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Executive Summary 

Hopf bifurcations can occur in power systems when a system mode experiences low damping 

because of changes in system operating conditions and they can lead to emergence of limit cycles 

and oscillations. There are two types of Hopf bifurcations, namely, supercritical and subcritical, 

and they are determined by the sign of a cubic normal form coefficient. This report discusses the 

two types of Hopf phenomena in test power system models where both types could be seen under 

changes in system and control parameters. The report proposes an efficient computational method 

for carrying out higher order center manifold and normal form calculations for a general power 

system model and discusses the implications of the normal form coefficients for power system 

dynamics. Distinguishing between subcritical versus supercritical is important since they lead to 

very different type of oscillatory phenomena related to unstable versus stable limit cycles 

respectively.  
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1. Introduction 

1.1 Background 

Oscillatory stability of a nonlinear system such as a power system is usually studied by linearizing 

the system dynamic model around an equilibrium point and by studying the eigenvalues of the 

linearized system Jacobian matrix[1]. The system is considered small-signal stable at an 

equilibrium if all the eigenvalues of the system matrix (usually denoted modes) evaluated at the 

equilibrium point have negative real parts. However, in a power system, changes in operating 

conditions such as from generator output variations or load changes can make one of the system 

modes poorly damped or even negatively damped, such as by crossing the imaginary axis into the 

open right half complex plane.  

If a pair of complex conjugate eigenvalues transverses across the imaginary axis, this phenomenon 

is called a Hopf bifurcation [2],[3]. Hopf bifurcation is usually associated with nonlinear 

oscillatory system trajectories. In this situation, the nonlinear part of the system must be taken into 

consideration for further analysis of the system responses when the eigenvalues are close to the 

imaginary axis. Center manifold and normal form theories are two powerful tools for performing 

this nonlinear analysis. They together provide a systematic way to simplify dynamical systems 

near a Hopf bifurcation parameter value.  

1.2 Overview of the Problem 

Assuming all the other eigenvalues to have negative real parts, it can be shown that a two-

dimensional center manifold captures the essential nonlinear features of the system dynamics 

associated with a poorly damped pair of complex conjugate eigenvalues[2],[3],[4]. At any Hopf 

bifurcation point, the normal form on the two-dimensional center manifold can be expressed in the 

polar form as 𝑟̇ = 𝜇𝑟 + 𝑎𝑟3 + 𝑂(𝑟5), where 𝜇 is the real part of the eigenvalue of the equilibrium 

point, and 𝑎 is the cubic normal form coefficient we are concerned about (supercritical when 𝑎 <
0 and subcritical when 𝑎 > 0). It can be shown that supercritical cases are related to stable limit 

cycles that are born as the equilibrium point becomes unstable (𝜇 > 0), which means the system 

trajectories will have sustained oscillations even as the mode becomes negatively damped. For the 

subcritical case, there is an unstable limit cycle surrounding the stable equilibrium point (𝜇 <
0), and the limit cycle will disappear as the equilibrium point becomes unstable and the system 

trajectory will diverge away potentially leading to tripping of equipment. Therefore, the subcritical 

type of Hopf is more problematic for system operations compared to the supercritical type of Hopf 

[4]. 

1.3 Proposed Solution 

In this report, we will show how high order computations can be done systematically in general 

nonlinear differential algebraic models using center manifold theory and normal form theory 

[5],[6],[7] and discuss the operational implications of the phenomena for general detailed power 

system models such as for the 2-area-4-machine-11-bus Kundur test system[1]. 
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1.4 Report Organization  

In section 2, we will introduce the theoretical background for distinguishing between supercritical 

and subcritical Hopf bifurcations to provide an intuitive understanding. In section 3 we will 

illustrate the numerical computation process step by step for calculating the normal form 

coefficient “𝑎”, which would tell us which type of Hopf it is. In section 4, we will illustrate the 

computations and analysis on the Kundur system. Conclusions are made in section 5. 
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2. Theoretical Background 

2.1 Basic Concepts 

In this report, the variables in bold and italic are vectors i.e 𝒙; variables in bold and non-italic are 

matrices i.e. 𝐀; variables neither in bold nor italic are scalars i.e. 𝑎. 

 

For a physical system such as power system, the dynamics can be modeled by a dynamical system 

in the form: 
𝑑𝒙

𝑑𝑡
≝ 𝒙̇ = 𝑓(𝒙) (1) 

where 𝒙 = 𝒙(𝑡) ∈ ℝ𝑛 and 𝑓: 𝑈 ⊆ ℝ𝑛 → ℝ𝑛 is smooth. Here we assume the network based 

differential-algebraic equations can be suitably simplified into the form (1) with suitable 

assumptions on solvability of network algebraic equations [8]. An equilibrium point say 𝑥0 of (1) 

is a solution such that 𝑓(𝒙𝟎) = 0. A linearization of system (1) at the operating point 𝑥0 is denoted 

as 

𝒙̇ = 𝐀𝒙 (2) 
where matrix 𝐀 = 𝐷𝑓(𝒙𝟎) is the Jacobian matrix of function 𝑓(𝒙) at  𝒙𝟎. 

 

It is required that a power system should be operating at an equilibrium point where it is stable 

under any small-scale disturbance, i.e. it must be small signal stable. This implies that  all the 

eigenvalues of the linearized system matrix 𝐀 have negative real parts, so that all the system states 

will converge to its stable equilibrium point after any small disturbance. An equilibrium point 𝑥0 

is called a hyperbolic equilibrium point of (1) if none of the eigenvalues of the matrix 𝐀 = 𝐷𝑓(𝑥0) 
have zero real part (or on the imaginary axis) [2],[3]. By this definition, a small signal equilibrium 

point is hyperbolic, since all its eigenvalues are negative (i.e. none of eigenvalue have zero real 

part). 

 

The Hartman-Grobman Theorem [2],[3] states that if 𝑥0is a hyperbolic equilibrium point of (1), 

then the local behavior of the nonlinear system (1) is topologically equivalent to the local behavior 

of the linearized system (2). In other words, the behavior of the nonlinear system in the vicinity of 

the equilibrium is determined by the behavior of the linearized system. Moreover, the behavior of 

the system in the vicinity of the equilibrium can be characterized by the Eigen space of the Jacobian 

matrix 𝐀. For example, the trajectory will approach the equilibrium in the directions given by 

eigenvectors whose eigenvalues have negative real parts, while diverging in the directions given 

by eigenvectors whose eigenvalues have positive real parts. Therefore, the Hartman-Grobman 

Theorem completely solves the problem of determining the stability and qualitative behavior in 

the vicinity of a hyperbolic equilibrium point of nonlinear system, i.e. we could study the nonlinear 

system behavior by using its linearized system in the vicinity of a hyperbolic equilibrium point. 

2.2 Center Manifold Theorem 

As the system operating condition changes (for instance, from changes in generator outputs, load 

demands, and topology), if one or more eigenvalues of the linearized system have zero real parts 

(or very close to the imaginary axis), then it is no longer valid to study the system behavior via the 

linearized system. In this case, the Hartman-Grobman Theorem is not applicable any more. At this 
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point, Center Manifold Theorem provides the methodology for analyzing the system qualitative 

behavior in the vicinity of an equilibrium point with zero real part eigenvalues (non-hyperbolic 

equilibrium point). In this case, the local dynamics near the equilibrium is determined by its 

behavior on an associated center manifold [2],[3]. Center manifold theory enables us to reduce the 

dimension of the state space onto the center manifold (which has the same dimension as the number 

of zero real part eigenvalues). That is, we only need to analyze a much smaller dimensional 

dynamical system whose behavior determines the original large system qualitatively.  

 

Consider a dynamical system in the form of 

{
𝒙̇ = 𝐂𝒙 + 𝐹(𝒙, 𝒚)

𝒚̇ = 𝐏𝒚 + 𝐺(𝒙, 𝒚)
(3) 

where (𝒙, 𝒚) ∈ ℝ𝑐 ×ℝ𝑠, and 𝐂 ∈ ℝ𝑐×𝑐 is a square matrix with all its eigenvalues having zero real 

parts, and 𝐏 ∈ ℝ𝑠×𝑠  is a square matrix with all its eigenvalues having negative real parts. 

Assuming (𝒙, 𝒚) = (𝟎, 𝟎) is an equilibrium point of the system satisfying 𝐹(𝟎, 𝟎) = 𝐺(𝟎, 𝟎) = 𝟎 

and 𝐷𝐹(𝟎, 𝟎) = 𝐷𝐺(𝟎, 𝟎) = 𝟎. Then the center manifold is defined as: 

𝑊𝑙𝑜𝑐
𝑐 (𝟎) = {

(𝒙, 𝒚) ∈ ℝ𝑐 × ℝ𝑠  | 𝒚 = ℎ(𝒙),
|𝒙| < 𝛿, ℎ(𝟎) = 𝟎, 𝐷ℎ(𝟎) = 𝟎

} (4) 

 

And the flow on the center manifold 𝑊𝑙𝑜𝑐
𝑐 (𝟎) is defined by the system of differential equations: 

𝒙̇ = 𝐂𝒙 + 𝐹(𝒙, ℎ(𝒙)) (5) 
 

∀ 𝒙 ∈ ℝ𝒄 with |𝒙| < 𝛿. Furthermore, the function ℎ(𝒙) is obtained by solving: 

𝐷ℎ(𝒙)[𝐂𝒙 + 𝐹(𝒙, 𝒉(𝒙))] − 𝐏ℎ(𝒙) − 𝑮(𝒙, ℎ(𝒙)) = 𝟎 (6) 

 

Now, after we got the center manifold, we could just study the system 𝒙̇ = 𝐂𝒙 + 𝑭(𝒙, 𝒉(𝒙)), 

which is a c-dimensional system of dimension much less than that of the original 𝑐 + 𝑠. For Hopf 

bifurcation analysis, the center manifold is two-dimensional with c = 2.   

2.3 Normal Form Theory 

Furthermore, normal form is the tool we are applying next to further simplify nonlinear part 𝐹(𝒙) 
of the system on the center manifold (5). It is accomplished by a series of nonlinear transformations 

of coordinates in the form of 

𝒙 = 𝒚 + ℎ(𝒚) (7) 
 

where ℎ(𝒚) = 𝑂(|𝒚|𝟐) as |𝒚| → 𝟎. Note here the nonlinear function ℎ(𝒚) is different from the one 

in center manifold theorem (5). The transformations are used to eliminate as many higher order 

terms as possible so that we can analyze a “minimal” set of higher order terms which are then 

denoted as the normal form [2],[3]. After a series of such nonlinear transformations, the system on 

the center manifold would be ended up in the form of 

𝒚̇ = 𝐂𝒚 + 𝐹2
𝑟(𝒚) + 𝐹3

𝑟(𝒚) + ⋯+ 𝐹𝑟−1
𝑟 (𝒚) + 𝑶(|𝒚|𝒓) (8) 

 

where terms 𝐹𝑘
𝑟(𝑦) are referred to as resonance terms in monomials of 𝑦 in order 𝑘. The detailed 

process is shown in the section below. 
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2.4 Hopf Bifurcations 

When system parameters are varied, changes may occur in the qualitative structure of the dynamics 

for certain parameter values. These changes are called bifurcations and the parameter values are 

called bifurcation points.  

 

Particularly, if a system has a pair of complex conjugate eigenvalues on imaginary axis, then we 

say the system undergoes a Hopf bifurcation [3],[4],[9]. Then, the third order approximation of 

the system near the equilibrium on its center manifold can be stated as: 

{
𝑥̇ = 𝜇𝑥 − 𝜔𝑦 + (𝑎𝑥 − 𝑏𝑦)(𝑥2 + 𝑦2)

𝑦̇ = 𝜔𝑥 + 𝜇𝑦 + (𝑏𝑥 + 𝑎𝑦)(𝑥2 + 𝑦2)
(9) 

 

where x and y are the local coordinates on the 2-dimensional center manifold. Furthermore, letting 

𝑥 = 𝑟𝑐𝑜𝑠𝜃 and 𝑦 = 𝑟𝑠𝑖𝑛𝜃, the above equation can be written in polar coordinates which will make 

it easier to analyze:  

{
𝑟̇ = 𝜇𝑟 + 𝑎𝑟3

𝜃̇ = 𝜔 + 𝑏𝑟2
(10) 

 

Then we have four different cases: two major cases I and II, where 𝑎 > 0 and 𝑎 < 0. For each 

major case, we also need to discuss two minor cases 𝐴 and 𝐵, where 𝜇 > 0 and 𝜇 < 0.  

2.4.1 Case IA: 𝒂 > 𝟎, 𝝁 > 𝟎 

In this case the system only has an unstable equilibrium point at 𝑟 = 0, which corresponds to the 

origin in the 𝑥 − 𝑦 coordinates. Since 𝜃̇ = 𝜔 + 𝑏𝑟2, the system trajectory will spiral outwards 

from the origin. 

2.4.2 Case IB: 𝒂 > 𝟎, 𝝁 < 𝟎 

In this case, solving equation 𝜇𝑟 + 𝑎𝑟3 = 0 for equilibrium point we will get 3 solutions: 𝑟 =

−√−
𝜇

𝑎
< 0, 𝑟 = √−

𝜇

𝑎
> 0 and 𝑟 = 0. Since in polar coordinates 𝑟 < 0 is meaningless, so 

solution 𝑟 = −√−
𝜇

𝑎
< 0 can be discarded. As for  𝑟 = √−

𝜇

𝑎
, its eigenvalue is −2𝜇 > 0, so it is 

unstable. In 𝑥 − 𝑦 coordinates, it is an unstable closed orbit or limit cycle. As for 𝑟 = 0, its 

eigenvalue is 𝜇 < 0, so the origin is an unstable equilibrium point where trajectory will spiral away 

from the origin. A special case is for 𝜇 = 0. It is easily known that the system only has an unstable 

equilibrium point at the origin where all trajectories are spiral outwards from it.  

Therefore, the above analysis for can be summarized into the bifurcation diagram shown in Figure 

2.1. This type of bifurcation is called subcritical Hopf bifurcation, whose signature is the birth (or 

annihilation) of unstable limit cycles. 
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2.4.3 Case IIA: 𝒂 < 𝟎, 𝝁 > 𝟎 

This case is similar to Case IB. We would have 2 meaningful equilibrium point by solving equation 

𝜇𝑟 + 𝑎𝑟3 = 0:  𝑟 = √−
𝜇

𝑎
> 0 and 𝑟 = 0. As for  𝑟 = √−

𝜇

𝑎
> 0, its eigenvalue is −2𝜇 < 0, so it 

is a stable limit cycle in 𝑥 − 𝑦 coordinates. As for 𝑟 = 0, its eigenvalue is 𝜇 > 0, so the origin is a 

stable equilibrium point so that the trajectories will spiral toward the origin as dictated by the 

nonlinear dynamics. 

2.4.4 Case IIB: 𝒂 < 𝟎, 𝝁 < 𝟎 

This case is similar to Case IA. The system only has a stable equilibrium point at origin 𝑟 = 0, 

where the system trajectory will spiral inward to the origin. For 𝜇 = 0. It is easily known that the 

system only has a stable equilibrium point at the origin where all trajectories are spiral inwards to 

it. 

 

The bifurcation plot is summarized as shown in Figure 2.2. This kind of bifurcation is called 

supercritical Hopf bifurcation, which is signified by the birth (or annihilation) of stable limit 

cycles. 

 

 

Figure 2.1 Bifurcation diagram for subcritical Hopf bifurcation (𝑎 > 0) 
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Figure 2.2 Bifurcation diagram for supercritical Hopf bifurcation (𝑎 < 0) 

From the above analysis, we can see that the sign of parameter 𝑎 in the system plays a crucial rule 

in distinguishing between subcritical (𝑎 > 0) and supercricial (𝑎 < 0) cases. If a system has 

already been reduced onto its center manifold, i.e. in a two dimensional system of the form: 

(
𝑥̇
𝑦̇
) = (

0 −𝜔
𝜔 0

) (
𝑥
𝑦) + (

𝑓(𝑥, 𝑦)

𝑔(𝑥, 𝑦)
) (11) 

 

with 𝑓(0,0) = 𝑔(0,0) = 0 and 𝐷𝑓(0,0) = 𝐷𝑔(0,0) = 0, the value of 𝑎 could be calculated by[2]: 

𝑎 =
1

16
[𝑓𝑥𝑥𝑥 + 𝑓𝑥𝑦𝑦 + 𝑔𝑥𝑥𝑦 + 𝑔𝑦𝑦𝑦] +

1

16𝜔
[
𝑓𝑥𝑦(𝑓𝑥𝑥 + 𝑓𝑦𝑦) − 𝑔𝑥𝑦(𝑔𝑥𝑥 + 𝑔𝑦𝑦)

−𝑓𝑥𝑥𝑔𝑥𝑥 + 𝑓𝑦𝑦𝑔𝑦𝑦 
] (12)
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3. Numerical Computation of Hopf Bifurcation Third Order Normal Form 

Coefficient 

In this section, we will show an efficient computational procedure for calculating the third order 

normal form coefficient 𝑎 for the Hopf bifurcation. We are assuming that the system we are 

analyzing has a pair of complex conjugate eigenvalues on the imaginary axis, e.g. ±𝑗𝜔 at some 

parameter value 𝜇 = 𝜇0.   

 

We start from the whole system equation denoted as: 

𝒛̇ =  𝑓(𝒛) ,    𝑓(𝒛𝟎) = 0,    𝒛 ∈ ℝ
𝑛 (13) 

 

where 𝒛𝟎 is an equilibrium point of the system. Let Δ𝒛 = 𝒛 − 𝒛𝟎 then the linearized system in the 

vicinity of 𝒛𝟎 can be express in Taylor series as: 

 Δ𝒛̇ =  𝐉Δ𝒛 + 𝐙𝟐𝑩𝒛
𝟐 + 𝐙𝟑𝑩𝒛

𝟑 +⋯ (14) 
𝑩𝒛
𝟐 = Δ𝒛⊗ Δ𝒛 (15) 

𝑩𝒛
𝟑 = Δ𝒛⊗ Δ𝒛⊗ Δ𝒛 (16) 

 

where matrix 𝐉 is the Jacobian matrix and matrix 𝐙𝟐 and 𝐙𝟑 are 2nd and 3rd order derivatives of 

function 𝑓 with respect to Δ𝒛 at 𝒛𝟎. ⊗ stands for the Kronecker product. 

 

Now we could apply a coordinate transformation matrix 𝐐 to change 𝐉 into Jordon canonical form, 

let 

𝒘 = 𝐐Δ𝒛 (17) 
we could get: 

𝒘̇ = 𝐐𝐉𝐐−𝟏𝒘+𝐖𝟐𝑩𝒘
𝟐 +𝐖𝟑𝑩𝒘

𝟑 (18) 
Here  

𝐐𝐉𝐐−𝟏 = [
𝚲𝐜 𝟎
𝟎 𝚲𝐬

] (19) 

𝑩𝒘
𝟐 = 𝒘⊗𝒘 = (𝐐⊗𝐐)(𝚫𝒛⊗ 𝚫𝒛) = (𝑸⊗𝑸)𝑩𝒛

𝟐 (20) 
𝑩𝒘
𝟑 = 𝒘⊗𝒘⊗𝒘 = (𝐐⊗𝐐⊗𝐐)(𝚫𝒛⊗ 𝚫𝒛⊗ 𝚫𝒛)

= (𝐐⊗𝐐⊗𝐐)𝑩𝒛
𝟑 (21)

 

where matrix 𝚲𝐬 is a diagonal matrix has all its eigenvalues with negative real parts; matrix 𝚲𝒄 is 

a diagonal matrix has all its eigenvalues with zero real parts, i.e. on the imaginary axis. 

 

If we denote 𝒘 = [
𝒖
𝒗
], then the system can be expresses as 

{
𝒖̇ =  𝚲𝐜𝒖 + 𝑓2(𝒖, 𝒗) + 𝑓3(𝒖, 𝒗) + ⋯

𝒗̇ = 𝚲𝐬𝒗 + 𝑔2(𝒖, 𝒗) + 𝑔3(𝒖, 𝒗) + ⋯
(22) 

where 𝒖 ∈ ℝ𝑐 and 𝒗 ∈ ℝ𝑠, 𝑐 + 𝑠 = 𝑛.  

 

Functions 𝑓𝑖(𝒖, 𝒗) and 𝑔𝑖(𝒖, 𝒗) are consist of 𝑖𝑡ℎ order polynomial terms of 𝒖, 𝒗. For example, 
𝑓2(𝒖, 𝒗) = 𝐅𝟐

𝐮𝐮(𝒖⊗ 𝒖) + 𝐅𝟐
𝐮𝐯(𝒖⊗ 𝒗) + 𝐅𝟐

𝐯𝐯(𝒗⊗ 𝒗)

= 𝐅𝟐
𝐮𝐮𝑩𝒖

𝟐 + 𝐅𝟐
𝐮𝐯𝑩𝒖𝒗 + 𝐅𝟐

𝐯𝐯𝑩𝒗
𝟐 (23)

 

𝑔2(𝒖, 𝒗) = 𝐆𝟐
𝐮𝐮(𝒖⊗ 𝒖) + 𝐆𝟐

𝐮𝐯(𝒖⊗ 𝒗) + 𝐆𝟐
𝐯𝐯(𝒗⊗ 𝒗)

= 𝐆𝟐
𝐮𝐮𝑩𝒖

𝟐 + 𝐆𝟐
𝐮𝐯𝑩𝒖𝒗 + 𝐆𝟐

𝐯𝐯𝑩𝒗
𝟐 (24)
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In a similar manner:  

𝑓3(𝒖, 𝒗) = 𝐅𝟑
𝐮𝐮𝐮𝑩𝒖

𝟑 + 𝐅𝟑
𝐮𝐮𝐯𝑩𝒖𝒖𝒗 + 𝐅𝟑

𝐮𝐯𝐯𝑩𝒖𝒗𝒗 + 𝐅𝟑
𝐯𝐯𝐯𝑩𝒗

𝟑 (25) 
𝑔3(𝒖, 𝒗) = 𝐆𝟑

𝐮𝐮𝐮𝑩𝒖
𝟑 + 𝐆𝟑

𝐮𝐮𝐯𝑩𝒖𝒖𝒗 + 𝐆𝟑
𝐮𝐯𝐯𝑩𝒖𝒗𝒗 + 𝐆𝟑

𝐯𝐯𝐯𝑩𝒗
𝟑 (26) 

 

Now our objective is: 

1. Calculate center manifold of the equilibrium point, to simply the system onto its center 

manifold.  

2. Calculate the normal form of the system up to its 3rd order (cubic) terms to get the 𝑎 coefficient 

in the Hopf bifurcation normal form. 

3. Analyze bifurcation based on the normal form. 

3.1 Center manifold calculations 

Since we only need the system normal form up to its 3rd order terms, so a center manifolds up to 

quadratic terms will be enough. We could express the center manifold as: 

𝒗 = 𝐇𝐜𝟐(𝒖⊗ 𝒖) = 𝐇𝐜𝟐𝑩𝒖
𝟐 (27) 

then we will get  

𝒗̇ = 𝐇𝐜𝟐𝐷𝑩𝒖
𝟐 ⋅ 𝒖̇ (28) 

 

Then substitute this equation into the equation of 𝒖̇, and equate the terms of 𝑩𝒖
𝟐  on both sides, we 

will get: 

𝚲𝐬𝐇𝐜𝟐𝑩𝒖
𝟐 − 𝐇𝐜𝟐𝐷𝑩𝒖

𝟐 ⋅ 𝚲𝐜𝒖 =  −𝐆𝟐
𝐮𝐮𝑩𝒖

𝟐 (29) 
 

Here 𝐷𝑩𝒖
𝟐 = 𝐷(𝒖⊗ 𝒖) = 𝒖⊗ 𝐈 + 𝐈⊗ 𝒖,  thus 

𝐷𝑩𝒖
𝟐 ⋅ 𝚲𝐜𝒖 = ((𝐈 ⊗ 𝚲𝐜) + [

𝐈 ⊗ 𝜦𝒄𝟏
⋮

𝐈 ⊗ 𝜦𝒄𝒏

])𝑩𝒖
𝟐 ≝ 𝐂𝟐𝑩𝒖

𝟐 (30) 

where 𝜦𝒄𝟏, … , 𝜦𝒄𝒏 are rows of matrix 𝚲𝐜 
 

Then we could get 𝐇𝐂𝟐 by solving the matrix equation 

𝚲𝐬𝐇𝐜𝟐 − 𝐇𝐜𝟐𝐂𝟐 = −𝐆𝟐
𝐮𝐮 (31) 

 

Once we got the quadratic center manifold 𝒗 = 𝐇𝐜𝟐𝑩𝒖
𝟐 , we need to substitute it into the system to 

get the approximation of the flow on the center manifold, we will have: 

𝒖̇ = 𝚲𝐜𝒖 + 𝑓2(𝒖,𝐇𝐜𝟐𝑩𝒖
𝟐) + 𝑓3(𝒖,𝐇𝐜𝟐𝑩𝒖

𝟐) + ⋯ (32) 
 

Now we can plug 𝒗 = 𝐇𝐜𝟐𝑩𝒖
𝟐  into the equation of  𝑓2(𝒖, 𝒗) to update the 2nd and higher order 

terms on the right hand side.  

𝑓2(𝒖,𝐇𝐜𝟐𝑩𝒖
𝟐) = 𝐅𝟐

𝐮𝐮𝑩𝒖
𝟐 + 𝐅𝟐

𝐮𝐯(𝒖⊗ 𝐇𝐜𝟐𝑩𝒖
𝟐) +

𝐅𝟐
𝐯𝐯(𝐇𝐜𝟐𝑩𝒖

𝟐⊗𝐇𝐜𝟐𝑩𝒖
𝟐)

= 𝐅𝟐
𝐮𝐮𝑩𝒖

𝟐 + 𝐅𝟐
𝐮𝐯(𝐈 ⊗ 𝐇𝐜𝟐)(𝒖⊗𝑩𝒖

𝟐) +

𝐅𝟐
𝐯𝐯(𝐇𝐜𝟐⊗𝐇𝐜𝟐)(𝑩𝒖

𝟐⊗𝑩𝒖
𝟐)

= 𝐅𝟐
𝐮𝐮𝑩𝒖

𝟐 + 𝐅𝟐
𝐮𝐯(𝐈 ⊗ 𝐇𝐜𝟐)𝑩𝒖

𝟑 + 𝑂(𝒖𝟒) (33)

 

In a similar manner for 𝑓3(𝑢, 𝑣) we get: 
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𝑓3(𝒖,𝐇𝐜𝟐𝑩𝒖
𝟐) = 𝐅𝟑

𝐮𝐮𝐮𝑩𝒖
𝟑 + 𝑂(𝒖𝟒) (34) 

 

Combine (33) and (34) into (32), center manifold up to third order can be expressed as: 

𝒖̇ = 𝚲𝐜𝒖 + 𝐅𝟐
𝐮𝐮𝑩𝒖

𝟐 + (
𝐅𝟐
𝐮𝐯(𝐈 ⊗ 𝐇𝐜𝟐)

+𝐅𝟑
𝐮𝐮𝐮 )

⏟          
𝐅𝟑𝐜
𝐮

𝑩𝒖
𝟑 + 𝑂(𝒖𝟒) (35)

 

 

Now we can see the original 𝑛 dimensional system has been reduced into a 𝑐 dimensional system. 

Usually 𝑐 is much smaller than 𝑛, so the center manifold simplifies the system we need to analyze. 

Now from here we need to calculate the normal form. 

3.2 Quadratic normal form calculations 

From previous section we see how center manifold theory could simplify the system we need to 

analyze. Now the normal form is to simplify the center manifold further, which is what we are 

going to show in this section. Basically, it is accomplished by introducing a series of nonlinear 

transformations to the system on the center manifold. 

 

This can be accomplished by the nonlinear transformation in the form: 

𝒖 =  𝒚 + 𝐇𝟐𝐧𝑩𝒚
𝟐 (36) 

 

Then by plugging it into the center manifold equation (35), we will get: 

𝒚̇ =  (𝐈 + 𝐇𝟐𝐧𝐷𝑩𝒚
𝟐)
−1
[
𝚲𝐜𝒚 + 𝚲𝐜𝐇𝟐𝐧𝑩𝒚

𝟐 + 

 𝐅𝟐
𝐮𝐮𝑩𝒚

𝟐 +  𝑂(𝒚3)
]

= 𝚲𝐜𝒚 + (
𝚲𝐜𝐇𝟐𝐧𝑩𝒚

𝟐 + 𝐅𝟐
𝐮𝐮𝑩𝒚

𝟐

−𝐇𝟐𝐧𝐷𝑩𝒚
𝟐 ∙ 𝚲𝐜𝒚

) + 𝑂(𝒚3) (37)

 

 

Here we approximated (𝐈 +  𝐇𝟐𝐧𝐷𝑩𝒚
𝟐)
−1
≈ 𝐈 − 𝐇𝟐𝐧𝐷𝑩𝒚

𝟐 + 𝑂(𝒚𝟐). Now the 2nd order terms are 

given by  𝚲𝐜𝐇𝟐𝐧𝑩𝒚
𝟐 + 𝐅𝟐

𝐮𝐮𝑩𝒚
𝟐 − 𝐇𝟐𝐧𝐷𝑩𝒚

𝟐 ∙ 𝚲𝐜𝒚, which is what we want to simply as much as 

possible. This is accomplished by solving for an appropriate matrix 𝐇𝟐𝐧. We notice that 𝐷𝑩𝒚
𝟐 ∙

𝚲𝐜𝒚 = 𝐂𝟐𝑩𝒚
𝟐 as in (30), so we could get:  

𝚲𝐜𝐇𝟐𝐧𝑩𝒚
𝟐 + 𝐅𝟐

𝐮𝐮𝑩𝒚
𝟐 − 𝐇𝟐𝐧𝐷𝑩𝒚

𝟐 ∙ 𝚲𝐜𝒚

= (𝚲𝐜𝐇𝟐𝐧 − 𝐇𝟐𝐧𝐂𝟐 + 𝐅𝟐
𝐮𝐮)𝑩𝒚

𝟐 (38)
 

If denote  

𝚲𝐜𝐇𝟐𝐧 − 𝐇𝟐𝐧𝐂𝟐 + 𝐅𝟐
𝐮𝐮 ≝ 𝐑𝟐𝐧 (39) 

 

By taking the vectorization of both sides, we can get: 
(𝚲𝐜⊗ 𝐈 + 𝐈⊗ 𝐂𝟐) ∗ vec(𝐇𝟐𝐧) + vec(𝐅𝟐

𝐮𝐮) = vec(𝐑𝟐𝐧) (40) 
 

 

So if matrix 𝚲𝐜⊗ 𝐈 + 𝐈⊗ 𝐂𝟐 has full rank, then no matter what in the right hand side, we could 

pick an appropriate 𝐇𝟐𝐧 to make the equation satisfied, which means all the second order terms 

would be eliminated i.e. 𝐑𝟐𝐧 = 𝟎 by the normal form transformation 𝒖 =  𝒚 + 𝐇𝟐𝐧𝑩𝒚
𝟐.  
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However, in practice we have known that the normal form of Hopf bifurcation doesn't have second 

order terms, which means 𝐑𝟐𝐧 = 𝟎. So we could solve 𝐇𝟐𝐧 by solving the matrix equation: 

𝚲𝐜𝐇𝟐𝐧 − 𝐇𝟐𝐧𝐂𝟐 + 𝐅𝟐
𝐮𝐮 = 𝟎 (41) 

 

After we calculated 𝐇𝟐𝐧, we need to update the 3rd and higher order terms brought by 

transformation 𝒖 =  𝒚 + 𝐇𝟐𝐧𝑩𝒚
𝟐. So we just substitute this into (35). Since 

𝑩𝒖
𝟐 = (𝒚 + 𝐇𝟐𝐧𝑩𝒚

𝟐) ⊗ (𝒚 + 𝐇𝟐𝐧𝑩𝒚
𝟐)

= 𝒚⊗ 𝒚 + (𝐈⊗ 𝐇𝟐𝐧 + 𝐇𝟐𝐧⊗ 𝐈)(𝒚⊗ 𝑩𝒚
𝟐) + 𝑂(𝒚𝟒)

= 𝑩𝒚
𝟐 + (𝐈⊗ 𝐇𝟐𝐧 + 𝐇𝟐𝐧⊗ 𝐈)𝑩𝒚

𝟑 + 𝑂(𝒚𝟒) (42)

 

And 

𝑩𝒖
𝟑 = 𝑩𝒚

𝟑 + 𝑂(𝒚𝟓) (43) 

Thus, 

𝒚̇ = 𝚲𝐜𝒚 + (𝐅𝟐
𝐮𝐮(𝐈 ⊗ 𝐇𝟐𝐧 + 𝐇𝟐𝐧⊗ 𝐈) + 𝐅𝟑𝐜

𝐮 )⏟                    
𝐍𝐲
𝟑

𝑩𝒚
𝟑 + 𝑂(𝒚𝟒) (44)

 

3.3 Cubic normal form calculations 

Now we need to introduce another nonlinear transformation  

𝒚 = 𝒛 + 𝐇𝟑𝐧𝑩𝒛
𝟑 (45) 

 

in order to simplify the cubic terms in the normal form as much as possible. Substitute this 

transformation into (44) we will get: 

𝒛̇ = (𝐈 + 𝐇𝟑𝐧𝐷𝑩𝒛
𝟑)−𝟏 (

𝚲𝐜𝒛 + 𝚲𝐜𝐇𝟑𝐧𝑩𝒛
𝟑 +

𝐍𝐲
𝟑𝑩𝒛

𝟑 + 𝑂(𝒛𝟒)
)

= 𝚲𝐜𝒛 + (𝚲𝐜𝐇𝟑𝐧𝑩𝒛
𝟑 + 𝐍𝐲

𝟑𝑩𝒛
𝟑 − 𝐇𝟑𝐧𝐷𝑩𝒛

𝟑𝚲𝐜𝒛) + 𝑶(𝒛
𝟒) (46)

 

 

We can denote 𝐷𝑩𝒛
𝟑𝚲𝐜𝒛 ≝ 𝐂𝟑𝑩𝒛

𝟑, where 

𝐂𝟑 = (𝐈𝐧𝟐  ⊗ 𝚲𝐜) + 𝐈𝐧⊗ [
𝐈𝐧⊗𝜦𝒄𝟏

⋮
𝐈𝐧⊗𝜦𝒄𝒏

] + [

𝐈𝐧𝟐 ⊗𝜦𝒄𝟏
⋮

𝐈𝐧𝟐 ⊗𝜦𝒄𝒏

] (47) 

So the 3rd order terms after the transformation is: 

𝚲𝐜𝐇𝟑𝐧𝑩𝒛
𝟑 + 𝐍𝐲

𝟑𝑩𝒛
𝟑 − 𝐇𝟑𝐧𝐷𝑩𝒛

𝟑𝚲𝐜𝒛 =

(𝚲𝐜𝐇𝟑𝐧 − 𝐇𝟑𝐧𝐂𝟑 + 𝐍𝐲
𝟑)𝑩𝒛

𝟑 ≝ 𝐑𝟑𝐧𝑩𝒛
𝟑 (48)

 

 

Similar to quadratic normal form transformation, we take the vectorization of both sides: 

(𝚲𝐜⊗ 𝐈 + 𝐈⊗ 𝐂𝟑) ∗ vec(𝐇𝟑𝐧) + vec(𝐍𝐲
𝟑) = vec(𝐑𝟑𝐧) (49) 

 

Now our goal is to come up with an appropriate 𝐇𝟑𝐧 to simplify 𝐍𝐲
𝟑 into 𝐑𝟑𝐧, which is the normal 

form we need. Interestingly, we have known what the normal form looks like, for example, the 

Hopf normal form is shown in (9). Since we have known that the 3rd order terms cannot be all 

eliminated, and we know the column basis of vec(𝐑𝟑𝐧), so we could easily find the coefficient of 

the normal forms by solving this equation [5].  
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3.4 Computations Summary 

The computational framework presented in this section shows how center manifold computations 

and normal form calculations can be carried out for analyzing Hopf bifurcations for large nonlinear 

systems such as the power system. Computational complexity comes from the need for evaluating 

higher order derivatives (up to third order) and computing many Kronecker products of matrices. 
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4. Numerical Examples 

In this section, we will be using the 2-area-11-bus-4-machine Kundur system to illustrate the 

computational process and the challenges that we encountered for finding the 3rd order Hopf 

normal form coefficient. We will show how the Hopf bifurcation can change from one type to the 

other (subcritical versus supercritical) as we change the system parameters. Also we will show the 

different system behavior associated with the two different types.  

The one-line diagram of the system is shown below, where the line resistance and reactance and 

the shunt capacitor at bus 7 and 9 can be found in [1]. 

 

G1 G3

G2 G4

1 5 76 8

2

9 10 11

4

3

L7 L9

Area 1 Area 2

 

Figure 4.1 One-line diagram of the Kundur test system  

In this system, we have represented the generators with two-axis flux decay machine models each 

equipped with an ESAC1A exciter and a TGOV1 governor. In general, power system dynamics is 

modeled by differential equations describing the system dynamics along with a set of algebraic 

equations defined by the system power flow solutions [1]. However, for our computational 

convenience, we prefer to have a system model in the form of ordinary differential equations (1). 

Accordingly, we assume the generator parameters 𝑥𝑑
′ = 𝑥𝑞

′  to ignore saliency effects. Also, the 

two loads in the system are modeled by constant impedance load types. With these assumptions, 

we can perform network reduction to eliminate the algebraic power-flow equations from the 

system model. Now the whole system can be described by a set of ordinary differential equations.  

The generator equations are: 

{
 
 

 
 

𝑇𝑑𝑖
′ 𝐸𝑞𝑖′̇ = −𝐸𝑞𝑖

′ − (𝑋𝑑𝑖 − 𝑋𝑑𝑖
′ )𝐼𝑑𝑖 + 𝐸𝑓𝑑𝑖

𝑇𝑞𝑖
′ 𝐸𝑑𝑖

′̇ = −𝐸𝑑𝑖
′ + (𝑋𝑞𝑖 − 𝑋𝑞𝑖

′ )𝐼𝑞𝑖

𝛿𝑖̇ = 𝜔𝑖 − 𝜔𝑠
2𝐻𝑖𝜔𝑖̇ = 𝑃𝑚𝑖 − (𝐸𝑞𝑖

′ 𝐼𝑞𝑖 + 𝐸𝑑𝑖
′ 𝐼𝑑𝑖) − 𝐷𝑖(𝜔𝑖 − 𝜔𝑠)

(50) 

where 𝜔𝑠 = 120𝜋, 𝐼𝑑𝑖 =
𝐸𝑞𝑖
′ −𝑉𝑞𝑖

𝑋𝑑𝑖
′ , 𝐼𝑞𝑖 = −

𝐸𝑑𝑖
′ −𝑉𝑑𝑖

𝑋𝑞𝑖
′  

T 

he exciter equations of ESAC1A are: 

{
 
 

 
 𝑇𝑓𝑖𝑉𝑓𝑖̇ = 𝑉𝑓𝑒𝑖 − 𝑉𝑓𝑖

𝑇𝑎𝑖𝑉𝑎𝑖̇ = 𝑉𝑟𝑒𝑓𝑖 −√𝑉𝑑𝑖
2 + 𝑉𝑞𝑖

2 −
𝐾𝑓𝑖

𝑇𝑓𝑖
(𝑉𝑓𝑒𝑖 − 𝑉𝑓𝑖) − 𝑉𝑎𝑖

𝑇𝑒𝑖𝑉𝑒𝑖̇ = 𝐾𝑎𝑖𝑉𝑎𝑖 − 𝑉𝑓𝑒𝑖

(51) 

where 𝑉𝑓𝑒𝑖 = 𝐾𝑑𝑖𝐼𝑓𝑑𝑖 + 𝐾𝑒𝑖𝑉𝑒𝑖, 𝐼𝑓𝑑𝑖 = 𝐸𝑞𝑖
′ + (𝑋𝑑𝑖 − 𝑋𝑑𝑖

′ )𝐼𝑑𝑖 and 𝐸𝑓𝑑𝑖 = 𝑉𝑒𝑖 − 0.577𝐾𝑐𝑖𝐼𝑓𝑑𝑖 
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The governor equations of TGOV1 are: 

{
𝑇1𝑖𝑉𝑔1𝑖̇ = 𝑃𝑟𝑒𝑓𝑖 −

𝜔𝑖
𝜔𝑠𝑅𝑖

− 𝑉𝑔1𝑖

𝑇3𝑖𝑉𝑔2𝑖̇ = 𝑉𝑔1𝑖 − 𝑉𝑔2𝑖

(52) 

 

where 𝑃𝑚𝑖 = (1 −
𝑇2𝑖

𝑇3𝑖
) 𝑉𝑔2𝑖 +

𝑇2𝑖

𝑇3𝑖
𝑉𝑔1𝑖 −

𝐷𝑡𝑖𝜔𝑖

𝜔𝑠
 

 

In the above equations, the subscript 𝑖 = 1,… ,4 denotes each of the four generators. 𝑉𝑑𝑖 and 𝑉𝑞𝑖 

are connected to state 𝐸𝑑𝑖
′  and 𝐸𝑞𝑖

′  by the reduced network admittance matrix 𝐘𝐫𝐞𝐝 which we 

precomputed: 

𝑉𝑑𝑖 + 𝑗𝑉𝑞𝑖 = 𝐘𝐫𝐞𝐝 ∗ (𝐸𝑑𝑖
′ + 𝑗𝐸𝑞𝑖

′ ) (53) 

 

Our computations and analysis will start from here. 

4.1 Supercritical case 

In this case, the generator output and load consumption are summarized in Table  below: 

 

Table 4.1 Generator output and load consumption in supercritical case 

 P(MW) Q(MW) 

G1 461.473 1.853 

G2 500.423 46.784 

G3 719.0 97.513 

G4 700.0 71.103 

L7 967.0 100.0 

L9 1367.0 100.0 

 

The parameters of generators and ESAC1A exciters and TGOV1 governors are shown in Table  

below. The values are in per unit values in machine MVA base. The parameters for the four 

generators are the same, except for the generator inertia 𝐻 (6.5 for G1 and G2, 6.175 for G3 and 

G4). 

Table 4.2 Machine parameters in the supercritical case 

GEN 

𝑻𝒅
′  𝑻𝒒

′  H D 𝑿𝒅 

8 0.4 6.5(6.175) 1.0 1.8 

𝑿𝒒 𝑿𝒅
′  𝑿𝒍 𝑹𝒔 MBASE 

1.7 0.45 0.18 0 900 

ESAC1A 

𝑲𝑨 𝑻𝑨 𝑻𝑬 𝑲𝑭 𝑻𝑭 

192.0 0.2 0.8 0.3 1.0 

𝑲𝑪 𝑲𝑫 𝑲𝑬   

0.2 0.38 0.1   

TGOV1 
R 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑫𝒕 

0.05 10.0 1.0 1.0 0.0 



15 

 

With the knowledge of these parameters, we could easily solve the power-flow and perform 

dynamic state initialization of the system. Then we could eliminate the power flow equations by 

network reduction, where we will end up with a set of ordinary differential equations. If there is 

no angle reference, the system Jacobian matrix will have a zero eigenvalue. This will bring some 

inconvenience to our further analysis, so we choose 𝛿4 as the angle reference in the system to 

eliminate this extra degree of freedom. 

 

By linearization around the equilibrium point, the system Jacobian matrix has a pair of complex 

conjugate eigenvalues on the imaginary axis: ±𝑗3.74, which is the inter-area mode of the system 

at frequency 0.59Hz. All the other modes of the system have negative real parts, i.e. in the open 

left half complex plane. 

 

Then by performing the center manifold computation outlined in previous section, we get: 

[
𝑢1̇
𝑢2̇
] = [

0 −3.74
3.74 0

]
⏟        

𝚲𝐜

[
𝑢1
𝑢2
] +

[
−0.030 −0.759 −0.780
−0.033 −0.099 −0.767

]
⏟                  

𝐅𝟐
𝐮𝐮

[
𝑢1
2

𝑢1𝑢2
𝑢2
2

] +

[
−0.068
−0.077

−0.960
−0.045

−1.122
0.265

1.447
0.069

]
⏟                        

𝐅𝟑𝐜
𝐮

[
 
 
 
 
𝑢1
3

𝑢1
2𝑢2
𝑢1𝑢2

2

𝑢2
3 ]
 
 
 
 

+ 𝑂(𝑢4) (54)

 

 

Here we write 𝚲𝒄 into  skew symmetric matrix because we want to get rid of the complex values 

in the matrix entries, but it should be noted that this is equivalent to a diagonal matrix with just an 

easy linear transformation. Now original 35-dimensional system is reduced to a 2-dimensional 

system.  

 

Our next step is to simplify this system using normal form theory. We first simplify the second 

order terms 𝐅𝟐
𝐮𝐮 by 𝐇𝟐𝐧: 

𝐇𝟐𝐧 = [
0.207
−0.133

0.125
0.199

0
0

0.006
−0.084

] (55) 

 

Then,  𝐑𝟐𝐧 = 𝟎. Then we can get 𝐍𝐲
𝟑: 

𝐍𝐲
𝟑 = [

0.021
−0.077

−1.069
0.110

−1.464
−0.044

1.573
0.197

] (56) 

 

Our last step is to calculate 𝐇𝟑𝐧 and 𝐑𝟑𝐧 to simplify the third order terms into the standard Hopf 

bifurcation normal form as we shown in (9). Finally, we got the normal form: 

{
𝑟̇ = 𝜇𝑟 − 0.088𝑟3

𝜃̇ = 3.74 + 𝑂(𝑟2)
(57) 

 

where 𝜇 is determined by the real part of the eigenvalue. In the normal form, 𝑎 = −0.088 < 0, so 

we conclude that this is a supercritical Hopf bifurcation.  
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Then we will look at the system behavior as the critical eigenvalue transverses across the imaginary 

axis from left to right. We will show the effect of variation of system parameter by tuning the 

generator output and the exciter gains. 

4.1.1 Change in generator output 

We set 𝑃𝑔2 = 520MW where 𝜇 = −0.005. The normal form tells us the equilibrium is stable and 

there are no limit cycles surrounding it. If we simulate a disturbance on the system, the system 

behavior is as shown in Figure 2.1. As predicted by the normal form, the system trajectory will 

converge back to the equilibrium point. However, if we set 𝑃𝑔2 = 480MW where 𝜇 = 0.005. Now 

the equilibrium point is unstable, and there is a stable limit cycle surrounding it. By simulating a 

disturbance on the system, we can see the oscillation magnitude of generator speed keeps 

increasing until the trajectory converges to the stable limit cycle (Figure 4.3). Temporary operation 

at such a stable limit cycle may be acceptable as long as the oscillation amplitudes are not large. 

In this sense, the case of supercritical Hopf bifurcation is less disruptive to system operation in 

that the steady state operation changes from a stable equilibrium point (Figure 4.2) to a stable limit 

cycle (Figure 4.3).  

Figure 1.2 Supercritical case with 𝜇 < 0 (𝑃𝑔2 = 520MW), convergence to stable equilibrium 

point. 
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Figure 4.3 Supercritical case with 𝜇 > 0 (𝑃𝑔2 = 480MW), convergence to stable limit cycle. 

4.1.2 Change in exciter gains 

Now we change the exciter gains to see its effect on the real part of the critical eigenvalue. By 

changing 𝐾𝐴 = 184 to 𝐾𝐴 = 200, 𝜇 changes from 𝜇 = 0.004 to 𝜇 = −0.004. If we place the same 

disturbance for two cases, the four generator speeds are shown in figures below. A stable limit 

cycle (Figure 4.4) and a stable equilibrium point (Figure 4.5) can be clearly seen for two different 

parameter settings. 

Figure 4.4 Supercritical case with 𝜇 > 0  (𝐾𝐴 = 184), convergence to stable limit cycle. 
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Figure 4.5 Supercritical case with 𝜇 < 0 (𝐾𝐴 = 200), convergence to stable equilibrium point. 

4.2 Subcritical case 

By tuning the generator output, load consumption and exciter parameters into the following values 

shown in Table  and Table 4, we get a subcritical Hopf bifurcation in the system. The system has 

a pair of eigenvalues at ±j3.23. 

Table 4.3 Generator outputs and load consumptions for the subcritical case 

P(MW) Q(MW) 

G1 688.322 133.624 

G2 784.295 301.381 

G3 750.0 172.597 

G4 700.0 234.302 

L7 967.0 100.0 

L9 1867.0 100.0 

Table 4.4 Exciter parameters for the subcritical case 

ESAC1A 

𝑲𝑨 𝑻𝑨 𝑻𝑬 𝑲𝑭 𝑻𝑭
35 0.02 0.8 0.03 1.0 

𝑲𝑪 𝑲𝑫 𝑲𝑬
0.2 0.38 1.0 

By applying the same process, normal form of this system is: 

{
𝑟̇ = 𝜇𝑟 + 0.009𝑟3

𝜃̇ = 3.23 + 𝑂(𝑟2)
(58)
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This is a subcritical Hopf case. Then we will look at the system behavior as the critical pair of 

eigenvalues transverse across the imaginary axis from left to right.  

4.2.1 Change in generator output 

Now we will change the active power output of G3 to see its effects on the system behavior. By 

changing it from 𝑃𝑔3 = 730𝑀𝑊 to 𝑃𝑔3 = 770𝑀𝑊, 𝜇 changes from 𝜇 = 0.0058 to 𝜇 = −0.0044. 

By simulating a small disturbance on the system, the system diverges when 𝜇 > 0 (Figure 4.6) 

while it converges back to equilibrium point when 𝜇 < 0 (Figure 4.7). However, when 𝜇 < 0, as 

we increase the fault-on-time of the disturbance, we can see the presence of an unstable limit cycle 

which leads to eventual divergence in Figure 4.8. It can be shown that the unstable limit cycle 

anchors the boundary of region of attraction for the stable equilibrium in this case [8]. Unlike the 

case of supercritcal Hopf bifurcation (Figure 4.3), the system trajectory will lead to divergence 

(Figure 4.6) and possible system disruption in the case of subcritical Hopf bifurcation because of 

the disappearance of the region of attraction. Therefore, the occurrence of subcritical Hopf 

bifurcation is more problematic for the sustained acceptable operation of the power grid when 

compared with the occurrence of supercritical Hopf bifurcation. 

Figure 4.6 Subcritical case with 𝜇 > 0 (𝑃𝑔3 = 730𝑀𝑊), divergence. 
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Figure 4.7 Subcritical case with 𝜇 < 0 (𝑃𝑔3 = 770𝑀𝑊), “inside” unstable limit cycle leads to 

convergence to stable equilibrium point. 

Figure 4.8 Subcritical case with 𝜇 < 0 (𝑃𝑔3 = 770𝑀𝑊), “outside” unstable limit cycle leads to 

divergence 

4.2.2 Change of exciter gains 

By setting exciter gain of all exciters to 𝐾𝐴 = 37, we get 𝜇 = 0.016. Based on the normal form, 

the equilibrium point is unstable, and there is no limit cycle surrounding it. By playing a 

disturbance on the system, we could see the system trajectory will diverge from the equilibrium 

point until collapse (Figure 4.9). Then we change the exciter gain to 𝐾𝐴 = 33, we get 𝜇 = −0.015. 

Now the equilibrium is stable but there is an unstable limit cycle surrounding it. By simulating a 

disturbance on the system, we can see as the fault on time is shorter i.e. 2 cycles in Figure 

4.10, the system will converge back to the equilibrium point; while the fault on time is longer i.e. 

12 cycles in Figure 4.11, the system trajectory will diverge from the unstable limit cycle. So the 

unstable limit cycle can be taken as the stability boundary of the stable equilibrium point.  



21 

Figure 4.9 Subcritical case with 𝜇 > 0 (𝐾𝐴 = 37), divergence. 

Figure 4.10 Subcritical case with 𝜇 < 0 (𝐾𝐴 = 33, “inside” unstable limit cycle leads to 

convergence to stable equilibrium point. 

Figure 4.11 Subcritical case with 𝜇 < 0 (𝐾𝐴 = 33), “outside” unstable limit cycle leads to 

divergence. 
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4.3 Transition between Supercritical and Subcritical as Parameter Changes 

In this section, we provide a series of cases showing as the system parameter changes, how 

supercritical cases will change into subcritical and vice versa [8]. 

We start from the supercritical case in Section A, then we keep decreasing the exciter gains 𝐾𝐴 of 

all four exciters. At the same time, we tune the generator active power output 𝑃𝐺2 of generator at 

bus 2 to “place” the eigenvalues on the imaginary axis thus resulting in Hopf bifurcations. The “𝑎” 

coefficients are calculated during this process and is summarized in the  

Table  below: 

Table 4.5 Coefficient "𝑎" under parameter variations 

𝑲𝑨 𝑷𝑮𝟐(𝑴𝑾) 𝒂 
192 500.423 -0.0877

190 504.273 -0.0793

180 525.918 -0.0492

170 553.168 -0.0253

160 589.838 -0.0065

150 643.470 0.0091 

145 681.832 0.0175 

140 748.122 0.0364 

As we can see from the table, as 𝐾𝐴 decreases and 𝑃𝐺2 increases correspondingly, the coefficient 

“𝑎” is increasing and eventually changes from negative to positive. This means that supercritical 

Hopf has gradually transitioned into subcritical Hopf as the system parameters change. From the 

previous time domain simulations, we know that supercritical and subcritical cases will behave 

very differently when the equilibrium point becomes unstable.  In a real power system whose 

parameter space could be very large, distinguishing between these two cases will help system 

operators choose the right remedial action when system gets close to instability, that is, when a 

complex conjugate mode becomes poorly damped. 

Furthermore, we could use this case to study the interactions of stable and unstable limit cycles 

resulting from supercritical and subcritical Hopf bifurcations as shown in Figure 4.12. The system 

dynamics is influence by three different limit cycles, two unstable and one stable limit cycle in this 

case. We have a subcritical Hopf bifurcation when the exciter gains are at 145, where the inner 

unstable limit cycle shrinks down in size to zero and disappears. Then we have a supercritical Hopf 

bifurcation when exciter gains are equal to 42, where the stable limit cycle collapses down and 

disappears. Moreover, outside the inner unstable and stable limit cycles, there is another unstable 

limit cycle. The example shows the complex dynamics of the system in the parameter space. In 

terms of more detailed analysis of these nested limit cycles, we may need to compute fifth order 

normal form coefficients, which is beyond the scope of this report. We plot a phase plane plot of 

active power on interface 8-9 vs. frequency from generator at bus 3 in  



23 

Figure 4.13 for summarizing a snapshot of the system dynamics near the equilibrium point when 

the exciter gains equal 170 in Figure 4.12. We can see the stable equilibrium point O is surrounded 

by three limit cycles. If the initial condition is inside the stability boundary anchored by the 

unstable limit cycle 𝛾1, the system trajectory will converge to the equilibrium O; if it is outside the 

boundary anchored by 𝛾1, the trajectory will converge to stable limit cycle 𝛾2; if the initial 

condition is outside of the stability boundary associated with 𝛾1 but inside the boundary anchored 

by the unstable limit cycle 𝛾3, then it will converge back to the stable limit cycle 𝛾2; if it is outside 

the boundary associated with 𝛾3, the dynamics will diverge eventually. 

Figure 4.12 Limit cycle magnitude in 𝛥𝑃8−9 vs. exciter gains 𝐾 
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Figure 4.13 Phase plane projection of the limit cycles for 𝐾 = 170 
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5. Discussion 

In this report, we have proposed a systematic process for analyzing Hopf bifurcations in power 

system. By applying center manifold and normal form theory, we have systematically reduced 

complex nonlinear analysis into evaluation of high order derivatives and matrix computations. By 

calculating the third order coefficient in the normal form, we can directly know if a Hopf 

bifurcation is supercritical or subcritical Hopf. This will largely help us to understand and predict 

the system trajectory behavior as the real part of the system eigenvalues changes its sign, which 

will lead to birth or disappearance of stable or unstable limit cycles surrounding the system 

equilibrium point. In this context, supercritical Hopf bifurcations may be less harmful in the sense 

that temporary operation at stable limit cycles with low oscillation amplitudes may be tolerable 

and may buy system operators some time to take corrective actions. On the other hand, subcritical 

Hopf bifurcations need urgent attention to stay away from low damping conditions for that mode. 

Further research is indicated on analysis of transitions between the two types and on the 

implications of nested limit cycles for general power system models.  
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