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Executive Summary 

Power system operation faces two kinds of uncertainties. The first type relates to failures of system 

components such as generators and transmission lines. Such events (or contingencies) are rare. 

However, when they occur, their impact on the power system can be substantial, affecting a large 

population. The second kind of uncertainty emanates from renewable generation from resources 

such as wind and solar. Given the aggressive integration of such resources, the supply side is 

becoming increasingly uncertain. Electricity markets must accommodate their variability in 

everyday operations. Market design must effectively model these two types of uncertainties, find 

efficient algorithms to clear the market and find meaningful ways to design settlements for market 

participants.  

Power system often adopts one of two ways to tackle uncertainty. The first among these approaches 

aims to define plans for the average case prior to the uncertainty being realized. Such an approach 

leaves the system vulnerable to potentially large operational costs required to handle attending 

deviations in real-time. On the other extreme, the second approach aims to plan for the worst-case 

scenario. This robust approach to forward planning is overly conservative and prioritizes reliability 

at the expense of possibly large operational costs. This PSERC project advocates for an in-

between—the risk-sensitive approach to electricity market design under uncertainty. Risk defines 

an attitude towards uncertain outcomes. Suitably defined risk measures can effectively explore the 

cost-reliability tradeoff.  

With roots in mathematical finance, risk measures abound in the literature. Some measures are 

more amenable to algorithm and pricing design than others. The works presented in this final report 

leverages the conditional-value-at-risk (CVaR) measure. CVaR-based market clearing 

formulations with both kinds of uncertainties and linearized power flow models become convex 

optimization problems. It is this convexity that makes algorithm and pricing design easy. With 

contingencies, the market clearing problem becomes a large linear program that can be efficiently 

decomposed, and its computation can be parallelized. With renewable generation, the CVaR-based 

market clearing problem can be solved with wind data. The mature duality theory of convex 

programming allows derivation of meaningful prices from these convex optimization-based 

market clearing formulations.  

Concretely, this final report collects three lines of work, described below. 

A. Risk-Sensitive Security-Constrained Economic Dispatch (SCED): This work considers

uncertainty in transmission line failures and proposes a risk-sensitive security-constrained market

clearing formulation that allows an SO to tradeoff between cost of nominal dispatch and the extent

of possible load-shedding. The formulation provides a tunable parameter that allows the SO to

systematically explore this tradeoff. The CVaR-based optimization problem for market clearing is

then solved via an algorithm that leverages the problem structure. More precisely, the optimization

problem is a large linear program where the corrective action in each contingency is only coupled

to the nominal dispatch and not the actions in other contingencies. This nature of coupling allows

a decomposition of the problem that permits parallelization. The work in this area has largely

revolved around finding suitable ways to exploit the problem structure to design a fast algorithm.
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B. Risk-Sensitive Economic Dispatch with Random Wind: This work proposes a framework to

compute a risk-sensitive dispatch that defines a forward dispatch against uncertain wind power

production. Wind renders power draws from generation assets and power flows over the

transmission lines uncertain. The proposed market-clearing formulation penalizes constraint

violations and random costs via their conditional value at risks (CVaRs). This formulation with

linear power flow equations is a convex optimization problem. A data-driven solution architecture

is proposed to solve the problem. This algorithm generates uncertain wind scenarios across the

network and moves the solution iterates accordingly. The mathematical analysis reveals how

increased risk aversion leads to higher sample complexity, and hence, longer solution time.

C. Pricing Risk-Sensitive Economic Dispatch with Wind. This work defines prices from the risk-

sensitive market clearing formulation that guards against uncertain wind. These prices depend on

the assets connected to the network, their uncertainties in power injections and the risk attitudes in

dealing with said uncertainties. Properties of these risk-sensitive locational marginal prices (risk-

LMPs) are derived using duality theory of convex programming. Specifically, these prices are

shown to be the risk-sensitive extensions to traditional LMPs in that zeroing out the wind variance

reduces these prices to traditional LMPs. They are shown to equal the sensitivity of the optimal

cost of the risk-sensitive economic dispatch problem to nodal demands. Sufficient conditions are

derived for revenue adequacy to be non-negative. A data-driven algorithm using wind scenarios is

designed to approximate these prices.
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1. Introduction

In this final report for the PSERC project S-88G, we present a collection of published papers as
chapters that focus on defining risk-sensitive market clearing. Mathematically, risk models the
attitude of a decision-maker towards random outcomes. In this project, we consider randomness in
renewable generation and component failure scenarios. The goal is a market clearing formulation
that allows efficient algorithm and pricing design.

• Chapter 2 considers a risk-sensitive security-constrained economic dispatch (R-SCED) prob-
lem that permits a system operator to systematically tradeoff between the cost of power pro-
curement and the reliability of power delivery in the event of a component failure. The
formulation considers the uncertainty in failure scenarios through the conditional value at
risk (CVaR) measure. The formulation results in a large linear program, that is solved via the
critical region exploration (CRE) algorithm. This algorithm takes advantage of the structure
of the constraints to permit decomposition for efficient solution.

• Chapter 3 considers a risk-sensitive forward energy procurement problem with uncertain
wind. This formulation penalizes costs and constraint violations via the conditional value at
risk (CVaR) measure. This market clearing formulation allows a system operator to reflect
their tolerance to high uncertain costs and constraint violations. The problem is solved via a
stochastic primal-dual algorithm.

• Chapter 4 considers a market clearing problem very similar to that in Chapter 3, but proposes
risk-sensitive locational marginal prices (risk-LMPs) to accompany such a dispatch. Risk-
LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs
compensate resources for both energy and regulation. These prices are computed via sample
average approximation with wind samples.
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2. Risk-Sensitive Security-Constrained Economic Dispatch

2.1 Introduction

System operators (SOs) routinely solve a security-constrained economic dispatch (SCED) problem 
to compute dispatch decisions to meet demand requirements over a transmission network. SOs 
often seek a dispatch that is robust to all single potential outages of transmission lines, transformers,
or generators, to maintain the so-called N −1 security criterion for an N-component power system.

SCED tries to balance between the SO’s two conflicting goals –  minimizing power procurement 
costs and maintaining reliability of power delivery under a collection of counterfactual scenarios 
called contingencies. Most formulations in the literature sacrifice cost considerations to prioritize 
reliability. In this work, we propose a risk-sensitive SCED (R-SCED) problem that provides the 
SO a tunable parameter to tradeoff between cost and reliability. We also provide a computational 
procedure to solve R-SCED under linearized power flow models.

SCED formulations abound in the literature; the first of which is preventive-SCED (P-SCED). This 
formulation enforces that the nominal dispatch remains feasible within existing limits for all oper-
ational components in every contingency [1]. P-SCED does not consider potential recourse actions 
following a contingency and the resulting dispatch is overly conservative. Corrective-SCED (C-
SCED) expands upon P-SCED by allowing active network components to respond to a contingency, 
e.g., see [2]. It allows re-dispatch of generators with fast-ramping capabilities and some even allow 
partial load-shedding, e.g., see [3–5]. Most C-SCED formulations ignore costs associated with 
recourse actions. Such costs can be high, especially for potential load shedding modeled via value 
of lost load. To remedy that, authors in [6] associate probabilities to contingencies and advocate to 
minimize the expected dispatch costs across contingencies. In contrast, our R-SCED formulation 
in Section 2.2 proposes to minimize the conditional value at risk (CVaR) of said costs. CVaRα of a
random variable measures the expected loss in the 1−α fraction of the worst outcomes. In Section 
2.3, we explore the properties of R-SCED and illustrate through a two-bus network example, how
the SO can express its preference in trading off cost versus reliability through its choice of α in 
R-SCED.

The R-SCED problem has a much larger problem description compared to a nominal economic 
dispatch problem owing to the number of contingencies, which leads to computational difficulties 
that are shared by other C-SCED formulations. To deal with this challenge, many have suggested to 
pre-filter contingencies; see [7] for a survey. In this work, we consider a decomposition approach to 
divide the R-SCED problem into smaller subproblems that can potentially be solved in parallel. We 
propose a critical region exploration (CRE) algorithm in Section 2.4 to solve the R-SCED problem. 
CRE leverages properties of multiparametric linear programming and has proven effective in the 
tie-line scheduling problem for multi-area power systems in [8]. We demonstrate the efficacy of 
our algorithm on the IEEE 30-bus test system in Section 2.5. This chapter is based on the work 
in [9]; proofs of all claims can be found there and are omitted from here for brevity.
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2.2 Risk-sensitive SCED problem

We formulate the risk-sensitive SCED (R-SCED) problem with the linear DC power flow model
and discuss how it generalizes prior formulations. R-SCED can easily be extended to more detailed
nonlinear AC power flow equations. In practice, however, SOs often solve a sequence of SCED
problems with successive linearizations of power flow equations to handle nonlinearity [10].

2.2.1 Network model

We begin by describing our model for the power network. Consider a grid on n buses, labeled
1, . . . ,n, with m transmission lines. Let each bus be equipped with a dispatchable generator and a
nominal load, whose vector values are denoted g ∈ Rn and d ∈ Rn, respectively. We adopt a linear
power flow model via DC approximations, where the (directed) power flows over the transmission
lines are linear maps of the vector of nodal power injections x, given by Hx. Here, H ∈ R2m×n

denotes the injection shift-factor matrix that depends on the topology of the power network and the
admittances of the transmission lines. Let the limits on the (directed) power flows be denoted by
f ∈ R2m. The set of allowable nodal power injections then becomes

P := {x ∈ Rn |Hx≤ f , 1ᵀx= 0}, (2.1)

where 1 ∈ Rn is a vector of all ones. The equality 1
ᵀx = 0 captures the balance of demand and

supply of power across the network. The DC approximations deem the voltage magnitudes to
be at their nominal values, ignore transmission line losses, and assume that voltage phase angle
differences across neighboring buses are small.1 Assume that a linear dispatch cost cᵀg to produce g
from the dispatchable generators can vary their outputs within G= [G,G]. The lack of a generator
at bus i can be modeled by letting Gi = Gi = 0.

2.2.2 Modeling contingencies

Consider a collection of scenarios, denoted by 1, . . . ,K, each of which corresponds to a single
transmission line failure. In the event of a contingency, we allow the operator to take recourse
actions; they may alter generator output within ramping capabilities and shed load. Let δgk denote
the deviation of supply from the generators in contingency k from the nominal case, constrained by
ramping limitations modeled as |δgk| ≤∆∆∆g. Denote the amount of load shed by δdk ∈ [0,d−d] :=
∆∆∆d in contingency k.

A line outage alters the network topology, and hence, results in a different injection shift factor
matrix Hk that in turn defines a different feasible injection region Pk. Transfer capabilities of
transmission lines are primarily determined by thermal considerations, and can exceed their rated
power capacities for short durations. Following [12] and prior formulations [3, 5, 13], we adopt
relaxed line ratings under contingencies. The drastic action limits are adopted immediately follow-

1 We can alternatively utilize linearization of the power flow equations around the current operating point, possibly
using real-time measurements to estimate H , e.g., in [11].

3



ing a contingency, but before recourse actions are taken, and the short-term emergency limits are
adopted after a short time (e.g., 5 minutes) from when the SO takes the recourse actions. Let the
corresponding sets of feasible injections be denoted Pk

DA and Pk
SE respectively, where

Pk ⊂ Pk
SE ⊂ Pk

DA.

2.2.3 Formulating the risk-sensitive SCED (R-SCED) problem

Our formulation relies on the use of conditional value at risk of a random variable. We begin by
describing this risk measure and then present R-SCED in (2.2).

0.0 0.2 0.4 0.6 0.8 1.0
Cost

0

1

2

P
D

F

CVaR0.95

F−1(0.95)

Figure 2.1: The probability distribution of random cost with the shaded region denoting the tail of the
distribution with probability 0.05.

If x describes a random cost with a continuous distribution, CVaRα [x ] computes the expected cost
of x in the (1−α) fraction of worst-case outcomes, or

CVaRα [x ] := E
[
x |x ≥ F−1(α)

]
,

where F is the cumulative distribution function of x and E denotes the expectation computed over
that distribution. Figure 2.1 visualizes the definition for some probability distribution of random
cost x . CVaR0.95[x ] is the average value of x over the distribution of shaded tail where the tail has
probability 0.05. As α ↓ 0, CVaRα [x ] reduces to the expected value of x . For α close to 1, the tail
shrinks to only include the maximum value of x and CVaRα [x ] yields that maximum.2

To present R-SCED formally, associate probabilities p ∈ RK to the contingencies and let p0 :=
1−1ᵀp as the probability of the nominal state. We arrive at the following optimization problem of

2 For the definition of CVaRα [x ] for x with general distributions, see [14].
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the risk-sensitive SCED problem.

minimize CVaRα

[
c
ᵀ
g+C(δg,δd)

]
, (2.2a)

subject to g ∈G, g−d ∈ P,g−d ∈ Pk
DA, (2.2b)

g+δgk ∈G,g+δgk−d+δdk ∈ Pk
SE, (2.2c)

|δgk| ≤∆∆∆g, δdk ∈∆∆∆d, (2.2d)
for each k = 1, . . . ,K

over g, δg, δd. Here, δg, δd denote the collection of the respective variables across all contin-
gencies. Additionally, C(δg,δd) is the random recourse cost, assuming a contingency occurs, that
takes the value

Ck(δgk,δdk) := cᵀδgk +v
ᵀ
δdk

in contingency k.3 Here, v measures the vector of nodal values of lost load (VoLL ).

In R-SCED , the dispatch cost depends on two factors — the dispatch decisions and the realized
contingency. Fixing the decisions, the cost is a random variable over the set of contingencies. Mini-
mizing the expected value of this random variable yields the formulation in [6]. Taking the CVaRof
this variable generalizes this to encode an SO’s tolerance to higher costs through the parameter α .
Choosing α equal to zero, R-SCED treats all contingencies equally and minimizes expected cost
as in [6]. As α increases, R-SCED weighs contingencies where the cost is higher more heavily.

For convenience, we denote the dispatch associated with nominal operation, g, as nominal dispatch
and the associated cost, cᵀg, as nominal dispatch cost.

2.2.4 Comparison to existing SCED formulations

Before delineating the properties of the R-SCED problem in the next section, we briefly discuss its
relationship to prior formulations of the SCED problem in the literature. We refer the reader to [5]
for a comprehensive survey.

• Preventive SCED (P-SCED) stipulates that the nominal dispatch be feasible after any single line
failure, and does not model recourse actions or temporarily relaxed line ratings. R-SCED with
∆g = ∆d = 0 and Pk

DA = Pk
SE = Pk reduces to P-SCED.

• Corrective SCED (C-SCED) often does not model recourse costs or load shedding. When they
are, e.g., in [6], expected costs are minimized—the case of R-SCED with α = 0.

3 The cost structure can be altered to distinguish between different costs for regulation up and down, i.e., by replacing
cᵀδgk in the recourse cost by cᵀ+[δg

k]++cᵀ−[−δgk]+ without adding conceptual difficulties.
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Figure 2.2: Nominal cost and total load shedding from either contingency for 2-bus example in (a) is depicted
for various parameter choices.

2.3 Properties of the R-SCED problem

In this section, we first characterize a property of R-SCED in our first result that proves useful in
devising an algorithm to solve it in Section 2.4. Second, we discuss the outcome of R-SCED on a
two-bus network example and compare it to that of C-SCED and P-SCED.

Proposition 1. R-SCED can be formulated as a linear program, linearly parameterized in α . Addi-
tionally, the optimal cost of R-SCED in (2.2) is piecewise affine in α ′ := (1−α)−1 over any closed
interval in R+, and the optimal nominal dispatch g∗ remains constant over sub-intervals where the
optimal cost is affine.

R-SCED can be cast as a linear program of the form

minimize
x0,x1,...,xK

[c0]
ᵀ
x0 +α

′
K

∑
k=1

[
ck
]ᵀ
xk,

subject to Ax0 ≤ b,
Akx0 +Ekxk ≤ bk,

k = 1, . . . ,K,

(2.3)

with a decomposable structure, a property we leverage to design our algorithm in Section 2.4.

2.3.1 R-SCED on a two-bus network example

To gain insights into the properties of R-SCED, we present a simple yet illustrative two-bus network
example and contrast the results of R-SCED with that of P-SCED and C-SCED.

Consider the network in Figure 2.2a with ∆g1 = 0.25 MW/min, ∆g2 = 0.2 MW/min, and v1 = v2 =
$30/MW. Assume line failures occur with probabilities p1 = p2 = 0.01 and dynamic line ratings
of fDA = 1.75f and fSE = 1.25f . The following table captures the nominal dispatch cost under

6



various formulations of economic dispatch, where the nominal case is denoted ED.

Method g∗1 (MW/hr) g∗2 (MW/hr) Nominal Cost ($/hr)
ED 20.0 0.0 20.0
P-SCED 15.0 5.0 25.0
C-SCED 17.25 2.75 22.75
C-SCEDaug 18.75 1.25 21.25
R-SCED (0.1) 18.75 1.25 21.25
R-SCED (0.9) 17.25 2.75 22.75

Table 2.1: Comparison of various ED formulations.

C-SCEDaug in Table 2.1 is C-SCED augmented with load shedding, where an SO aims to minimize
expected cost with recourse. When α is small (α ≈ 0), the R-SCED solution equals that in the
augmented C-SCED solution. Additionally for large α , i.e., α ≈ 1, R-SCED reduces to expected
cost minimization without load shed. For general power networks, the R-SCED solution with α ≈ 1
is not equal to the C-SCED solution; it minimizes the maximum recourse cost across contingencies
balancing the cost associated with load shedding and generator re-dispatch.

Figure 2.1 demonstrates that nominal cost and total load shed are piecewise constant in α . Addi-
tionally, as α increases, the cost of nominal dispatch increases while load shedding decreases. This
illustrates how SO can utilize α to trade-off between between cost and reliability.

We draw attention to the case when the dispatch cost of the expensive generator at bus 2 is reduced
from $2/MW to $1.5/MW. For a range of α (approximately 0.6-0.7), the nominal dispatch cost with
the reduced c2 is higher than that with the larger c2. Reduction in c2 makes the VoLL relatively
larger compared to ramping costs. As a result, R-SCED favors lesser load shedding at lower α’s,
leading to the behavior depicted in Figure 2.2b and 2.2c.

2.4 Solving R-SCED via critical region exploration

The R-SCED problem in (2.2) can be cast as a linear program (LP). For practical power networks,
that LP can be prohibitively large, a property shared by prior C-SCED formulations. We exploit
the structure in its reformulation (2.3) and propose the critical region exploration algorithm to
solve R-SCED. Our algorithm decomposes the problem into a master problem and a collection
of subproblems that can be solved in parallel, and leverages properties of multi-parametric linear
programming [8]. To describe the algorithm, begin by noticing that (2.3) can be written as

minimize
x0

[
c0]ᵀx0 +α

′
K

∑
k=1

Jk
∗
(
x0) ,

subject to Ax0 ≤ b,
(2.4)

7



where

Jk
∗
(
x0) := minimize

xk

[
ck
]ᵀ
xk,

subject to Akx0 +Ekxk ≤ bk.

(2.5)

Properties of Jk
∗ are crucial to describe our algorithm. We need additional notation to describe them.

Define
X0 := {x |Ax≤ b} .

Assume throughout that (2.5) is feasible for any x0 ∈ X0. We say a collection of polyhedral sets
S1, . . . ,SL define a polyhedral partition of S, if these L sets are polyhedral, their union spans S, and
any intersections are only at their boundaries. Given this definition, we record a vital property of
Jk
∗ in the following lemma.

Lemma 1. Jk
∗
(
x0) is piecewise affine over X0 and the sets over which it is affine describe a poly-

hedral partition of X0.

Problem (2.5) is a multi-parametric linear program, linearly parameterized by x0. As a conse-
quence, the above claim follows directly from [15, Theorem 7.2]. Hereafter, call the sets in the
polyhedral partition as critical regions. For a given x0 ∈ X0, one can compute the critical re-
gion Ck that contains x0 ∈ X0 and the affine description of the optimal cost Jk

∗ over Ck for each
k = 1, . . . ,K.4 More precisely, let the affine description of Jk

∗ be given by
[
ρρρk]ᵀx0 +ηk over Ck.

With the affine descriptions of J1
∗ , . . . ,J

K
∗ , we can then solve

minimize
x0

[
c0]ᵀx0 +α

′
K

∑
k=1

[
ρρρ

k
]ᵀ
x0 +α

′
η

k,

subject to Ax0 ≤ b, x0 ∈ ∩K
k=1Ck,

(2.6)

i.e., (2.4) with the additional constraint x0 ∈ ∩K
k=1Ck, over which the affine description of Jk

∗ holds.
The above problem can be solved as an LP. We assume that one can determine the lexicographically
smallest minimizer of (2.6). This provides a tie-breaking rule in the case the minimizer is not
unique. The final consideration is a necessary and sufficient condition for x0,∗ to be a minimizer of
(2.4). To that end, x0,∗ is a minimizer for (2.4) if and only if

0 ∈ δJ∗
(
x0,∗)+NX0

(
x0,∗) , (2.7)

where δJ∗(·) denotes the sub-differential set of the objective function of (2.4) and NX0 is the normal
cone of X0. Algorithm 1 presents the CRE algorithm to solve (2.3). The crucial property of our
algorithm is summarized next.

4 We omit the details of the procedure to determine the critical regions and the associated affine cost description due
to space limitations.
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Figure 2.3: R-SCED solutions as a function of α for the IEEE 30-bus test network with VoLL (a) $90/MWh
and (b) $126/MWh. (c) records the runtime for CRE.

Proposition 2. Algorithm 1 converges to an optimizer of (2.3) in finitely many iterations.

The proof is largely similar to that of [8, Theorem 1]. See [8, 9] for details.

Algorithm 1 CRE algorithm to solve R-SCED.
1: Initialize:

x0 ∈ X0,J∗← ∞,D← empty set,ε ← small positive number
2: do
3: Given x0, compute ρρρk,ηk,Ck for k = 1, . . . ,K.
4: Solve (2.6)
5:

[
x0]opt← lexicographically smallest minimizer of step 4.

6: Jopt← optimal cost of step 4
7: if Jopt < J∗ then
8:

[
x0]∗← [x0]opt

,J∗← Jopt,D←{c}
9: else

10: D← D∪{c0 +α ′∑K
k=1ρρρk}

11: end if
12: v∗← argmin

v∈conv(D)+NX0([x0]
∗
) ‖v‖

2

13: x0←
[
x0]opt− εv∗

14: while v∗ 6= 0

2.5 Experiments on the IEEE 30-bus test system

We have implemented CRE for R-SCED on various IEEE test networks. We only report the results
on the highly-loaded IEEE 30-bus system from PGLIB v17.08 [16] for space constraints. In our
experiments, we assumed drastic action and short-term emergency limits to be 70% and 10% higher
than the nominal limits, respectively. Ramping costs were set equal to nominal dispatch costs and
ramp limits were uniformly set to 0.2 MW per minute. The system was augmented with generation
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capacities of 3MW at buses 13, 22, 23, and 27, and costs were set to $1.4, 1.8, 1.6, 1.7 per MWh,
respectively. Line limits were modified according to Table 2.2.

Bus 1 Bus 2 Line Limit
12 16 0.33
14 15 0.396
16 17 0.36
15 18 0.319
10 20 0.312

Table 2.2: Augmented line limits for IEEE 30-bus example.

Slack variables were added to each subproblem constraint to ensure feasibility, emulating [13].
The algorithm was initialized with the solution of the ED problem with drastic action limits. We
formulated the problems in Python, but the CRE algorithm runs on C++. All LPs were solved using
Gurobi 8.0. The reported running times are from solutions on a 2015 MacBook Pro with 2.7 GHz
Core i5 processor and 8 GB RAM.

As one expects from Proposition 1, Figure 2.3a illustrates that both nominal dispatch cost and
load shedding are piecewise constant. While nominal dispatch cost generally increases with risk-
aversion, and maximum load shed generally decreases, this does not occur monotonically. This
results from the balance of cost associated with load shedding and regulation. When the relative
weight of load shedding is increased in Figure 2.3b, R-SCED is less willing to shed load and shows
fewer increases in load shed as risk aversion increases.

Additionally, notice the large increase in total load shed despite the maximum load shed not in-
creasing significantly in Figure 2.3a. CVaRconsiders the tail cost of most expensive contingencies
and ignores contingencies whose cost is below the cutoff, allowing for a low level of load-shedding
throughout each of the contingencies.
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3. Risk-Sensitive Energy Procurement with Uncertain Wind

3.1 Introduction

System operators (SOs) procure power to meet demand requirements at various timescales. The
forward power procurement process occurs prior to the time of power delivery. Naturally, SOs rely
on forecasts of demand/supply conditions to compute such a dispatch. The errors in such forecasts
are growing with the aggressive integration of variable renewable energy and distributed energy
resources. SOs must therefore explicitly account for the impending uncertainty in demand/supply
in the forward power procurement problem. In the sequel, assume that wind power output is the
only source of uncertainty. Denote the collective wind power output by ω ∈Ω.

Associated with the dispatch decisions (call it x) are uncertain costs that depend on ω. Call this
cost fω(x). Denote the collection of constraints associated with x as

gω(x) := (g1
ω(x), . . . ,g

p
ω
(x))≤ 0.

These constraints can encode limitations on generation outputs, line limits, etc. With costs and
constraint descriptions that depend on the uncertain wind power output, one can adopt a variety
of paradigms to define a forward power procurement problem. For example, one can choose to
enforce constraints on average and model it as E[gi

ω(x)]≤ 0, where the expectation (denoted by E)
is computed with respect to a probability distribution P defined on Ω. Such a constraint enforcement
can result in possible constraint violations over a large range of wind power output. In addition, the
extent of possible constraint violations can be large as well. An alternate paradigm is to consider
a robust constraint enforcement, i.e., to require gi

ω(x) ≤ 0 almost surely for ω ∈ Ω. The robust
formulation guarantees that constraints will not be violated. However, such formulations can often
be overly conservative as one seeks to guard the dispatch decisions against highly improbable yet
possible wind power output scenarios. Such stringent constraint enforcement can potentially render
the energy procurement problem infeasible.

Uncertain power procurement costs present a similar modeling dilemma. SOs may choose to min-
imize the average procurement costs, i.e., minimize E[ fω(x)], leaving the system vulnerable to
large uncertain costs. They can also choose to minimize the maximum possible procurement cost,
an overly conservative modeling paradigm.

In this chapter, we present a risk-sensitive forward power procurement problem formulation with
conditional value at risk (CVaR) based penalty on cost and constraint violation. CVaR is a convex
risk measure, extensively studied by Rockafellar and Uryasev primarily for applications to risk-
sensitive analysis in financial markets [14]. CVaRβ [gi

ω(x)] evaluated with the risk parameter β

equals the expected value of gi
ω(x) over 1−β fraction of the scenarios with the largest values of

gi
ω(x). By regulating β , the SO can thus express a tolerance towards possible constraint violation.

In particular, for β = 0, this constraint becomes the same as requiring E[gi
ω(x)] ≤ 0 and β ↑ 1

amounts to a robust constraint enforcement. Thus, β provides a tunable parameter to the SO to
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model its tolerance on constraint violation. Similarly, the SO can encode her risk tolerance towards
large uncertain costs by seeking to minimize CVaRα [ fω(x)]. This discussion motivates us to write
the forward power procurement problem in Section 3.2 as a CVaR-penalized CVaR-constrained
optimization program of the form

P0 : minimize
x∈X

CVaRα [ fω(x)],

subject to CVaRβ i[gi
ω(x)]≤ 0, i = 1, . . . , p.

(3.1)

Such problems have been studied in power systems for the optimal power flow (OPF) problem
in [17].

In Section 3.3, we leverage our recent work in [18] to design an algorithm to solve the power
procurement problem formulated as an instance of P0. The algorithm is an online primal-dual
stochastic subgradient method. In each iteration, we obtain two new samples and update the primal
and dual variables using these samples. Our result, adapted from [18, Theorem 2], provides a bound
on the expected distance to optimality and constraint violation for P0 after a fixed number of it-
erations. The iteration and sample complexity grow with the risk parameters α,β := (β 1, . . . ,β p).
The algorithm design is motivated by the fact that predictions of wind power output typically de-
pend on Monte Carlo runs of complex weather models. While samples are easy to obtain, an
explicit description of the underlying probability distribution on wind power output is challenging
to characterize. Furthermore, computing the CVaR of f or g’s for every possible dispatch decision
with respect to that distribution can prove difficult. Our algorithm circumvents these difficulties by
taking a primal-dual step based on the samples. Section 3.4 provides results from our numerical
experiments on an illustrative two-bus network example. Section ?? concludes the chapter with
directions for future work.

We remark that chance-constrained programs with constraints defined as

P[gi
ω(x)≤ 0]≥ 1− ε

i

provides an alternate design paradigm for an SO to specify a tolerance on possible constraint vi-
olations. Since its introduction by Charnes and Cooper in [19], it has found extensive applica-
tions in engineering decision-making, including forward power procurement problems in power
systems [20, 21] as well as OPF [22] and reserve scheduling problems [23]. Chance-constrained
formulations are typically nonconvex even if the functions f and g’s are convex, making it difficult
to provide optimality guarantees, unlike our advocated CVaR-based counterparts.

This chapter is based on [24]. A detailed description of the algorithm and associated proofs can be
found in [18].

3.2 Forward power procurement problem formulation

In this section, we formulate the risk-sensitive forward power procurement problem using condi-
tional value at risk (CVaR). We begin by describing the deterministic variant that proves useful to
present the risk-sensitive counterpart next.
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3.2.1 A deterministic power procurement problem

Consider an electric power network on n buses, labeled 1, . . . ,n, and m transmission lines. Let each
bus be equipped with a dispatchable generator, a wind power producer and a load. Denote the vector
of nodal dispatchable power productions by G ∈ Rn, the vector of wind power productions by
ω ∈Rn and the nodal power demands byD ∈Rn, where R is the set of real numbers. We adopt the
DC approximation of power flow equations that assumes voltage magnitudes to be at their nominal
values, ignores transmission line losses and deems small voltage phase angle differences between
neighboring buses. With DC approximations, the (directed) power flows over the m transmission
lines become linear functions of the vector of nodal power injections x, given by Hx. Here,
H ∈R2m×n denotes the injection shift-factor (ISF) matrix which depends on the network topology
and transmission line admittances. Let the (directed) power flow limits be denoted by fL ∈ R2m.
Given a known wind power outputω and assuming a linear dispatch cost structure, the deterministic
power procurement problem with DC approximations is described by

Pdet : minimize
G

c
ᵀ
G,

subject to 1
ᵀ
(G−D+ω) = 0,

H(G−D+ω)≤ fL,

G≤G≤G,

(3.2)

where 1 denotes a vector of all ones of appropriate dimensions. The first two constraints model the
set of feasible power injections and the last constraint ensures that dispatchable generation respects
its capacity limits, described byG,G.

In practice, ω is not known prior to the time of power delivery. The next section proposes a forward
procurement problem that accounts for the uncertainty in ω.

3.2.2 The risk-sensitive counterpart

For the risk-sensitive forward procurement problem, the SO must determine the dispatch for a given
realization of wind power output. That is, the dispatchable power production becomes a function
of ω, denoted by G(ω). Optimizing over general functions of ω is challenging. Therefore, we
restrict our attention to affine functions of ω of the form

G(ω) :=G0 +Gω(ω)

withG0 ∈Rn andGω ∈Rn×n. Such a dispatch policy amounts to fixing a nominal dispatchG0 and
a regulation to alter the output from that nominal dispatch as a linear function of the wind power
output. As will be clear, while restriction of G(ω) to affine functions of ω results in a suboptimal
power procurement, we retain convexity of the resulting optimization program, making it amenable
to design efficient algorithms and analyze them.

With the above affine dispatch structure, we now define our risk-sensitive forward power procure-
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ment problem.

Prisk : minimize
G0,Gω

CVaRα

[
c
ᵀ
(G0 +Gωω)

]
,

subject to 1
ᵀ
(G0 +Gωω−D+ω) = 0 a.s.,

CVaRβL

[
H(G0 +Gωω−D+ω)−fL

]
≤ 0,

CVaRβG

[
−G0−Gωω+G

]
≤ 0,

CVaRβG

[
G0 +Gωω−G

]
≤ 0.

(3.3)

In the above problem, CVaR on a vector argument is interpreted elementwise. We enforce power
balance in a robust fashion, but allow flexibility in meeting line capacity and generation capacity
constraints. Line capacity limits arise primarily from thermal considerations and can be relaxed for
short durations; see [12] for discussion. Since we relax generation capacity limits in Prisk, the SO
may be unable to reliably meet demand requirements for certain realizations of wind. Thus, risk
parameters βG describe the SO’s preference to maintain reliability in power delivery. We remark
that there are alternate ways to enforce a risk-sensitive constraint on possible supply shortfall across
scenarios, possibly including reserve capacities and load shedding. Consideration and comparison
of such alternate formulations are relegated to future work.

3.3 Algorithm to solve Prisk

In this section, we adopt our algorithm designed in our earlier work in [18] to solve Prisk. The
algorithm requires us to reformulate the almost sure enforcement of the power balance constraint
to cast Prisk as an example of P0.

3.3.1 Reformulating Prisk as an instance of P0

PartitionG0 andGω as

G0 :=
(

G0
s

G0
r

)
, Gω :=

(
Gω

s
Gω

r

)
where subscript s distinguishes the row corresponding to the slack bus in each, and r collects the
rows for all other buses. Then, the power balance constraint yields

G0
s +G

ω
s ω =−1

(T
G0

r +G
ω
r ω
)
+1

ᵀ
(D−ω). (3.4)

Conformally partition c,D and ω. Also, partitionH :=
(
Hs Hr

)
along its columns, distinguish-

ing the one corresponding to the slack bus from the rest. Then, we have

H(G0 +Gωω−D+ω)

=
(
Hs Hr

)( G0
s +G

ω
s ω−Ds +ωs

G0
r +G

ω
r ω−Dr +ωr

)
= (Hr−Hs1

ᵀ
)
(
G0

r +G
ω
r ω−Dr +ωr

)
.

(3.5)
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Finally, notice that
Gω

r ω =
(
I⊗ω

)T︸ ︷︷ ︸
:=W

vec
(
[Gω

r ]
)T︸ ︷︷ ︸

:=Γω
r

, (3.6)

where vec(·) stands for vectorization and ⊗ stands for the Kronecker product. Using (3.4) – (3.6),
we reformulate Prisk in terms ofG0

r and Γω
r as

Prisk
′ :

minimize
G0

r ,Γ
ω
r

CVaRα

[
(cr− cs1)

ᵀ
(G0

r +WΓω
r )+ cs1

ᵀ
(D−ω)

]
,

subject to CVaRβL

[
(Hr−Hs1

ᵀ
)

·
(
G0

r +WΓω
r −Dr +ωr

)
−fL

]
≤ 0,

CVaRβG

[
1
ᵀ
(G0

r +WΓω
r −D+ω)+Gs

]
≤ 0,

CVaRβG

[
−1ᵀ

(G0
r +WΓω

r −D+ω)−Gs
]
≤ 0,

CVaRβG

[
−G0

r −WΓω
r +Gr

]
≤ 0,

CVaRβG

[
G0

r +WΓω
r −Gr

]
≤ 0.

(3.7)

The reformulation of Prisk in Prisk
′ reduces it to an instance of P0 over

x :=
(
G0

r
Γ0

r

)
with appropriate definitions of f and g’s. We choose X in P0 as a box that contains reasonable
values of x. For example, G0

r ∈ [Gr,Gr] and |Γω
r | ≤ vec

(
G

ᵀ
r⊗diag(ω)−11

)
, where ω denotes

the vector of installed capacities for wind. Each element is bound by the wind capacity-normalized
dispatchable generation capacity.

3.3.2 Algorithm to solve P0

Our exposition here mimics that in [18]. To provide insights into our algorithm design, we utilize
the following variational characterization of CVaR.

CVaRα [ fω(x)] = minimize
u∈R

E[ψ f
ω(x,u;α)],

where

ψ
f
ω(x,u

f ;α) :=
{

u f +
1

1−α
[ fω(x)−u f ]+

}
, (3.12)

and [·]+ computes the positive part of its argument. Utilizing a similar characterization for
CVaRi

β
[gi

ω(x)] for i = 1, . . . p, we reformulate P0 as

minimize E[ψ f
ω(x,u

f ;α)],

subject to E[ψgi

ω (x,u
gi

;β
i)]≤ 0, i = 1, . . . , p

(3.13)
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Algorithm 2 Primal-dual stochastic subgradient method for P0.
1: Initialize:

Choose x1 ∈ X, z1 = 0, and a positive sequence {γk} and number of
iterations K.

2: for k = 1, . . . ,K do
3: Sample ωk ∈Ω. Update x, u f , and ug as

xk+1← argmin
x∈X

〈
∇ fωk(xk)

1−α
I{ fωk (xk)≥u f

k }
+

m

∑
i=1

zi
k∇gi

ωk
(xk)

1−βi
I{gi

ωk
(xk)≥u f

k }
,x−xk

〉
+

1
2γk
‖x−xk‖2 ,

(3.8)

u f
k+1← argmin

u f∈U f

〈
1− 1

1−α
I{ fωk (xk)≥u f

k }
,u f −u f

k

〉
+

1
2γk

∥∥∥u f −u f
k

∥∥∥2
, (3.9)

ug
k+1← argmin

ug∈Ug

〈
1−diag(1−β)−1 I{gωk (xk)≥ug

k },u
g−ug

k

〉
+

1
2γk

∥∥ug−ug
k

∥∥2
. (3.10)

4: Sample ωk+1/2 ∈Ω. Update z as

zk+1← argmax
z∈Rm

+

〈
ug+diag(1−β)−1[gωk+1/2(xk+1)−ug]+,z−zk

〉
− 1

2γk
‖z−zk‖2. (3.11)

5: end for

over x ∈ X, u f ∈ U f and ug ∈ Ug. We compute U f and Ug from the observation that a solution of
P0 can only admit solutions with u f and ug that take values between the minimum and maximum
of the functions f and g as x,ω vary over the compact sets X and Ω. Algorithm 2 formally presents
our method to solve (3.13) that implements a projected stochastic primal-dual subgradient update
with two samples per iteration. Here, z ∈Rp

+ denotes the vector of Lagrange multipliers associated
with the inequality constraints in (3.13), I is the indicator function, and 〈·, ·〉 stands for the usual
inner product. Our sampling-based algorithm does not require the knowledge of the distribution on
ω. Unlike other sampling-based techniques proposed for chance-constrained problems in [25, 26],
which require the samples to be computed prior to solving the optimization problem, our algorithm
is online and optimizes with streaming samples.

3.3.3 Convergence guarantees of Algorithm 2 for P0

To present the result, we compute bounds C f , Ci
G and Di

G in Figure 3.1 on the 2-norms of sub-
gradients ∇ fω, ∇gi

ω and the function value gi
ω, respectively, for our problem. Here, | · | denotes

the element-wise absolute value. Derivations are omitted due to space constraints. Letting x∗,z∗

denote the primal-dual optimizer of P0, we further utilize these constants to define P1,P2(α,β)
and P3(α,β) in Figure 3.1 that proves useful in stating the result.

16



C f := ‖cr− cs1‖‖ω‖, Cg :=


‖Hr−Hs1

ᵀ‖√
n−1√
n−1
1

1


(√

n−1+‖ω‖
)
,

Dg :=


fL+ |Hr−Hs1

ᵀ|(Gr +1ωᵀ
1−D+ω)

1
ᵀ(Gr +1ωᵀ

1−D+ω)−Gs

1
ᵀ(Gr +1ωᵀ

1−D+ω)+Gs

Gr−Gr +1ωᵀ
1

Gr−Gr +1ωᵀ
1

 ,

P1 := 2‖x1−x∗‖2 +4‖1+z∗‖2, P2(α,β) :=
16(C2

f +1)

(1−α)2 +2
∥∥∥diag(1+β)diag(1−β)−1Dg

∥∥∥2
,

P3(α,β) := 16p
∥∥diag(1−β)−1Cg

∥∥2
+16p

∥∥diag(1−β)−11
∥∥2

.

Figure 3.1: Constants associated with Prisk.

Proposition 3 (Convergence result for P0). Given ε > 0 and let p0
∗ denote the optimal value of P0,

and K∗ and γk = γ∗/
√

K∗ for k = 1, . . . ,K∗, where K∗ and γ∗ satisfy the following with y = 1+ P2
P1P3

,

γ
2
∗ =

2P−1
3

2+ y+
√

y2 +8y
, K∗ =

(P1 +P2γ2
∗ )

2

16γ2∗ (1−P3γ2∗ )2ε2 . (3.14)

Then, the iterates generated by Algorithm 2 on P0 with parameters α and β satisfy

E[CVaRα( fω(xK∗+1))]− p0
∗ ≤ ε, (3.15)

E[CVaRβ i(gi
ω(xK∗+1))]≤ ε (3.16)

where, xK∗ =
1

K∗ ∑
K∗
k=1xk.

Thus, our result provides guarantees on suboptimality and constraint violation in expectation, where
the expectation is computed with respect to the stochastic dynamics of the algorithm. Additionally,
while P1 is typically not known a priori, Theorem 3 still guarantees convergence of Algorithm 2
with an upper bound on P1. The iteration count K∗ increases with the risk-aversion parameters α,β.

The proposed algorithm is a stochastic subgradient method. These methods are rate-limited to
O(1/

√
K) and are typically slow to converge. Unfortunately, non-smoothness of ψ in (3.12) limits

us to use slow subgradient methods.

3.4 An illustrative two-bus network example

We apply Algorithm 2 to Prisk on a two-bus network in Figure 3.2. Wind output from two wind
power plants from the New York area were taken from NREL’s synthetic dataset [27], treating the
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pair of wind power outputs every 5 minutes over 2008-2011 as a single sample ω. In practice, these
samples would be output from weather models which would account for diurnal/seasonal variation.
Simulations were performed on an AWS m5.xlarge instance.

The buses are equipped with 40 and 20 MW of wind capacity, respectively. The results of Algo-
rithm 2 with ε = 0.1 for various choices of α,β′s are shown in Table 3.1.

1 2

f = 90 MW

g1

c1 = $5/MWh

ω1 = 40 MW

D1 = 120 MW

g2

c2 = $1.2/MWh

ω2 = 20 MW

D2 = 120 MW

Figure 3.2: The two-bus network example.

Increasing risk-aversion towards constraints results in a reduction in the associated violation, while
also incurring greater cost of generation. Similarly, increasing aversion towards cost results in
decreased worst-case cost. Thus, these values capture the trade-off between cost and reliability of
constraint satisfaction.

Highest
Dispatch Worst-Case Const. Violation Iterations Runtime

Aversion α βL βG Cost ($) Line (MW) Generation (MW) (×109) (s)
None 0 0 0 400 25 24 2.9 3767
Line capacity 0 0.6 0.2 402 0 50 9.2 21400
Dispatch cost 0.6 0.2 0.2 352 13 0 4.6 9660

Table 3.1: Results of Algorithm 2 for the two-bus network example.
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4. Pricing Conditional Value at Risk-Sensitive Power Procurement

4.1 Introduction

Deepening penetration of uncertain renewable generation in electric power networks introduces
greater supply-side uncertainty. Historically, uncertainty in demand/supply in economic dispatch
(ED) formulations has been accommodated in a rather ad hoc manner, e.g., by planning for the
nominal scenario and choosing fixed reserve margins to deal with forecast errors. Unfortunately,
increasing renewable penetration ultimately leads to greater forecast errors and prohibitively large
reserve margins. Instead, recent work makes use of considerable effort focused on obtaining prob-
abilistic forecasts of variable renewable generation that capture spatio-temporal variations [28].
These efforts explicitly model uncertainty, optimize against it, and define pricing mechanisms to
support that optimization, e.g., in [29–35]. In this chapter, we study the question of defining prices
for electricity in a risk-sensitive ED problem. We model risk via the popular conditional value-
at-risk (CVaR) measure [14, 36]. Our key contribution is the definition and analysis of locational
marginal prices from a CVaR-sensitive ED problem. This chapter is based on the work in [37] that
contains the proofs of the various claims.

Why CVaR? While this risk measure has seen widespread adoption in finance and gained traction
in engineering applications, it has received limited attention in power systems. Examples include
[9,24,38]. CVaR benefits from being a coherent risk measure, which ensures that the risk-sensitive
problem retains the convexity of the deterministic variant, irrespective of the distribution of the
underlying uncertainty. Convexity is a useful property for two reasons: it permits the design of
efficient algorithms via sampling, and the mature duality theory of convex programming allows the
derivation and analysis of meaningful prices for electricity.

In this chapter, we begin by presenting the CVaR-based ED problem which imposes risk-sensitive
network and generation limits in Section 4.2. We adopt the perspective of a system operator (SO)
solving the ED problem to manage operational and power delivery risks across the network. CVaR
is equipped with a tunable parameter, enabling the SO to tradeoff economic efficiency and network
security with varying levels of conservativeness. In Section 4.3, we apply duality theory to de-
fine risk-sensitive locational marginal prices (risk-LMPs). These prices endogenize stochasticity
of renewable generation and compensate dispatchable generators for nominal generation and regu-
lation commitments in response to forecast errors. Our prices reduce to conventional LMPs as the
forecast error goes to zero. Section 4.4 presents a sample average approximation (SAA) approach
to solving the CVaR-sensitive dispatch and prices. We demonstrate key properties of the prices
through a numerical example on a five-bus power network. Finally, Section 4.5 addresses revenue
adequacy of our settlement process.
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4.2 The CVaR-sensitive ED problem

We consider a power network with n buses connected by ` lines. Each bus is equipped with some
dispatchable generation, non-dispatchable (renewable) infeeds, and inflexible demand, the nodal
values of which are collected in the vectors, g, ξ, and d, respectively. Dispatchable generators are
those whose output can be altered on command, such as conventional thermal and hydro-electric
plants. The nodal renewable power injection, ξ, is random and takes values over a compact set,
Ξ. These samples, ξ, can be obtained, either from historical measurements (e.g., the NREL wind
database) or from generative models (e.g., generative adversarial networks in [39]).

Accommodating uncertainty in renewable availablility, we formulate an ED problem that schedules
both nominal dispatch and a power output adjustment (reserve policies) for dispatchable generators,
allowing generators to respond to forecast errors in renewable supply by making g depend on ξ.
We restrict attention to affine recourse policies, i.e.,

g(ξ) = g0−G∆ξ, (4.1)

where g0 is the nominal generation, ξ0 the nominal or forecasted renewable infeeds andG encodes
the adjustments to forecast errors ∆ξ := (ξ−ξ0). Specifically, with n wind resources in the system,
G ∈ Rn×n and Gi j denotes the portion of deviation in renewable generation ∆ξ j at node j picked
up by generator at node i. Here, R is the set of real numbers. Note that our recourse policy here
is slightly different from that in Chapter 3. We retain this version to keep it consistent with our
published work in [37]. Assume that forecast errors are zero-mean, i.e.,

E[∆ξ] = 0. (4.2)

We enforce three types of constraints: network-wide power balance, generation capacity limits,
and transmission line flow limits. We adopt a linear power flow model via the widely used DC
approximations that assume small voltage angle differences between nodes, lossless lines and (per
unit) voltage magnitudes close to unity. Under these assumptions, reactive power is neglected and
line flows become linear maps of the power injections across the network.

Power balance across the network for all ξ requires 1ᵀ(g(ξ)+ξ−d) = 0, where 1 is the vector
of all ones of appropriate size. Under an affine recourse policy and assuming zero-mean forecast
errors, this is equivalent to

1
ᵀ
(g0 +ξ0−d) = 0, G

ᵀ
1= 1. (4.3)

Dispatchable generators can only produce power within their capacities, i.e., within [0,g]. Instead
of requiring these capacity limits be met for each ξ, we enforce them in a risk-sensitive fashion
using CVaR. To describe the modeling approach, consider a scalar random variable, Z, with a
continuous cumulative distribution, F . Then, CVaRδ [Z] is the expectation over the (1− δ )-tail of
the distribution,

CVaRδ [Z] := E[Z | Z ≥ F−1(δ )].
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Here, E stands for the expectation operator and δ is a tunable parameter that takes values in [0,1).
As δ ↓ 0, CVaRδ [Z] becomes the average value of Z. Taking δ ↑ 1, it approaches the highest
value that Z can take. CVaR over arbitrary distributions is defined via the following variational
characterization by Rockafellar and Uryasev in [14].

CVaRδ [Z] := minimum
u∈R

{
u+

1
1−δ

E[(Z−u)+]
}
, (4.4)

where [A]+ is the positive part of A. Equipped with this definition, we impose risk-sensitive local
generation constraints,

CVaRγ [g0−G∆ξ]≤ g, CVaRγ [−g0 +G∆ξ]≤ 0 (4.5)

for a parameter γ ∈ [0,1). The CVaR-based constraints in the above relation are imposed element-
wise. As γ ↑ 1, constraints become tighter, requiring generation limits to be imposed for almost
every sample. However, when γ ↓ 0, constraints are only enforced on average, allowing for the
potential inability to respond to uncertain wind across multiple scenarios.

To enforce risk-sensitive line flow constraints, let H ∈ R2`×n denote the (directed) injection shift
factor matrix. Under the linear power flow model, the directed flows across the network are
H(g(ξ)+ξ−d). Denoting the (directed) line flow capacity limits by f ∈ R2`, we impose

CVaRβ [H (g0−G∆ξ+ξ−d)]≤ f (4.6)

for risk parameter β ∈ [0,1). Altogether, the CVaR-sensitive ED problem can be formulated as

minimum
g0,G

c
ᵀ
g0, subject to (4.3), (4.5), (4.6). (4.7)

Here, we seek to minimize a linear procurement cost, where c is the vector of offer prices submitted
by all generators. We assume that renewable power suppliers are price-takers, offering energy at
zero marginal cost. It can be seen that

c
ᵀ
g0 = E[cᵀ(g0−G∆ξ)] = E[cᵀg(ξ)],

owing to the zero-mean forecast error assumption in (4.2). Thus, (4.7) seeks to minimize expected
generation costs, while imposing risk-sensitive constraints. By virtue of coherence, the CVaR-
sensitive ED problem in (4.7) is a convex optimization problem, regardless of the distribution of
ξ.

Remark 1. CVaR-sensitive constraints are intimately related to chance-constraints. Specifically,
CVaR-sensitive constraints are inner approximations of chance constraints, i.e.,

CVaRβ [Z]≤ 0⇒ P{Z ≤ 0} ≥ β

for a scalar random variable Z. Chance-constrained formulations typically require assumptions
on the distribution to admit convex reformulations, while those that are CVaR-sensitive do not.
By nature, chance constraints seek to control the frequency of constraint violations, while CVaR-
sensitive constraints control both the frequency and severity of violations.
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4.3 Risk-sensitive locational marginal prices (risk-LMPs) and the settlement process

We now proceed to define prices for electricity from the CVaR-sensitive ED problem in (4.7). To
that end, we first reformulate (4.7) using the characterization of CVaR in (4.4).

J?(d) := minimum
g0,G,u,v,v

c
ᵀ
g0, (4.8a)

subject to

1
ᵀ
(g0 +ξ0−d) = 0, (4.8b)

G
ᵀ
1= 1, (4.8c)

u+
1

1−β
E
[
(H(g0−G∆ξ+ξ−d)−u)+

]
≤ f , (4.8d)

v+
1

1− γ
E
[
(−g0 +G∆ξ−v)+

]
≤ 0, (4.8e)

v+
1

1− γ
E
[
(g0−G∆ξ−g−v)+

]
≤ 0. (4.8f)

Associate Lagrange multipliers λ ,ν and µ with constraints (4.8b),(4.8c) and (4.8d), respectively.
Let z? denote the optimal value of any (primal or dual) variable z in (4.8).

Definition 1. The vector of risk-sensitive locational marginal prices (risk-LMPs) is defined as

π := λ
?1−Hᵀ

µ?. (4.9)

These prices are nodally uniform, i.e., the prices can vary across buses, but the same price πi is
observed by all participants at bus i. Our definition of risk-LMPs mimics that of LMPs derived
from a deterministic ED problem (e.g., see [40]). Risk-LMPs comprise of two terms–λ ?1 and
Hᵀµ?. The first defines a common base price across the network that emanates from the network-
wide power balance constraint for the nominal scenario. The second term arises due to congestion
and introduces locational dependency. Unlike the deterministic case, the congestion component
in the CVaR-sensitive problem does not only depend on the nominal dispatch. That is, adverse
scenarios can result in a non-zero congestion component despite an uncongested nominal dispatch.

Our first result relates risk-LMPs to the sensitivity of the optimal cost of (4.8) to nodal demands–a
result that holds for LMPs derived from a deterministic ED problem.

Proposition 4. J? is convex in d. SupposeX? := (H−HG?)∆ξ has a smooth cumulative distri-
bution function and the optimal set of Lagrange multipliers of (4.8) is bounded. Then, π ∈ ∂dJ?(d),
where ∂d computes the subdifferential set of J?.

The pricing mechanism is incomplete without defining a settlement process, i.e., how every market
participant is compensated under risk-LMPs. We adopt a similar model to existing literature for
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consumers, wherein they are charged πidi for consuming quantity di at bus i. Under the risk-
sensitive model, generators incur an additional cost of maintaining reserve capacity in the form of
G∆ξ and must be compensated accordingly. We propose the dual multiplier ν? to reflect the price
of maintaining this reserve capacity. Thus, each generator i is paid πi[g?0]i for the nominal cost of
generation and ∑

n
j=1 G?

i jν
?
i for maintaining reserve capacity. On the other hand, renewable supplier

i is paid πi[ξ0]i−ν?
i , corresponding to a payment for nominal supply and a penalty levied for their

induced uncertainty. The penalty reflects the principle of cost allocation based on cost causation.

4.4 Solving the CVaR-sensitive ED problem using sample average approximation

We compute the dispatch and prices from (4.8) using N independent and identically distributed (iid)
samples of renewable generation ξ1, . . . ,ξN as follows. We replace the expectations with empirical
means in each constraint, e.g., the empirical mean variant of (4.8d) can be reformulated as

u+
1

N(1−β )

N

∑
j=1

[(
H(g0−G∆ξ j +ξ j−d)−u

)+]≤ f
≡
{
u+ 1

N(1−β ) ∑
N
j=1 t

j ≤ 0,

t j ≥H(g0−G∆ξ j +ξ j−d)−f −u, t j ≥ 0.

Proceeding similarly with (4.8e)–(4.8f), we arrive at the following SAA-based CVaR-sensitive ED
problem.

Ĵ?N(d) :=minimize c
ᵀ
g0, (4.10a)

subject to

1
ᵀ
(g0 +ξ0−d) = 0, (4.10b)

G
ᵀ
1= 1, (4.10c)

u+
1

(1−β )N

N

∑
j=1
t j ≤ 0, (4.10d)

t j ≥H(g0−G∆ξ j +ξ j−d)−f −u, (4.10e)

v+
1

(1− γ)N

N

∑
j=1
s j ≤ 0, (4.10f)

s j ≥−g0 +G∆ξ j−v, (4.10g)

v+
1

(1− γ)N

N

∑
j=1
s j ≤ 0, (4.10h)

s j ≥ g0−G∆ξ j−g−v, (4.10i)

t j,s j,s j ≥ 0, j = 1, . . . ,N

over g0,G,u,t j,v,v,s j,s j. In effect, (4.10) is an approximation to (4.8) for computing an optimal
dispatch. This SAA-based ED problem can be solved as a linear program. Linear programming
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Figure 4.1: Evaluation of the prices for the 5-bus network in (a), depicting the (b) mean and range as a
function of sample complexity with γ = β = 0.9, (c) nominal cost of generation as a function of β with
γ = 0.6, (d) effect of scaling forecast error by η for γ = β = 0.6, where the dashed line shows the LMP of
the nominal ED, and (e) reserve price, ν , as a function of β with γ = 0.6.

duality allows us to define electricity prices from this approximate problem. Specifically, let λ̂N , µ̂N
denote the dual multipliers for constraints (4.10b) and (4.10d), respectively.

Definition 2. The vector of SAA-based risk-sensitive LMPs is defined as π̂N = λ̂ ?
N1−Hᵀµ̂?

N .

One can show that π̂N ∈ ∂dĴ?N(d), i.e., the SAA prices measure the sensitivity of the optimal cost
of the SAA-based ED problem to the vector of nodal demands. Notice that since the N samples
ξ1, . . . ,ξN are drawn randomly, the output of the SAA problem is itself random. Hence, the prices
calculated from this sampled problem are random as well. Next, we study properties of these prices
empirically.

4.4.1 Numerical experiments on a five-bus network example

We consider the heavily-loaded PJM 5-bus network from the IEEE PES Power Grid Library v17.08
[41]. The network, depicted in Figure 4.1a, is augmented with renewable generation at buses 1, 2,
and 4, with 2.3, 1.5, and 0.9 per unit capacity, respectively. Wind outputs from three wind power
plants from the New York area were used from NREL’s synthetic dataset [27], treating the tuple of
wind power outputs every 5 minutes over 2008-2011 as a single sample, ξ.

The SAA approach is an effective mechanism for solving CVaR-sensitive ED, as Figure 4.1b re-
veals. The variance of the prices at each bus drops below 6×10−5 with just N = 100 samples, and
below 3×10−6 with N = 1000 samples. With that in mind, all other simulations use 1000 samples.

The CVaR-sensitive dispatch presents a natural extension to its commonly studied deterministic
variant. As Figure 4.1d shows, scaling the forecast error by η and taking η ↓ 0 recovers the de-
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terministic ED solution and the risk-sensitive LMPs reduce to conventional LMPs. Notice that
nominal dispatch costs increase as the SO becomes more risk-averse in enforcing line limits (see
Figure 4.1c). Regulation prices exhibit similar behavior with increased risk aversion, per Figure
4.1e. Hence, greater risk aversion to line limit violations results in dispatchable generators col-
lecting more payment for reserve provision. Renewable suppliers, on the other hand, incur higher
penalties for their impending uncertainty.

4.5 Revenue adequacy

The SO should ideally never run cash negative after settling all payments with market participants,
i.e., the dispatch and pricing mechanism should be revenue adequate. In this section, we analyze
when our risk-sensitive dispatch and pricing mechanism is revenue adequate. To that end, define the
merchandising surplus (MS) as the aggregate payments received from consumers less the aggregate
payments made to dispatchable and renewable suppliers:

MS = π
ᵀ
(d−g?0−ξ0)−1ᵀG?ν?+1

ᵀ
ν? =−πᵀ

p?0,

where p?0 = g?0 + ξ0−d. We analyze conditions under which MS ≥ 0 from the CVaR-based ED
problem.

Proposition 5. Suppose X? := (H−HG?)∆ξ has a smooth cumulative distribution function.
Then, the merchandising surplus is given by

MS = µ?,ᵀHp?0 = µ
?,
(T
f −CVaRβ [X

?]
)
. (4.11)

MS≥ 0, if fi ≥ CVaRβ [X?
i ] for each i = 1, . . . ,2` or µ? = 0.

Proposition 5 reveals that MS from our CVaR-sensitive ED problem arises due to congestion that
results in price separation across different buses in the network. Without congestion in any sce-
nario, µ? = 0, that implies MS = 0. Such a property is shared by MS obtained with LMPs from a
deterministic ED problem. In fact, for a deterministic ED problem, MS equals the congestion rent
µ?,ᵀf . We recover that result by driving ∆ξ to zero, that in turn makesX? identically zero making
MS equal to µ?,ᵀf as is the case with conventional LMPs.

MS from our CVaR-sensitive ED problem can be viewed as the congestion rent with a modified
line flow, f −CVaRβ [X

?]. To gain more insights into the modifier, notice that X?
i is composed of

two terms: Hi∆ξ and Hi(G
?∆ξ), where Hi denotes the i-th row of H . The first term equals the

induced flows on the i-th line due to nodal forecast errors ∆ξ. The second term equals the same
from the dispatchable generator responses G?∆ξ to said forecast errors. That is, X?

i captures the
net effect of forecast errors on the i-th line flow. The modifier satisfies

0 = E[X?
i ]≤ CVaRβ [X

?
i ]≤maxXi.

Thus, CVaRβ [X?
i ] increases from zero to maxXi as β ranges from zero to unity. While we cannot

guarantee nonnegativity of MS for all problem instances, this range provides valuable insights into
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when we might expect it. Specifically, when β is small (the SO is close to being risk neutral) or
maxXi is smaller than fi (when forecast errors are small or do not induce large enough net flows
on the i-th line), we expect MS ≥ 0. It is encouraging that we obtained MS ≥ 1.14 for all our
experiments on the five-bus network.
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5. Conclusions and Future work

In this report, we studied the use of CVaR as a means of modeling risk of being unable to meet
demand under various forms of uncertainty such as potential component failures and renewable
supply.

In Chapter 2, we defined an alternative formulation of SCED that allows a system operator (SO)
to trade-off between minimization of dispatch cost and reliability of power delivery, and explored
its salient properties. We then proposed the critical region exploration (CRE) algorithm to solve
it. In future studies, we aim to compare CRE with the popular Bender’s decomposition technique
on larger power networks for R-SCED, as proposed in [13, 42–45]. We also aim to extend our
formulation and algorithm to model uncertainty in renewable power production.

In Chapter 3, we presented a risk-sensitive power procurement problem, where the risk refers to
the inability of being able to provide adequate generation or satisfy line capacity limits. This risk
is measured via conditional value at risk (CVaR). The risk parameters capture a SO’s tolerance
towards optimality and constraint violation. We then presented a sampling-based online stochas-
tic primal-dual subgradient method for solving this problem, before illustrating our algorithm and
formulation on a two-bus network example. The algorithm has high iteration complexity and run-
time even for small risk-parameters–an aspect we aim to improve by exploiting structures such as
smoothness of objective and constraint functions in the uncertain parameters. Our current work
considers a specific way to model supply risk with uncertain renewable generation. The formu-
lation of the market clearing problem can be altered to include procurement of reserve capacities
and allowing for load sheds. We leave the consideration and comparison of various models of
incorporating said risk for future work.

Finally in Chapter 4, we derived and analyzed prices from a CVaR-sensitive ED problem where
transmission line flow constraints and generation limits are imposed in a risk-sensitive fashion. We
showed that these prices have properties similar to LMPs derived from a deterministic ED problem.
Approximations to these prices were derived using sample average approximation (SAA) that were
empirically shown to asymptotically converge. Forward settlements and revenue adequacy issues
were also analyzed. In the future, we are interested in addressing three areas of research in this
direction. First, we aim to more fully analyze the implications of our proposed settlement scheme.
For example, we want to understand if our proposed payments adequately incentivize generators
to follow the SO-prescribed dispatch. In the event that they do not, we wish to study how risk pa-
rameters and wind variance affect aggregate side-payments necessary to incentivize the generators.
Second, we want to study alternate risk models and their associated pricing mechanisms. That is,
we want to understand other ways to encode and price supply risk than by defining risk-sensitive
constraints on possible violations of line flow limits and generation capacities. Third, we hope
to analytically establish the convergence properties, both with finitely many samples and in the
asymptotic limit, of the SAA-based approximate prices. Besides these directions, our long-term
goal is to incorporate unit commitment decisions and analyze CVaR-sensitive prices for day-ahead
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market operations.
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