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Executive Summary 

Power systems are becoming more complex due to the high penetration of renewable energy and 

integration of distributed energy resources. The introduction of electric vehicles, also increases the 

uncertainty due to the nature of the device characteristics and operation pattern decided by the user 

behavior increasing the complexity of system operation, especially emergency control. 

Reinforcement learning (RL) techniques now have been widely explored and applied to various 

electric power operation analyses under different control structures. With massive synchronized 

data from phasor measurement units (PMU), it is possible to explore the application of RL to 

ensure that electricity is delivered reliably. 

Steady state stability control with RL has been studied by many researchers, while the system 

dynamic stability and performance after serious disturbances using RL has not been examined. 

However, the current control algorithms utilized in the power system dynamic control primarily 

utilize a discrete action space, the performance of which is not satisfactory when dealing with a 

parameter adjustment problem within a certain range. Hence, this project focuses on the continuous 

reinforcement learning methods to deal with system dynamic control problems after a disturbance. 

This research applies the deep deterministic policy gradient (DDPG) approach integrated with 

detailed time-domain simulations to develop generator controls to prevent cascading voltage 

failures following large disturbances. The study in this report utilizes detailed time-domain 

simulations interfaced with reinforcement learning to determine appropriate generator control 

actions for voltage control. The DDPG controller regulates the magnitude of the voltage reference 

value of the generator’s excitation system to achieve generator output regulation and bus voltage 

restoration in the vicinity of the disturbance area. In the DDPG algorithm, two hidden layers with 

rectified units of ReLU and Tanh are applied to the actor network and two hidden layers with 

ReLU are applied to the critic network to realize policy updates. The reward structure consists of 

accumulated voltage variations and generator regulation values in considering the system cost to 

realize voltage regulation. Historical data of voltage and voltage rate of change are also discussed 

when designing the reward function, to achieve a better voltage restoration level and dynamic 

performance. 

The dynamic simulation and training platform is built based on the power system simulation 

software Siemens-PTI PSS/E and Python. The power grid operation environment is created 

through the API available in PSS/E to simulate dynamic changes on the power grid side. The IEEE 

9-bus system and 2000-bus Texas synthetic grid system are used as the test systems, based on

which time-domain simulations are conducted and interfaced with the reinforcement learning

controller. The results show that the controller can provide accurate commands to the excitation

system in real time based on the system operating conditions. The process of voltage recovery is

stable and fast under the control of the DDPG controller, without which the system voltage would

degrade slowly and enhance the risk of losing stability when only the conventional generator

control is used.
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1. Introduction

1.1 Research motivation and objectives 

Power system resilience and reliability are vital to the economic viability of society. The US-

Canada power system outage on August 14, 2003 cost 10 billion US dollars [1]. More and 

more essential services, such as electrical transportation, rely on electricity, so it is of great 

importance to guarantee power system stability and dynamic performance. Power systems are 

becoming increasingly complex with renewable energy sources integration, which introduces 

significant uncertainty due to their natural characteristics when interfaced with power systems 

through power electronics converters. So advance control techniques are needed to ensure that 

electricity is transmitted and delivered reliably. 

In the power grid, phasor measurement units (PMUs) which work as communication and 

measurement devices make it possible to transfer synchronized dynamic data across power 

systems. Based on this massive data, online stability prediction and corrective control can be 

applied using Reinforcement Learning (RL) techniques which have now matured and are 

being applied to various power system applications. Steady-state stability control utilizing 

reinforcement learning has been studied by many researchers, while the area of dynamic 

stability which needs detailed information exchange between agents and the operating power 

grid environment requires further development coordinating effective preventive and 

corrective controls combined with RL.  

This study applies RL methods in conjunction with detailed time domain simulations to 

develop generator controls to prevent cascading voltage failures following large disturbances. 

The study utilizes detailed time-domain simulations interfaced with reinforcement learning to 

determine appropriate generator control actions. The focus of this study is on the dynamic 

process of power system operation, so the simulation and training platform is built based on 

power system simulation software Siemens-PTI PSSE 35.2 and Python with which systematic 

algorithmic training can be achieved during the dynamic simulation process. 

1.2 Related works 

Reinforcement learning (RL) has been increasingly applied in power systems to solve control 

related problems, which involve power system protection control (such as the utilization of 

DRL based methods to control the protection relay logic [2]), photo-voltaic and wind 

resources control (such as the combination of Maximum Power Point Tracking (MPPT) 

control with Q-learning to generate switching signals [3]), load-frequency control [4-9] or 

voltage control [1].  
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Voltage stability has been one of the most important control problems for power system 

operation. RL control was considered in [10] and [11] for subsystem voltage control, which 

utilized a Q-learning algorithm to learn a reactive power optimal control scheme to keep the 

voltage within the normal range. Q-learning was also adopted in [12] for optimal tap setting 

of on-load tap changer of step-down transformers (connecting electric distribution systems 

with the rest of the system) to control the distribution system side voltages under uncertain 

load dynamics. Q-learning in [13] was used to provide a control scheme of active power 

generations to prevent system cascading failure, and the controller operates in the system 

normal state and takes actions in the form of preventive control to make adjustments in case 

of cascading failure when the system suffers large disturbances. Reference [14] proposed a 

two time-scale voltage control scheme, including fast inverter control and switching of shunt 

capacitors at a slower time control based on the Deep Q-Network (DQN) algorithm. Reference 

[15] applied DQN and Deep Deterministic Policy Gradient (DDPG) for subsystem voltage 

control and found that DDPG performed better with sufficient training scenarios. Reference 

[16] adopted multi-agent deep deterministic policy gradient (MADDPG), which is a multi-

agent continuous actor-critic based algorithm, to realize voltage regulation among substations 

based on power flow data. It, however, focused on the steady-state performance of the system. 

 

There have been many explorations and attempts in the area of steady-state voltage control 

based on reinforcement learning [16], [17]. However, [18] and [19] addressed transient 

stability issues to keep the system in synchronism by controlling power system components, 

such as thyristor-controlled series capacitors and dynamic braking resistors. Reference [18] 

considered the historical states of the power system to recover partially observable problems 

that have the Markov property. References [19-20] also considered the transient angle 

instability problems. Reference [19] proposed a system-centric controller and observer based 

on hybrid RL method. Reference [20] proposed a control scheme to damp local and inter-area 

oscillations considering local prioritization. Reference [21] utilized dynamic braking for 

power system emergency control based on Deep Reinforcement Learning methods, an open 

simulation platform was built as well to develop, train, and benchmark RL algorithms for 

power system control problems. 

 

This study aims to solve the voltage control problem based on the continuous reinforcement 

learning algorithm in the power system environment and will focus on the dynamic simulation 

process to consider the dynamic factors that may influence power system operation. The 

voltage control action in the power grid is achieved by adjusting the generators’ excitation 

system under large load changes. The DDPG algorithm, which deals with the continuous 

action space is considered and implemented in this study to continuously control the voltage 

reference of the generator excitation system. Since we focus on the dynamic process, a 

dynamic power system training and simulation platform is built based on a commercial power 

system software package and Python. By utilizing the reinforcement learning algorithm, this 

study will finally build a controller that can help the generator flexibly change its output within 

the specified limits to satisfy the needs of the system and provide voltage support when 
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disturbances or large changes occur. 

1.3 Report organization 

The report is organized as follows: Chapter 1 presents the motivation and objectives of the 

research. Chapter 2 introduces the relevant theoretical background, which includes neural 

networks and reinforcement learning algorithm. In Chapter 3, the proposed reinforcement 

learning based voltage control method is explained in detail. The design of different reward 

functions is discussed, and neural network structures are introduced. The power system 

dynamic training and simulation platform are discussed in this chapter as well. Chapter 4 

introduces the IEEE 9-bus test system, the 2000-bus Texas synthetic grid model, and the design 

of parameters, and the simulations are demonstrated with results analyzed. Conclusions and 

future work are presented in Chapter 5. 
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2. The reinforcement learning method 

This chapter introduces the theoretical background of the basic structure of deep neural 

networks (DNN) and deep deterministic policy gradient (DDPG) algorithm. 

2.1 Deep Neural Networks 

Deep neural networks (DNN) provide the platform to incorporate large amounts of information 

and are applied widely in non-linear problems. A DNN typically learns the functional 

relationship between the inputs and outputs during the training process. A DNN includes an 

input layer, multiple hidden layers and an output layer.  

 

If the output of each layer is linear, its modeling capability will be limited when dealing with 

complex problems. Therefore, activation functions are introduced to account for non-linear 

factors. There are different types of activation functions, such as sigmoid, tanh and rectified 

linear unit (ReLU).  

The sigmoid function can output only positive values, and is described in (2-1) [22] 

                                  
1

( )
1 z

f z
e−

=
+

                              

(2-1) 

 

The output value range of the tanh function is (-1, 1), and when the input is 0, the output is 0 

as well. The tanh function [22] is defined as 

                               
2

2
( ) 1

1 z
f z

e−
= −

+
                            (

2-2) 

The ReLU function is commonly used as it is resilient to the vanishing gradient problem. 

Equation (2-3) shows the ReLU activation function [23]: 

                               ( ) max(0, )f z z=                             (2

-3) 

2.2 Deep Deterministic Policy Gradient Algorithm 

The Deep Deterministic Policy Gradient (DDPG) algorithm adopts an actor-critic structure 

with a continuous actions space [24]. The Bellman equation as shown in (2-4) is used to update 

the critic value: 

( , ) ( , ) ( ', ') ( , )

1 maxs a s a s a s a

j j j j jQ Q R Q Q +
 = + + −                    (2-4) 

where α is the learning rate and γ is the discount rate, Rj represents the reward of each training 
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step j. Due to the limited computation capacity, Q-learning and DQN are not suitable for large 

action spaces or continuous action spaces since every single action is selected based on a 

matched Q-value in the above two algorithms [24]. In DDPG, a parameterized policy function 

is used to choose a deterministic action according to system states. The actor is updated by 

applying the chain rule to the expected reward with respect to the actor parameters as 

                
, ( )

1
( , ) ( )

j j ja s s a s s sJ Q s a s
N



    = = = =                  (2-5) 

where J is the starting distribution, which represents the initial gradient ascent of the actor 

network parameters to the Q value, ( )s    is the parameterized policy function, and 
  

refers to parameters of the policy network. The control action is obtained from a deep neural 

network, which makes it possible to deal with a continuous action space in practical large-scale 

systems. DDPG is an off-policy method which uses off-policy data and the Bellman equation 

to learn the Q-function and uses the Q-function to learn the action policy. The network used to 

update the Q value and calculate the target value will sometimes lead to instability of the 

process. DDPG utilizes a copied actor network 
''( )s    and a critic network 

' '( , )QQ s a   

to calculate the target values, respectively, and it has a total of four networks to estimate the 

policy and value functions: actor, target-actor, critic, and target-critic. The main actor and critic 

networks will update every step that parameters update, and the target networks will update 

and track the learned network slowly, which are soft updates: ' (1 ) '    + − , where ρ is 

a hyperparameter whose value lies between 0 and 1, usually close to 0 to constrain the speed 

of updating. The use of targets networks significantly improves the stability of learning. During 

the action exploration, a random decaying noise is added into the policy as shown below in (2-

6) 

                           '( ) ( )j j j js s    = +                           (2-6) 

where 1j d jr + =   and dr  is the decay rate.  

The DDPG algorithm is detailed in Algorithm 1 [24] as below. 
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3. Reinforcement learning based voltage control 

This chapter introduces the system model to which the DDPG algorithm is applied. The voltage control 

problem is defined and formulated as a Markov decision process (MDP). The structure of the neural 

networks adopted is shown. The power system dynamic simulation and training platform are 

introduced in detail as well. 

3.1 Power System Model 

The dynamic process of power grid operation possesses a highly non-linear characteristic, which is 

essentially a process of sequential decision-making under-uncertainty. The power system model can 

be formulated as follows [21]: 

 

0

: min ( , , )
cT

t t t

T

C dtP x y s                            (3-1) 

subject to 

( , , , )t t t t tf d
•

=x x y a                              (3-2) 

0 ( , , , )t t t tg d= x y a                               (3-3) 

min max

0, [ , ]t t t ct T T   x x x                         (3-4) 

min max

0, [ , ]t t t ct T T   y y y                         (3-5) 

min max

0, [ , ]t t t ct T T   a a a                         (3-6) 

where tx  denotes dynamic state variables in the power system; ty  represents the algebraic states in 

the power system, such as voltage of the buses of the power grid; ta  is the control action of the power 

system, such as generator regulation; td  represents the system disturbance or fault that occurs during 

system operation; 0T  and cT  represent the time horizon of this dynamic process. 

 

Equation (3-1) represents minimizing the total cost of the corrective control, including the cost of 

control actions, the control effectiveness in terms of system states (sometimes the control effectiveness 

can be reflected by system states). Equation (3-2) describes the dynamic system model, such as the 

behavior of generators and the relevant control systems. Equation (3-3) represents the power system 

constraints that describe the power balance between generators, loads and transmission branches. 

Equation (3-4)-(3-6) are the operational constraints of the system dynamic states, algebraic states, and 

control actions. Equations (3-1) - (3-6) together describe the optimal decision-making model during 

power system operation [21] [25]. 
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3.2 Markov Decision process Formulation for the Voltage Control Problem 

3.2.1 Definition of Action, State and Observation 

For voltage control under generator regulation, the control actions are defined as a vector of generator 

reference voltage magnitudes. By continuously adjusting this parameter of the generator excitation 

system, the output reactive power will be regulated so as to provide appropriate voltage support to the 

system under disturbance. Different measurements obtained by system measurement devices are 

usually used as the system states according to the problem that needs to be dealt with. Similar to [26] 

and [27], the reinforcement learning method used in this study only considers the bus voltage 

magnitude as the state in the Markov decision process. So, the observation of the controller is the bus 

voltage magnitude. The power system environment state transition is realized by a set of differential 

algebraic equations of the form (3-2) and (3-3). The limits on the controller defined in (3-6) are 

considered in the definition of the action space by setting appropriate control bounds. 

 

3.2.2 Definition of Reward 

• Consider voltage magnitude deviation and regulation cost 

The reward function rt is designed to evaluate the control effectiveness of the actions during the 

implementation of reinforcement learning. To restore the voltage level under the control, the 

reward is designed to motivate the controller to reduce the deviation of the bus voltage magnitude 

from the bus reference value refV . As shown in (3-7), if the system diverges during operation under 

control actions, a distinguishable negative reward will be given. Otherwise, with less bus voltage 

deviation, the reward will become larger based on the first term of (3-7) in the case of system 

convergence, which will guide the controller to regulate its action to reach more desirable states. 

Meanwhile, the objective is to reach the desired goal with less control effort, so the second term 

considers the cost during all the control processes, which try to help the system restore the voltage 

with less regulation of the generator excitation system. Variables 1c  and 2c  are the weights of 

these two components and they are chosen based on expert knowledge of the system as well as 

trial-and-error selection [21]. The definition of ( )V t  and ( )a t  can be seen in (3-8) - (3-9). 

1 2

,

( ) ( ),t
i j

i j

Huge penalty system tends to diverge

r c V t c a t otherwise




=  −   −  


                  (3-7) 

( ) ( )i i refV t V t V = −                             (3-8) 

( ) ( ) 1j ja t a t = −                             (3-9) 
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• Consider voltage magnitude deviation, regulation cost and historical voltage data

Power systems possess significant inertia and the dynamic process is a sequential process, which

means the current state of the system is affected by both the previous control actions as well as

the previous states. Significant information lies in the massive historical state data within a given

simulation, in our case this historical information is provided by the bus voltage magnitude.

Therefore, the historical voltage magnitude data is input into the agent to help the DDPG agent

learn a more accurate policy to cope with system disturbances. The reward function considering

the historical data is formulated as (3-10):

1 2 3

,

( ) ( ) ( ),
t

t
t

i j history i

i j t c i

Huge penalty system runs to diverge

r
c V t c a t c V t otherwise−

−




= 
−   −   −  


  

(3-10) 

( ) ( )history k history k refV t V t V− − = − (3-11) 

where history iV − is the historical voltage magnitude difference of bus i with bus reference value 

1refV pu= , tc is the historical time range considered in a certain past time instant during system 

operation, and 3c is the weight related to the historical data in the reward function. 

• Consider voltage magnitude deviation, regulation cost, historical voltage data and voltage

rate of change

During the system dynamic evolution and control implementation after a disturbance or large 

change in load, the dynamic performance after the control action is implemented is also of 

significant importance. The objective is to avoid system oscillations and voltage fluctuations, to 

facilitate the system voltage recovery in a more stable fashion. Both the rates of voltage changes 

and their historical values are considered in the reward function to guide the agent to generate a 

control policy that will aid in the recovery of the system voltage with a more desirable dynamic 

performance. The reward function considering both voltage historical data and voltage rate of 

change is shown as (3-12): 

1 2 3 4

,

( ) ( )
( ) ( ) ( ) ,

t t

t t t
history i history it

i j history i

i j t c i t c i

Huge penalty system begins to diverge

V t V t tr
c V t c a t c V t c otherwise

t

−
− −

−

− −




− − = 
−   −   −   −  

   

 (3-12) 

where 4c  is the weight related to the rate of voltage change in the reward function, t  is the 

time interval of every learning step during the training process, when applied to a practical power 

system, t should be the data sampling time step of the measurement device. 
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3.3 Neural Network Architecture 

The neural network structures adopted for the DDPG algorithm in this study are shown in Fig 3.1 and 

Fig 3.2. Both actor and critic neural networks have two hidden layers, which are connected with 

activation functions. The actor neural networks adopt Relu and Tanh activation functions and critic 

networks adopt Relu as the activation function. 

Figure 3.1 Actor neural network structure 

Figure 3.2 Critic neural network structure 

3.4 Simulation Platform Development 

A power system dynamic simulation platform has been built for the implementation of the 

reinforcement learning algorithm in the power system dynamic simulation environment. The structure 

of the whole system is shown in Fig. 3.3. 

Power flow 

data

Dynamic 

model data

Set up power system environment

• Set up PSS\E 35.2 environment

through API with Python

• Various disturbance scenarios

prepared

DDPG Agent

Figure 3.3 Diagram of the DDPG-based agent and power system environment 

The time-domain simulation software Siemens-PTI PSS/E is used as the power system simulator to 

conduct power system dynamic simulations and emulate the power grid environment. PSS/E provides 

APIs based on an open Python technology, which can communicate with the DDPG agent in real time 

to exchange information during the training process.  
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DDPG Agent

Power System 

Environment

State Reward
Action

 
Figure 3.4 Diagram of the data interaction between DDPG agent and power system environment 

 

The disturbance is randomly introduced into the environment during each training episode, in which 

one round of dynamic simulation will begin. Each episode contains certain steps, as shown in Fig. 3.4. 

The DDPG agent will generate actions in each step during training according to the current policy 

( )a s  =  that the agent learned. In the case considered, it is a reference command that the 

controlled generator should follow. The action will be sent to the power system environment through 

the API between PSS/E and python. The simulator (PSS/E) on the power system side will receive this 

command and incorporate it into the simulation. The training step interval for the power system 

simulation is set as 1 second. After the action is executed, the dynamic simulation will run for 1 second, 

and the state of the power system environment will change because of this action, generating the next 

state at the end of simulation. The power system simulator will output the system states through the 

API to the DDPG agent, based on which the reward will then be calculated. The current state, next 

state, current action, and reward will be added into the replay buffer. After the buffer is filled, a new 

set of observations will be randomly selected for network updating. Then the DDPG agent will 

generate the new action based on the latest version of the network, another step of training starts and 

the dynamic simulation will move to the next second until this episode is over. Then another 

disturbance scenario will be generated, and another round of training begins until the final episode is 

examined. 

 

This simulation platform is based on power system dynamic simulation (based on power flow data and 

dynamic data) and can be used for training under different scenarios based on different algorithms. 

The power system operation information will be exchanged with the agent at each step during system 

operation which can reflect system dynamic characteristics during control combined with RL 

algorithms. 
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4. Results for test systems 

The IEEE 9-bus system and the 2000-bus Texas synthetic grid systems are used as the test systems, 

based on which time domain simulations are conducted and interfaced with the reinforcement learning 

controller. 

4.1 Description of the test system 

4.1.1 IEEE 9-bus System 

Figure 4.1 shows the network structure of the IEEE 9-bus system [28], which includes 3 generators 

and 9 buses. The system parameters are shown in Table 4.1. Generator 1, a hydraulic turbine, is set as 

the generator connected to the slack bus 1. Generators 2 and 3 are steam turbines. Loads are located at 

buses 5, 6, and 8. 

 

 
Figure 4.1 IEEE 9-bus test system  

Table 4.1 Parameters of the IEEE 9-bus system 

Bus Number Voltage (kV) Generator Output 

(MVA) 

Load 

(MVA) 

1 16.5 247.5 / 

2 18 192 / 

3 13.8 128 / 

4 230 / / 

5 230 / 125+j50 

6 230 / 90+j30 

7 230 / / 

8 230 / 100+j35 

9 230 / / 
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4.1.2 Texas 2000-Bus Synthetic Power System 

The Texas 2000-bus synthetic power system is a set of test data built according to public information 

and statistical analysis of the real power system [29] - [31]. The generation and load distributions are 

similar to the actual power grid. The whole 2000-bus power test system is synthetic and has four 

voltage levels of 500/230/161/115 kV. The total generation capacity in this system is 98GW with a 

load of 67GW and 19GVAr. The heavily loaded area is in southeast Texas around the Houston area, 

and the Northern part of the Texas grid, which can be seen from the system structure shown in Figure 

4.2. 

Figure 4.2 Texas 2000-bus synthetic power system 

Dynamic simulations are conducted based on this data and an oscillation is found in this system when 

no disturbance is added, as seen in Fig 4.3. This indicates that a suitable initial condition was not 

determined for the time domain simulation and as a result some system parameters or control settings 

can be erroneous. 

To remedy this problem and make preparations for the agent training, the appropriate parameter(s) of 

the test system is adjusted. The test case was simulated in post PSS/E and PSLF which have excellent 

initial condition analysis capability for dynamic initialization. According to the warning information 

that PSS/E and PSLF provided, we adjusted the maximum limit of the governor and the excitation 
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system, and this reduces the oscillation. Generator 6216 greatly influences system stability. The lead 

and lag time constant and “Vrmax” of generator 6216’s excitation system were further adjusted to 

appropriate values. As a result, the initialization is successful and a flat run indicating this is obtained, 

as shown in Fig 4.4. The following training and testing simulations are based on this corrected data. 

 

 

Figure 4.3 System oscillation without any disturbance 

 

 

Figure 4.4 Flat voltage and power without any disturbance 

4.2 Simulation Parameters 

The training parameters are crucial to the convergence of the algorithm. Generally, as shown in Table 

4.2, the hyperparameters include learning rate for both actor and critic networks, the discount rate γ, 
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batch size, memory capacity, and training step. Exploration noise, which is used to enrich the training 

exploration, is also an important parameter that influences the learning performance. 

 

The learning rate determines the learning speed of the agent. The larger the learning rate is, the faster 

the agent will learn, but this could also lead to oscillations and result in a loss of the optimal solution. 

A smaller learning rate can make the learning process more precise but the drawback is the learning 

speed is slower. The process could be easily trapped into an overfitting situation. Generally, the 

learning rate is set to the range of 0.01-0.001. We used a learning rate of 0.001 due to the good 

performance during training. 

 

Table 4.2 Training Parameters 

Hyper parameters Parameter values 

Layer 2, 2 (actor, critic) 

Activation Function ([ReLU, Tanh], [ReLU, ReLU]) 

Units of MLP per Layer 32 

Learning Rate Actor 0.001 

Learning Rate Critic 0.001 

Discount rate γ 0.9 

Batch Size 128 

Memory Capacity 10000 

Max Step 50 

Exploration Noise 3 

 

The discount rate essentially determines how much the reinforcement learning agent cares about 

rewards in the distant future relative to those in the immediate future. If it is set as 0, the agent will 

only learn about actions that produce an immediate reward, if it is set as 1, the agent will evaluate 

every action based on the total sum of all the future rewards. Most actions do not have long-lasting 

repercussions and need to be traded off to avoid irrelevant information. The discount rate is set as 0.9 

in the training conducted and it provides satisfactory results. 

 

The batch size indicates the number of training examples utilized in one iteration. Since the number of 

states and actions are not large in our case, the batch size is set as 128. The memory capacity is the 

capacity of the datasets that the agent will randomly sample from to train the network. It is used to 

break the correlation between different data to avoid inefficient learning. A value of 10,000 memory 

capacity is suitable for a 128-batch size. 

 

The step interval is set as 1 second so the maximum step setting as 50 means every round of dynamic 

simulation will last 50 seconds after the disturbance is introduced. A 5 seconds initialization time is 

set so the total simulation will be 55 seconds for each episode. 

 

Exploration noise is used to introduce more explorations during the training process which will enrich 

the data set during the information exchange with the power system environment. The exploration 

noise is set by trial and error and a final value of 3 is obtained. 
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4.3 Simulations on the IEEE 9-bus System 

Case 1- Considering voltage magnitude deviation and regulation cost 

The system structure can be seen in Fig 4.5. Various amounts of load changes are randomly introduced 

at bus 8 in the system at 5 seconds which results in around 3% - 5% voltage fluctuation. 

Figure 4.5 IEEE9 system structure 

The power grid’s state is the voltage magnitudes of the buses in the disturbed area, and two generators, 

generators 2 and 3, participate simultaneously in the voltage regulation as the controlling action. The 

action bound is set as [-1.3, 1.3]. The step interval is set as 1 second, which means the power grid 

environment will exchange information with the DDPG agent, send back current states and get action 

commands every 1 second. With the reward function of (3-7) that considers controlled bus voltage 

magnitude deviation and generator regulation cost, the DDPG controller learns in the training process 

under the above fault scenarios, the moving average reward finally reaches a satisfactory level after 

2000 episodes of training, as shown in Fig 4.6. 
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Figure 4.6 Moving average reward of IEEE9 system 

After being fully trained, the DDPG agent is applied to the system to provide voltage support after 

system disturbance. The test result can be seen in Fig. 4.7 and Fig. 4.8. With only conventional 

generator control, the system bus voltage magnitudes are seriously affected and keep decreasing after 

the load change disturbances, which puts the system at high risk of losing stability. With the DDPG 

agent controlling generators 2 and 3, the system voltage can be significantly improved to the normal 

level. The excitation system voltage reference value of the two controlled generators can be seen in 

Fig. 4.9 and Fig. 4.10. Under the control of the DDPG agent, generator 3 will provide full voltage 

support after detecting the disturbance and the generator 2 is responsible for the voltage regulation 

according to the system operating condition. The two generators cooperate under the control of the 

DDPG agent to help the system restore voltage. 

Figure 4.7 Case 1-Voltage of bus 8 with and without DDPG controller 
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Figure 4.8 Case 1-Voltage of bus 5 with and without DDPG controller 

 

Figure 4.9 Case 1-Generator 3 voltage reference command of the excitation system  

 
Figure 4.10 Case 1-Generator 2 voltage reference command of the excitation system 
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Case 2-Consider voltage deviation, regulation cost and historical voltage data 

To further analyze the impact of historical data on the agent control performance, the DDPG agent is 

trained with the reward function of (3-10) that considers the historical voltage data besides bus voltage 

magnitude and generator regulation cost. The data in the past 5 seconds are considered, which means 

tc  is 5 in this case. The moving average reward can reach and maintain at a high level after 2000 

episodes’ training, which can be seen in Fig. 4.11. 

 

 

Figure 4.11 Case 2-Moving average reward  

 

After the training has converged, the DDPG controller is integrated into the power system environment 

during dynamic simulation after system expereriences a load change at bus 8. The test results are 

shown in Fig. 4.12-4.13. 

 

Figure 4.12 Case 2-Voltage of bus 8 with and without DDPG controller 
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which show that the control policy of the DDPG agent with historical voltage data considered can 

provide additional support to the system, and this can help the system voltage recover to a normal level. 

Figure 4.13 Case 2-Voltage of bus 5 with and without DDPG controller 

Case 3-Consider voltage deviation, regulation cost, historical voltage data and rate of change of  
voltage 

Further training of the DDPG agent with the reward function (3-12) that considers rate of voltage 

change of the historical data is also conducted. Since the rate of change is calculated using each 

historical voltage and its previous voltage values, there are 4 rates of voltage change data for each 

controlled bus when a 5 seconds interval of historical data is considered with a control interval of 1s. 

The moving average reward can be seen in Fig. 4.14. 

Figure 4.14 Case 3-Moving average reward 
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After being fully trained, the DDPG controller is tested with a random load change and the results can 

be seen in Fig 4.15 and Fig 4.16, which show the agent can provide voltage support and help the system 

voltage recover by considering the rate of voltage change. 

 

Figure 4.15 Case 3-Voltage of bus 8 with and without DDPG controller 

 

Figure 4.16 Case 3-Voltage of bus 5 with and without DDPG controller 

 

Case 1 to Case 3 analyzed the DDPG agent control performance with different information considered. 

When adding the same disturbance at bus 8, the comparison of the voltage control effects can be seen 

in Fig 4.17. The red curve in Case 1 (also shown in Fig. 4.18 to present a clearer curve), which 

considered only voltage magnitude deviation, has more fluctuations in voltage magnitude during the 

whole dynamic simulation with the action applied at every 1 second by the DDPG agent. With 

historical data considered, the green curve (also shown in Fig. 4.19) of Case 2 performs a little bit 
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better, and the voltage magnitude is higher and has less fluctuations than Case 1. The blue curve (also 

shown in Fig. 4.20) of Case 3, which considers not only the historical voltage data but also the voltage 

rate of changes, has the most smooth voltage curve with less fluctuation with actions generated from 

the DDPG controller. Adding the historical voltage data and voltage rate of changes as the system 

states besides bus voltage magnitude can provide more information to the agent, so that the DDPG 

agent learns the policy to reduce the deviation and fluctuation to maximize the reward function, which 

improves the voltage recovery process. 

 

 
Figure 4.17 Voltage compare between Case 1 to Case 3 

 

 

Figure 4.18 Voltage of bus 8 under Case 1 
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Figure 4.19 Voltage of bus 8 under Case 2 

 

 
Figure 4.20 Voltage of bus 8 under Case 3 

 

Case 4-With random selected location of the disturbance 

The disturbance of Case 1 to Case 3 is located at bus 8. This section analyzes the scenario with 

randomly selected disturbance locations. The disturbance is randomly added to bus 5, bus 6 and bus 8 

with random load change amount. Only voltage magnitude and regulation cost are considered in this 

scenario, which uses (3-7) as the reward function. After the agent is well trained, the test results are 

shown in Fig. 4.21 and Fig. 4.22. We can see from the results that the voltage can still be recovered 

with the random location of disturbance. This scenario is more likely to happen in the real power grid 

since faults always appear with significant uncertainty.  
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Figure 4.21 Case 4-Voltage of bus 5 when disturbance occurs at bus 5 

 

 

Figure 4.22 Case 4-Voltage of bus 6 when disturbance occurs at bus 6 

4.4 Simulations Based on the Texas 2000-bus Power System 

The real power grid is usually a large-scale system. In order to test the proposed method, simulations 

for the Texas 2000-bus synthetic power system are conducted to further test the efficacy of the 

proposed reinforcement learning based voltage control method on a more realistic system. 

 

Various amounts of load changes are randomly introduced around bus 7068 (located near the Houston 

area) at 5s during the dynamic simulation to result in a 3%-5% voltage decrease. The power grid 

environment state is also the bus voltage magnitudes of buses in the disturbance area. 
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As for the controlled generators, the system structure can be seen in Fig. 4.23, generators 7307-7311 

have the smallest electrical distance from the bus at which the load disturbance is placed. Generator 

7098 and generator 7099 have large capacity and a significant margin in terms of reactive power 

capability and are also located electrically close to the disturbance area. Hence, they are good choice 

as the controlled generators. Since generator 7098 is connected to the swing bus of the system, 

generator 7099 is set as the controlled generator, together with generator 7310. As a result, generators 

7099 and 7310 are set as the two controlled generators for this case. 
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Figure 4.23 System structure near disturbance area 

 

Since the load change amount is larger in this 2000-bus system, the action bound is set as [-2, 2]. The 

step interval is still set as 1 second. The DDPG controller learns during the training process under the 

aforementioned fault scenarios, and the moving average reward finally reaches a high level after 2000 

episodes of training, as shown in Fig 4.24. 

 



Figure 4.24 Moving average reward of 2000-bus system 

Case 1- With 230MVar load change 

After being fully trained, the DDPG agent is applied to the system to provide voltage support after a 

system disturbance. A 230MVar change of reactive power is added to bus 7069 of the 2000-bus system 

as shown in Fig. 4.23, with the test results shown in Fig. 4.25. The green curve is the voltage with 

conventional generator control and the red curve is with the DDPG controller. With only the 

conventional generator control, the system bus voltages decrease after the disturbance, stay at a low 

level and cannot recover. With the DDPG agent controlling the generators 7099 and 7310, the system 

voltage can be improved to normal levels.  

The excitation system voltage reference value of the two controlled generators can be seen in Fig. 4.26 

and Fig. 4.27. The voltage curve (green curve) is included to observe the effect of the voltage reference 

values in maintaining the voltage. After fully training, the DDPG agent appears to learn well and 

operate effectively. When the voltage is decreased from the standard normal value of 1 pu, the agent 

will adjust the commands and quickly provide support for the system. After the voltage roughly 

recovers to 1 pu, it keeps precisely regulating the command to stabilize the whole voltage level. From 

Fig. 4.28, it can be observed that the command for the two controlled generators have similar trends 

in general. The two generators cooperate well under the control of the DDPG controller to restore the 

system voltage. 

26
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Figure 4.25 Case 1: Voltage of bus 7068 with and without DDPG controller 

Figure 4.26 Case 1: Generator 7099 voltage reference command of the excitation system 



Figure 4.27 Case 1: Generator 7310 voltage reference command of the excitation system 

Figure 4.28 Case 1: Trend of the two generator voltage reference commands 

Case 2- With 280MVar load change 

A larger disturbance with 280MVar load change is introduced into the system to fully test the 

effectiveness of the proposed controller. The voltage curve compared with Case 1 of 230MVar load 

change can be seen in Fig. 4.29, and the red curve is the voltage with 280MVar load change which 

decreased more compared to the green curve of Case 1 after the disturbance is added into the system 

at 5 seconds. The excitation system voltage reference values of the two controlled generators can be 

seen in Fig. 4.30 and Fig. 4.31. The voltage curve (green one) is also retained in the figure to make the 

results more intuitive. It can be observed that after the voltage drop, the controller will output high 

value commands to make the two generators provide better voltage support to the system after a serious 

28
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disturbance. The voltage can be improved and can finally reach nearly 1 pu under the control of the 

controller. The controller will keep monitoring and regulating the system voltage during the whole 

dynamic simulation. The output commands from the controller are also presented in Fig. 4.32 which 

shows the trends of the whole control time range. From all the results presented, it is seen the controller 

can effectively provide support and precisely help the system restore voltage. 

Figure 4.29 Voltage compare between Case 1 and Case 2. 

Figure 4.30 Case 2: Generator 7099 voltage reference command of the excitation system 



Figure 4.31 Case 2: Generator 7310 voltage reference command of the excitation system 

Figure 4.32 Case 2: Trend of the two generators voltage reference command 

Case 3- With random selected location of disturbance 

A random disturbance at buses 7219, 7306 and 7069 is introduced, respectively. Only voltage 

magnitude and regulation cost are considered and (3-7) is used as the reward function. After the agent 

is well trained, the test results are shown in Fig. 4.33 and Fig. 4.34. We can see from the results that 

the voltage can still be supported with a random disturbance. Since the capacity of the generator 

regulation amount is limited, the voltage cannot be completely restored to around 1 pu, but it still can 

help improve the system voltage, which is also very important to the safe operation of the system. 
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Figure 4.33 Case 3: Voltage of bus 7219 when disturbance occurs at bus 7219 

Figure 4.34 Case 3: Voltage of bus 7306 when disturbance occurs at bus 7306 

Case 4- Considering voltage deviation, regulation cost, historical voltage data and rate of 

change of voltage  

As the case in section 4.3, different reward functions are applied to the controller in the 2000-bus 

system, which include the base case that considers the voltage deviation and generator regulation cost, 

the case that considers historical voltage deviation and the case that adds rate of change of voltage in 

the reward function besides all the above factors. The simulation results are shown in Fig. 4.35. 

31
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Figure 4.35 Case 4: Voltage comparison with different reward function 

We can see that, with the addition of the rate of change of voltage into the reward function, the voltage 

recovers faster with a smoother curve (blue). The base case (red curve) and the case that considers 

historical voltage magnitude deviation has some oscillation. This will guide the agent to mitigate the 

oscillation and realize a maximum reward value, which will improve the system dynamic performance 

during the operation. The result shows that considering the voltage historical data and rate of change 

of voltage can improve the system dynamic performance when the controller restores the system 

voltage after disturbance. 
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5. Conclusions and future work

5.1 Main conclusions 

The study in this report explores the efficacy of reinforcement learning in preventing voltage cascading 

failures following large disturbances in con-junction with detailed time-domain simulations. The 

results demonstrate that the controller can output accurate commands to the excitation system in real 

time based on the current system operating condition. The voltage recovery process is stable and fast 

under the control of the DDPG controller, without which the system voltage will keep decreasing 

slowly and have a risk of losing stability using only the conventional generator control. Different 

factors are considered in the reward function, the case that consider the historical voltage data and the 

rate of change of voltage has better dynamic performance. 

This study also builds a DDPG based power system dynamic simulation platform to train the controller 

in the power system environment based on dynamic simulation. This platform provides a basis for 

training the RL algorithm during the system dynamic simulation, which makes it possible to further 

consider the system dynamic characteristics in future research. 

5.2 Future work 

The work presented observed the bus voltages of one disturbance area, control of more generators 

under multiple bus disturbances could be explored in the future to meet the needs of the practical power 

grid. Since voltage control is local problem, more control structures with multiple control devices 

could be considered in the future. Besides, more reinforcement learning algorithms are worth trying, 

such as proximal policy optimization (PPO) and soft actor-critic (SAC) [32], which have better training 

stability. 
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