• FIDVR Simulation with T&D Systems 

• Testing voltage recovery improvement using hybrid PV Plants (i.e. PV+BESS) using 

Realtime Testbed 

• Voltage stability assessment with aggregated ZIP loads plus DERs 



 

16 

 

References 

[1] A. Shahsavari, M. Farajollahi, and H. Mohsenian-Rad, “Individual load model parameter 

estimation in distribution systems using load switching events,” IEEE Transactions on 

Power Systems, vol. 34, no. 6, pp. 4652– 4664, 2019.  

[2] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling—a 

review,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986–5999, 2017.  

[3] J. Ungerland, N. Poshiya, W. Biener, and H. Lens, “A voltage sensitivity based equivalent 

for active distribution networks containing grid forming converters,” IEEE Transactions 

on Smart Grid, vol. 14, no. 4, pp. 2825– 2836, 2023. 

[4] S. D. ukic and A. T. Sari ´ c, “Dynamic model reduction: An overview of ´ available 

techniques with application to power systems,” Serbian journal of electrical engineering, 

vol. 9, no. 2, pp. 131–169, 2012.  

[5] G. Chaspierre, G. Denis, P. Panciatici, and T. Van Cutsem, “A dynamic equivalent of 

active distribution network: Derivation, update, validation and use cases,” IEEE Open 

Access Journal of Power and Energy, vol. 8, pp. 497–509, 2021. 

[6] M. Cui, J. Wang, Y. Wang, R. Diao, and D. Shi, “Robust time-varying synthesis load 

modeling in distribution networks considering voltage disturbances,” IEEE Transactions 

on Power Systems, vol. 34, no. 6, pp. 4438–4450, 2019. 

[7] N.Patari, S.Rizvi ,S.Pannala and A.Srivastava “Aggregated ZIP Load Estimation Method 

for DER Integrated Distribution Systems  “ communicated to IEEE PES Transaction 

(Archived). 

[8] M. Menazzi, C. Qin and A. K. Srivastava, "Enabling Resiliency Through Outage 

Management and Data-Driven Real-Time Aggregated DERs," in IEEE Transactions on 

Industry Applications, doi: 10.1109/TIA.2023.3285516. 


	Acknowledgments
	Executive Summary
	Part I: Data-driven DER and Hybrid PV Plant Control
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	1.1 Background and Motivation
	1.2 Problem Statement
	1.2.1 Objectives and Scope

	1.3 Report Organization

	2. Fault-Induced Delayed Voltage Recovery
	2.1 Literature Review
	2.1.1 Detection and Mitigation of FIDVR
	2.1.2 Optimal Decision-Making in Power System

	2.2 The phenomenon of Delayed Voltage Recovery in Power Systems
	2.2.1 Transient Voltage Recovery Criteria

	2.3 Load Modelling for Simuation
	2.3.1 WECC Composite Load Model

	2.4 Examination of the WECC Composite Load Model
	2.4.1 3-Phase Motor Modelling
	2.4.2 1-Phase Motor Modelling

	2.5 Modeling of IBRs (utility-scale and DERs) for Stability Studies
	2.5.1 Grid Following (GFL) vs. Grid Forming (GFM) Inverters
	2.5.2 EMT and Positive Sequence Domain Modeling


	3. Metrics for FIDVR Monitoring
	3.1 Kullback-Liebler Divergence
	3.2 Impact of Operating Conditions on Severity of FIDVR

	4. Impact of IBR Controls on Voltage Stability
	4.1 Comparison of different control models of hybrid PV Plants
	4.1.1 Hybrid PV Plant with Const. P&Q
	4.1.2 Voltage Control Mode
	4.1.3 Motor-D Tripping - 20%
	4.1.4 Entropy-based measurement of severity of FIDVR


	5. Data-driven control strategies using hybrid PV plants
	5.1 Reinforcement Learning for Power System
	5.1.1 Objective function
	5.1.2 Markov Decision Process
	5.1.3 Deep RL for Power System
	5.1.4 DRL Reward Function to Mitigate FIDVR

	5.2 Case Study
	5.2.1 Case Study Results
	5.2.2 Optimal Load Tripping with Deep Reinforcement Learning

	5.3 Discussion on results

	6. Conclusions 
	6.1 Summary
	6.2 Future Work

	References

	Part II: Grid forming Inverter Controls to Improve FIDVR While respecting Inverter Current Limitations
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	1.1 Background
	1.2 Literature Review
	1.3 Preliminaries
	1.3.1 Grid-forming Strategy
	1.3.2 Restoration of Distribution Feeders

	1.4 Report Organization

	2. Control of Hybrid Resources
	2.1 Dc Voltage Set-Point for Optimal Hybrid Operation
	2.1.1 Dc-Link Voltage Control
	2.1.2 Buck-Boost Control

	2.2 Compressor Model
	2.2.1 Behavioral Compressor Model
	2.2.2 Realistic Compressor Model


	3. Motor Stalling Protection
	3.1 Classical Thermal Protection
	3.2 Asymmetrical Motor Impedance
	3.3 Proposed Electronic Stalling Protection

	4. Case Studies
	4.1 Case I: Restoration Under Varying SOlar Irradiance
	4.2 Case II: FIDVR Event with Realistic Compressor
	4.3 Case III: FIDVR Event with Electronic Protection

	5. Conclusions
	References

	Part III: Testing and Validation Utilizing a Real-time Hardware-in-Loop (HIL) Transmission-Distribution Testbed
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	1.1 Report Organization

	2. Validation utilizing a real-time hardware-in-loop (HIL) transmission-distribution testbed
	2.1 ZIP Load Model Estimation and Network Aggregation
	2.2 System Modeling
	2.2.1 IEEE 33 Bus Distribution System without DER
	2.2.2 IEEE 33 bus feeder with DERs

	2.3 Approach
	2.3.1 LS regression assisted with Variable Elimination (LSVE)
	2.3.2 ML-based Load Parameter Estimation (ML-LPE)

	2.4 Test Cases and Results Summary
	Case a): Without DERs
	Case b): With DERs and 40% penetration
	Case c): With DERs and 100% penetration
	2.4.1 Network Aggregation

	2.5 T&D Co-Simulation Analysis
	2.5.1 Test performed for T&D co-simulation.

	2.6 FIDVR with and without Hybrid Solar PV System
	2.6.1 Transmission System Without Hybrid Solar PV
	2.6.2 Transmission System With Hybrid Solar PV


	3. Conclusion
	3.1 Future Work

	References




