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Executive Summary 

At the heart of the transition towards a more sustainable electric power system is a paradigm shift 

from conventional bulk generation using synchronous machines to decentralized renewable 

generation integrated through power electronic converters. Control strategies for grid-connected 

power converters can be broadly categorized into (i) grid-following strategies that may provide 

grid-supporting services but require other devices to form a stable ac voltage waveform, and (ii) 

grid-forming strategies that impose a stable ac voltage waveform at their point of connection and 

are commonly envisioned to replace synchronous machines as the cornerstone of tomorrow’s 

power system. Due to their comparatively low current limits, power converters cannot emulate the 

fault response of synchronous machines and the resulting fault-response strongly depends on the 

converter control and protection.  

In this context, this research focuses on control and protection of grid-forming converters under 

unbalanced faults and load(s), the interaction of grid-forming converters with system protection, 

and distributed cold-start methods for unbalanced distribution feeders. 

Notably, state-of-the-art grid-forming control provides a balanced voltage reference (i.e., angle 

and magnitude) to the converters’ inner voltage and current control. However, under unbalanced 

conditions (i.e., faults or loading), the inner control loops cannot track a balanced voltage reference 

at the converter terminal. Moreover, for common converter topologies such as two-level voltage 

source converters, the current limits need to be enforced for every phase. However, state-of-the-

art controls do not have this capability. To address this challenge and fully leverage the degrees of 

freedom of grid-forming converters, this project developed a generalized three-phase grid-forming 

control. The developed control combines a signal processing algorithm that extracts phasors for 

every phase signal of a three-phase converter with a generalized control architecture that applies 

state-of-the-art grid-forming controls and current limiting separately to every phase. In addition, a 

phase-balancing feedback is developed to synchronize the controls of every phase and adjust 

tradeoffs between voltage unbalance, power unbalance as well as the sharing of unbalanced load 

by multiple converters. 

A steady-state analysis reveals how the tuning parameters of the generalized three-phase grid-

forming control can be used to adjust tradeoffs between voltage unbalance and power unbalance, 

as well as how much load unbalance is picked up a grid-forming converter. Moreover, we will 

briefly review results of an analytical small-signal stability analysis that highlights that small-

signal frequency stability of the generalized three-phase droop control can be ensured under mild 

conditions that are comparable to those required to ensure small-signal stability of standard 

(positive sequence) grid-forming controls. 

This approach also allows us to apply standard current limiting methods to each phase. We first 

investigate applying two widely used methods (i.e., reference current saturation and threshold 

virtual impedance) to every phase of a grid-forming converter. Notably, both approaches inherit 

well-known advantages and disadvantages from their balanced implementation. In particular, 

reference current saturation limits the current exactly and is easy to tune but suffers from a loss of 

synchronism for prolonged faults (i.e., short critical clearing time). In contrast, threshold virtual 

impedance largely avoids the loss of synchronism (i.e., long critical clearing time) but is ineffective 

if the difference between the converter phase angle and phase angle the point of interconnection is 
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large (i.e., after clearing a fault or tripping a line). To address this challenge, we developed a hybrid 

threshold virtual impedance method that can effectively limit the converter current under large 

phase angle jumps. 

Finally, we developed an initial method for distributed cold-start methods for unbalanced 

distribution feeders that do not require centralized coordination and leverage the capabilities of 

distribution connected grid-forming converters and advanced load relays. Instead of energizing an 

entire distribution feeder at once, this approach relies on autonomously sequencing the 

energization of loads at a more granular level during a cold-start process initiated by grid-forming 

converters. 

The effectiveness of the control algorithms developed in this project and study the interactions of 

grid-forming converters with the system protection, we developed two benchmark systems. The 

first benchmark system models a segment of a system consisting of a medium voltage feeder and 

a high voltage double circuit transmission line and is used to study transmission faults and 

interactions of the converter control and protection with distance relays. The second benchmark 

model is based on the IEEE 13-bus feeder and is used to study (i) the impact of loads (i.e., 

unbalanced loads, induction machine startup) on grid-forming converters and current limiting, (ii) 

interactions of grid-forming converters with protection (i.e., inverse time relays), and (iii) cold-

start of unbalanced distribution systems. 
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1. Introduction

1.1 Background

At the heart of the transition towards a more sustainable electric power system, there is a paradigm
shift from conventional bulk generation using synchronous machines to decentralized renewable
generation interfaced by power electronic converters. Several countries and US states, such as
Minnesota and California, aim to complete the transition to a 100% renewable system by 2040
to 2050, and large-scale converter-dominated power systems are quickly becoming a reality. Dur-
ing the first half of 2020, the share of instantaneous wind and PV generation in South Australia
peaked at 85% (median 55%), while it reached a maximum of 58% (median of 38%) in the Texas
Interconnection. In contrast to synchronous machines, most renewable generation deployed today
does not contribute to stabilizing power system, does not provide reliable fault-ride through, and
can trigger adverse interactions with protection systems. These shortcomings jeopardize system
reliability and resilience and, together with a sharp increase in severe weather-related equipment
outages [3], have already resulted in large-scale service interruptions [4], system outages [5], and
separation events [6]. Control strategies for grid-connected power converters can be broadly cat-
egorized into (i) grid-following strategies that may provide grid-supporting services but require
other devices to form a stable ac voltage waveform to lock on to and are highly sensitive to distur-
bances [4,5], and (ii) grid-forming strategies that impose a stable ac voltage waveform at their point
of connection and are envisioned to replace synchronous machines as the cornerstone of tomorrow’s
power system [7]. However, due to their comparatively low current limits, power converters can-
not emulate the fault response of synchronous machines. Consequently, the fault-response of a
converter-dominated power system vastly differs from the response expected by today’s system-
level protection [8, 9] and strongly depends on the converter control and protection. Therefore,
a comprehensive approach that accounts for converter control, converter protection, and system-
level protection is required to ensure reliability of tomorrow’s power system. While most faults are
unbalanced [10], state-of-the-art grid-forming control strategies are designed assuming a balanced
grid and have significant architectural shortcomings that cannot be overcome by minor modifica-
tions. Therefore, this proposal aims to develop a framework that explicitly accounts for unbalanced
conditions and faults, converter protection (i.e., current limiting), and system-level protection re-
quirements in the grid-forming control design to provide a reliable and resilient foundation for
tomorrow’s converter-dominated power systems.

While large-scale converter-dominated bulk power systems have been a theoretical concept until a
few years ago, they are rapidly becoming a reality. One of the critical obstacles for transitioning
to a sustainable zero-carbon power system is reliable and resilient control of power converters.
Typically, control strategies for grid-connected power converters can be broadly categorized into (i)
grid-following (GFL) controls that assume a stable AC voltage (i.e., magnitude and frequency) and
(ii) grid-forming (GFM) strategies that form a stable AC voltage (i.e., magnitude and frequency)
at the converter terminal [11]. As a consequence of relying on a stable AC voltage, GFL control
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may fail due to voltage disturbances [4] or if insufficient GFM units (i.e., synchronous generators
or GFM converters) are online to ensure frequency stability.

In contrast, GFM power converters can form a stable grid and are envisioned to be the cornerstone
of future power systems. While originally developed in the context of microgrids, grid-forming
power converters are commonly envisioned to as cornerstone of future bulk power systems [12].

At the same time, several systems around the world are already facing challenges due to massive re-
newable integration that can be traced back to a lack of reliable fault-ride through [4,5] and adverse
interactions of power converters and protection algorithms designed for the legacy system [6]. To
overcome these issues, we envision a future power system with 100% converter-based renewable
generation that consists of a mix of grid-following and grid-forming power converters. In such a
system, grid-forming units need to ensure that the system rides through any fault and that frequency
remains well-defined so that legacy grid-following units can synchronize to a converter-dominated
system and respond to changes in frequency.

Recent works have shown that, from a frequency stability perspective, state-of-the-art grid-forming
converter control has the potential to replace synchronous machines. However, power converters
cannot replicate the fault response of machines, and new paradigms are required to ensure reliable
operation in the presence of faults. To this end, this report aims to

• extend the design of grid-forming controls to unbalanced conditions to unlock its flexibility
for unbalanced operation both during faults and on longer time scales,

• design current limiting strategies that enable reliable and predictable fault-ride through of
grid-forming converters and retain their positive impact on system-level stability when feasi-
ble,

• provide a path towards closing the gap between converter control and protection systems.

1.2 Literature review

State-of-the-art grid-forming (GFM) control generates a balanced terminal voltage reference [13,
14] (i.e., phase angle and magnitude) that is tracked by the converters’ inner cascaded current and
voltage control.

Key advantages of GFM control include its fast response to contingencies [7] and potential for fast
fault current injection. However, due to their comparatively low current limits, they cannot emu-
late the fault response of synchronous machine [15]. In contrast, synchronous generators provide
a fault response that is constrained solely by the electromechanical limits of synchronous genera-
tors [16, 17]. Consequently, the fault-response of a converter-dominated power system may vastly
differ from the response expected by today’s system protection [9]. For example, GFL converters
leverage constant current injection to ride through faults [18]. However, the (self-synchronizing)
voltage source characteristics of GFM converters are not amenable to this approach. Crucially,
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common GFM controls that generate a balanced voltage reference cannot fully control the con-
verter current injection or terminal voltage under unbalanced output current. Therefore, common
grid-forming controls cannot actively mitigate imbalances on the system, even if unbalanced set-
points are provided by secondary or tertiary controls. Similarly, common strategies for current lim-
iting in GFM voltage source converters (VSCs) such as limiting the reference of the inner current
controller [15], threshold virtual impedance [15,19,20], and projected droop control [21] assume a
balanced system and balanced faults. At the same time, the vast majority of faults in high voltage
systems are unbalanced [10].

Moreover, distribution systems typically exhibit significant unbalance that (i) is typically not ac-
counted for in the literature on design and analysis of GFM controls, and (ii) can be mitigated
by deploying GFM converters in distribution systems. The few works that consider GFM control
under unbalanced conditions [22, 23] and faults [23] typically leverage symmetrical components,
e.g., implementing separate GFM controls for positive and negative sequence. This approach is
motivated by prevailing analysis methods for unbalanced systems using symmetrical components
and can effectively control the VSC terminal voltage under unbalanced conditions. However, the
relationship between the converter phase currents and symmetrical components is highly nonlin-
ear [23] and limiting the phase currents through control of symmetrical components results in
challenging control design and analysis problems. A noteworthy exception is the work in [24]
that combines dispatchable virtual oscillator control [25] with proportional resonant inner control
loops and threshold virtual impedance current limiting to directly control the converter voltage and
current in αβ -frame to enable unbalanced fault-ride through capabilities. While this approach re-
sults in a low complexity control architecture, the performance of proportional resonant controls is
often limited, and the method does not allow to directly impose the phase current limits typically
encountered in three-phase voltage source converters through the control in αβ -frame.

Finally, the vast majority of studies on fault ride through of GFM converters does not model the pro-
tection system and hence does not provide an understanding of interactions between GFM converter
controls, converter protection, and system protection. A notable exception is the work [26] that
studied various GFM controls and current limiting schemes and concluded that virtual impedance
current limiting results in reliable operation of distance protection.

Overall, we conclude that there is a need for GFM control architecture that enable GFM converters
to fully control their terminal voltage under severely unbalanced conditions and faults, limit the
converter phase currents, and actively contribute to mitigating phase unbalance through sharing
load unbalance.

While the integration of distributed energy resources into distribution systems challenges conven-
tional protection paradigms, it also offers increased controllability of distribution feeders. In this
context, a crucial feature of GFM control, applied to power converters with sufficient overcurrent
capability, is the ability to cold-start a system. By leveraging GFM converters, recent developments
highlight the bottom-up restoration of a complete blackout system with no energization from the
upstream network [27]. Opportunities for advanced protection and cold-start mechanisms tailored
to the cold-start capabilities of grid-forming have only recently been investigated in [28] without
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traditional communication or overlaid control. However, these results do not consider unbalanced
loading typically encountered in distribution systems and also do not fully account for the sig-
nificant impact of current limiting schemes in GFM controls. The cold-start capability of GFM
converters in unbalanced systems is explored in [29], leveraging symmetrical components with
current limiters to limit the currents in the abc frame. Nonetheless, this method requires the calcu-
lation of the Root Mean Square (RMS) value for each phase current, a process introducing delays
and potentially leading to significant overcurrent occurrence for durations exceeding one cycle.

1.3 Outline

This report is structured as follows. Chapter 2 introduces the problem setup, converter model
used throughout this report, and reviews common representations for unbalanced signals. Next,
Chapter 3 reviews standard GFM control architectures and presents the generalized three-phase
GFM control architecture developed in this project. Chapter 4 extends two common current limiting
approaches (i.e., reference current limiting and threshold virtual impedance) to facilitate limiting
of phase currents and presents a hybrid threshold virtual impedance method that improves upon
the performance of threshold virtual impedance methods. A theoretical analysis of the properties
of the generalized three-phase GFM control dynamics and its steady-state response is presented in
Chapter 5. Chapter 6 briefly introduces a conceptual solution for distributed cold-start methods for
unbalanced distribution feeders that does not require centralized coordination. Case studies using
benchmark systems with explicit models of system-level overcurrent protection are presented in
Chapter 7 and Chapter 8. Finally, Chapter 9 provides conclusions and directions for future work.
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2. Preliminaries and Problem Setup

The ability of a grid-connected power converter to control its terminal voltage and/or current injec-
tion under unbalanced load or unbalanced faults crucially hinges on both its controls and internal
converter topology. In this section, we first review different representations of converter currents
and voltages that will inform our control design. Moreover, we briefly discuss the model of a
three-phase voltage source converter used throughout this report.

2.1 Coordinate frames

The three-phase ac signals generated by a three-phase power converters are often represented in
two forms. First, for the purpose of control, signals are commonly represented through their in-
stantaneous value at a given time. In other words, if x(t) ∈ R is real-valued signal at time t ∈ R
and may capture a phase current or voltage. In addition, if x(t) is sinusoidal with constant time
period / frequency and magnitude ∥x(t)∥ := x̂ where ∥ · ∥ is euclidean norm, then considering the
total time period as 2πrad, a phase angle θ ∈ [0,2π]rad and magnitude x̂ can be associated with
every time t. This results in the well-known phasor representation of a sinusoidal signal, i.e.,
x̂e jθ = x̂(cosθ + j sinθ), where j =

√
−1.

2.1.1 Synchronous reference frame

When the GFM converter is operating under balanced conditions, it is customary to apply the so-
called dq0 transformation. This transformation is composed of Clarke and Park transformation. Let
xp(t) := x̂p cos(ωpt+θp)∈R be a time domain ac signal of phase p∈P := {a,b,c} with amplitude
x̂p ∈ R at time t ∈ R. Assuming the signal has a constant frequency ω = ωp ∈ R for every phase
p ∈ P , then the sinusoidal three-phase signal (xa(t),xb(t),xc(t)) ∈ R3 can be transformed into a
constant signal using the dq0 transformationxd(t)

xq(t)
x0(t)

=

√
2
3

 cos(ωt) cos
(
ωt − 2π

3

)
cos
(
ωt + 2π

3

)
−sin(ωt) −sin

(
ωt − 2π

3

)
−sin

(
ωt + 2π

3

)
√

2
2

√
2

2

√
2

2

xa(t)
xb(t)
xc(t)

 . (2.1)

If the voltage or current are balanced, then x0(t) ∈ R is zero and xd(t) ∈ R, xq(t) ∈ R are constant.
However, if the system is unbalanced, x0(t) ∈ R is zero and xd(t) ∈ R, xq(t) ∈ R, and x0(t) ∈ R
are not necessarily constant and will, generally, contain a double frequency component. Notably,
in studies of grid-connected converters the zero sequence components x0(t) ∈ R of voltage and/or
current are typically neglected because no zero sequence current can flow in three-wire systems
and grid-forming converters are controlled not to apply any zero sequence voltage to the system.
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2.1.2 Symmetrical components

Unlike dq-transformation applied to instantaneous signals, the symmetrical components make use
of the phasor x̂p(cosθp + j sinθp) := xp ∈ C where p ∈ P . Symmetrical components of a three-
phase system can be represented asx+

x−
x0

=
1
3

1 1 1
1 α α2

1 α2 α

xa
xb
xc

 . (2.2)

Here, α = e j 2π

3 , and x+ ∈ C, x− ∈ C, and x0 ∈ C denote the positive, negative and zero sequence
components of the three-phase signal modeled by the phasors xa ∈ C, xb ∈ C, and xc ∈ C. Assum-
ing a balanced three-phase system, the negative and zero sequence components are zero. However,
in contrast to the dq0 transformation, the representation of an unbalanced signal through symmet-
rical components still remains insightful for unbalanced signals and is commonly used in fault
analysis and for protection design and studies. Nonetheless, two challenges are associated with the
use of symmetrical components in the context of grid-forming control. First, the transformation
(2.2) crucially hinges on modeling the phase currents or voltages as phasors that have to be esti-
mated from their instantaneous values. Second, the relationship between phase currents and their
representation in symmetrical components is highly nonlinear and makes the problem of limiting
converter phase currents challenging from both practical and theoretical perspectives.

2.1.3 Hilbert transform

As seen in the previous subsections, a balanced three-phase system is easily represented by instan-
taneous values of current and voltage. However, for analysis of unbalanced systems the represen-
tation in symmetrical components is the prefered tool but cannot be applied using instantaneous
values. Thus, obtaining a phasor representation of instantaneous sinusoidal signals is a key prob-
lem. A common approach in power electronics to resolve this challenge is the so-called Hilbert
transform that estimates the quadrature component of every phase signal by applying a time shift
that corresponds to a 90◦ phase shift.

To formalize this approach in the context of GFM control, assume that ωp ∈ R denotes a reference
frequency for each phase p ∈ P that is provided by a GFM control. Then, for all p ∈ P and any
ac signal xp(t), we estimate the quadrature component x⊥p (t) ∈ R of xp(t) ∈ R as

x⊥p (t) := xp(t − 1
4

1
ωp(t)

). (2.3)

In other words, under the assumption that xp(t) is a sinusoidal signal with slowly changing fre-
quency ωp(t), the time shift in (2.3) approximates a 90◦ phase shift. Notably, the Hilbert transform
can be interpreted as representing αβ components of an ac signal (i.e., (xp,α ,xp,β ) = (xp,x⊥p )). Let
R(·) denote the 2D rotation matrix (Park transformation). Then, any ac signal xp(t) ∈ R for any
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phase p ∈ P can be represented in a dq frame with reference angle θp(t) ∈ S as

xp,dq(t) :=
[

xp,d(t)
xp,q(t)

]
:= R(θp(t))

[
xp(t)
x⊥p (t)

]
. (2.4)

where d
dt θp(t) = ωp(t) is an arbitrary frequency. Moreover, for any ac signal xp(t) ∈ R we can

construct a corresponding phasor xp(t) ∈ C, i.e.,

xp(t) := xp,d(t)+ jxp,q(t). (2.5)

2.2 Power converter model

The most prevalent grid-connected power converter topology is the so-called two-level three-phase
dc/ac voltage source converter (VSC) shown in Figure 2.1. For brevity of the presentation, we will
focus on this topology throughout this report. Moreover, for analytical studies and control design
we will consider an averaged converter model (i.e., neglect switches and modulation schemes) and
assume that the converter dc terminal is connected to a constant dc voltage. When necessary to en-
sure validity of the results, our case studies will include a simulation of the switches and modulation
strategy. We emphasize that, while the assumption of a constant dc voltage is commonly made in
the design and analysis of GFM controls, it is only fully justified for IBR resources with signif-
icant energy storage (e.g., battery energy storage systems) and needs to be revisited for common
renewable sources (e.g., PV and wind turbines) in future studies.

Additionally, throughout this report we assume that the midpoint of the dc source is grounded
(midpoint grounding scheme) as shown in Figure 2.1. This arrangement can be understood as an
equivalent model of a dc/ac voltage source converter with dc-link capacitor and grounding of a
midpoint that is created using resistors or capacitors between the positive and negative dc pole. We
note that several other grounding schemes (e.g., floating dc side) are possible. For the purpose of
this report we chose to focus on the setup as shown in Figure 2.1 that allows zero sequence current
flow. If, e.g., a floating dc side is used, zero sequence current cannot flow and the control degrees
of freedom of the converter are reduced. In this case, the controls have to be adapted to account
for this fact. For instance, for the generalized three-phase GFM control presented in Section 3.4,
voltages and currents have to be transformed to a coordinate frame that eliminates zero sequence
components (e.g., αβ coordinates) and separate GFM controls can be used for the remaining two
components (e.g., α and β ) instead of separate GFM controls for every phase.

Finally, VSCs are interconnected to the grid via an LCL filter to remove the switching ripple in-
troduced by the modulation scheme. The filter capacitors are typically either configured in ∆ or
configuration. For two-level VSCs with grounded neutral point as shown in Figure 2.1, the filter
capacitors are commonly configured and the dc neutral point is connected to the ground of the

configured filter capacitors. This closes the path for the zero current ot flow. We have chosen
this arrangement because it allows the VSC to fully control each phase voltage and/or current and
showcase the features of the controls developed in this project. In contrast, a ∆ configured filter is
commonly used with a floating DC bus and hence removes the zero sequence current path. In this
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case, the controls developed in this project can be implemented in, e.g., αβ coordinates as outlined
above.

Figure 2.1: GFM converter consisting of a 2-level VSC with grounded midpoint. Moreover, we assume that
the output filter is configured and that a ∆ transformer is used to connect the VSC to the grid.

Finally, we assume that converter is connected to the grid through a ∆ transformer where ∆ is on
the primary side and the is on the secondary. The advantage of this arrangement is to provide
solid grounding of the grid that provides a pathway for zero sequence fault current. We emphasize
that, in addition to the dc grounding and filter arrangement, different transformer configurations
may also require implementing the controls presented in Chapter 3 and Chapter 4 on different
coordinate frames than those used in Chapter 3 and Chapter 4.
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3. Grid-forming control

This chapter first reviews our basic control objectives for GFM converters and reviews existing
controls from the literature in more detail. Subsequently, we present the generalized three-phase
GFM controls developed in this project.

3.1 Control objectives and architectures

The key motivation for common GFM control designs is to enable VSCs to provide reliable grid-
support functions that allow GFM resources to largely replace synchronous generators in bulk
power systems. To this end, a GFM VSC should meet the following key control objectives.

1. Impose an ac voltage waveform with well-defined frequency and amplitude to the grid and
self-synchronize with other GFM resources and synchronous generators through the power
network.

2. During nominal steady-state operation, the converter needs to be controlled to the nominal
operating point (i.e., voltage, frequency, and power) periodically prescribed by a system-level
controller.

3. The converter should autonomously respond to variations in load or generation and con-
tingencies to support the system through, e.g., primary control functions, and contribute to
stabilizing the system frequency and voltage.

4. The converter control needs to ensure operation within the converter hardware limits (e.g.,
rated current of the semiconductor switches).

Notably, these high-level objectives align with the high-level functions of synchronous generators
except for the response to faults. In particular, synchronous generators have significant overcurrent
capabilities (i.e., up to 6 p.u. for a short period of time) while the semiconductor switches of power
electronic converters are typically only sized to withstand currents of approximately 1.4 p.u. for one
or two cycles and are typically limited to approximately 1.2 p.u. otherwise. We emphasize that, by
oversizing the converter relative to its power source, the current limits can be increased. However,
this comes at a significantly increased cost and is usually avoided for economic reasons. Hence, a
key question is how to limit the converter output current and while providing GFM functions and
ensuring availability of sufficient fault current to reliably trip protective relays.

The standard cascaded dual-loop control structure for GFM controlled grid-connected voltage
source converters is shown in Figure 3.1. Specifically, the aforementioned control objectives are
commonly met through a hierarchical control structure consisting of an outer GFM control that pro-
vides references for the dynamic response at the converter terminal to inner cascaded controls that
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stabilize and control the converter. In this context, the converter overcurrent protection is typically
either implemented at the switch level (not shown in Figure 3.1) through, e.g., blocking of switches
if the current across the switch would exceed its limits, or at the level of the current controller as
shown in Figure 3.1.

Figure 3.1: Standard dual-loop GFM control with inner controls tracking a positive sequence voltage refer-
ence provided by an outer GFM control (e.g., droop control [1], VSM [2]).

3.2 Positive sequence droop control

The most prevalent grid-forming control strategy is droop control and computes a balanced positive
sequence reference voltage with voltage magnitude V gfm ∈R and angle θ gfm ∈ S that is tracked by
underlying proportional-integral controls implemented in a dq frame with angle θ gfm ∈ S as shown
in Figure 3.1.

Positive sequence droop control is realized as

d
dt θ

gfm = ω0 +mP(P⋆−P), (3.1a)

V gfm =V ⋆+mQ(Q⋆−Q), (3.1b)

where, ω0 ∈ R>0 is the base frequency, mP ∈ R>0 and mQ ∈ R>0 are the active and reactive power
droop coefficients. Moreover, V ⋆, P⋆ and Q⋆ are references for the voltage, active power and
reactive power, and P and Q are the measured active and reactive power.

We emphasize that, the outer GFM control can be combined with various methods for current
limiting such as reference current limiting as shown in Figure 3.1 or virtual impedance current
limiting [19]. This aspect will be discussed in detail in the next chapter.

Finally, we note that the inner controls are commonly implemented in a dq-frame with reference
angle θ gfm, i.e., the instantaneous signals vsw ∈ R3, i ∈ R3, v ∈ R3 and io ∈ R3 for all three-
phases are converted into a dq frame for the purpose of implementing the inner controls and current
limiting. We emphasize that, for a balanced system, limiting the current in the dq frame to its
maximum also limits the phase currents to their maximum.
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While this overall approach significantly simplifies the control design in for a balanced system,
it precludes leveraging all degrees of freedom of the convert during unbalanced operation. In
particular, in this case, the signals in dq-frame will not correspond to constant signals even in
steady state and, e.g., limiting the filter current to its maximum in dq frame can result in severe
distortion in the original abc coordinates (see, e.g., [21, Figure 7]).

Ultimately, during severely unbalanced conditions such as faults, positive sequence droop control
aims to impose a balanced voltage at its terminals. However, under the converter current limits the
underlying controls may not be able to impose the balanced reference at the terminal resulting in
distorted waveforms and, ultimately, a lack of reliable and resilient fault ride through capabilities.

Loosely speaking, the limitations of positive sequence droop control can be overcome by imple-
menting the GFM control and inner controls in symmetrical components [23,30] or for every phase.
This allows to leverage the degrees of freedom of the VSC. Next, we will briefly discuss imple-
mentations using symmetrical components. Then, we will present a generalized three-phase droop
control that implements GFM control and inner loops for every phase.

3.3 Positive-negative sequence droop control

To illustrate the main features of positive-negative sequence droop control, we focus on an imple-
mentation similar to the positive-negative sequence synchronverter presented in [30]. We empha-
size that more involved approaches exist that may result in increased performance (see, e.g., [23]).
However, for brevity of the presentation we focus on positive-negative sequence droop control to
highlight the main conceptual challenges of positive-negative sequence GFM control.

Positive-negative sequence droop control generates a positive and negative sequence reference volt-
age with angle and magnitude given by

d
dt θ

+ = ω0 +m+
P (P

+⋆−P+), (3.2a)
d
dt θ

− = ω0 +m−
P (P

−⋆−P−), (3.2b)

V+ =V+⋆+m+
Q(Q

+⋆−Q+), (3.2c)

V− =V−⋆+m−
Q(Q

−⋆−Q−). (3.2d)

We recall that the superscripts (·)+ and (·)− denote the positive and negative sequence voltage
phase angles, magnitudes, powers, and control gains. This control is typically implemented by first
estimating the positive and negative sequence components of the converters’ power injection, using
(3.2) to obtain positive and negative sequence voltage references, and underlying cascaded controls
for positive and negative sequence current and voltage that track the references. Alternatively,
the positive and negative sequence voltages can be converted into abc coordinates and tracked by
underlying controls (e.g., proportional resonant controls) for every phase.
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A key challenge with this approach is estimation delay of the filter used to obtain the associated
positive and negative components of the converter currents and voltages. Moreover, the relationship
between positive and negative sequence currents and phase currents is highly nonlinear. This makes
the design of current limiters and analysis of the system a challenging problem.

However, the main problem with the aforementioned approach is that it does not autonomously
trade off power and voltage unbalance. In particular, assuming a balanced nominal operating point,
i.e., letting V−⋆ = 0, Q+⋆ = 0, and P−⋆ = 0, always results in V− = 0 unless the current limit is
active. In particular, if no current limit is active, the inner loops will perfectly track the reference
V−= 0 and hence Q+= 0, and P−= 0, even if the converter current injection io ∈R3 is unbalanced.
Consequently, V− will remain at zero and the converter will impose a balanced voltage.

An alternative solution is to directly droop on the output current. To this end, we note that the
negative sequence phasors can be represented through a dq frame aligned with the phase angle of
the negative sequence voltage phasor v− ∈ C. Then, the negative sequence powers are given by

P− =
3
2
(v−d i−d + v−q i−q ), (3.3)

Q− =
3
2
(v−q i−d − v−d i−q ). (3.4)

Moreover, the coordinate frame is typically aligned such that v−q = 0 and hence

P− =
3
2
(v−d i−d ), (3.5)

Q− =
3
2
(−v−d i−q ). (3.6)

Implementing the negative sequence droop equations using negative sequence current results in

d
dt θ

− = ω0 +m−
P (i

−⋆− i−d ), (3.7a)

V− =V−⋆+m−
Q(i

−⋆+ i−q ). (3.7b)

While this approach may appear more intuitive from a power system point of view and avoids the
problems associated with the fact that v−d = 0 during nominal operation, its interpretation may not
be straightforwards. In particular, the reformulation from power to current only results in a similar
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response if v−d ≈ 0. However, in most scenarios, v−d will be small and hence the control (3.7)
will trade off negative sequence voltage and current as expected (i.e., an increase in m−

Q results in
a decrease of i−q ). However, the same is not true for negative sequence voltage and power. An
example for a GFM converter feeding an unbalanced load can be found in Section 7.2.2.

3.4 Generalized three-phase droop control

Because of the challenges associated with positive-negative sequence GFM control, this project
instead explored GFM controls that can control each converter phase. To this end, this project
developed a generalized three-phase GFM control architecture shown in Figure 3.2 that implements
the GFM control, inner controls, and current limiting separately for each phase. A phase-balancing
feedback synchronizes the outer GFM control and thereby ensures a controlled trade-off between
power unbalance, voltage unbalance, and also allows to control the converters’ contribution to
mitigating unbalance.

To be able to control the phase voltages and/or currents individually, we estimate a phasor for every
phase signal using the Hilbert transform described in Section 2.1.3. This allows us to represent the
signals for every phase in a separate dq-frame and implement the standard inner current and voltage
controls for every phase (see Chapter 4 for details) to obtain the phase powers Pp ∈ R and Qp ∈ R.
To apply the Hilbert transform, we require a reference frequency ω

gfm
p ∈ R for every phase. This

is obtained from the GFM control for every phase that also provides a phase angle θ
gfm
p ∈ S and

voltage V gfm
p ∈ R for every phase p ∈ P .

The inner voltage controller then tracks the voltage reference phasors for every phase by calcu-
lating corresponding current reference. The resulting current reference for every phase can then
be limited individually as shown in Figure 3.2 and tracked by individual inner current controllers.
Alternatively, virtual impedance current limiting can be applied to every phase instead of reference
current limiting (see Chapter 4). We emphasize that, analogously to positive sequence GFM con-
trol, the gains of inner and outer loops need to be coordinated and chosen relative to the network
circuit dynamics to ensure performance and stability [31, 32].

Finally, the outer GFM control combines GFM droop control for every phase with a phase balancing
feedback that (i) ensures balanced reference voltages V gfm

p ∈ R and phase angles θ
gfm
p ∈ S if the

system is balanced, and (ii) allows trading off voltage and power unbalances under unbalanced
conditions and faults.

To implement the control, the Hilbert transform (2.3) is applied to the voltages vp(t) and current
ip(t) for each phase p to estimate their quadrature components. Then, the average active power Pp
and reactive power Qp over one cycle can be computed using their corresponding current phasor
ip(t) and voltage phasor vp(t) as follows
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Figure 3.2: Generalized three-phase GFM control with inner control for every phase tracking a voltage
reference provided by the outer GFM control (3.9) with phase balancing feedback.

Pp(t) := 1
2 Re(vpip) =

1
2

(
vp(t)ip(t)+ v⊥p (t)i

⊥
p (t)

)
, (3.8a)

Qp(t) := 1
2 Im(vpip) =

1
2

(
v⊥p (t)ip(t)− vp(t)i⊥p (t)

)
. (3.8b)

Because of controller sampling rate limits, the time-shift operation in (2.3) cannot be implemented
to arbitrary accuracy in a digital controller. This results in a frequency component at two times
the converter frequency ωp in the measurements of Pp and Qp. This component is removed using
a notch filter with center frequency 2ωp. The average phase powers Pp and Qp are then used to
compute the reference frequency ωp(t) and voltage reference (i.e., phase angle and magnitude) for
every phase through the three-phase GFM control presented in the next section. In other words,
the Hilbert transform and GFM control are in a feedback interconnection, i.e., at every sampling
time the reference frequency ωp(t) for every phase is used in the Hilbert transform and compute
updated phase powers Pp(t) and Qp(t) obtained from the Hilbert transform are used to compute an
update for the reference frequency ωp(t). In the remainder, we omit the time variable t to simplify
the notation.

3.4.1 Three-phase droop control

The main contribution of this project is a generalized GFM droop control that combines single-
phase droop control for every phase p ∈ P with a phase balancing feedback. The equation (3.9)
is employed as outer control that generates references to be used by subsequent voltage and cur-
rent inner control. Considering (θ bal

a ,θ bal
b ,θ bal

c ) := (0, 2
3π,−2

3π) and voltage setpoints V ⋆
p ∈ R≥0,

the GFM voltage angle and magnitude references θ
gfm
p = δ

gfm
p + θ bal

p and V gfm
p = V gfm

δ ,p +V ⋆
p are
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determined by the outer GFM control (all signals are assumed to be in per unit)

d
dt δ

gfm
p = ω0 − ∑

l∈P\p
kP(δ

gfm
p −δ

gfm
l )+mP(P⋆

p −Pp), (3.9a)

τ
d
dtV

gfm
δ ,p =−V gfm

δ ,p − ∑
l∈P\p

kQ(V
gfm
δ ,p −V gfm

δ ,l )+mQ(Q⋆
p −Qp). (3.9b)

Here, P⋆
p ∈ R and Q⋆

p ∈ R are the active and reactive power setpoints and ω0 ∈ R>0 is the nominal
frequency. Moreover, ω

gfm
p = ω0 +

d
dt δ

gfm
p ∈ R is the GFM reference frequency for each phase

p ∈P , mP ∈R>0 is the P− f droop coefficient, mQ ∈R>0 is the Q−V droop coefficient, τ ∈R>0
a lowpass filter time constant, and kP ∈R≥0 and kQ ∈R≥0 are the phase-balancing feedback gains.

We emphasize that (3.9) reduces to three individual single-phase droop controls if kP = kQ = 0, i.e.,
the GFM phase to neutral voltage frequency reference for each phase p ∈ P only depend on the
active power measurements of phase p ∈ P . In contrast, if kP > 0, the phase balancing feedback
trades off phase voltage frequency unbalance and deviations from the active power setpoints for
each phase. If kQ > 0, the phase balancing feedback trades off phase voltage magnitude unbalance
and deviations from the reactive power setpoint.

Finally, for large kP and kQ, the phase voltage frequency balancing is stiff and the response of
generalized three-phase droop control converges to the response of standard GFM droop control
as kP → ∞ and kQ → ∞. This observation will be formalized in Chapter 5. A block diagram of
the generalized P− f droop is shown in Figure 3.3a and a block diagram of the generalized Q−V
droop is shown in Figure 3.3b.

(a) Generalized three-phase P− f droop. (b) Generalized three-phase Q−V droop.

Figure 3.3: Droop control structure of the generalized three-phase GFM control.
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4. Inner controls and current limiting

This chapter presents generalizing standard inner converter controls and current limiting methods
to the generalized three-phase control framework developed in this project. First we discuss an
extension of the common cascaded dual loop current and voltage control with current reference
limiting to the unbalanced case. Then, we discuss threshold virtual impedance current limiting and
show how it can be applied to limit phase currents. Finally, a hybrid threshold virtual impedance
algorithm is developed that improves upon the performance of threshold virtual impedance current
limiting.

4.1 Generalized dual-loop current/voltage control and current limiting

As discussed previously, the generalized three-phase GFM control (3.9) is combined with standard
proportional-integral (PI) inner control loops implemented in a synchronous reference frame with
reference angle θp ∈ S for every phase p ∈ P (see Figure 3.2). This generalizes the standard
cascaded dual-loop structure (see, e.g., [31]) to allow control of individual phases.

In particular, a voltage controller is used to compute a current reference based on the objective of
tracking the GFM reference voltage vgfm

p,dq expressed in a synchronous reference frame with refer-
ence angle θp ∈ S. The control is combined with standard feedforward terms to compensate the
impact of the grid current injection io,p ∈ C and is given by

iref
p,dq = io,p,dq +Yf vp,dq +GPI(s)(v

gfm
p,dq − vp,dq), (4.1)

with a PI controller GPI(s), filter admittance matrix Yf ∈ R2×2, and voltage reference vgfm
p,dq ∈ R2

(where ∥vgfm
p,dq∥=V gfm

p and ∠vgfm
p,dq = θ

gfm
p ).

To limit the current reference provided by the voltage control, a common approach in (positive
sequence) GFM control is to apply a so-called circular limiter that limits the magnitude of the
reference current iref

p,dq for all p ∈ P . This approach is generalized to each phase p ∈ P as follows

ilimp :=

{
iref
p if ∥iref

p ∥ ≤ Imax

imax∠iref
p if ∥iref

p ∥> Imax
, (4.2)

16



where Imax ∈R>0 is maximum phase current magnitude. Then, the limited reference ilimp is provided
as a reference to an inner PI current control to track. Notably, the current limiter (4.2) does not
clip the current waveform, but adjusts the magnitude of the sinusoidal reference current for every
phase to avoid introducing harmonics into the system. Moreover, because it acts on an estimate
of a phase current phasor that is obtained without significant delays, it can limit the phase current
within a cycle. Finally, for each p ∈ P , the inner PI current control is given by

vsw,p,dq = vp,dq +Z f ip,dq +GPI(s)(ilimp,dq − ip,dq), (4.3)

where Z f ∈ R2×2 denotes the filter impedance matrix and vsw,p,dq ∈ R2 is the phase voltage modu-
lated by the VSC.

4.2 Threshold virtual impedance

This section briefly reviews the threshold virtual impedance method for the balanced and critically
reflects on its limitations. Then, we illustrate that threshold virtual impedance current limiting can
be applied to each phase separately.

To begin with, Figure 4.1 depicts a simplified quasi-steady-state model of a GFM converter with
threshold virtual impedance, where the dynamics of the inner-loop control and the LC−filter are
neglected [33]. The threshold virtual impedance is designed to limit current magnitude ∥is∥ :=√

i2s,d + i2s,q
1 at Imax under a three-phase bolted fault at the point of common coupling (PCC) and

can be tuned by adjusting its threshold current Ith and the X/R ratio nX/R [19]. For a three-phase
bolted fault, the magnitude of the voltage drop across the threshold virtual impedance, ∥vgfm − v∥,
is equal to the nominal voltage Vn (i.e., Vn = 1 p.u.) of the converter. The equations for the threshold
virtual impedance are given by

RTVI :=

{
0 if ∥is∥< Ith
kR (∥is∥− Ith) if ∥is∥ ≥ Ith

(4.4a)

XTVI := nX/RRTVI (4.4b)

with

kR :=
Vn

Imax(Imax − Ith)
√

n2
X/R +1

. (4.5)

1 The most common choice is to limit the filter current i, i.e., is = i.
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△ / Yg
Grid

RTVI + j XTVI

Figure 4.1: Simplified quasi-steady-state model of a GFM converter with threshold virtual impedance (TVI),
where a bar denotes the quasi-steady-state of a time domain signal.

Based on Figure 4.1, the magnitude of the quasi-steady-state current īs can be calculated by

∥īs∥=
∥v̄gfm − v̄∥√
R2

TVI +X2
TVI

=
∥v̄gfm − v̄∥

RTVI

√
n2

X/R +1
, (4.6)

where x̄ denotes the quasi-steady-state of a time domain signal x(t).

Under quasi-steady-state conditions, when the threshold virtual impedance is active, by substituting
(4.4a) into (4.6), the relationship between ∥v̄gfm − v̄∥ and ∥īs∥ can be derived as

∥v̄gfm − v̄∥= kR

√
n2

X/R +1(∥īs∥2 − Ith∥īs∥), (4.7)

where ∥īs∥ ≥ Ith. The control diagram of the threshold virtual impedance (TVI) is shown in the
gray dotted box in Figure 4.2.

In this project, a variable transient virtual resistance (VTVR) is implemented to dampen the re-
sponse of the grid current during transients [20]. The damping factor and the cut-off frequency
of the high-pass filter (HPF) are denoted by D and ωD, respectively. The damping factor D is
calculated by

Figure 4.2: Threshold virtual impedance current limiting.
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D :=
nX/R

nX/R,tr
−1, (4.8)

where nX/R,tr represents the transient X/R ratio. It should be noted that the VTVR only activates
during transients, and does not assist the quasi-steady-state current limiting. Next, we briefly il-
lustrate the response of the threshold virtual impedance under large phase angle differences for
the parameters provided in Tab. 4.1. Specifically, using (4.7), the quasi-steady-state current mag-
nitude ∥īs∥ under threshold virtual impedance current limiting can be computed as a function of
∥v̄gfm − v̄∥. The corresponding results are illustrated in Figure 4.3. It is important to note that the

impedance magnitude of the threshold virtual impedance, |ZTVI| :=
√

R2
TVI +X2

TVI, solely depends
on the magnitude of the current is without considering any information on the phase of the filter
voltage v. Consequently, the threshold virtual impedance is unable to limit the current to Imax when
∥vgfm − v∥ > Vn [34], which can be observed in Figure 4.3. This scenario typically occurs due to
fault clearing after phase angles have significantly deviated or after phase jumps due to, e.g., con-
necting or disconnecting a line. In this case, the impedance magnitude calculated using threshold
virtual impedance is too small based to effectively limit the current.

Description Symbol Value
Threshold current Ith 1.0 p.u.
Maximum current Imax 1.2 p.u.
X/R ratio nX/R 5

Table 4.1: Parameters of Virtual Impedance.

 
Imax = 1.2 p.u. 

Ith = 
Vn = 1 p.u. 

Figure 4.3: The current magnitude ∥īs∥ for different voltage difference magnitudes ∥v̄gfm − v̄∥, when the
threshold virtual impedance is active (i.e., ∥īs∥ ≥ Ith). It can be seen that threshold virtual impedance with
standard tuning becomes ineffective when ∥v̄gfm − v̄∥>Vn.

4.3 Generalized three-phase threshold virtual impedance

Using the representation of the phase signals in a dq-frame with angle θp ∈ S, threshold virtual
impedance current limiting can be applied to every phase p ∈ P by computing the voltage drop
over the virtual impedance
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vp,dq,VI =

[
vp,d,VI
vp,q,VI

]
, (4.9)

=

[
RTVI,sum XTVI
−XTVI RTVI,sum

][
io,p,d
io,p,q

]
. (4.10)

Here, RTVI,sum ∈ R>0 and XTVI ∈ R>0 are computed for every phase using the threshold virtual
impedance calculation shown in Figure 4.2. As discussed in [20], the remaining parameters, e.g.,
kR ∈R>0 and D ∈R>0 are determined by the X/R ratio nX/R ∈R>0, Imax and Ith. Then, the voltage
vp,dq,VI ∈ R2 is subtracted from the voltage reference vgfm

p,dq, i.e., the reference passed onto inner
current control is

ilimp,dq := io,p,dq +Y f vp,dq +GPI(s)(v
gfm
p,dq − vp,dq,VI − vp,dq). (4.11)

The overall control algorithm including generalized three-phase droop control and the threshold
virtual impedance current limiting for every phase is shown in Figure 4.4.

Figure 4.4: Virtual impedance ZV I := RV I + jωgfm
p LV I in the GFM control structure and effective impedance

emulation.

4.4 Virtual Impedance Based on Voltage Information

To overcome the limitations of threshold virtual impedance current limiting discussed in Sec-
tion 4.2, a novel virtual impedance method based on voltage information (VIv) was developed
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in this project. The VIv method is specified by

RVIv :=
1√

n2
X/R +1

{
0 if ∥is∥< Ith
∥vgfm−v∥

Imax
if ∥is∥ ≥ Ith

(4.12a)

XVIv := nX/RRVIv. (4.12b)

The VIv utilizes the same parameterization as the threshold virtual impedance, including the max-
imum current Imax, the X/R ratio nX/R, and the threshold Ith, as the threshold virtual impedance.

Notably, the impedance magnitude of the VIv, |ZVIv| :=
√

R2
VIv +X2

VIv, is calculated based on the

voltage difference ∥vgfm−v∥, making it effective in limiting the current for phase jumps, i.e., when
voltage phase information is crucial. The control diagram of the VIv depicted in Figure 4.5, incor-
porates the VTVR similar to the threshold virtual impedance.

Figure 4.5: Virtual Impedance based on voltage nformation (VIv).

Under quasi-steady-state conditions, when the VIv is active, the magnitude ∥īs∥ of the current in
Figure 4.1 is given by

∥īs∥=
∥v̄gfm − v̄∥√
R2

VIv +X2
VIv

=
∥v̄gfm − v̄∥

RVIv

√
n2

X/R +1
, (4.13)

where ∥īs∥ ≥ Ith. Substituting (4.12a) into (4.13), it can be seen that ∥v̄gfm − v̄∥ cancels and ∥īs∥ is
always equal to Imax. Therefore, the VIv controls the quasi-steady-state current magnitude to Imax.

Notably, (4.12) generalizes the approach in [35], which calculates a virtual admittance solely based
on voltage magnitude difference (i.e., ∥vgfm∥−∥v∥). This approach requires an additional PI con-
troller to compensate for missing phase information. In contrast, the proposed VIv approach ac-
counts for both the phase and magnitude differences. To the best of the authors’ knowledge, no
results on the performance of the virtual admittance in [35] for phase jumps have been reported in
the literature.

4.4.1 Comparison of TVI and VIv

Under quasi-steady-state conditions, the impedance magnitude of threshold virtual impedance for
different voltage difference magnitudes ∥v̄gfm − v̄∥ can be derived using (4.4) and (4.7). On the
other hand, the impedance magnitude of VIv increases linearly with the voltage difference mag-
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nitude based on (4.12). Using the parameters listed in Table 4.1, the impedance magnitude of
threshold virtual impedance (TVI) and VIv for different voltage difference magnitudes ∥v̄gfm − v̄∥
are illustrated in Figure 4.6.

The quasi-steady-state current magnitude ∥īs∥ is inversely proportional to the impedance magnitude
as shown in (4.6) and (4.13). The VIv is specifically designed to control the quasi-steady-state
current magnitude ∥īs∥ to Imax, effectively limiting the current for phase jumps. However, the
threshold virtual impedance is unable to limit the current to Imax for phase jumps when ∥vgfm−v∥>
Vn, as depicted in Figure 4.3. Therefore, the VIv provides a larger impedance magnitude when
∥vgfm − v∥ > Vn, as shown in Figure 4.6. Conversely, the threshold virtual impedance limits the
current below Imax during short circuit faults when ∥vgfm − v∥ < Vn, as illustrated in Figure 4.3,
while the VIv limits the current to Imax with a smaller impedance magnitude. When ∥vgfm−v∥=Vn,
both threshold virtual impedance and VIv limit the current at Imax, resulting in the same impedance
magnitude.

 

Figure 4.6: Under quasi-steady-state conditions, the impedance magnitude of threshold virtual impedance
(TVI) and VIv for different voltage difference magnitudes ∥v̄gfm − v̄∥, when ∥īs∥ ≥ Ith.

4.5 Hybrid Threshold Virtual Impedance (HTVI)

This section presents a hybrid threshold virtual impedance method for GFM converters to effec-
tively limit current under balanced phase jumps and short-circuit faults. To this end, a virtual
impedance method based on voltage information (VIv) is proposed to improve the current limiting
capability of the standard threshold virtual impedance method for phase jumps (e.g., due to fault
clearing or open circuit faults). To leverage the strengths of both threshold virtual impedance and
VIv methods, an integrated hybrid threshold virtual impedance method is proposed, which enables
reliable current limiting capabilities for both phase jumps and short-circuit faults.

To combine the features of the threshold virtual impedance and the VIv, a hybrid threshold virtual
impedance method shown in Figure 4.7 is proposed. During overcurrent situations, both threshold
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virtual impedance and VIv are continuously evaluated using the same threshold. The hybrid thresh-
old virtual impedance then uses the maximum impedance magnitude obtained from the threshold
virtual impedance and VIv, i.e., |ZHTVI|= max(|ZTVI|, |ZVIv|). In this way, the hybrid threshold vir-
tual impedance limits the current to Imax for phase jumps when ∥vgfm−v∥>Vn with the help of the
VIv. Additionally, when ∥vgfm − v∥<Vn, the hybrid threshold virtual impedance limits the current
below Imax similar to the threshold virtual impedance. As a result, the proposed hybrid threshold
virtual impedance method enhances the FRT capability of the converter under phase jumps and
short-circuit faults by fully leveraging the advantages of both threshold virtual impedance and VIv
methods.

TVI

VIv

Figure 4.7: Control diagram of the hybrid threshold virtual impedance (HTVI).

4.6 Discussion

The generalized three-phase droop control proposed in this section has three key features. First,
the balancing gains kP and kQ adjust the trade-off between phase voltage frequency unbalance vs
active power unbalance and phase voltage magnitude unbalance vs reactive power unbalance at the
converter ac terminal. For example, kP allows to adjust the contribution of a dc/ac VSC to mitigat-
ing angle unbalances in a distribution system. Second, even for large values of kP and kQ, a key
feature of generalized three-phase droop control is that it (i) tracks voltage frequency/magnitude
references for every phase, and (ii) can control and limit the phase currents individually through
reference current limiter (4.2), virtual impedance (4.11), or hybrid threshold virtual impedance (see
Figure 4.7) (iii) the control explicitly addresses sub-cycle overcurrent by continuously estimating
and controlling phase current phasors and limiting their magnitude. Finally, from a theoretical
point of view, the proposed control reduces to standard GFM control if the system is balanced.
Simulations performed to compare (positive sequence) performance and stability to standard GFM
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control only identified significant differences when using negligible phase-balancing gains kP and
kQ.
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5. Stability and steady-state analysis

In this chapter we present results on small-signal stability and the steady-state response of the
generalized three-phase droop control. We first summarize results on small-signal stability that
highlight that the generalized three-phase droop control ensures small-signal frequency and volt-
age stability under mild assumptions that are identical to those of regular grid-forming droop con-
trol. Subsequently, we analyze the impact of the control gains on the trade off between voltage
unbalance and power unbalance at the converter terminal in more detail and establish that (i) the
average response of generalized three-phase droop control across the three phases is identical to
(positive sequence) grid-forming droop control, (ii) generalized three-phase droop control reduces
to (positive sequence) grid-forming droop control in a balanced system.

5.1 Small-signal stability analysis

We begin by briefly summarizing results on small-signal frequency and voltage stability in unbal-
anced three-phase power systems [36]. To this end, we note that graph-theoretic models commonly
used in stability analysis of power systems assume a balanced three-phase network. In this setting,
frequency stability is commonly analyzed for balanced systems of grid-forming converters. In par-
ticular, small-signal frequency stability of grid-forming converters using (positive sequence) droop
control (3.1) interconnected through a quasi-steady-state model of a balanced network is guaranteed
if the network is connected. This immediately raises the question if similar small-signal guarantees
can be obtained for the generalized three-phase droop control (3.9) and unbalanced three-phase
systems.

To answer this question and enable our stability analysis, the work in [36] extends standard graph
theoretic models to model unbalanced three-phase networks and standard three-phase transformers.
In particular, we model the power system as a connected graph whose nodes represent three-phase
buses and edges represent branches such as transmission lines and standard (i.e., ∆∆, , , ∆,
and ∆ transformers). For brevity of the presentation we skip the detailed mathematical exposition
and refer the reader to [36] for further details. An example for a three-phase system is shown in
Figure 5.1. To facilitate the analysis, we partition the system nodes into exterior nodes (i.e., buses
with grid-forming converters) and interior nodes (i.e., buses with load). To establish stability for
a general unbalanced three-phase network with common three-phase transformers we require the
following assumption.

Assumption 1 (interior-exterior node connected network) The network is interior-exterior node
connected, i.e., for any interior node, the subgraph consisting of transformers, ∆ transformers,
and three-phase lines contains a path to an exterior node that traverses all edges from their primary
terminal to their secondary terminal.

Broadly speaking, interior-exterior node connectivity in the sense of Assumption 1 ensures that in-
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∆

1 2

3π 3π ∆∆
3 4 5

1 2

3π 3π ∆∆
3 4 5

(a)

(b)

∆

Figure 5.1: The network (a) is interior-exterior node connected because, for every interior node (i.e., 3, 4,
and 5), there exists a path to the exterior node 1 containing only three-phase lines and/or a ∆ transformers
in the correct orientation. The network (b) is not interior-exterior node connected because the paths from the
interior nodes 4 and 5 to the exterior nodes 1 or 2 either traverse a ∆∆ transformer or a ∆ transformers from
its secondary to its primary terminal.

terior node voltages can be recovered from exterior node voltages and bus power injections. Thus, if
a network is interior-exterior node connected the interior nodes can be eliminated from the stability
analysis through a generalization of Kron reduction. Moreover, interior-exterior node connectivity
is related to the notion of an effectively grounded three-phase system encountered in the literature
on protection systems that ensures a low impedance path for fault current [37]. Specifically, if the
network consisting of the aforementioned branches (i.e., three-phase lines, ∆∆, , , ∆, and ∆

transformers) is effectively grounded, then it is interior-exterior node connected. This highlights
that assuming the graph to be interior-exterior node connected is not overly restrictive. Similar
assumptions have been made in the literature to, e.g., ensure the existence and uniqueness of power
flow solutions in three-phase distribution systems with constant power sources and the substation
transformer modeled as a slack bus [38, Section IV-C].

The following assumption is required to rule out connections with inconsistent phase shifts or
voltage ratios along different branches.

Assumption 2 (Well-posed network) We assume that

1. the network is connected and interior-exterior node connected,

2. the number of transformer branches of a specific type, voltage ratio, and orientation tra-
versed by any path between any two nodes is identical.

Under Assumption 1 and Assumption 2, it can be shown that the overall system with three-phase
converters using either positive sequence droop control (3.1) or generalized three-phase droop con-
trol (3.9) with kP = kQ = ks and mp = mq/τ is asymptotically stable with respect to a balanced
trivial (i.e., nominal voltage and no power flow) solution if one of the following holds: (i) at least
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one converter uses positive sequence droop control, (ii) at least one converter uses generalized
three-phase droop control with a positive balancing gain ks, (iii) between any two exterior nodes,
there exists at least one path that contains at least one ∆ branch and all ∆ branches are traversed
in the same orientations.

Notably, this result contains the well-known result for networks of (positive sequence) droop con-
trolled converters connected through three-phase lines as a special case. Crucially, it extends the
result to establish that generalized three-phase droop controlled converters with zero phase balanc-
ing gain ks synchronize positive sequence droop controlled converters through three-phase lines,

transformers, and ∆ transformers. Moreover, it establishes small-signal frequency and voltage
stability of networks of converters using generalized three-phase droop control with positive phase
balancing gain ks. This result shows that, from the viewpoint of small-signal frequency stability,
generalized three-phase droop control with ks ∈ R>0 does not impose stricter requirements than
standard (positive sequence) droop control. Finally, the last condition highlights that networks of
generalized three-phase droop control without phase balancing feedback (i.e., ks = 0) synchronize
to a balanced solution through specific transformer branches. This result explains the experimental
observations in [39] and clarifies the class of three-phase network topologies for which autonomous
phase-balancing of three single-phase droop controlled converters connected to a three-phase bus
occurs.

5.2 Average dynamics and steady-state analysis

In this section we analyze how the droop coefficients and phase balancing gains and droop gains
influence the trade-off between power unbalance and voltage unbalance at the terminals of the GFM
converter. To make the notations less verbose, we use Vδ ,p for V gfm

δ ,p and δp for δ
gfm
p for all p ∈ P .

5.2.1 Q−V droop equation

Vectorizing the generalized three-phase droop control equation (3.9b) and defining Qδ ,p :=Q⋆
p−Qp

for all p ∈ P results in

τ
d
dt

Vδ ,a
Vδ ,b
Vδ ,c

=−

Vδ ,a
Vδ ,b
Vδ ,c

− kQ

 2 −1 −1
−1 2 −1
−1 −1 2


︸ ︷︷ ︸

=:L

Vδ ,a
Vδ ,b
Vδ ,c

+mQ

Qδ ,a
Qδ ,b
Qδ ,c

 . (5.1)

Where L = LT is a Laplacian matrix that is used to rewrite the phase-balancing feedback in a
compact form. Moreover, we define the transformation matrix
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T :=

1
3

1
3

1
3

1 −1 0
0 1 −1

 (5.2)

that is used to compute average values across phases as well as the differences between phase a and
phase b and phase b and phase c. Applying the transformation T , we obtain

τ
d
dt

Vδ ,a
Vδ ,b
Vδ ,c

=−(I + kQL)

Vδ ,a
Vδ ,b
Vδ ,c

+mQ

Qδ ,a
Qδ ,b
Qδ ,c

 , (5.3a)

τ
d
dt T

Vδ ,a
Vδ ,b
Vδ ,c

=−T (I + kQL)T−1T

Vδ ,a
Vδ ,b
Vδ ,c

+mQT

Qδ ,a
Qδ ,b
Qδ ,c

 . (5.3b)

Simplifying (5.3b), we get

τ
d
dt

 V δ

Vb−a
Vc−b

=−

1 0 0
0 3kQ +1 0
0 0 3kQ +1

 V δ

Vb−a
Vc−b


︸ ︷︷ ︸
=V∆,p

+mQ

 Qδ

Qb−a
Qc−b

 . (5.4)

Where we used Vb−a :=Vδ ,a−Vδ ,b =V ⋆
a −Va−(V ⋆

b −Vb), Qb−a := Qδ ,a−Qδ ,b = Q⋆
a−Qa−(Q⋆

b−
Qb), V δ := 1

3 ∑
i
p∈P Vδ ,i and Qδ := 1

3 ∑
i
p∈P Qδ ,i.

Assuming that the references V ⋆
p and Q⋆

p are the same for all p ∈ P , we can simply write Vb−a =
Vb −Va and Qb−a = Qb −Qa. Upon closer inspection of (5.4), we see that the dynamics of the
average V δ only depend on the droop gain mQ and average reactive power deviation Qδ , i.e., they
are identical to the standard (positive sequence) droop control discussed in Section 3.2. On the
other hand, the voltage magnitude difference between phases (not to be confused with line-to-line
voltages) such as Vb−a are dependent on their corresponding reactive power magnitude difference
(e.g., Qb−a) and the phase-balancing gains kQ. To determine the steady state response, we let
d
dtV∆,p → 0 in (5.4) to obtain

 V δ

Va−b
Vb−c

=

mQ 0 0
0 − mQ

3kQ+1 0
0 0 − mQ

3kQ+1


 Qδ

Qa−b
Qb−c

 . (5.5)
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It is evident form (5.5) that as Va−b → 0 as kQ → ∞, establishing that the phase voltage magnitudes
will be more balanced for increased kQ.

5.2.2 P− f droop equation

Similar arguments can be applied to the P− f droop dynamics of generalized three-phase GFM
droop equation in (3.9b). Letting Pδ ,p := P⋆

p −Pp for all p ∈ P and vectorizing (3.9a) results in

d
dt

δa
δb
δc

= ω0I − kP

 2 −1 −1
−1 2 −1
−1 −1 2

δa
δb
δc

+mP

Pδ ,a
Pδ ,b
Pδ ,c

 . (5.6)

Defining ωδ ,p := d
dt δp −ω0, it follows thatωδ ,a

ωδ ,b
ωδ ,c

=−kPL

δa
δb
δc

+mP

Pδ ,a
Pδ ,b
Pδ ,c

 , (5.7a)

T

ωδ ,a
ωδ ,b
ωδ ,c

=−kPT LT−1T

δa
δb
δc

+mPT

Pδ ,a
Pδ ,b
Pδ ,c

 . (5.7b)

Assuming that P⋆
p is identical for all p ∈ P , (5.7b) reduces to

 ωδ

ωa−b
ωb−c

=

0 0 0
0 −3kP 0
0 0 −3kP

 δ

δa−b
δb−c

+mP

 Pδ

−Pa−b
−Pb−c

 , (5.8)

where ωa−b := ωa−ωb, Pa−b := Pa−Pb, ωδ := 1
3 ∑

i
p∈P ωδ ,i and Pδ := 1

3 ∑
i
p∈P Pδ ,i. Following the

same steps as in the analysis of the Q−V droop, (5.8) shows that the average frequency deviation
ωδ is only dependent on average active power deviation Pδ , i.e., is identical to (positive sequence)
droop control in a balanced system. However, the frequency difference between phases such as
ωa−b is dependent on its corresponding active power difference such as Pa−b. Using ωa−b := d

dt δa−b
it follows that

d
dt δa−b =−3kPδa−b −mPPa−b, (5.9)

which can be explicitly solved for constant Pa−b to obtain

δa−b(t) = e−3kP(t)δa−b(0)−
mP

3kP
Pa−b(1− e−3kP(t)). (5.10)
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In other words, the dynamics of the phase angle differences are input-to-state stable and will con-
verge to δa−b(t) = 0 in the absence of active power phase imbalance (i.e., Pa−b = 0).

Moreover, e−3kP(t) → 0 as t → ∞. Hence, in steady state it follows that

δa−b(t) =− mP

3kP
Pa−b (5.11)

and the same argument holds for the solution of δb−c(t).

Therefore, in steady state, (5.8) simplifies to

ωδ = mPPδ , (5.12a)[
δa−b
δb−c

]
=−

[ mP
3kP

0
0 mP

3kP

][
Pa−b
Pb−c

]
. (5.12b)

From (5.12b) it can be inferred that as kP → ∞, δa−b → 0 suggesting that the phase voltage angles
tend to be balanced as well. Therefore, along with the results in Section 5.2.1, we conclude that
increasing the balancing gains kP and kQ will decrease voltage unbalance and, for kP → ∞ and
kQ → ∞ we expect the voltage magnitude and angle to converge to that of positive sequence droop
control.

5.3 Unbalance factors

Next, we analyze the impact of the control gains and load and/or system unbalance on the unbalance
factor of the converter terminal voltage. To this end, let V+ and V− denote the magnitude of
the positive and negative sequence voltage and let P̄ := 1

3 ∑p∈P Pp and Q̄ := 1
3 ∑p∈P Qp denote

the average phase power of the VSC. The voltage unbalance factor is given by VUF := V−/V+.
Moreover, for Pp and Qp in p.u., we define the power unbalance factors PUF := maxp∈P |Pp − P̄|,
and QUF := maxp∈P |Qp − Q̄| that resemble standard current unbalance factors commonly used in
analysis of electric machines. In this section we establish that, for GFM converter connected to
a load and an unbalanced infinite bus, the voltage unbalance VUF of the GFM converter terminal
voltage can approximately be bounded based on the power unbalance factors of the load and voltage
unbalance factor of the unbalanced infinite bus.

5.3.1 Linearizing voltage unbalance factor

Because VUF is a highly non-linear function with respect to Vp and θp, we use a second order Taylor
series expansion to approximate VUF as a function of Vp and θp with p ∈ P . To this end, consider
the transformation

30



V+

V−

V 0

=
1
3

1 1 1
1 α α2

1 α2 α

Vae jθa

Vbe jθb

Vce jθc

 (5.13)

and the function f (x) = V 2
UF = (V−)2

(V+)2 with x = (δa,δb,δc,Va,Vb,Vc) and f : R6 → R. Also recall

from the Section 3.4.1 that δp = θp −θ bal
p . For γ ∈ (0,1), the second order Taylor approximation

of f (x) developed at a balanced operating point is given by

V 2
δ ,UF = f (x0)+ ⟨∇ f (x0),y− x0⟩+

1
2
(y− x0)

T
∇

2 f (x0 + γ(y− x0))(y− x0). (5.14)

Substituting x0 = (13,03), we obtain f (x0) = 0 and ∇ f (x0) = 06. Hence, we have that

V 2
δ ,UF =

1
2
(y− x0)

T
∇

2 f (x0 + γ(y− x0))(y− x0). (5.15)

Notably, we can omit the constant 1
2 and obtain the upper bound

V 2
δ ,UF ≤ (y− x0)

T
∇

2 f (x0)(y− x0). (5.16)

Next, we can use similar techniques to those used in Section 5.2.1 and leverage the transformation

T̃ :=
[

T 03×3
03×3 T

]
(5.17)

Next, let x̃ := T̃ x. Substituting T̃−1x̃ = x in (5.16) we obtain

V 2
δ ,UF ≤ (∆x)T(T̃−1)T∇

2 f (x0)T̃−1
∆x, (5.18)

where ∆x = T̃ (y− x0). Simplifying H := (T̃−1)T∇2 f (x0)T̃−1 we obtain,

H =



0 0 0 0 0 0
0 2

9 −1
9 0 0

√
3

9
0 −1

9
2
9 0 −

√
3

9 0
0 0 0 0 0 0
0 0 −

√
3

9 0 2
9 −1

9
0

√
3

9 0 0 −1
9

2
9


. (5.19)

Also, note that ∆x = (δ ,δa−b,δb−c,V ,Va−b,Vb−c) and that H can be further simplified by omitting
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the rows and columns from (5.19) that are zero. This is supported by the intuition that average
values do not affect the unbalance factor and results in

H̃ :=


2
9 −1

9 0
√

3
9

−1
9

2
9 −

√
3

9 0
0 −

√
3

9
2
9 −1

9√
3

9 0 −1
9

2
9

 , (5.20)

(5.21)

and ∆x̃ := (δa−b,δb−c,Va−b,Vb−c).

Substituting H̃ and ∆x̃ in (5.16), we obtain the approximate bound

V 2
δ ,UF ≤ (∆x̃)TH̃∆x̃. (5.22)

Summarizing, (5.22) is linearized version of V 2
UF near a balanced operating point x0 with reduced

dimension of the state vector from R6 to R4 with the help of coordinate transformation T̃ . Next,
we will further bound V 2

δ ,UF as a function of load and grid voltage unbalance.

5.3.2 Standalone GFM converter with unbalanced load

When the GFM converter is connected to an unbalanced load as shown in Figure 5.2, the corre-
sponding voltage magnitude and angle unbalance is captured through (5.5) and (5.8).

Figure 5.2: GFM converter connected to an unbalanced load.

Using (5.22) and recalling the relationship between active power and power angle given in (5.12b)
and reactive power and voltage given in (5.5), we obtain

V 2
δ ,UF ≤


Pa−b
Pb−c
Qa−b
Qb−c


T


mP
3kP

0 0 0
0 mP

3kP
0 0

0 0 mQ
3kQ+1 0

0 0 0 mQ
3kQ+1


T

H̃


mP
3kP

0 0 0
0 mP

3kP
0 0

0 0 mQ
3kQ+1 0

0 0 0 mQ
3kQ+1




Pa−b
Pb−c
Qa−b
Qb−c

 , (5.23)
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≤


Pa−b
Pb−c
Qa−b
Qb−c


T



2m2
P

81k2
P

− m2
P

81k2
P

0
√

3mPmQ
27kP(3kQ+1)

− m2
P

81k2
P

2m2
P

81k2
P

−
√

3mPmQ
27kP(3kQ+1) 0

0 −
√

3mPmQ
27kP(3kQ+1)

2m2
Q

9(3kQ+1)2 − m2
Q

9(3kQ+1)2
√

3mPmQ
27kP(3kQ+1) 0 − m2

Q
9(3kQ+1)2

2m2
Q

9(3kQ+1)2




Pa−b
Pb−c
Qa−b
Qb−c

 . (5.24)

Next, let

γ1 :=
m2

P

81k2
P

[
Pa−b Pb−c

][ 2 −1
−1 2

][
Pa−b
Pb−c

]
, (5.25)

γ2 :=
m2

Q

(3kQ +1)2

[
Qa−b Qb−c

][ 2 −1
−1 2

][
Qa−b
Qb−c

]
, (5.26)

γ3 :=
2
√

3mPmQ

27kP(3kQ +1)
[
Qa−b Qb−c

][0 −1
1 0

][
Pa−b
Pb−c

]
. (5.27)

Then, (5.24) can be equivalently be represented as,

V 2
δ ,UF ≤ γ1 + γ2 + γ3. (5.28)

The remainder of this section will maximize γ1 through γ3 for a given load unbalance factor to
determine an upper bound on V 2

δ ,UF .

Since, the power imbalances are bounded by this their respective power unbalance factors, they
serve as the constraints for maximizing γ1 + γ2 + γ3. Recalling the definition of PUF and QUF , we
obtain

PUF ≥ 1
3


2 −1 −1
−1 2 −1
−1 −1 2
−2 1 1
1 −2 1
1 1 −2


Pa

Pb
Pc

 , (5.29)

≥ 1
3


2 −1 −1
−1 2 −1
−1 −1 2
−2 1 1
1 −2 1
1 1 −2

T−1

 P
Pa−b
Pb−c

 , (5.30)
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≥ 1
3


0 1 1
0 −2 1
0 1 −2
0 −1 −1
0 2 −1
0 −1 2


 P

Pa−b
Pb−c

 . (5.31)

By removing the average element out of (5.31) we get

PUF ≥ 1
3


1 1
−2 1
1 −2
−1 −1
2 −1
−1 2


[

Pa−b
Pb−c

]
. (5.32)

The reactive power unbalance power factor can analogously be used to bound phase power unbal-
ances as follows

QUF ≥ 1
3


1 1
−2 1
1 −2
−1 −1
2 −1
−1 2


[

Qa−b
Qb−c

]
. (5.33)

The set (5.32) is shown in Figure 5.3a for PUF = 0.5. By observation, the constraints can be over-
approximated as shown in Figure 5.3b.

The over-approximation shown in Figure 5.3b results in the set

PUF ≥ 1
2


1 0
0 1
−1 0
0 −1

[Pa−b
Pb−c

]
. (5.34)

Similarly, the constraint set (5.33) can be over-approximated by
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(a) Constraint set for PUF = 0.5.

−1 −0.5 0 0.5 1

−1

−0.5

0
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1

Pa−b

P
b−

c

(b) Over-approximated constraint set for PUF = 0.5.

Figure 5.3: Constraint sets for the maximization of power unbalances for a given power unbalance factor.

QUF ≥ 1
2


1 0
0 1
−1 0
0 −1

[Qa−b
Qb−c

]
. (5.35)

Let X denote the constraint set given in (5.32) and (5.33) as shown in Figure 5.3a. Then, we can
bound V 2

δ ,UF as follows

V 2
δ ,UF ≤ max

x∈X
(γ1 + γ2 + γ3). (5.36)

Moreover, it holds that

V 2
δ ,UF ≤ max

x∈X
γ1 +max

x∈X
γ2 +max

x∈X
γ3. (5.37)

Next, let X̃ denote the set given in the (5.34) and (5.35) as depicted in Figure 5.3b. Because
X ⊂ X̃ , it holds that
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V 2
δ ,UF ≤ max

x∈X̃
γ1 +max

x∈X̃
γ2 +max

x∈X̃
γ3. (5.38)

Finally, analytically solving the maximization problems in (5.38) results in the bound

V 2
Uδ ,UF ≤

2m2
p

27k2
P

P2
UF +

2m2
Q

3(3kQ +1)2 Q2
UF +

16
√

3mPmQ

27kQ(3kQ +1)
PUFQUF . (5.39)

This bounds the voltage unbalance factor of the GFM converter through power unbalance factors
of the load in a standalone GFM converter with an unbalanced load system. This result highlights
that increasing the droop coefficients mp ∈ R>0 and mq ∈ R>0 increases the impact of unbalanced
load on the converter terminal voltage unbalance. At the same time, increasing the phase-balancing
gains kP ∈ R>0 and kQ ∈ R>0 decreases the impact of unbalanced load on the converter terminal
voltage unbalance.

5.3.3 GFM converter connected to unbalanced grid

Next, we investigate how grid voltage unbalances impact the voltage unbalance at the converter
terminal. To this end, we consider the connection of a GFM converter to an unbalanced infinite bus
depicted in Figure 5.4.

Figure 5.4: GFM converter is connected to an unbalanced grid.

In particular, we will derive conditions under which the voltage unbalance factor at the converter
terminal can be related to the voltage unbalance factor at the infinite bus and the converter control
gains. It is expected that the voltage unbalance at the converter admits a direct relationship with the
infinite bus unbalance and the balancing gains kP ∈ R>0 and kQ ∈ R>0. For the system shown in
Figure 5.4 it holds that

[
V1,a−b
V1,b−c

]
=−

[ mQ
3kQ+1 0

0 mQ
3kQ+1

][
Qa−b
Qb−c

]
, (5.40a)
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[
δ1,a−b
δ1,b−c

]
=−

[ mP
3kP

0
0 mP

3kP

][
Pa−b
Pb−c

]
. (5.40b)

By linearizing the reactive power flow across the inductor shown in Figure 5.4 at the nominal
operating point V ⋆ and δ ⋆, we obtain

[
V1,a−b
V1,b−c

]
=−

[ mQ
3kQ+1 0

0 mQ
3kQ+1

][
b(V1,a−b −V2,a−b)
b(V1,b−c −V2,b−c)

]
, (5.41a)

[
V1,a−b
V1,b−c

]
=

[ bmQ
3kQ+bmQ+1 0

0 bmQ
3kQ+bmQ+1

][
V2,a−b
V2,b−c

]
. (5.41b)

Similarly, linearizing the active power results in

[
δ1,a−b
δ1,b−c

]
=−

[ mP
3kP

0
0 mP

3kP

][
b(δ1,a−b −δ2,a−b)
b(δ1,b−c −δ2,b−c)

]
, (5.42a)[

δ1,a−b
δ1,b−c

]
=

[
bmP

3kP+bmP
0

0 bmP
3kP+bmP

][
δ2,a−b
δ2,b−c

]
. (5.42b)

Combining (5.41b) and (5.42b) results in


δ1,a−b
δ1,b−c
V1,a−b
V1,b−c

= F


δ2,a−b
δ2,b−c
V2,a−b
V2,b−c

 ,F :=


bmP

3kP+bmP
0 0 0

0 bmP
3kP+bmP

0 0

0 0 bmQ
3kQ+bmQ+1 0

0 0 0 bmQ
3kQ+bmQ+1

 . (5.43a)

Using (5.43a) to bound the voltage unbalance factor, we obtain

V 2
δ ,1,UF = zT2 H̃Fz2, (5.44)

where H̃F := FTH̃F and z2 := (δ2,a−b,δ2,b−c,V2,a−b,V2,b−c). Moreover, for a given value of Vδ ,2,UF
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we have

V 2
δ ,2,UF = 1

2zT2 H̃z2. (5.45)

Our goal is to bound V 2
δ ,1,UF as a function of V 2

δ ,1,UF . This requires bounding zT2 H̃Fz2 in terms
of zT2 H̃z2. However, if there exists z2 such that z2 ∈ ker H̃ but z2 /∈ N (H̃F), then V 2

δ ,2,UF = 0 but
V 2

δ ,1,UF ̸= 0. It follows that the GFM converter terminal voltage unbalance cannot be bounded based
on the grid voltage unbalance factor. In other words, the desired bound can only be obtained if H̃
and H̃F have the same null space. This is true when

bmQ

3kQ +bmQ +1
=

bmP

3kP +bmP
. (5.46)

In this case, the bounds on the GFM voltage unbalance factor can be directly computed as

V 2
δ ,1,UF ≤ 2

(
bmP

3kP +bmP

)2

V 2
δ ,2,UF , (5.47)

which again illustrates that increasing the phase balancing gains kP ∈R≥0 and kQ ∈R≥0 decreases
the voltage unbalance at the converter terminal.
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6. Distributed cold start under unbalanced conditions

This chapter introduces a strategy for distributed cold starts of distribution feeders under unbal-
anced conditions, obviating the necessity for centralized coordination. To begin with, an advanced
load relay is introduced, serving as a crucial component in achieving this goal. Moreover, a cold
start methodology employing GFM converters for unbalanced conditions is outlined.

6.1 Advanced load relay

To enhance the cold start capability, an advanced load relay is modeled in this study. The load relay
combines frequency and voltage relay functionalities and is designed to trip/reset the breaker based
on predefined operating ranges and specified delay times. By utilizing individual reset delay times
for load relays, the system operator can achieve a gradual energization/connection of loads during
the cold start process, thereby mitigating the risk of Cold Load Pickup [28] associated with inrush
currents. The load relays continuously measure the frequency and voltage as indicators of the
grid’s state, eliminating the need for additional communication with the inverters during the cold
start process. For example, when the frequency stays within a predefined deviation range (±0.9Hz)
from the nominal frequency for the connection waiting time Tfreq,con, the load relay will connect the
load. Conversely, if the frequency deviates from this predefined range for the disconnection waiting
time Tfreq,dis, the load relay will disconnect the load. During the cold start process, these waiting
times are initialized to avoid simultaneous switching on/off of all loads, and can be modified based
on the priority of operation.

6.2 GFM cold start logic

The GFM converter, equipped with the generalized three-phase droop control, emerges as a promis-
ing solution for cold start operation under unbalanced system. Subsequent to a blackout event, the
first GFM converter initiates a gradual increase in its terminal voltage by ramping up its voltage
magnitude setpoints. This method achieves soft transformer energization and eliminates the in-
rush current. To prevent power oscillation among different GFM converters, a PLL is used before
connecting the second GFM converter. The PLL initially synchronizes with the voltage at the
connection point of the second converter. Following a suitable synchronization period, the angle
measured by the PLL is used to initialize the GFM control of the second GFM converter.

With the synchronization and connection of all GFM converters in the system, the advanced relays
are activated. As a result, the gradual reconnection of loads occurs based on local voltage and
frequency information. Importantly, throughout the cold start process, the active power can be
effectively shared by GFM converters.
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7. Case study: MV/HV system

This chapter describes a benchmark system developed in this project to illustrate and verify the
unbalanced fault ride through capabilities of the controls developed in this project. Moreover,
the system is used to study the interactions of GFM converters with distance protection typically
encountered in transmission systems.

7.1 Benchmark system

To illustrate the results, we use a high-fidelity EMT simulation of a two-level dc/ac VSC connected
to an infinite bus through a 1 km medium voltage line, a 40 km double circuit high voltage trans-
mission line, and step up transformers. The system parameters are provided in Table. 7.1. Unless
noted otherwise, an averaged converter model is used and the control is implemented at a sampling
rate of 10 kHz. The system is shown in Figure 7.1. For reasons of space, the converter output filter
is not shown explicitly. An unbalanced load of 1 MW is placed at the inverter bus and used to eval-
uate the response to unbalanced load. Moreover, faults are simulated on the upper transmission line
of the double transmission line and cleared by opening a breaker on this line. Lastly the system is
connected to an infinite bus through an impedance computed based on the desired equivalent short
circuit ratio (SCR) of the overall system.

Figure 7.1: Test system with a low-voltage VSC connected to a weak ac system through a distribution line,
double circuit transmission line, and a step-up transformer.

7.2 Unbalanced load

To validate the analysis in Chapter 5, we first illustrate the response of the converter to an unbal-
anced load for various controls and control parameters.

7.2.1 Generalized three phase droop control

To illustrate the role of the phase balancing gain kP and kQ, Fig 7.2 shows the steady-state volt-
age and power unbalance factors at the VSC terminal for an unbalanced delta connected constant
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Table 7.1: Parameters used in the model illustrated in Figure 7.1

Description Value
Phase balancing gain kP 1e5 p.u.
Phase balancing gain kQ 1e5 p.u.
Phase balancing gain ks ∋ kP = kQ := ks 1e5 p.u.
Inverter base power Sb 1e6 W
Inverter base voltage Vb 480 V
Inverter filter capacitor 0.05 p.u.
Inverter filter inductor 0.1 p.u.
Inverter filter resistor 0.01 p.u.
Inverter active power set point per phase 0.1 p.u.
Inverter reactive power set point per phase 0 p.u.
Inverter voltage set point per phase 1 p.u.
Threshold current limit Ith 1 p.u.
Absolute current limit Imax 1.2 p.u.
TVI constant kR 0.817
TVI constant D 15.66
TVI constant nX/R 5
TVI HPF cut-off frequency ωD 100 Hz
P− f droop mP 0.05 p.u.
Q−V droop mQ 0.05 p.u.
Base frequency 60 Hz
Medium voltage line resistance 0.21 Ω/km
Medium voltage line inductance 17e-4 H/km
Medium voltage line capacitance 1e-8 F/km
Medium voltage line base voltage 4.16e3 V
Medium voltage line length 1 km
High voltage line resistance 0.03 Ω/km
High voltage line inductance 7.95e-4 H/km
High voltage line capacitance 10e-9 F/km
High voltage line base voltage 230e3
High voltage line length 10 km

impedance load1 at the VSC bus (see Figure 7.1). The results show the expected trade off between
voltage unbalance and power unbalance, i.e., increasing the phase balancing gain kP = kQ := ks
reduces voltage unbalance VUF but increases power unbalance PUF and QUF.

1 Relative to the load between phase a and b, the load between phase b and c is 20% lower and the load between phase
a and c is 20% higher
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Figure 7.2: Steady-state unbalance factors for an unbalanced load at the VSC terminal as a function of the
phase balancing gain ks.

This result is consistent with equations (5.5) and (5.12b) obtained from analytical steady state
analysis. As kQ increases, the voltage imbalance between the phases reduces irrespective of the
reactive power imbalance. Similarly, as kP increase the angle difference between different phases
also abets irrespective of the active power difference.

7.2.2 Positive-negative sequence droop control

To illustrate the droop response of the positive-negative sequence droop control, the positive-
negative sequence droop control (3.2a) and (3.2c) that implements droop based on negative se-
quence currents has been implemented in the system shown in Fig 7.1. In this implementation
the positive and negative sequence components of the voltage are added and converted to abc by
applying the Fortescue transformation and extracting the real part of the voltage phasors for each
phase. This reference is then tracked by the generalized three-phase cascaded inner current and
voltage loops. The steady state response to same unbalanced load as used in the previous section
are shown Figure 7.3.

As shown in Figure 7.3a, the negative sequence voltage increases linearly with the negative se-
quence droop gain m−

Q and, as expected, the negative sequence current reduces linearly. However,
as shown in Figure 7.3b, the negative sequence power Q− increases in magnitude as a nonlinear
function of the negative sequence reactive power droop gain m−

Q increases. Similarly, the negative
sequence active power P− increases as a function of the negative sequence reactive power droop
gain m−

Q . This result highlights the nonlinear relationship of the power and current and its impact
on the positive-negative sequence droop control (3.2a) and (3.2c).

Overall, we observe that, due to the aforementioned nonlinearity, the tuning of the negative se-
quence droop coefficients is not intuitive. Moreover, in simulation, we observe that large coeffi-
cients that would result in significant reduction in negative sequence current or power can result in
instability, particularly under weak grid coupling. These challenges have not been observed with
the generalized three-phase droop control.
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Figure 7.3: Steady-state response to an unbalanced load at the VSC terminal as a function of the negative
sequence reactive droop gain m−1

Q .

7.3 Balanced short-circuit faults and phase jumps

To compare the fault-ride-through capability of various virtual impedance methods under balanced
conditions, we again use the system illustrated in Figure 7.4. For this case study, the load at the con-
verter terminal is disconnected. To clearly illustrate the difference between the virtual impedance
current limiting methods presented in Chapter 4, we consider a balanced short circuit fault and
phase jumps and employ the standard (positive sequence) droop control with inner loops in a syn-
chronous reference frame as shown in Figure 3.1.

An aggregate model is used for the GFM converter, representing multiple converter modules with
lower power ratings. The GFM converter is connected to an infinite bus through a 1 km medium
voltage line and 40 km double circuit high voltage transmission line through step-up transformers.
The short-circuit ratio (SCR) at the PCC is 2.78. A switching model for the converter is used to
accurately capture the dynamic behavior of the system. The system and control parameters utilized
in the simulations are listed in Table 4.1 and Table 7.2.

Figure 7.4: Test system with a low-voltage GFM converter connected to a weak ac system through a distri-
bution line, double circuit transmission line, and a step-up transformer.
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Table 7.2: System and Control Parameters.

Description Symbol Value
Inverter base power Sb 1 MVA
Inverter base voltage Vb 480 V
Filter inductance L f 0.156 p.u.
Filter capacitance C f 0.023 p.u.
Switching frequency fsw 10 kHz
Transient X/R ratio nX/R,tr 0.8
Cut-off frequency of
HPF for VTVR ωD 1000 rad/s
PI coefficients of
voltage controller KP,v and KI,v 0.83 p.u., 0.23 p.u.
PI coefficients of
current controller KP,c and KI,c 1.11 p.u., 0.24 p.u.

7.3.1 Grid voltage phase jump

In the simulation results shown in Figure 7.5, a phase angle change of −110◦ is imposed at the
grid voltage. The responses of the filter current, filter voltage, ∥vgfm − v∥, virtual reactance Xvi,
active power, and reactive power for the GFM converter operating with threshold virtual impedance
(TVI), VIv, and hybrid threshold virtual impedance (HTVI) are analyzed. After the occurrence of
the phase jump, ∥vgfm −v∥>Vn holds, and the threshold virtual impedance (TVI) fails to limit the
fault current to 1.2 p.u., which persists for a duration of 364 ms. This result aligns with the analysis
presented in Figure 4.3. In contrast, the VIv effectively limits the fault current to 1.2 p.u. after the
phase jump, exhibiting a larger impedance magnitude compared to the threshold virtual impedance
(TVI). However, oscillations in current magnitude are observed during the initial 30 ms of the fault.

In contrast, the hybrid threshold virtual impedance (HTVI) effectively limits the current magnitude
under the phase jump, similar to the VIv. It also reduces the current below 1.2 p.u. faster than the
VIv when ∥vgfm − v∥ < Vn, with the help of the threshold virtual impedance (TVI). Additionally,
the hybrid threshold virtual impedance (HTVI) exhibits a well-damped current response, similar
to the threshold virtual impedance (TVI). This supports the intuition that the hybrid threshold vir-
tual impedance (HTVI) combines the advantages of the threshold virtual impedance (TVI) and
VIv. As a result, the hybrid threshold virtual impedance (HTVI) outperforms the threshold virtual
impedance (TVI) and VIv under phase jumps, offering improved performance and FRT capability.

When the phase jump occurs, a spike in the filter voltage is observed, reaching a peak value of
1.8 p.u., lasting for 1 ms. This spike is caused by the large phase shift in the grid voltage. After
the occurrence of the phase jump, the active and reactive power exhibits a brief but large transient
before returning to the normal operating point. This behavior is a result of the resynchronization
between the GFM converter and the grid. However, despite these transients, the system maintains
transient stability, and the current is effectively limited as desired.
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Δt = 364ms 

Figure 7.5: Response of filter current, filter voltage, ∥vgfm − v∥, virtual reactance Xvi, active power, and
reactive power for the GFM converter with TVI, VIv, and HTVI under a −110◦ grid voltage phase jump at
1.5 s.
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7.3.2 Three-phase short-circuit fault

Next, a three-phase ground fault is imposed on the distribution line of the test system depicted in
Figure 7.4, causing a 0.8 p.u. voltage drop at the PCC. The fault is cleared after 400 ms. The
responses of the filter current, filter voltage, ∥vgfm − v∥, virtual reactance Xvi, active power, and
reactive power for the GFM converter operating with threshold virtual impedance (TVI), VIv, and
hybrid threshold virtual impedance (HTVI) are shown in Figure 7.6.

The threshold virtual impedance (TVI) effectively limits the fault current at 1.16 p.u. (i.e., smaller
than the maximum of 1.2 p.u.) since the fault is not located at the PCC (i.e., ∥vgfm − v∥ < Vn).
In contrast, the VIv controls the steady-state fault current at 1.2 p.u. with a smaller impedance
magnitude compared to the threshold virtual impedance (TVI). During the fault-inception period,
the threshold virtual impedance (TVI) demonstrates better performance, while the VIv exhibits a
higher transient current with a peak value of 1.41 p.u. and oscillations during the first 15 ms of the
fault period.

Subsequent to clearing the fault at t = 1.90 s, the current limiting capability of the threshold virtual
impedance (TVI) is compromised again as ∥vgfm−v∥>Vn. Consequently, the fault current remains
above 1.2 p.u. for a duration of 210 ms. In contrast, the VIv continues to limit the current at 1.2 p.u.,
providing a larger impedance magnitude. However, the VIv shows oscillations in the current for
30 ms and a slower response in reducing the current below 1.2 p.u. compared to the threshold
virtual impedance (TVI).

Notably, the hybrid threshold virtual impedance (HTVI) maintains the performance of the threshold
virtual impedance (TVI) during the short-circuit fault to limit the fault current at 1.16 p.u. with a
well-damped current response. Once the fault is cleared, the hybrid threshold virtual impedance
(HTVI) limits the current to 1.2 p.u., similar to the VIv. It also reduces the current below 1.2 p.u.
faster than the VIv when ∥vgfm − v∥ <Vn, with the help of the threshold virtual impedance (TVI).
These results demonstrate that the hybrid threshold virtual impedance (HTVI) method improves the
fault ride through capability of the GFM converter by leveraging the strengths of both the threshold
virtual impedance (TVI) and VIv methods.
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Δt = 210ms 

Figure 7.6: Response of filter current, filter voltage, ∥vgfm − v∥, virtual reactance Xvi, active power, and
reactive power for the GFM converter with TVI, VIv, and HTVI during a three-phase ground fault at 1.5 s.
The fault is cleared after 400 ms.
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7.4 Single line-to-ground fault

To illustrate the impact of separate voltage/current control and current limiting for every phase on
unbalanced fault ride through, we disconnect the load at the VSC terminal and consider a zero
impedance line-to-ground fault for phase a of a transmission line (see Figure 7.1).

7.4.1 Current saturation algorithm (CSA)

Generalized three phase droop control

We first investigate the response of the generalized three-phase droop control with three-phase
cascaded dual-loop inner controls. Figure 7.7 shows the resulting VSC terminal voltage magnitude
Vp = ∥vp∥, VSC phase current magnitude Ip = ∥ip∥, active power Pp, and reactive power Qp for
every phase p ∈ P .
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Figure 7.7: Response of the generalized droop control to a phase a to ground fault on a transmission line at
t = 1.5 s with CSA current limiting. The fault is cleared after ten cycles by disconnecting the faulted line.
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Because the magnitudes of phase currents and voltages are not well-defined within a cycle, the
maximum magnitude over one cycle is shown. We use ks = 105 p.u., i.e., the outer GFM control
is configured to resemble standard droop control (sec. 3.2), and the fault is applied at t = 1.5 s
and cleared after ten cycles by disconnecting the faulted line. Notably, due to the converters’
transformer connection, the fault applied to phase a of the transmission line, is effectively mapped
to phase b at the VSC terminal.

It can be seen that the current reference limiter (4.2) and PI current control (4.3) successfully limit
the current magnitude to Imax = 1.2 p.u. within one cycle. Notably, by controlling the current phasor
for every phase, the proposed control explicitly handles sub-cycle overcurrent. Once the fault is
cleared a significant resynchronization transient is observed that can be attributed to controller
windup in the voltage loop (4.1) and GFM angle dynamics (3.9a) and is a known challenge of
reference current limiting.

To further illustrate the positive impact of the generalized three-phase GFM control, the simulation
study has been repeated with standard droop control using the dual-loop inner control structure. In
this case, the current and voltage waveforms are severely distorted because the VSC aims to impose
balanced phase currents and a balanced voltage at its terminal. However, under its current limits,
the VSC cannot maintain a balanced voltage at the terminal during the unbalanced fault. Terminal
voltage waveforms for both controls are shown in Figure 7.8.

Figure 7.8: VSC voltages during a phase a to ground fault using generalized three-phase droop control
with dual-loop current/voltage control for every phase (top) and standard droop control and dual-loop cur-
rent/voltage control (bottom).

It can be seen that the proposed control successfully imposes a sinusoidal ac voltage waveform at
the terminals of the VSC that is unbalanced to limit the current. In contrast, standard droop control
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results in a highly distorted voltage.

In the above simulations, once the fault is cleared it is observed that system returns to a stable
operating point. However, for longer fault durations the current reference limiting may preclude
resynchronization once the fault is cleared. To illustrate the impact of the balancing gain on the
clearing time of the GFM converter we determined the critical clearing time in simulation for
different values of kP = kQ = ks. In addition, we also varied the SCR of the grid coupling to
observe the trend of critical clearing time from weak grid to strong grid. Figure. 7.9 shows that
the critical clearing time increases (measured in ac cycles at the nominal frequency) increases as ks
decreases. In other words, by allowing voltage phase angles for every phase to deviate from each
other, the critical clearing time is increased because a healthy phase can maintain synchronization
with the grid. Additionally, as SCR increases the critical clearing time increases.

Figure 7.9: Critical clearing time as a function of the phase balancing gain kP = kQ = ks for different grid
coupling strengths. The vertical axis shows critical clearing in ac cycles at the nominal frequency.

Positive-negative sequence droop control

Next, we discuss simulation results for the positive-negative sequence droop control (3.2a) and
(3.2c) that again provides a reference to separate inner control loops for each phase.

The response of the GFM converter to the phase a to ground fault used in this section is shown in
Figure 7.10. Because the fault response is largely determined by the current limiter, the response is
very similar to that of the generalized three-phase droop control shown in Figure 7.7. The current is
again successfully limited during the fault. However, a significantly larger resynchronization tran-
sient and ringing are observed. This response is attributed to the nonlinear response of the negative
sequence droop and its predominantly balanced reference voltage even under severe unbalance.
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Figure 7.10: Response of positive-negative sequence droop control to a phase a to ground fault on a trans-
mission line at t = 1.5 s, with CSA current limiting. The fault is cleared after ten cycles by disconnecting
the faulted line.
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7.4.2 Threshold virtual impedance (TVI)

Next, we investigate the response of the generalized three-phase droop control with threshold vir-
tual impedance current limiting (4.9) implemented separately for every phase. The response of the
GFM converter to a phase a to ground fault is captured in the Figure 7.1. Notably, Figure 7.11
shows that the fault current is limited more aggressively compared to that of CSA. Moreover, the
voltage overshoot after clearing the fault is significantly reduced. This can be attributed to the fact
that no integrator wind up occurs in the inner voltage loop when threshold virtual impedance is
used.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0

0.5

1

t [s]

P
ha

se
cu

rr
en

t
[p

.u
.]

Ia
Ib
Ic

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
0.6

0.8

1

1.2

t [s]

V
ol

ta
ge

[p
.u

.] Va

Vb

Vc

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

−0.2

0

0.2

0.4

t [s]

A
ct

iv
e

po
w

er
[p

.u
.]

Pa

Pb

Pc

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

−0.2

0

0.2

0.4

0.6

t [s]

R
ea

ct
iv

e
po

w
er

[p
.u

.]

Qa

Qb

Qc

Figure 7.11: Response of generalized droop control to a phase a to ground fault on a transmission line at
t = 1.5 s, with TVI current limiting. The fault is cleared after ten cycles by disconnecting the faulted line.

On the other hand, both active and reactive powers, exhibit significant ringing that can be attributed
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to transient stability challenges that are commonly observed with threshold virtual impedance cur-
rent limiting. Nonetheless, threshold virtual impedance current limiting results in improved fault-
ride-through capabilities.

Finally, we emphasize that using threshold virtual impedance current limiting results in a signif-
icantly increased critical clearing time that is several times longer than the critical clearing time
when using reference current limiting.

Finally, we compare the resynchronization time after the fault is cleared. Figure 7.12 shows the
resynchronization time to within 5% of the nominal operating point after the fault is cleared. Re-
sults are provided for both CSA and TVI as a function of the phase balancing gain kP = kQ = ks
for various grid coupling strengths. Figure 7.12 shows that, while there is no obvious trend, with
respect to SCR and current limiting method, the resynchronization time reduces when the phase
balancing gain ks is increased. Therefore, along with the trade-off between phase power and phase
voltage imbalance, kP and kQ can also be used to tune the resynchronization time.

Figure 7.12: Resynchronization time as a function of phase balancing gain ks = kP = kQ for TVI (dotted)
and CSA (solid).

7.5 Interactions with system protection

Finally, we investigate interactions of generalized three-phase grid-forming control with distance
protection.

7.5.1 Distance protection

In this study, we focus on the distance relay with quadrilateral characteristics. Figure 7.13 il-
lustrates the quadrilateral characteristic of the distance relay. This relay offers the advantage of
independently adjustable resistive reach and is recognized for its resilience against the impact of
fault resistance [40]. To streamline the relay model, we focus on the digital relay’s logic and mech-
anisms, omitting the inclusion of current and voltage transformers. These transformers typically
step down signals to fit within the operational scope of the relays. Moreover, to facilitate our anal-
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ysis, a Fourier analysis is used to estimate fundamental voltage and current phasors. Operating
based on the estimated voltage and current phasors from the Fourier analysis, the relay computes
the line impedance between the circuit breaker and fault points. All three line-to-line impedance
and three line-to-ground impedance are calculated by the relay. If any of the calculated impedance
values fall within a predefined zone, the relay initiates a trip signal after a defined operating time.

Figure 7.13: Quadrilateral characteristic of the distance relay.

Line-to-line (LL) faults have been recognized as critical scenarios leading to protection failures
[26]. Consequently, we have directed our attention towards examining a phase a to phase b fault
as an illustrative case study. It is important to note that the transient stability during fault recov-
ery under LL fault conditions is compromised when using the CSA. This is primarily due to the
occurrence of controller windup within the voltage loop. Consequently, in our simulations, the
TVI method is used as the current limiting strategy for the GFM converter to enhance the transient
stability.

The test system depicted in Figure 7.14 is equipped with four breakers, each paired with a corre-
sponding distance relay (R1, R2, R3, and R4).

These breakers are placed at both terminals of the 40 km double circuit high voltage transmission

Π
Π

Π

S = 1 MW

480 V / 4.16 kV 4.16 kV / 230 kV

1km, R/X=0.327 40km, R/X=0.1b
V = 480 Vb

0f =60 Hz

Figure 7.14: Test system with a low-voltage VSC connected to a weak ac system through a distribution line,
double circuit transmission line with four distance relays, and step up transformers.
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line. A phase a to phase b fault is simulated on the upper transmission line, occurring at a distance
ρ ∈ (0,1) relative to the length of the upper transmission line. Notably, the impedance between the
fault location and relay R1 is given by ρZl , while the impedance between the fault location and
relay R2 is (1−ρ)Zl , wherein Zl represents the impedance of each transmission line.

In the case of a phase a to phase b fault involving a fault resistor, denoted as R f , relays R1 and R2
evaluate the LL loop impedance by

Zab
R1

= ρZl +R f

(
1+

Ia
R2

− Ib
R2

Ia
R1

− Ib
R1

)
, (7.1a)

Zab
R2

= (1−ρ)Zl +R f

(
1+

Ia
R1

− Ib
R1

Ia
R2

− Ib
R2

)
. (7.1b)

Here, Ia
R1

(Ia
R2

) and Ib
R1

(Ib
R2

) represent the complex current phasors of phase a and b received by
relay R1 at the inverter-side (relay R2 at the grid-side), respectively. It should be noted that the
calculated impedance obtained by the relays may differ from the actual fault impedance. Such
deviations can arise due to the presence of fault resistance R f , as well as the differences between
the inverter-side and grid-side current phasors. For instance, an additional impedance is factored

into the calculation made by relay R1, and this can be expressed as R f

(
Ia
R2

−Ib
R2

Ia
R1

−Ib
R1

)
. This additional

impedance is influenced by the value of fault resistance R f and the ratio between the grid-side and
inverter-side current phasor.

Phase a to phase b fault with R f = 0.001 Ω

The distance relay parameters are given in Table. 7.3, including the percentage of the transmission
line length covered by each zone, the resistive reach of each zone, and the operation time.

Protection zone Percentage Resistive reach Operating time
Zone 1 100 % 10.5 Ω 100 ms
Zone 2 150 % 13 Ω 250 ms
Zone 3 200 % 15 Ω 400 ms

Table 7.3: Distance Relay Parameters.

Figure 7.15 shows the impedance diagram computed by relay R1 and relay R2 during a phase a
to phase b fault, with fault resistance R f = 0.001 Ω. Notably, the measured impedance from both
relays closely aligns with the actual fault impedance extending from the relay to the fault location.
Given the minimal fault resistance R f , the additional impedance calculated by the relays becomes
negligible, ensuring the proper functionality of both relays for normal tripping operations in this
specific scenario.
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Figure 7.15: Phase a to phase b impedance diagram, Zab, computed by (a) relay R1 and (b) relay R2 during
a phase a to phase b fault with R f = 0.001Ω. The red square represents the actual fault impedance between
the respective relay and the fault location.

Phase a to phase b fault with R f = 5 Ω

In Figure 7.16, the impedance diagram measured by relay R1 and relay R2 are depicted for a
phase a to phase b fault with fault resistance R f = 5 Ω. Observations in Figure 7.16b reveal
that relay R2 effectively triggers a normal trip due to the close alignment between the impedance
measurement and the actual impedance. However, the impedance measured by relay R1 deviates
from the actual impedance and leads to a misoperation, as presented in Figure 7.16a. It is revealed
that the additional impedance calculated by relay R1 manifests as resistive, quantified as 15Ω.

Consequently, in compliance with (7.1a), the computed ratio
Ia
R2

−Ib
R2

Ia
R1

−Ib
R1

yields a value of 3.

Considering the distribution line and high voltage transformer, the electrical distance from the fault
location to the grid is significantly shorter in comparison to the distance to the GFM converter. Fur-
thermore, the output current of the GFM converter is limited by its current limiting strategy (i.e.,
TVI). As a result, the contribution of the fault current from the converter becomes inconsequential
when compared to the fault current originating from the grid. In this context, the fault current feed-
ing into both relay R1 and relay R2 predominantly arises from the grid under a short-circuit fault
in the double circuit transmission line. The fault current from the grid comprises two components.
The first component flows directly from the grid through relay R2 to the fault location. The sec-
ond component follows a route through relay R4, relay R3, and finally relay R1 before reaching
the fault position. Both components have the same phase. Consequently, the ratio of the current
flowing through relay R2 to relay R1 becomes linked to the line impedance along this particular
route, equating to 1+ρ

1−ρ
= 3 when the fault position coincides with the midpoint of transmission line

1 (i.e., ρ = 0.5). Furthermore, the additional impedance calculated by relay R2 is also resistive,
specifically measuring R f

(
1−ρ

1+ρ

)
= 5

3 Ω. As depicted in Figure 7.16b, the simulation results align
with this analysis.
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Figure 7.16: Phase a to phase b impedance diagram, Zab, computed by (a) relay R1 and (b) relay R2 during
a phase a to phase b fault with R f = 5Ω. The red square represents the actual fault impedance between the
respective relay and the fault location.

An important consideration is that, following the tripping action by relay R2, the configuration
of the double circuit transmission line system changes to a single-ended network. As a result,
relay R1 can precisely compute the impedance value, enabling it to initiate normal tripping op-
erations. This observation underscores the adaptability and reliability of the protection scheme.
Overall, it is imperative to closely pay attention to the interactions between GFM converters and
transmission system-level protection, particularly in future power systems with high penetration of
inverter-based resources. The fault current of the converter is restricted due to inherent limitations
in the current capacity. Additionally, the current response of the GFM converter is entirely contin-
gent on its control system, a characteristic that sharply contrasts with the behavior of synchronous
generators.
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8. Case study: distribution

This chapter describes a distribution system benchmark system based on the IEEE 13-bus feeder
that was developed in this project to illustrate and verify the unbalanced fault ride through capa-
bilities of the controls developed in this project. The system is used to study the impact of current
limiting strategies on the response of a grid-forming converter in a distribution system with inverse
time overcurrent relays and induction motor loads. Moreover, the system is used to illustrate the
unbalanced cold start method described in Chapter 6.

8.1 Benchmark system

The benchmark system is shown in Figure 8.1 and uses the network data of the IEEE 13-bus feeder.
Inverse time overcurrent relays, a grid-forming converter, and an induction motor load have been
integrated into the system.

Figure 8.1: IEEE 13 bus distribution system with GFM converter, induction motor load, and inverse time
relay (indicated in orange).

8.2 Overcurrent protection

We first study the impact of the grid-forming converter on overcurrent protection during a symmet-
ric fault between Relay 1 and Relay 2 (see Figure 8.1).

8.2.1 Inverse time overcurrent relay

The inverse time overcurrent relay is modeled in this study, which comprises two protection units:
a phase protection unit and an earth protection unit. The phase protection unit is activated when
the current value in any of the phases surpasses the predetermined pickup value. Similarly, the
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earth protection unit is activated when the value of the zero-sequence current exceeds the specified
pickup value. Upon activation of either protection unit lasting for the relay operating time, a trip
signal is generated and transmitted to the breaker.

The relay operating time is contingent upon the pickup value (Ipickup) and the time multiplier set-
ting (tT MS) of the relay. The relay operating time is calculated based on the IEEE standard [41],
expressed as

top = tT MS

(
A

Mp +B
)
. (8.1)

Here, M represents the current expressed in multiples of pickup current (Iinput/Ipickup), while A,B, p
are constants selected to shape the desired curve characteristics. These constants are detailed in
Table. 8.1 [41].

Characteristic A B p
Moderately inverse 0.0515 0.1140 0.0200

Table 8.1: Constants for standard characteristics of the inverse time overcurrent relay.

8.2.2 Response to a symmetric ground fault

To investigate on the GFM converter performance on the existing protection relays, a symmetric
ground fault is simulated between Relay 1 and Relay 2. For our initial simulation, the settings of
Relay 1 and Relay 2 have been tuned based on the expected fault current contribution flowing from
the grid (modeled as infinite bus) to the fault, i.e., disregarding the GFM converter. This simulation
illustrates the implications for the fault response of the system when connecting a GFM converter
without updating the protection settings.

In this scenario, Relay 1 trips due to the fault current provided by from the bulk grid (modeled as
infinite bus). However, due to the limited GFM converter fault current Relay 2 does not trip, the
lower half of the system remains energized by the GFM converter, and the fault is not cleared. The
currents across the relay are shown in Figure 8.2a and Figure 8.2b, respectively. We emphasize
that the black dotted line indicates the trip limit of the relays and the blue and the pink dotted
lines indicate the magnitude of the current at which the relay trips after the time specified in the
figure. Notably, as the current magnitude increases the time taken for the relay to trip also reduces
depicting the inverse time relay characteristics.

Next we investigate two broad approaches to avoid misoperation of the protection system. First we
investigate lowering the thresholds of Relay 1 and Relay 2. An alternative solution is to increase
the current rating of the GFM converter.

To avoid the GFM converter feeding into the fault, the settings of Relay 1 and Relay 2 settings are
changed to 70% of their original rating to enforce tripping at lower current that is within the current
capability of the GFM converter. After this change, both relays trip as shown in Figure 8.2c and
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Figure 8.2b. We emphasize that lowering the threshold further would risk tripping the protection
during startup of the induction motor load.

Finally, if the relay settings are kept at their original settings, the GFM converter current limit has
to be increase by 40 % to reliably trip Relay 1 and Relay 2 as shown in Figure 8.2e and Figure 8.2f,
respectively.

This result, highlights the need to investigate existing infrastructure and protection settings before
including the GFM converters into distribution systems in large numbers. In principle, lowering
the relay thresholds may be seen as a more economic alternative to oversizing the GFM converter
to increase its fault current capabilities. However, this option may not always be viable and the
expected inrush current of loads (e.g., induction machines) and transformers has to be well below
the thresholds of the protection system to avoid misoperation. Thus, if the system is already sig-
nificantly loaded, increasing the fault current capabilities of the GFM converter may be the only
viable options.

Figure 8.2: Symmetric short circuit fault with inverse time relay. The subplots (a), (c), and (e) indicate the
response of Relay 1 while the subplots (b), (d), and (f) indicate the response of Relay 2.

8.3 Cold start of IEEE 13-bus system

Finally, the effectiveness of the generalized three-phase droop control and the impact of the phase
balancing gain kP = kQ = ks and distributed cold start methods presented in Chapter 6 are investi-
gated through the restoration of the unbalanced IEEE 13-bus system from a complete blackout.
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The system configuration and parameters are shown in Figure 8.3. Two GFM converters with
different phase balancing gains are connected to the distribution system, and multiple breakers with
load relays in the system are marked in blue color. The simulation results depicted in Figure 8.4,
demonstrate the cold start capability of GFM converters for different phase balancing gains ks and
the gradual connection/energization of loads as controlled by the advanced load relays.
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Figure 8.3: IEEE 13-bus distribution system with two GFM converters and breakers with load relays (indi-
cated in blue) responses

GFM converter 1 initiates a soft start at t = 3 s with ks = 105, and current limiting mitigating inrush
currents. In contrast, GFM converter 2 synchronizes and connects to the system at t = 5 s and
uses ks = 1. The unbalance factors for the terminal voltage and power of the two converters after
completing the system restoration are compared in Table. 8.2.

The results of Figure 8.4(c) and (d) and Table. 8.2 reveal that GFM converter 1 exhibits balanced
steady-state phase voltages but imbalanced active power dispatch across the three phases. In con-

 

Figure 8.4: Simulation results for the cold start of the IEEE 13-bus system. Voltage magnitude (a) and
frequency (b) for each phase of GFM converter 1. Active power for each phase of GFM converter 1 (c) and
GFM converter 2 (d). Total active power of GFM converter 1 and GFM converter 2 (e).
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trast, GFM converter 2 demonstrates a significantly improved balance in active power but exhibits
imbalanced phase voltages. Despite exhibiting imbalanced phase voltages or active power, the to-
tal active power is accurately shared between the two GFM converters as shown in Figure 8.4(e),
emphasizing the ability of the generalized three-phase droop control to adjust the sharing of load
unbalance through the phase balancing gain kP = kQ = ks while addressing voltage and power
imbalances during cold start operations.

Description GFM 1 GFM 2
Voltage unbalance factor 0.08 % 2.58 %
Active power unbalance factor 5.40 % 0.74 %

Table 8.2: Steady-state unbalance factors in %.
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9. Conclusion

This project developed a generalized three-phase grid-forming control that can control phase volt-
age with reliable unbalanced fault ride through capabilities. The generalized three-phase grid-
forming control applies grid-forming control and current limiting separately to every phase. In
addition, a phase-balancing feedback is developed to synchronize the controls of every phase and
adjust trade-offs between voltage unbalance, power unbalance as well as the sharing of unbal-
anced load by multiple converters. In this context, two common current limiting methods for
grid-forming control have been extended to enable unbalanced fault ride through and a novel hy-
brid threshold virtual impedance current limiting method has been developed that can effectively
limit the converter current under large phase angle jumps. Finally, we developed an initial method
for distributed cold-start methods for unbalanced distribution feeders that do not require centralized
coordination and leverage the capabilities of distribution connected grid-forming converters and ad-
vanced load relays. Instead of energizing an entire distribution feeder at once, this approach relies
on autonomously sequencing the energization of loads at a more granular level during a cold-start
process initiated by grid-forming converters.

The effectiveness of the control algorithms developed in this project and study the interactions of
grid-forming converters with the system protection, we developed two benchmark systems mod-
eling (i) a segment of a system consisting of a medium voltage feeder and a high voltage double
circuit transmission line used to study transmission faults and interactions of the converter control
and protection with distance relays, and (ii) a distribution system benchmark based on the IEEE
13-bus feeder used to study the impact of unbalanced loads interactions of grid-forming converters
with line overcurrent protection.

Interesting topics for future work include more detailed investigations of transient stability during
faults and after fault clearing as well as more in depth investigations of protection system settings
in converter-dominated systems. Moreover, further research is needed to evaluate the performance
and implementation of decentralized cold start methods for distribution feeders with significant
shares of grid-forming converters.

Finally, while the current limiting methods developed in this project enable a significantly improved
response to unbalanced faults, the topic of current limiting remains the subject of much debate. In
particular, the vast majority of current limiting methods are based on heuristic for specific cases
to some extent. As a result, their response to corner cases can be hard to predict. In this context,
the biggest challenge appears to be that to date no technology-agnostic functional requirements
for fault ride through of grid-forming converters exist that can inform the design and, ultimately,
standardization of current limiting controls and fault ride through strategies.
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[17] E. Nasr-Azadani, C. A. Cañizares, D. E. Olivares, and K. Bhattacharya, “Stability analysis of
unbalanced distribution systems with synchronous machine and dfig based distributed gener-
ators,” IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2326–2338, 2014.

[18] J. Jia, G. Yang, and A. H. Nielsen, “A review on grid-connected converter control for short-
circuit power provision under grid unbalanced faults,” IEEE Trans. Power Del., vol. 33, no. 2,
pp. 649–661, 2018.

[19] A. D. Paquette and D. M. Divan, “Virtual impedance current limiting for inverters in micro-
grids with synchronous generators,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1630–1638,
2015.

[20] Q. Taoufik, H. Wu, X. Wang, and I. Colak, “Variable virtual impedance-based overcurrent
protection for grid-forming inverters: Small-signal, large-signal analysis and improvement,”
IEEE Trans. Smart Grid, 2022.

[21] D. Groß and F. Dörfler, “Projected grid-forming control for current-limiting of power convert-
ers,” in Allerton Conference on Communication, Control, and Computing, 2019, pp. 326–333.

[22] E. Avdiaj, J. A. Suul, S. D’Arco, and L. Piegari, “A virtual synchronous machine-based con-
trol for eliminating DC-side power oscillations of three-phase VSCs under unbalanced grid
voltages,” in Int. Conference on Compatibility, Power Electronics and Power Engineering,
2021.

[23] M. A. Awal, M. R. K. Rachi, H. Yu, I. Husain, and S. Lukic, “Double synchronous unified
virtual oscillator control for asymmetrical fault ride-through in grid-forming voltage source
converters,” IEEE Trans. Power Electron., 2022.

[24] N. Baeckeland, D. Venkatramanan, M. Kleemann, and S. Dhople, “Stationary-frame grid-
forming inverter control architectures for unbalanced fault-current limiting,” IEEE Trans. En-
ergy Convers., vol. 37, no. 4, pp. 2813–2825, 2022.

[25] D. Groß, M. Colombino, B. Jean-Sébastien, and F. Dörfler, “The effect of transmission-line
dynamics on grid-forming dispatchable virtual oscillator control,” IEEE Trans. Control Netw.
Syst., vol. 6, no. 3, pp. 1148–1160, 2019.

[26] N. Baeckeland, D. Venkatramanan, S. Dhople, and M. Kleemann, “On the distance protection
of power grids dominated by grid-forming inverters,” in IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe), 2022, pp. 1–6.

[27] Y. Du, H. Tu, X. Lu, J. Wang, and S. Lukic, “Black-start and service restoration in resilient
distribution systems with dynamic microgrids,” IEEE Trans. Emerg. Sel. Topics Power Elec-
tron., vol. 10, no. 4, pp. 3975–3986, 2022.

[28] M. Mirzadeh, R. Strunk, S. Matter, I. Bekker, M. Munderloh, T. Erckrath, L. Hofmann, and
A. Mertens, “A rule-based concept for a bottom-up multi-master black start of an inverter-
dominated low-voltage cell,” in IEEE International Symposium on Power Electronics for Dis-
tributed Generation Systems (PEDG), 2022, pp. 1–6.

[29] T. Kim, S. Santoso, V. C. Cunha, W. Wang, R. Dugan, D. Ramasubramanian, and A. Maitra,
“Blackstart of unbalanced microgrids using grid-forming inverter with voltage balancing ca-
pability,” in IEEE PES Transmission and Distribution Conference and Exposition (T&D),
2022, pp. 1–5.

65



[30] R. V. Ferreira, S. M. Silva, and D. I. Brandao, “Positive–negative sequence synchronverter
for unbalanced voltage in ac grids,” Journal of Control, Automation and Electrical Systems,
vol. 32, no. 3, pp. 711–720, 2021.

[31] T. Qoria, F. Gruson, F. Colas, X. Guillaud, M.-S. Debry, and T. Prevost, “Tuning of cascaded
controllers for robust grid-forming voltage source converter,” in Power Systems Computation
Conference, 2018.

[32] D. Groß, M. Colombino, J.-S. Brouillon, and F. Dörfler, “The effect of transmission-line
dynamics on grid-forming dispatchable virtual oscillator control,” IEEE Trans. Control Netw.
Syst., vol. 6, no. 3, pp. 1148–1160, 2019.

[33] T. Qoria, F. Gruson, F. Colas, G. Denis, T. Prevost, and X. Guillaud, “Critical clearing time
determination and enhancement of grid-forming converters embedding virtual impedance as
current limitation algorithm,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 2,
pp. 1050–1061, 2020.

[34] B. Fan, T. Liu, F. Zhao, H. Wu, and X. Wang, “A review of current-limiting control of grid-
forming inverters under symmetrical disturbances,” IEEE Open Journal of Power Electronics,
vol. 3, pp. 955–969, 2022.

[35] R. Rosso, S. Engelken, and M. Liserre, “On the implementation of an FRT strategy for grid-
forming converters under symmetrical and asymmetrical grid faults,” IEEE Trans. Ind. Appl.,
vol. 57, no. 5, pp. 4385–4397, 2021.

[36] S. S. Nudehi and D. Groß, “Grid-forming control of three-phase and single-phase converters
across unbalanced transmission and distribution systems,” IEEE Trans. Power Syst., 2022,
early access.

[37] T. Gönen, Electric power distribution system engineering. CRC press Boca Raton, FL, USA,
2008, vol. 2.

[38] C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Existence and uniqueness of load-
flow solutions in three-phase distribution networks,” IEEE Trans. Power Syst., vol. 32, no. 4,
pp. 3319–3320, 2017.

[39] M. Lu, S. Dhople, D. Zimmanck, and B. Johnson, “Spontaneous phase balancing in delta-
connected single-phase droop-controlled inverters,” IEEE Trans. Power Electron., 2022.

[40] A. Hooshyar, M. A. Azzouz, and E. F. El-Saadany, “Distance protection of lines emanating
from full-scale converter-interfaced renewable energy power plants—part i: Problem state-
ment,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1770–1780, 2015.

[41] “IEEE standard for inverse-time characteristics equations for overcurrent relays,” IEEE Std
C37.112-2018 (Revision of IEEE Std C37.112-1996), pp. 1–25, 2019.

66


	Acknowledgments
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	1.1 Background
	1.2 Literature review
	1.3 Outline

	2. Preliminaries and Problem Setup
	2.1 Coordinate frames
	2.1.1 Synchronous reference frame
	2.1.2 Symmetrical components
	2.1.3 Hilbert transform

	2.2 Power converter model

	3. Grid-forming control
	3.1 Control objectives and architectures
	3.2 Positive sequence droop control
	3.3 Positive-negative sequence droop control
	3.4 Generalized three-phase droop control
	3.4.1 Three-phase droop control


	4. Inner controls and current limiting
	4.1 Generalized dual-loop current/voltage control and current limiting
	4.2 Threshold virtual impedance
	4.3 Generalized three-phase threshold virtual impedance
	4.4 Virtual Impedance Based on Voltage Information
	4.4.1 Comparison of TVI and VIv

	4.5 Hybrid Threshold Virtual Impedance (HTVI)
	4.6 Discussion

	5. Stability and steady-state analysis
	5.1 Small-signal stability analysis
	5.2 Average dynamics and steady-state analysis
	5.2.1 Q - V droop equation
	5.2.2 P - f droop equation

	5.3 Unbalance factors
	5.3.1 Linearizing voltage unbalanced factor
	5.3.2 Standalone GFM converter with unbalanced load
	5.3.3 GFM converter connected to unbalanced grid


	6. Distributed cold start under unbalanced conditions
	6.1 Advanced load relay
	6.2 GFM cold start logic

	7. Case study: MV/HV system
	7.1 Benchmark system
	7.2 Unbalanced load
	7.2.1 Generalized three phase droop control
	7.2.2 Positive-negative sequence droop control

	7.3 Balanced short-circuit faults and phase jumps
	7.3.1 Grid voltage phase jump
	7.3.2 Three-phase short-circuit fault

	7.4 Single line-to-ground fault
	7.4.1 Current saturation algorithm (CSA)
	7.4.2 Threshold virtual impedance (TVI)

	7.5 Interactions with system protection
	7.5.1 Distance protection


	8. Case study: distribution
	8.1 Benchmark system
	8.2 Overcurrent protection
	8.2.1 Inverse time overcurrent relay
	8.2.2 Response to a symmetric ground fault

	8.3 Cold start of IEEE 13-bus system

	9. Conclusion
	References



