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Executive Summary 

Part 1: Online Transfer Function Estimation and Control Design Using Ambient 

Synchrophasor Measurements 

 

Power systems around the world are undergoing major changes as we transition from fossil-fuel 

dominated generation to intermittent renewable generation sources. Moreover, power grids are 

having to deal with extreme weather events and unforeseen operating conditions. In these 

circumstances, controller designs which are based on offline studies and detailed physical models 

may not be able to adjust to sudden changes in system operating conditions. This report proposes 

an adaptive control design framework for damping inter-area oscillations in power systems. The 

design is entirely based on ambient synchrophasor measurements and does not require detailed 

physical system models. The proposed framework consists of three components, namely, input-

output transfer function estimation, channel selection, and feedback control implementation. For 

the first part, we propose a simple yet effective novel estimation algorithm in the frequency domain 

to identify low-order transfer functions in pre-specified frequency ranges between the measured 

input and output data using ambient synchrophasor measurements. In the second part, based on 

the identified transfer functions, the joint controllability-observability (JCO) of all identified 

channels is estimated and suitable control candidates for damping the target inter-area mode are 

selected. Finally, an appropriate lead-lag controller is designed using a classical frequency-domain 

method to improve the damping of a dominant oscillatory inter-area mode. Since ambient data is 

used in the analysis, the selected channel as well as the designed controller parameters can be 

updated online whenever the system operating point changes resulting in an efficient adaptive 

controller. The effectiveness of the proposed framework is illustrated by implementing it on the 

two-area Kundur test system.  

 

The research developed in this project is partially described in the following paper which is under 

review. 

 

Part II: Parametric Dependence Analysis and Channel Preserving Model Reduction 

 

The design of wide-area controllers for the bulk power grid requires characterization of input-

output channels in swing-dynamics models. However, the large variability in operating conditions 

in the modern grid makes the evaluation of channel transfer properties challenging. In this study, 

we examine how transfer functions in the classical swing dynamics model depend on network 

model parameters (the topology of line susceptances, generator inertias, dampings) and the channel 

location, focusing particularly on determining conditions under which the transfer function is 

guaranteed to be minimum phase or conversely nonminimum phase. In particular, graph-theoretic 

conditions as well as numerical bounds on network model parameters are obtained, that either 

preserve minimum-phase dynamics or yield non-minimum-phase behaviors. 
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1. Introduction

1.1 Background 

Power system electromechanical oscillations have been a major concern for system reliability 

coordinators for decades. Negatively damped wide-area oscillations can lead to widespread 

blackouts such as was experienced on August 10, 1996 [1]-[2] in the western American 

interconnection. Poorly damped inter-area oscillations can be a concern for operational reliability 

of the system, and recent instances include the European interconnection oscillation event on 

December 3, 2018 [3]. Poorly damped and sustained oscillations can potentially endanger safety 

and longevity of expensive system components owing to fatigue and vibrations on physical 

quantities [4]. In general, oscillation concerns limit inter-area power transfers along tie-lines and 

can result in a less-economical operating system.   

1.2 Overview of the Problem 

A significant amount of research has been conducted in the past three decades on both monitoring 

[5]-[7] and control [8]-[11] of power system low-frequency oscillations. Feedback control is 

known to be effective in damping out system oscillations through controllers such as power system 

stabilizers (PSSs) [8], power electronic controllers [10], and High Voltage DC (HVDC) lines [12]. 

The two key elements in a feedback control scheme are the control location and the choice of 

feedback signal, together making a control channel. Joint controllability-observability (JCO) has 

been widely utilized as a measure for ranking the control channels and for choosing the best signals 

[10], [13]. Early research indicated that wide-area or remote measurements can be much more 

effective than local ones because of having higher JCO [14].  

In [10], in addition to JCO, three other indices are used to determine the best control channel: right-

half plane zeros for single-input single-output design and relative gain array and minimum singular 

value for multi-input multi-output design. An accurate and well-detailed model of the system can 

result in an effectively designed controller for the real system. However, relying solely on offline 

system dynamic models for controller design may be problematic in practice for the following 

reasons: 

• Validating the small-signal modal properties of large interconnections in terms of the

mode shape properties and their damping levels remains a challenging task even today

[4].

• Dynamic models of real power systems are of very high order. For instance, the WECC

dynamic model has over 40,000 states. Some of the proposed model-based controller

design techniques require handling and operation of such large matrices in

computationally expensive optimization problems which makes their application

challenging.

• Analysis and control designs based on offline system models tend to be conservative

and cannot easily adapt to real-time changes in system operating conditions.
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• Detailed models of each system component are required to build the overall system

model, and this is becoming challenging with growing integration of renewables with

complex power electronic controls.

Phasor measurement units (PMUs) provide time-synchronized measurements throughout the 

system yielding a wide-area view of the system. This report proposes an alternate approach for 

online control design using available ambient PMU measurements. 

Analysis of the PMU data for extracting some of the system dynamic features requires some form 

of a system identification procedure. Initial attempts for power system identification using system 

measurements can be traced back to Hauer’s work [15] in the late 1970s where a software package 

for structural transfer function fitting to the given system frequency response was developed. 

Applications, limitations, and further developments of the aforementioned software package are 

discussed in [16]. Later, the initial output-only Prony technique was applied for input-output 

transfer function identification in [17]. Reference [18] extends the time-domain ARMAX model 

for the multiple-input multiple-output transfer function identification in power systems.  

1.3 Proposed Solution 

Ambient system measurements are the system responses to inherent random fluctuations of power 

system loads and renewable generations. In this report, such random load variations are used as 

independent system inputs and measurements such as tie-line flows, and bus frequencies are 

formulated as system outputs for estimating the small-signal input-output properties. In this 

context, there is no need for probing signal injections or system events. Since the ambient signals 

are always available under normal system conditions, the estimated model and the subsequent 

controller design can be updated online automatically on a regular basis and after major changes 

in system topology. Moreover, we show that the proposed frequency domain identification 

technique can estimate right plane zeros in the transfer function in a specified frequency range and 

this is helpful in avoiding the pitfalls of non-minimum phase control designs [10]. 

1.4 Report Organization 

The rest of the report is structured as follows. Section II presents the proposed framework. Section 

III is devoted to simulations and discussions. Finally, conclusions are presented in section IV.  
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2. The Proposed Framework 

In this section, we elaborate on the proposed framework which consists of three parts: (A) the 

proposed identification technique to estimate low-order transfer functions in pre-specified 

frequency ranges between the measured inputs and outputs signals, (B) determination of the best 

control channel for damping a specific inter-area mode based on the identified transfer functions, 

and (C) designing a simple lead-lag controller using frequency-domain method based on the 

identified transfer function.  

2.1 Estimation Formulation 

 In this report, the aim is to estimate and utilize the input-output characteristics between available 

ambient inputs and the outputs of interest. For instance, active and reactive power load fluctuations 

can be natural system inputs in the context of ambient measurements. PMU measurements such as 

bus voltage magnitudes and phase angles, active and reactive power-flows and bus frequencies 

can be formulated as typical system outputs that are excited by the ambient inputs.  

 

Small-signal formulation justifies the assumption of an underlying linear system so that 

superposition holds for input-output combinations. Therefore, the model estimation problem can 

be well-formulated simultaneously for subsets of input and output measurements. For instance, for 

a SVC design, the required input signal would be the reactive power injection at the bus which is 

equivalent to the reactive power load variation which is an available input to the system ambient 

response. Similarly, if a controllable storage device is available at the bus, the transfer function 

related to the active power input at that bus may be of interest as well. In other words, any device 

that can control active or reactive power injection at a bus can be formulated as a candidate 

choice for the ambient transfer function estimation method proposed in this report. 

2.2 Transfer Function (Matrix) Identification 

In this part, we present the proposed technique for identifying transfer functions between the 

measured input and output signals. When deriving the system properties from the system time-

domain measurements, ARMAX [18] and Subspace State-Space Identification (SSI) [19] have 

been used in the past [20] for obtaining a reduced-order model for the system from measurements. 

In most identification techniques, a full state-space model, or a full transfer function (over the 

entire frequency band) is estimated. From there, one can examine the system characteristics near 

the frequency of a mode of interest. However, there are major challenges for implementing 

ARMAX and SSI such as the choice of the model order which has a significant impact on 

estimation accuracy and the presence of spurious modes [18],[19].  

 

If the system frequency response is given, there are so many techniques to fit a transfer function 

to the frequency response data (e.g., [15], [16], [21]). However, in real power systems, the 

frequency response of a specific channel cannot be determined at present unless some probing tests 

are conducted.  

 

The identification technique we propose here is based on the input and output data and does not 
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require the knowledge of frequency responses. Here, the idea is to estimate second-order transfer 

functions between the available input and output data in a limited pre-specified range of frequency 

where there exists a known system dominant mode of interest. The significance of the mode can 

be confirmed, and its approximate frequency can be obtained from the output signals spectrum. 

The reason we can employ only a small range of frequency over the entire frequency range is that 

the modal information (i.e., the frequency and the damping of a mode) as well as the 

controllability-observability characteristic of the channels can be extracted from a neighborhood 

range of the mode frequency where most of the mode energy is concentrated.  

 

Let us assume that M ambient input signals and N ambient output signals are measured by PMUs. 

As mentioned before, by inputs, we mean active and reactive load variations and by outputs, we 

mean all dependent quantities such as bus voltage magnitudes or angle differences, active or 

reactive line currents and line power-flows. 

 

Let us assume a second-order continuous-time transfer function Hi,m(s)  between the  mth input 

and the ith output as follows.  

where σ and Ω parameters describe the target inter-area mode and are common between different 

input-output pairs, whereas the di,m, αi,m and βi,m parameters are specific to each channel, and 

therefore signify input and output relationships. We note that the d parameter is included in the 

numerator since the feedforward matrix D entries are non-zero for most of the channels. In general, 

the overall transfer function is not of order two and what we have considered here approximates 

the overall transfer function in the vicinity of a dominant mode frequency, where it is assumed that 

no other mode has a significant effect on the mode of interest. The formulation can be readily 

extended to handle higher-order transfer function formulations, though it is not shown here due to 

space limitations. Then, the system outputs can be represented as follows.  

 

Yi(s) = ∑
di,ms

2 + αi,ms + βi,m
s2 + σs + Ω

M

m=1

Um(s) 

with    i = 1,2,… , N 

(2) 

 

In the above equations, Yi(s) and Um(s) are the Laplace transform of the ith output and the mth 

input signals, respectively. Let us rewrite the above equations in the Fourier domain for the specific 

frequency range ω1 < ω < ω2 around the mode of interest as follows.  

Yi(jω) = ∑
jαi,mω+ (βi,m − di,mω

2)

jσω + (Ω −ω2)

M

m=1

U𝑚(jω)        

with  i = 1,2,… , N      &     ω1 < ω < ω2 

(3) 

For notational convenience, we will drop jω in Yi(jω) and Um(jω) for the rest of derivations.  

Hi,m(s) =
di,ms

2 + αi,ms + βi,m
s2 + σs + Ω

 (1) 
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Solving the above set of equations as in (3) requires solving a nonlinear least-squares problem 

which by itself requires the initial values for all the parameters and may lead to multiple (local) 

solutions. We propose to do a cross-multiplication and restate the equation as follows.  

jσωYi + (Ω − ω
2)Yi = ∑ jαi,mωUm

M

m=1

+ ∑(βi,m − di,mω
2)Um

M

m=1

  

with  i = 1,2, … , N      &     ω1 < ω < ω2 

(4) 

By rearranging the equations and putting all the unknown terms on the left and the known term on 

the right, we get: 

(jωYi)σ + (Yi)Ω − ∑(jωUm)αi,m

M

m=1

− ∑(Um)βi,m

M

m=1

+ ∑(ω2Um)

M

m=1

di,m = Y𝑖ω
2 

with  i = 1,2,… , N      &     ω1 < ω < ω2 

(5) 

Now, we have a set of linear equations that can be solved as a simple linear least-squares problem.  

Remark 1: By doing the cross-multiplication, we are introducing a frequency-dependent weighting 

function to the original problem as follows:  

𝑚𝑖𝑛 ‖𝑌. 𝐷𝑒𝑛 − 𝑁𝑢𝑚.𝑈‖2⏟            
after cross-multiplication

= 𝑚𝑖𝑛 ‖𝑌 −
𝑁𝑢𝑚

𝐷𝑒𝑛
𝑈‖

⏟        
original formulation

2

. |𝐷𝑒𝑛|2⏟  
weigting

 (6) 

where, Den = jσω + (Ω − ω2) is the common denominator of all channels and Num is the 

numerator of the transfer function. By its nature, Den gets very small values as ω approaches the 

mode angular frequency and gets higher values as ω approaches ω1 and  ω2. This means that less 

importance will be given to equations around the mode frequency and more will be given to 

equations at the two sides of the frequency range. Since the mode damping is dominantly correlated 

by the changes of transfer function magnitude around the mode frequency, this weighting function 

will bias the mode damping estimates. To overcome this problem, we propose the following steps: 

 

1) Estimate the transfer function parameters by solving (5). 

2) Build the frequency-dependent weighting function Den̂ = jσω + (Ω −ω2) using the 

estimated σ and Ω parameters.  

3) Estimate the transfer function parameters again by solving (5) with including a frequency 

weighting function 
1

Den̂2
  where Den̂ is built in Step 2. This will counter the effect of the natural 

weighting Den2 to a great extent.  

 

As an alternative, one can use the σ and Ω from the previous window estimation (please note that 

we are performing a moving window analysis) to create Den̂ and solve (5) by considering the 

weighting function Den̂ from the beginning. 
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2.3 Input-Output Channel Selection 

When employing a feedback controller to damp out the system oscillations, three factors are of 

importance, that is, the control location, the feedback signal, and the designed controller by itself. 

The first two factors are associated with the controllability and observability, respectively. The 

best input-output channel for control implementation has the highest joint controllability-

observability [10], [13], and [14]. 

 

In the power system literature, three different approaches can be found addressing the joint 

controllability-observability problem.  

 

The first approach evaluates the joint controllability-observability based on the Hankel Singular 

Values (HSVs) which are defined as  σi = √λi(PQ)  where i = 1,… , n and P and Q are the 

controllability and observability grammarian matrices, respectively, and n is the order of the 

system. The channel with higher HSV has higher JCO [10].  

 

The second approach, known as the “geometric” measure [13], defines the controllability index as 

|qi
Tbj|/(‖qi‖‖bj‖), where qi is the left eigenvector associated with the ith mode and bj is the 

column vector of the input matrix B associated with the jth input. Similarly, the observability index 

is defined as |ck
Tpi|/(‖ck‖‖pi‖), where pi is the right eigenvector associated with the ith mode 

and ck is the kth row of the output matrix C associated with the kth output. One advantage of this 

method is that the indices from different physical quantities (with different units) can be compared 

together, due to the normalization placed in the denominator [11].  

 

The third approach is based on the partial fraction expansion of different channels transfer 

functions, where the channel with higher residue at the mode of interest has higher joint 

controllability-observability [13], [14]. In fact, it is shown in [13] that the residue Rk,j associated 

with the jth input and the kth output is related to the A, B, and C matrices as Rk,j = ckpiqibj. As 

mentioned in [13], when the inputs are of the same type, the normalization by ‖bj‖ in the 

denominator of |qi
Tbj|/(‖qi‖‖bj‖) should be removed as it shows the power injected by the input 

to the system. A similar discussion can be made for the observability measure. Moreover, it is 

mentioned that when examining the joint controllability-observability, the normalizations by ‖qi‖ 

and ‖pi‖ can be removed as the different choice of state similarity transformations will be canceled 

out in their multiplications. In other words, if the inputs are of the same type (outputs as well), the 

residues from transfer function expansion and the “geometry” measure defined in [13] will be 

equivalent. To obtain the JCO of each channel, we will do partial fraction expansion on each 

channel’s identified transfer function and obtain the residues. The channel with highest residue has 

highest JCO and therefore most suitable for feedback control implementation.   

2.4 Feedback Controller Design 

After selecting the best input-output channel in the previous part, a feedback controller should be 

designed to effectively damp out the inter-area oscillations. Since the system identification is 
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performed in the frequency domain, it is a natural choice to design the controller in frequency 

domain as well. Numerous techniques have been used in power system literature (e.g., [22], 

Chapter 17). In this work, we will use the bode plot-based lead-lag compensator where the 

controller is updated as the system operating point changes with time. This will make the control 

adaptive in nature, thus capable of tracking changes in system conditions and providing proper 

stabilization as needed. 

 

For the sake of space, we will not present the complete classical feedback lead-lag controller design 

in detail and we refer readers to [23], Pages 751 to 757 for details. A small overview will be 

presented here though. In this report, for the system open loop identified transfer function and the 

feedback controller we will use the notations, G(s) and H(s), respectively. First, the phase margin 

of open loop system is assessed from the identified frequency response at the mode of interest. 

Then, an appropriate amount of phase is added to this using a series compensator, centered around 

the mode of interest, to bring the phase margin of the closed loop system to a desired value. An 

additional amount of phase is also added to accommodate for the change in phase margin of closed 

loop system, due to the gain of controller, this is referred to as safety margin in the literature. 

Moreover, the center frequency of compensator is set slightly higher than the frequency of the 

mode of interest. This accommodates for the change of gain crossover frequency due to the 

feedback controller and results in much less controller phase and gain to be created.  Depending 

on the total amount of phase contribution to be achieved, the number of compensator stages is 

determined such that maximum phase of each stage is limited to 60°.The magnitude of controller 

is chosen so that its gain contribution is minimal at the mode of interest. Finally, the response of 

the closed loop system is observed for the updated phase margin. Frequency response-based 

controller design is an iterative procedure widely used in the industry, and maybe repeated until 

the desired stability margins are achieved.  
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3. Simulation and Results 

In this section, the effectiveness of the proposed framework is demonstrated using the simulations 

in a test power system. Modelling and simulation of independent random load fluctuations in many 

loads is numerically challenging and can introduce numerical instability for simulations ranging 

several minutes. Accordingly, none of the available commercial transient stability simulation 

programs can simulate the ambient response of large-scale power system models. Therefore, we 

use Kundur test system [22] in this report and the simulations are carried out using Matlab.  

 

Figure 1 shows the single-line diagram of the well-known two-area Kundur system [22] where it 

is modified to include an SVC at Bus 7. The two-axis representation is used for modeling system 

generators. Each generator is equipped with a first order AVR and a two-stage PSS to adjust the 

system damping to the desirable level. SVC operates in voltage regulation mode and is modelled 

with single order dynamic model, as recommended in manuals available in [24]. The system has a 

dominant inter-area mode which causes an oscillation of generators 1 and 2 (in Area 1) against 

generators 3 and 4 (in Area 2) with a frequency around f = 0.6 Hz. As an initial setting, the system 

damping ratio is set to be low at 2% and the ambient data is generated by modulating the system 

loads (active and reactive load powers at Buses 7 and 9) with white Gaussian noise (1%) around 

their nominal values and solving the system non-linear equations. We will use five minutes of 

ambient data to perform the analysis (same as in [18]). 

 

 

 

Figure 1. The modified Kundur test system with an SVC at bus 7 [22]. 

For the feedback we will consider the bus voltage angle differences as feedback signal candidates. 

As mentioned before, the system inputs are load active and reactive power fluctuations. 

Accordingly, if the best input is determined as the reactive power injection at a bus, we will need 

a dynamic VAR-compensator to modulate the reactive power, whereas if the best input is 

determined as the active power injection at a bus, an energy storage device [25] is needed as the 

actuator to modulate the active power at the very bus. It may be noted here that a dedicated element 

is not required for this purpose.  
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A small portion of the capacity from already installed devices can be reserved for oscillation 

damping control. This is illustrated later in our control implementation. 

3.1 System Identification and Control 

In this part, three bus voltage angle differences y1 = δ5 − δ6 (from Area 1), y2 = δ11 − δ10 (from 

Area 2), and y3 = δ6 − δ10 (between Area 1 and Area 2) are considered as feedback signal 

candidates among which we will choose the best one to use as feedback signal to the feedback 

controller. These signals will serve as output signals in the identification process. The modulation 

signals of PL7, PL9, QL7, and QL9 are system inputs. The three output and four input signals together 

create twelve channels to be identified. To model the measurement noise, independent white 

Gaussian noise signals are added to both input signals and output signals (as 1% of amplitude of 

each signal). Figure 2 shows the estimated transfer functions (magnitude and phase plots) of the 

twelve channels versus the true ones. 

 

Based on the mentioned channel selection criteria, it can be observed that P-channels have larger 

residues compared to corresponding Q-channels. This is natural because P-actuation travels longer 

compared to Q-actuation generally in power systems [22]. However, since active power-based 

energy storage devices for P-based actuation are not readily available in present-day power 

systems, we look for a feasible Q-channel with the highest residue. We observe that while the 

channel (3,4), associated with output y3 = δ6 − δ10 and input QL9, seems to be the best control 

channel with reference to our previous discussion, the identified transfer functions indicate the 

presence of a right half-plane (RHP) zero. That makes it a non-minimum phase channel. All the 

100 Monte-Carlo transfer function estimates of this channel show one and only one RHP zero. 

This is consistent with the presence of a RHP zero at +3.53 in the linearized model-based transfer 

function.   Figure 3 shows the zero estimates from the transfer function estimates from the ambient 

data for the 100 Monte-Carlo tests of this channel. The mean and standard deviation (STD) of 

these estimates are 2.875 and 0.432, respectively. These results show the potential use of the 

proposed approach for identifying the non-minimum phase input-output channels. These channels 

have the potential to drag the closed-loop system into instability and are thus not preferred from 

the control theory perspective [10]. In this regard, the channel (3,3) associated with (output 

y3 = δ6 − δ10 and input QL7) is chosen as the next best available channel for implementing the 

feedback control in our example.  

 

An SVC is connected to bus 7 in our modified system. We will use a fraction of SVC VAR-

capacity to control inter-area oscillations, more specifically, to improve the damping 

characteristics of the mode of interest. JCO based queueing of control channels offers online 

information on the next-in-line best channel in case of unavailability of a resource at a bus or 

infeasibility of a control channel. 

 

In the next step, we will design the feedback controller for SVC operation, based on the identified 

transfer function of Channel (3,3). We performed one hundred independent Monte-Carlo 

simulations, and one hundred transfer functions are estimated for each channel using a five-minute 

ambient data length with the sampling frequency of 30 Hz. To test the design methodology, we 
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G1 =
−0.01093s2 − 0.04177s − 0.1829

s2 + 0.1594s + 15.71
(7) 

From the denominator of this identified transfer function, the (open-loop) inter-area mode is at -
0.0797±3.96i and the frequency and the damping ratio of this mode is f = 0.63Hz and  ζ =
2.01%, respectively. Say we want to increase the mode damping ratio to be above 8%. The 

designed controller is obtained as follows (A bandpass filter from [26] is added to controller to 

prevent other modes from getting affected). 

Figure 2. Frequency domain transfer function magnitudes (top) and phase plots (bottom): 

estimated (colored) versus the true ones (black graphs). 

will design the controller based on the worst transfer function estimate (the one with the largest 

deviation from the true transfer function in the frequency domain). The identified transfer function 

with the highest deviation from the true transfer function is as follows. 
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H1 =
2s

𝑠2 + 2s + 15

−0.1550 s − 0.5522

0.2547 s + 1
 (8) 

By applying the designed feedback controller to the identified model, the closed-loop system pole 

is obtained as −0.366 ± 4.04𝑖 which is desirable. As can be seen, the damping ratio of the mode 

is increased to be above 8%. However, one needs to evaluate the performance of the designed 

feedback controller on the full system model, rather than the identified model. Table I provides 

the system modal characteristics from four cases: 1) the actual (linearized) system model without 

the controller, 2) the identified system model without the controller, 3) the actual (linearized) 

system model with the controller, and 4) the identified system model with controller. As can be 

observed, there is a close match between the open- (closed-) loop actual and identified system 

model quantities indicating that the controller from proposed measurement-based approach has 

provided enough level of damping for the system. Figure 4 presents the time response, both with 

and without the designed controller, for the insertion of a 50 MVAR shunt capacitor bank at bus 9 

at time t=0 in the modified Kundur system. 

 
Figure 3. Zeros of channel (3,4): Estimated (colored dots) versus true (large black 

circle). 
 

Table 1. Estimated versus the true open- and closed-loop system modes. 

 
Frequency 

(Hz) 

Damping 

ratio - 

mean 

(%) 

Damping 

ratio – 

STD (%) 

Open-loop mode from system linearized 

model without controller 
0.6302 2.02 

 

- 

Open-loop mode estimates from ambient data 

without controller 
0.6302 1.98 

 

0.42 

Closed-loop mode from system linearized 

model with controller 
0.6350 8.27 

 

- 

Closed-loop mode estimates from ambient 

data with controller 
0.6429 8.24 

 

0.45 
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Figure 4. Time response of modified Kundur two-area system for a 50 MVAR shunt 

capacitor insertion at bus 9 at t=0, demonstrating tie-line oscillation with and without 

identification-based closed loop control.  

To illustrate the adaptive nature of our online ambient data-based control, we simulate a PSS 

malfunction on generator 1 in area 1, in our closed loop system, specifically we assume that the 

stabilizer gain changes by accident. If the controller were to remain the same as in (8) (like in 

offline designs), the damping of the interarea mode would have dropped to 2.30% after the PSS 

malfunction. However, the controller as proposed identifies the new system transfer function based 

on ambient data for the closed-loop system that uses the first controller (8) and computes a new 

set of control parameters which can be implemented as the second outer loop. The identified closed 

loop transfer function (worst) with PSS malfunction at Bus 1 and the second controller are shown 

below: 

G2 =
−0.0000856s2 − 0.04497s − 0.06148

s2 + 0.1385s + 16.19
 (9) 

H2 =
2s

𝑠2 + 2s + 15

−0.1357 s − 0.3972

0.2032 s + 1
 (10) 

Table II lists the closed loop characteristics of system with the first controller versus the system 

with adaptive controller design with the second feedback loop. The adaptive controller keeps up 

with the changing system conditions leading to a closed loop damping ratio of 8.27%. Figure 5 

presents the time response, both with the first controller only and with the adaptive controller in 

case of PSS malfunction, for the switching of a 50 MVAR shunt capacitor bank at bus 9 in detailed 

nonlinear dynamic model of the Kundur system. 
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Figure 5. Closed-loop performance comparison of the first vs second adaptive controller 

loop in case of PSS malfunction on generator 1. 

Table 2.  Closed-loop system modes with the first and second adaptive controllers after 

the PSS malfunction. 

 
Frequency 

(Hz) 

Damping 

ratio - 

mean 

(%) 

Damping 

ratio – 

STD (%) 

Closed-loop mode from system linearized 

model with the first controller 
0.6398 2.02 

 

- 

Closed-loop mode estimates from ambient 

data with the first controller  
0.6414 2.00 

 

0.38 

Closed-loop mode from system linearized 

model with the second adaptive controller 

loop 

0.6525 8.08 

 

- 

Closed-loop mode estimates from ambient 

data with the second adaptive controller loop 
0.6589 8.26 

 

0.40 
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This example demonstrates the strength of the model-free damping controller over its offline 

model-based counterpart. When the system conditions improve, the additional control loop can be 

removed, and the design can revert back to a single loop design. 

3.2 Sensitivity analysis of the proposed identification technique 

In this part, first, the sensitivity of the proposed identification method to measurement noise will 

be examined. To do so, the input-output data obtained in Part A is contaminated with two different 

levels of white Gaussian multiplicative noise signals (noise with 10% and 50% energy of original 

noise-free signal) and the identification of the twelve channels is repeated using the same setting.  

demonstrates the frequency domain transfer function magnitude estimates of the channel (3,3) at 

the presence of measurement noise. Moreover, the estimate without any measurement noise is also 

presented for comparison. As can be seen, adding measurement noise has no discernible effect on 

the accuracy of the identification technique. This is mostly because of simultaneously engaging 

multiple channels in the identification which have the system poles as a common characteristic. 

Efficient handling of white measurement noise is also an inherent strength of frequency domain 

approaches such as the one proposed here. 

 
Figure 6. Frequency domain transfer function magnitude estimation with the 

presence of measurement noise. 
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Figure 7. Fourier transform of output 𝒚𝟑 for a sample input signal. 

 

 
Figure 8. Estimated frequency domain transfer function of channel (3,3): a) 

magnitude (top), b) phase (bottom). 
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Next, the sensitivity of the proposed identification method to the selected range of frequency 

around the mode of interest will be examined. To do so, we will use the same input-output data, 

but we will choose different ω1 and ω2 and perform the identification on the previously mentioned 

twelve channels. Figure 7 shows the FFT magnitude of Output 3 signal for a sample data. Let us 

denote the frequency window used in the identification by its corner frequencies, f1 and f2. 

 

Figure 8 depicts the estimates of Channel (3,3) frequency domain transfer function for the 

following f1 and f2 choices: 1) f1 = 0.33Hz, and f2 = 0.86Hz, 2) f1 = 0.40Hz, and f2 = 0.80Hz, 
3) f1 = 0.47Hz, and f2 = 0.73Hz, 4) f1 = 0.53Hz, and f2 = 0.66Hz, and 5) f1 =
0.53Hz, and f2 = 0.73Hz. Note that the other eleven identified channels are not shown here for 

the sake of space. Figure 8 shows that different choices of 𝑓1 and 𝑓2 only have subtle effects on the 

accuracy of the identification process which in turn indicates the robustness of the proposed 

identification technique. 

3.3 Discussion 

The performance features of the proposed framework and the simulations results are discussed 

below. 

1) In the proposed method, the joint controllability-observability of a pair of the input-output 

channel cannot be determined unless both the input and output signals are measured.  For 

example, if a bus does not have any load to measure or if the load measurements are not 

available, the JCO of this bus location to system outputs cannot be estimated by the 

proposed method. Considering the test case above, we will be only able to determine 

whether the controller should be installed at buses 7 or 9, whereas from the system model-

based analysis, bus 8 might be a better control location as shown by some researchers (page 

1143, [22]).  

2) Those input signals which are exciting the system but are not measured will act as process 

noise and will impact the estimation of the transfer function of available (measurable) 

input-output pairs. In other words, the more measurements we have, the better the model 

estimates we can obtain.  

3) In equation (5), the total number of unknowns is 2 + 3NM  where 2 corresponds to the 

denominator parameters σ and Ω and 3NM is from 3 parameters in numerator 

corresponding to N outputs and M inputs. Now, let us assume that there are n frequency 

points in the range of ω1 < ω < ω2. Then, the total number of equations will be 2Nn (Nn 

from real equations and Nn from imaginary equations). Therefore, as far as the number of 

frequency points is roughly 1.5 times larger than the number of (dominant) inputs, we will 

be able to determine the parameters uniquely, in a least-squares sense. 

4) As can be seen from the simulation results, the identification method is robust against the 

measurement noise as it establishes the common properties of all available channels in the 

identification. 

5) The proposed method can point to presence of RHP zeros of channels in the ambient data-

estimated transfer functions which can help us avoid the problems associated with non-
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minimum phase control designs.  
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4. Conclusion 

In this work, a framework for both identification and adaptive control design of power system low-

frequency electromechanical oscillations is proposed. The methodology is entirely based upon 

PMU ambient measurements and it does not require any knowledge of the system model. As the 

first step, second-order transfer functions in the Fourier domain are fitted to the measured input-

output data in a pre-specified frequency range. Next, the best input-output pair (the controller 

location and the feedback signal, respectively) for feedback control implementation is determined 

by choosing the channel with the highest joint controllability-observability. Finally, an appropriate 

controller is designed by utilizing the identified transfer function and using the Bode plot-based 

technique. Simulations on a test power system demonstrate the applicability of the proposed 

framework in identifying and control of a dominant inter-area mode. It is also shown that the 

proposed identification technique is very robust against the measurement noise. There is only one 

user specified parameter, namely, the analysis frequency range, and it is shown that it has little 

effect on the accuracy of estimates. Future work includes examining the applicability of the 

proposed framework in larger power system models and for wide-area measurements based 

multiple-input multiple-output (MIMO) control of PSS and modern power electronic controllers 

for enhanced system stability. Another area of interest could be consideration of communication 

system issues such as network delays and packet dropouts in the transfer function identification 

procedure. 
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1. Introduction

1.1 Background 

The presence of poorly-damped wide-area oscillations or swings in the bulk power grid is often an 

indicator of system inefficiency, and a harbinger of costly system-wide failures [1]. New wide-

area control technologies being deployed in the grid, including modulation schemes for High 

Voltage Direct Current (HVDC) lines and new Flexible AC Transmission System (FACTS) 

controllers, hold great promise to alleviate undesirable oscillations and hence reduce the frequency 

of system-wide failures [1], [2]. However, the design and coordination of wide-area control 

systems to damp oscillations remains a challenging problem, for several reasons: 1) increasing 

variability in operating conditions of the grid, which influence the swing dynamics; 2) a lack of 

understanding of control-channel properties in the analysis of the swing dynamics, which has 

traditionally focused on modal (intrinsic) properties or exhaustive simulation; 3) difficulty of 

designing multi-faceted controls which are often managed by multiple authorities [3] –[6]. 

1.2 Relevant Literature 

Motivated by the broad aim of assessing and designing wide-area controls for the power grid, there 

has been a recent effort in the controls-engineering community to characterize the swing-dynamics 

of the grid from an input-output or transfer-function perspective [7] –[11]. These various studies 

primarily focus on the classical model for the swing dynamics, which tracks electrical frequencies 

and angles at network buses using an inertial (mass-spring-type) model. One thrust in this effort 

has been to characterize transfer-function zeros, and in particular the presence/absence of 

nonminimum-phase zeros, from a topological standpoint; these characterizations of zeros allow 

identification of channels that are amenable for or difficult to control, and ones that may 

susceptible to undesirable disturbance responses. A second thrust has been focused on metrics for 

input-output performance, which may be defined from the frequency response or time-domain 

constructs (e.g. Gramians). 

1.3 Focus of this Effort 

This study continues the input-output analysis of the power grid’s swing dynamics [9], [10], 

focusing on the challenge that grid operating conditions are highly variable in networks with high 

renewables penetration [4]. Specifically, to allow evaluation of channel properties across variable 

operating conditions, we examine how the zeros of input-output channels in the classical swing-

dynamics model depend on operating parameters of the network, including bus inertias and 

damping, and effective line susceptances. The influence of these parameters on the presence or 

absence of nonminimum-phase zeros is determined from a graph-theoretic standpoint, and some 

bounds on network parameters guaranteeing minimum-phase dynamics are also developed. The 

implications of the results with regard to wide-area control of the power grid are discussed, and 

several examples are presented to illustrate the results.  In this regard, we specifically draw on the 

graph-theoretic analysis to understand model reduction for controller design – we illustrate that 

reduced models obtained via standard reduction techniques may be problematic, and 
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While the study described here is concerned specifically with the classical swing-dynamics model, 

it is part of a broader effort to characterize input-output properties of canonical dynamical-network 

models [12] –[16]. In particular, parallel input-output analyses have also been undertaken for 

models of distributed consensus, infectious-disease spread, and coupled-oscillator 

synchronization [5], [17] –[25]. Within this broader context, this study explores how model 

parameters influence channel phase characteristics in such network models, and also introduces 

approaches for finding bounds on parameters that guarantee minimum-phase channel dynamics. 

Methodologically, our analysis exploits structural representations of linear-system input-output 

dynamics together with graph-theory and nonnegative-matrix constructs; many of these methods 

carry through to the other network models considered in the literature. 

1.4 Report Organization 

The rest of the report organized as follows. In Section 2, the input-output swing-dynamics model 

is reviewed. In Section 3, several structural and graph-theoretic results on the zeros of the nominal 

swing-dynamics model are given, focusing on how zero structures depend on model parameters. 

Several examples are presented to illustrate the results, and give an indication of parameter 

thresholds that distinguish minimum-phase and non-minimum-phase behaviors (Section 4).  

Implications on model reduction are presented in Section 5.  Finally, proofs of the formal results 

are included as an appendix. 
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2. Modeling 

Input-output characteristics of the bulk power grid’s swing dynamics are considered, in the context 

of the linearized classical model for the swing dynamics. 

 

The electromechanical dynamics of the synchronous power network are known as the swing 

dynamics. In this study, we consider the classical model for the swing dynamics, which is a 

nonlinear differential-algebraic equation (DAE) model that tracks electrical angles and frequencies 

at network buses, and represents synchronous generators as inertial elements. Following on the 

standard techniques in power-system dynamic analysis, we consider a reduced purely-differential 

model for the swing dynamics, wherein the algebraic equations for the passive (load-only) buses 

have been solved out [27], [28]. Also following on the formal analysis of the swing dynamics, we 

focus on the linearization of the the reduced swing dynamics model. 

To enable assessment of input-output properties, a single-input single-output channel is imposed 

on the linearized swing-dynamics model, where the input is abstractly modeled as a power 

injection/extraction at a single bus, and the output is a frequency or angle measurement at a single 

(possibly different) active bus (see also [9], [10]); channels models of this form are represent a 

wide-area control channel of interest, or a disturbance response of concerns. 

 

Formally, for a power transmission network with n synchronous generators, the linearized reduced 

swing dynamics model with input-output channel is the following: 

 

where  represents the electrical angles at the n buses at time t (relative to a 

nominal trajectory),  represents the electrical frequencies at the buses, the 

notation eq represents a 0-1 indicator vector with qth entry equal to 1, the scalar input u(t) is a 

power-injection signal at bus i, and the scalar output y(t) is the frequency at bus j. The model is 

defined by the following parameters: the positive diagonal matrix H represents the rotational 

inertias of the generators at the buses, the positive diagonal matrix D captures the frequency 

dampings of the generators, and the matrix L(Γ) is a symmetric positive semidefinite matrix (under 

the standard assumption that the transfer conductances in reduced network are negligible) that 

entirely specifies the dynamic interactions among the buses in reduced network. 

We specify the matrix L(Γ) in terms of a graph Γ, so as to enable a graph-theoretic analysis of the 

dynamics. Γ is defined to be an undirected weighted graph whose vertices represent the active 

buses (buses with inertial generation). Each off-diagonal entry of the matrix L(Γ) equals the 

negative of the edge weight between the corresponding vertices in the graph Γ if there is an edge, 

and equals zero otherwise. The diagonal entries of L(Γ) are positive, and at least as large as the 

absolute sum of the off-diagonal entries on the corresponding row or column. We assume 

throughout the article that Γ is connected. We refer to the graph Γ as the network graph. Also, the 

nodes in the network where the input is applied and the output is measured (i and j, respectively) 

are referred to as the input and output nodes, and the corresponding vertices in the graph are 

referred to the the input and output vertices. We note that the edge weights in the network graph 
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can be interpreted as equivalent effective susceptances between buses at the operating point, upon 

reduction of the passive buses. 

 

The simplified model for the swing dynamics considered here is widely used in the power-

engineering community [27]–[30], and also can be viewed a linearization of nonlinear Kuramoto 

oscillator-type model for the swing dynamics that has been of interest to controls engineers [7]. 

However, we stress that the model has been enhanced to explicitly represent an input-output 

channel, in contrast with most of the literature which focuses on internal or modal characteristics. 

The model is apt for our studies, since it captures the essential oscillatory dynamics of the 

synchronous generators in the grid, which primarily impact the control and disturbance response 

of the system. 

It can easily be checked all eigenvalues of state matrix  

 
are in the open-left half plan (OLHP), except that there may be one eigenvalue at the origin in the 

special case that generator effective shunt susceptances are negligible in the reduced network. In 

this case, L(Γ) is a Laplacian matrix, and hence L(Γ) and in turn the state matrix have a zero 

eigenvalue. 
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3. Dependence of the Zero Structure on Network Parameters  

The main purpose of this section is to develop structural and graph-theoretic characterizations of 

the input-output swing-dynamics model, with a focus on understanding how system parameters 

influence the zero structure of the channel model. In previous works [9], [10], we developed the 

algebraic machinery that enables structural and graph-theoretic characterization of the zeros. 

Furthermore, we developed several basic graph-theoretic conditions for minimumphase input-

output dynamics. It was shown that the dynamics are minimum-phase if: 1) the input and output 

are collocated, 2) there is a single path between the input and output in the network graph, 3) the 

shortest input-output path is sufficiently strong compared to alternative paths, or 4) the generators 

have high damping. 

 

Here we extend the input-output analysis of the swing dynamics, with the aim of understanding 

the dependence of input-output characteristics, particularly zero locations, on the generation and 

network parameters of the model (Section III). The analyses are important for understanding how 

variations in system operating points and inertias, which are becoming increasingly common with 

high penetration of intermittent renewables, influence a channel transfer function. They are also a 

starting point understanding how deployed or planned control systems influence the power grid’s 

dynamics. Specifically, several conditions for minimum-phase or nonminimum phase dynamics 

are presented for the input-output swing-dynamics model. These results show how the phase 

characteristic depends on model parameters including inertias, graph edge weights, and damping. 

In each of these results, we consider the impact of changing a single parameter on the 

presence/absence of nonmimum-phase dynamics. 

 

The first two theorems indicate circumstances where generators with high damping or high inertia 

may cause a remote control channel to become nonminimum phase (i.e., to have right half plane 

zeros). These conditions are important because they identify situations where changes in operating 

conditions or deliberate design choices may yield nonminimum-phase behaviors. Generally, 

increases in damping and inertia are assumed to improve stability properties of the power grid, but 

the theorems show that such increases can actually make particular channels susceptible to 

oscillations in the sense that they are nonminimum phase. The theorems require some further 

notation. First, we use the notation dij for the distance between the input and output vertices i and j 
in graph Γ, defined as the minimum number of directed arcs from the vertex i to vertex j. Also, we 

refer to a path from the input i to the output j of minimum length as a special input-output path. 

Similarly, we use the notation  for the length of a minimum length path between vertices i and 

j which does not pass through vertex r. Now we present the theorems: 

 
Theorem 1: Consider the input-output swing-dynamics model (1). In the network graph Γ, suppose 

that vertex r is remote from the input and output vertices i and j (i.e. r ̸= i,j), and further 

. If the inertia Hr (i.e. the inertia of the generator corresponding to vertex r) is 

sufficiently large, the input-output swing-dynamics model (1) has some zeros in open right half 

plane (ORHP). 

 

Theorem 2: Consider the input-output swing-dynamics model (1). In the network graph Γ, suppose 

that vertex r is remote from the input and output vertices (i.e. r ̸= i,j) and . If  the damping 
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Dr (i.e. the damping of the generator corresponding to vertex r) is sufficiently large, the input-

output swing-dynamics model (1) has some zeros in open right half plane (ORHP). 

The theorems 1 and 2 show that a generator with high inertia or high damping necessarily incurs 

nonminimumphase dynamics, if its corresponding graph vertex disrupts the shortest input-output 

path of the channel of interest. 

 

Remark: In our previous work [10], we showed that the zeros of the input-output swing-dynamics 

model (1) do not depend on the damping and inertia of the generators at the input and output 

locations in graph Γ; the above results show that damping and inertia at remote locations do have 

an impact. 

 

Similarly, in case that the matrix L is a grounded Laplacian (which corresponds to non-negligible 

effective shunt susceptances in the network), the following theorem shows that increasing the 

diagonal entries of the matrix L might incur nonminimum-phase dynamics. The diagonal entries 

of the matrix L become larger as the effective shunt susceptance (i.e. the effective susceptance 

between an active bus and the reference generator bus) is increased. Thus, increased diagonal 

entries should correlate with more stable dynamics; however, again it is seen that such increases 

may create nonminimum-phase dynamics. 

 
Theorem 3: Consider the input-output swing-dynamics model (1). In the network graph Γ, suppose 

that vertex r is remote from the input and output vertices (i.e. r ̸= i,j), and further . 

 

If the diagonal entry Lrr of the Laplacian matrix is sufficiently large, the input-output swing-

dynamics model (1) has some zeros in the open right half plane (ORHP). 

In contrast to the above results, the following theorems give conditions under which generators 

with high damping or high inertia at some buses can be used to achieve minimum-phase dynamics 

for a channel of interest. These results require some further terminology regarding the network 

input-output model. As defined before, the notation dij is used for the length of the special input-

output path, i.e. for the distance between the input vertex i and output vertex j. Additionally, we 

define a modified system based on a subgraph of Γ. Specifically, we consider the nominal input-

output swing-dynamics model, with a subset of vertices deleted. Consider the input-output swing-

dynamics model (1) for an arbitrary graph Γ. Formally, let us consider a subset of vertices V ⊂ 
{1,...,n}, which does not include the input and output vertices (i and j). Considering a general vector 

z with n entries, let us define the vector z(V ) as a modified version of the vector z, where the entries 

i ∈ V are omitted. Similarly, considering a general matrix A with dimension (n,n), A(V ) is a 

submatrix of A obtained by deleting the rows and columns specified in V . Then, the deletion 
subsystem is defined as: 
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The deletion system (2) is associated with a weighted deletion graph Γ(V ), which is the induced 

subgraph of Γ obtained upon omission of the vertices in V from the graph Γ. Also we define  as 

the distance between the input and output vertices (i.e. from vertex i to j) in graph Γ(V ). 

 

Now, we present the theorems that show how generators with high damping or inertia placed at 

some special locations in the network can move zeros of the nominal input-output swing dynamics 

model (1) to the left half plane. 

Theorem 4: Consider the input-output swing dynamics model (1). In the network graph Γ, suppose 

that vertex r is remote from the input and output vertices (i.e. r ̸= i,j), and further . 

If the inertia Hr (i.e. the inertia of the generator corresponding to vertex r) is made sufficiently 

large, the input-output swing-dynamics model (1) has zeros that are arbitrarily close to the zeros 

of the deletion system (2) for V = {r} and two zeros arbitrary close to s = 0, while all other zeros 

are in the OLHP. 

 

Theorem 5: Consider the input-output swing dynamics model (1). In network graph Γ, suppose that 

vertex r is remote from the input and output vertices 

(i.e. r ̸= i,j), and . For sufficiently large damping Dr (i.e. the damping of the generator 

corresponding to vertex r), the input-output swing-dynamics model (1) has zeros that are arbitrarily 

close to the zeros of the modified system (2) for V = {r} and one zero arbitrary close to s = 0, while 

all other zeros are in the OLHP. 

 

The above theorems demonstrate that increased inertia or damping away from the special input-

output path can in some cases promote minimum-phase dynamics, if the modified vertex (bus) is 

away from the special input-output path. Specifically, in these cases, the zeros reduce to the zeros 

of the deletion subsystem with the modified vertex removed. Thus, if the removal of this vertex 

alters the graph in such a way that minimum-phase dynamics are guaranteed, then minimum-phase 

behavior is also expected in the original system. For instance, if the deletion graph is a tree, then 

the channel is guaranteed to be minimum phase. The result generalizes to the case where dampings 

or inertias are augmented at multiple vertices. This indicates the possibility of deliberately 

designing or verifying generator parameters (typically dampings) at a small set of buses to ensure 

channels of interest are minimum phase. 

 

Remark: Formally, the channel transfer function can only be weakly minimum phase, since the 

input-output model will always have a zero at the origin. The zero at the origin reflects that the 

output is an electrical frequency rather than an angle, and hence a feedback control will be not 

eliminate offsets in the angle; such offsets are however not detrimental to the function of the grid, 

and hence a weakly minimum-phase channel is adequate and desirable in this setting. 

Next we present some inequality conditions or bounds on the network parameters, which guarantee 

that the input-output dynamics are weakly minimum phase (i.e., the model has one zero at s = 0 
and other zeros are in the OLHP). These conditions are important since they provide a quantitative 

test for ensuring minimumphase dynamics on a channel. Of note, they are valid even if the network 

graph is directed (the L matrix is asymmetric). 
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Theorem 6: Consider the input-output swing dynamics model (1) for an arbitrary graph Γ. 

Suppose that the input vertex i and the output vertex j are adjacent in network graph Γ. The input-

output swing-dynamics model (1) has all zeros in the OLHP except one zero at s = 0 if for ∀k ̸= 
i,j: 

 
 
Theorem 7: Consider the zeros of the input-output swing dynamics model, and assume that input 

vertex and output vertex are the same as vertex i in network graph Γ. The input-output swing-

dynamics model (1) has all zeros in the OLHP except one zero at s = 0 if for ∀k ̸= i: 

 

The previous two theorems provide sufficient conditions for a channel of interest to be minimum 

phase. For example, the theorems show that by increasing the damping of all generators over 

certain limits, a channel of interest can be made minimum phase. 
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4. Example 

A small-scale example with six buses is used to illustrate the results on transmission networks (Fig. 

1). The channel of interest comprises an input at bus 1 and output at bus 3. The generator at each 

bus has inertia h = 1 and damping d = 0.2, and the edge weights (effective line susceptances) are 

shown in the figure and are all equal to 1. Out goal is to study the effect of a generator’s damping 

and inertia on the zero location. 

 

Based on theorem 2, the input-output model should have RHP zeros if the damping of generator 

2 is increased. This is verified in Fig. 2. Similarly, based on theorem 1, if the inertia of generator 

2 is sufficiently increased, the input-output model should have RHP zeros. This is verified in Fig. 

3. 

 

Figure 1: A 6-bus example is developed to gain further insight into the dependence of zeros on 

generator’s parameters 

 

Figure 2: The dependence of the dominant zero location (the largest real part among the zeros) 

on the damping of the generator 2. 
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Figure 3: The dependence of the dominant zero location (the largest real part among the zeros) 

on the inertia of the generator 2. 
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5. Model Reduction to Preserve Zero Structure: Example and Overview 

The above analyses of the swing dynamics model illustrate that the zeros exhibit a sophisticated 

dependence on the parameters and the graph structure of the network model.  This sophisticated 

dependence suggests that procedures for reducing the dimension or complexity for power system 

models, which are commonly used in assessing the swing dynamics of the models, may modify 

the zero structure of a network model.  We illustrate in this section that the modification of the 

zero structure when standard model reduction techniques are used, while hidden in simulations of 

the native dynamics of the power grid, can lead to substantially altered predictions when controls 

are used within the power grid.  These mis-predictions suggest that reduced models should be used 

with care in the scope of control design.  Based on the illustrative example and the prior-developed 

results, we briefly propose an alternate model-reduction strategy that can also preserve the zero 

structure. 

 

 

Figure 4: The linear differential-equation model, drawn from a wind-farm planning model for 

Northwest France, is shown.  The goal of the model reduction, which aims to condense 6 of the 

onshore generator buses, is also illustrated. 

 

The development in this section focuses entirely on a small-scale example model, illustrated in 

Figure 4.  The example, which is an abstraction of a model used for off-shore wind-farm planning 

in Northwest France, comprises 64 buses which include 9 buses with generation.  Two generator 

buses (1 and 2) are off-shore, and have substantial wind generation with low inertia.  The remaining 

seven generator buses (3-9) are onshore, and are associated with high-inertia spinning generation 

(specifically, nuclear power plants).  The linearized differential-algebraic-equation model for the 

network has been obtained, and further the algebraic equations have been solved out to obtain a 

differential equation model with states corresponding to the generator buses; effective line 

susceptances in the linearized differential-equation model are shown in Figure 4.  We are interested 

in developing a reduced model, which condenses Buses 4-9 to a single bus.  We would like to use 
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the reduced model to simulate the dynamics at Buses 1-3, and also to evaluate a control that is 

applied between buses 2 and 3 (i.e., which uses data from bus 3 to set an input at bus 2). 

 

A standard model reduction technique – specifically a coherency-based reduction-- has been 

applied to the example. The model is seen to preserve well three fast modes associated with the 

preserved area, at 1, 1.8, and 2.4 Hz.  A single global slow mode is also preserved.  Figure 5 shows 

that the response at Bus 3 due to an impulse input at Bus 2 is very well preserved by the reduced 

model, as would be expected when the modal dynamics are accurately preserved.   

 

 

Figure 5: The impulse responses of the original (top) and reduced (bottom) models are almost 

identical. 

 

However, an analysis of the channel from bus 2 to bus 3 indicates that the model-reduction is not 

able to preserve input-output properties of the channel, even though the channel is entirely within 

the preserved region.  In particular, the channel in the reduced model is seen to be minimum phase, 

even the channel is nonminimum phase in the original model.  This changed characteristic is also 

apparent in the frequency response of the model (Figure 6).  The two models have nearly identical 
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phase characteristics, indicating that the impulse response of the models should be similar, but 

they show a different phase characteristic at high frequencies reflecting the change from a 

nonminimum phase to a minimum phase model.  A main consequence of the changed channel 

property is that the response of the network to a high-gain control on the channel of interest is mis-

predicted.  Specifically, a large gain causes the original model to become unstable, while appearing 

to maintain stability in the reduced model (Figure 7).   

 

Figure 6: The frequency responses of the original (left) and reduced (right) models are shown.  

The Bode magnitude plots are amost identical, but the Bode phase plots differ at high frequency, 

reflecting the fact that the reduced model is a minimum phase system while the original model is 

not. 

 

The example suggests that coherency-based reduction may be problematic, when the reduced 

model is used for control system analysis and design.  Although we do not demonstrate it here, we 

have also developed examples which show that balanced truncation-based model reduction 

approaches suffer from similar concerns.   

 

Given these limitations, it is of interest to develop new model reduction strategies which are able 

to preserve zero structures on critical channels, in addition to modal and energy properties within 

a region of interest.  We have developed a new model-reduction approach which: 1) preserves a 

region of interest within the network’s graph while condensing other portions of the network (like 

coherency-based methods), 2) continues to approximate modal behaviors in the critical area, and 

3) preserves input-output properties for some critical channels within the region of interest.  This 

new graph feedback approach depends on two main insights.  First, the approach preserves a larger 

portion of the network than the region of the interest, which we call the critical area, in a way that 

zero properties of critical channels within the region of interest are also guaranteed to be preserved; 

this is done by using the graph-theoretic results about zeros developed above, which give criteria 

on the network graph such that key zero properties (e.g., nonminimum-phase dynamics) are 

preserved.  Second, the approach recognizes that the remainder of the network outside of the 

critical area (say, the non-critical area) can be represented as a feedback interconnection with the 
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critical area, whereupon a standard model-reduction technique like balanced truncation can be used 

for this area.  The approach is diagrammed in Figure 8.   

  

 

Figure 7: The reduced model is not able to predict the behavior of the original when a high-gain 

feedback controller is applied at the critical channel, since the nonminimum phase dynamics is 

no longer present. 

 

Figure 8: The graph-feedback approach to zero-preserving model reduction is illustrated in a 

cartoon form. 
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Appendix 

Proof of Theorem 1: Consider Vr as the set of all numbers from set {1,2,...,n} except the number 

r. The network input-output swing-dynamics model (1) can be represented as an interconnection 
of the following two subsystems C1 and C2 (see Fig. 4): 

Subsystem C1, which has two inputs (i.e. u and u1) and two outputs (i.e. y and y1), is governed 

by: 

  (3) 

where L:,r is the rth column of the matrix L, Lr,: is the rth row of the matrix L, and also considering 
general variable O for using smaller notation, operator O¯ stands for O(Vr) which is defined after 

theorem 3. Subsystem C2 is governed by: 

 Hr δr’’ + Dr δr˙ + Lr,r δr =u2 (4) 

Y2 = δr 

The subsystems together are equivalent to the network input-output model (1) when they are 
interconnected as follows: the output y1 of subsystem C1 is fed into the input of u2 of subsystem 

C2, and the output y2 of the subsystem C2 is fed into the input u1 of subsystem C1 (see Fig. 4). 

We find it convenient to define the following transfer functions from the two subsystems 
individually. From subsystem C2 (4), we define the transfer function 

.  

Similarly, from sub-system C1 (3), we define the transfer functions T1(s) =

, and . 

(We note here that T3(s) is distinct from the transfer function for the full network input-output 

model, since the subsystem C1 is being considered in isolation in this case. 

From the block diagram, it is easy to show that: 
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Fig. 4: Block-diagram representation for the system presented in the proof of Theorem 1. 

Each transfer function Ti (i = 1,...,4) can be written as , where ai(s) and bi(s) are the 

polynomials in the numerator and denominator respectively. Then, 

 

Hence, the zeros of the input-output swing dynamics model (1) are the roots of the following 

equation: 

(Hrs2 +Dr s+ Lr,r)b1 b2 a3 b4 – b1 b2 a3 a4 + a1 a2 b3 b4 = 0                                           (5) 

Let us define βh(s) = s2b1b2a3b4 and αh(s) =(Dr s + Lr,r ) b1 b2 a3 b4  − b1 b2 a3 a4  + a1 a2 b3 b4 . 

Then, the zeros equation (5) can be written as αh(s) + Hrβh(s) = 0. Thus, the locations of the 

zeros in the complex plane as Hr is ranged over [0,∞) is a root locus. 

Completing the proof requires some graph-theoretic analysis. In the network graph Γ, let d1 = 

dir be the distance from vertex i (actuated vertex) to vertex r, d2 = drj be the distance from vertex 
r to vertex j (measured vertex), and d4 be the length of the shortest directed cycle containing 

vertex r. In addition, let  be the distance from vertex i to vertex j in the deletion graph 

Γ(r). Based on the Theorem 1 in [9], the relative degree of the transfer functions T1, T2, T3, T4, 
and T5 are equal to 2d1, 2d2 − 1, 2d3 + 1, 2d4 − 2, and 2 respectively, and all of them have positive 

gain. 

Noting that  is considered in deleted graph Γ(r). When , it is concluded that 

dij = 

y 

y 1 u 1 

  

y 2 u 2 u 

T s ) 1( 

T 3( ) s 

T 5( s ) 

T 4( s ) 

T 2( s ) 
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 can be written as d3 ≥ d1+d2+ 2. One can easily prove that deg(αh) = 

deg(a1a2b3b4), and deg(βh) ≤ deg(a1a2b3b4) − 3 when 2 where deg() is the degree of 

a polynomial. Hence, deg(αh(s)) ≥ deg(βh(s)) + 3. 

Thus, based on root locus analysis, the zeros of the closed-loop system (5) has at least three 

diverging branches; two of them have asymptote in the ORHP. It follows that for sufficiently large 
Hr, the network input-output model has zeros in the ORHP. ■ 

Proof of Theorem 2: For this proof, we consider the same subsystems and notation used in the 
proof of Theorem 1. Let us define βd(s) = sb1b2a3b4 and αd(s) = 

(Hr s2 + Lr,r)b1 b2 a3 b4 – b1 b2 a3 a4 + a1 a2 b3 b4. Then, the zeros equation (5) can be written as 

αd(s) + Drβd(s) = 0. Thus, the locations of the zeros in the complex plane as Dr is ranged over 
[0,∞) is a root locus. 

Noting that  is considered in deleted graph Γ(r). When , it is concluded that 

dij =  can be written as d3 ≥ d1+d2+ 2. One can easily prove that deg(αd) = 

deg(a1a2b3b4), and deg(βd) ≤ deg(a1a2b3b4) − 4 when 2 where deg() is the degree of 

a polynomial. Hence, deg(αd(s)) ≥ deg(βd(s)) + 4. 

Thus, based on root locus analysis, the zeros of the closed-loop system (5) has at least four 

diverging branches; two of them have asymptote in the ORHP. It follows that for sufficiently large 

Dr, the network input-output model has zeros in the ORHP. ■ 

Proof of Theorem 3: For this proof, we consider the same subsystems and notation used in the 
proof of Theorem 1. Let us define βl(s) = b1b2a3b4 and αl(s) = 

(Hr s2 + Dr s)b1 b2 a3 b4 – b1 b2 a3 a4 + a1 a2 b3 b4. Then, the zeros equation (5) can be written as 

αd(s) + Lr,rβd(s) = 0. Thus, the locations of the zeros in the complex plane as Lr,r is ranged over 

[0,∞) is a root locus. 

Noting that  is considered in deleted graph Γ(r). When , it is concluded that 

dij = 

 can be written as d3 ≥ d1+d2+ 1. One can easily prove that deg(αd) = 

deg(a1a2b3b4), and deg(βd) ≤ deg(a1a2b3b4) − 3 when 1 where deg() is the degree of 

a polynomial. Hence, deg(αd(s)) ≥ deg(βd(s)) + 3. 

Thus, based on root locus analysis, the zeros of the closed-loop system, i.e. roots of (5), has at 

least four diverging branches; two of them have asymptote in the ORHP. It follows that for 

sufficiently large Lr,r, the network input-output model has zeros in the ORHP. ■ 

Proof of Theorem 4: For this proof, we consider the same subsystems and notation used in the 

proof of Theorem 1. Let us define βh(s)=s2b1b2a3b4 and αh(s) = 

(Drs + Lr,r)b1 b2 a3 b4  − b1 b2 a3 a4 + a1 a2 b3 b4. Then, the zeros equation (5) can be written as 

αh(s) + Hrβh(s) = 0. Thus, the locations of the zeros in the complex plane as Hr is ranged over 
[0,∞) is a root locus. 
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When , it is concluded that dij ≤ d1 + d2, one can easily show that deg(βh(s)) = 

deg(αh(s))+1. Thus, based on root locus analysis, for sufficiently large gain Hr (i.e. as Hr is scaled 

up), the zeros of the closed-loop transfer function are arbitrary close to the roots of β(s). Further, 
the roots of b1(s), b2(s), and b4(s) are in OLHP because the subsystem C1 in (3) is internally stable. 

Meanwhile, a3(s) is the numerator of the transfer function , and hence its roots are 

the zeros of the input-output model (2). In conclusion, if the removal of vertex r does not change 

the distance from input to output in the network graph, then two of the zeros of (1) approach 

the origin s = 0, the remaining zeros either approach the zeros of the modified system (2) or are 

in OLHP, as the inertia Hr is scaled up. ■ 

Proof of Theorem 5: For this proof, we consider the same subsystems and notation used in the 
proof of Theorem 1. Let us define βd(s) = sb1b2a3b4 and αd(s) = 

(Hr s2 + Lr,r)b1 b2 a3 b4 – b1 b2 a3 a4 + a1 a2 b3 b4. Then, the zeros equation (5) can be written as 

αd(s) + Drβd(s) = 0. Thus, the locations of the zeros in the complex plane as Dr is ranged over 

[0,∞) is a root locus. 

When , it is concluded that dij ≤ d1 + d2, one can easily show that deg(αd(s)) = deg(βd(s)) 

+ 1. Thus, based on root locus analysis, for sufficiently large gain Dr (i.e. as Dr is scaled up), one of 

the zeros of the closed-loop transfer function is in OLHP (far from imaginary axis) and the 

remaining zeros are arbitrary close to the roots of β(s). Further, the roots of b1(s), b2(s), and 
b4(s) are in OLHP because the subsystem C1 in (3) is internally stable. Meanwhile, a3(s) is the 

numerator of the transfer function , and hence its roots are the zeros of the input-

output model (2). In conclusion, if the removal of vertex r does not change the distance from 

input to output in the network graph, then one the zeros of (1) approaches the origin s = 0, the 
rest either approach the zeros of the modified system (2) or are in OLHP, as the inertia Dr is scaled 

up. ■ 

Proof of Theorem 6: Consider V{ij} as the set of all numbers from set {1,2,··· ,n} except the 

numbers i and j. Also considering a general matrix B with dimension (n,n), matrix B¯ = B(V{ij}) is 

defined as a submatrix of B obtained by deleting the rows and columns not specified in V{ij}. 

Considering the adjacent input and output vertices and by using the results from Theorem 2 in 
[9], one can easily show that the corresponding matrices Ana and Aq are equal to Ana = 

 and  where 

:. Hence the matrix Aaa is equal to   where W = L¯ + M. 

Let us define matrix . The eigenvalues of matrix TAaa T-1 = 

 

 

are equal to the eigenvalues of Aaa. 
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We know that the zeros of the input-output swing-dynamics model (1) are the eigenvalues of 

matrix TAaaT−1, sobBased on Gersgorin’s disk theorem to keep the eigenvalues of TAaaT−1 in 

OLHP, we can write inequalities that are in the theorem statement. 

■ 

Proof of Theorem 7: Based on the discussion in the proof for Theorem 4 in [9], the perturbation 

matrix Aq is zero, hence Aaa = Ana. Consider V{i} as the set of all numbers from set {1,2,··· ,n} except 

the number i. Considering a general matrix B with dimension (n,n), matrix B¯ = B(V{i}) is defined as 
a submatrix of B obtained by deleting the rows and columns not specified in Vi. Then the matrix 

Aaa is equal to . Let us define 

The matrix . The eigenvalues of matrix 

Aaa are equal to the eigenvalues af matrix TAaaT−1 = 

 

 

We know that the zeros of the input-output swing-dynamics model (1) are the eigenvalues of 

matrix TAaaT−1, so Based on Gersgorin’s disk theorem to keep the eigenvalues of TAaaT−1 in 

OLHP, we can write the following inequalities. The first set of inequalities are based on the first n 

− 1 rows of the matrix TAaaT−1 and the second set of inequalities are based on the second n−1 

rows as following: ∀k ̸= i: 
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