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Executive Summary 

 
Recently, the availability of fast time scale synchrophasor data has enabled both researchers and 

practitioners to tackle challenging and interesting problems related to monitoring, control, and 

security of power systems. This objective would not have been possible without the significant 

advancements in machine learning (ML)---specifically, deep learning---in terms of efficiency, 

reliability, and scalability. The overall goal of this project is to efficiently pre-process large 

volumes of synchrophasor data and then train suitable ML algorithms to (i) generate synthetic load 

and voltage data for downstream applications and (ii) detect islanding and events in a power 

system. Below we outline the key contributions of these two tasks (or parts) and we provide full 

details in later sections.  

 

Part 1: Generation of synthetic load and voltage data using the state-of-the-art deep learning 

algorithms  

 

Part 1 of the project considers two problems. The ASU team focused on generating synthetic load 

data for steady state applications, which can ultimately be used by the industries and practitioners 

to predict loads and unanticipated attacks. In particular, a framework for the generation of synthetic 

time-series transmission-level load data is presented. Conditional generative adversarial networks 

are used to learn the patterns of a real dataset of hourly-sampled week-long load profiles and 

generate unique synthetic profiles on demand, based on the season and type of load required. 

Extensive testing of the generative model is performed to verify that the synthetic data fully 

captures the characteristics of real loads and that it can be used for downstream power system 

applications, a few of them mentioned above.  

 

The TAMU team focused on generating both synthetic load and voltage data to assess the dynamic 

(specifically, transient) stability of the power system. In particular, the team creates a massive 

synthetic eventful data from the given limited real data using the proposed two-stage method that 

leverages Generative Adversarial Nets (GAN) and Neural Ordinary Differential Equations 

(NeuralODEs). The key to the success of the proposed idea is to make sure that the synthetic data 

are realistic and diverse rather than a simple clone of the real data, which is achieved by the 

proposed PMU data creation algorithm. Finally, the proposed conditional learning framework can 

be leveraged for the generation of other datasets highlighting different characteristics, such as the 

level of penetration of renewables or electric vehicle charging. 

 

Part 2: Real time detection, identification, and prediction of oscillatory events and 

contingencies using synchrophasor data: A machine learning approach 

 

Part 2 of the project considers two problems. PI Pal’s group at ASU focused on developing a graph-

theoretic approach to detect if a contingency can create a saturated cut set. These potential cutsets, 

which basically serve as an alarm, can alert operators which geographical region of the power 

system may be disconnected from the main grid.  Identification of such cutsets is important 

particularly in the presence of extreme weather events where successive contingencies can take 

place leading to uncontrolled islanding of the power system. To this end, the group proposed a 

feasibility test algorithm whose inputs are generated by deep neural networks and support vector 

regression methods that are extensively trained using synchronized bus power injections.  
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PI Sankar’s group at ASU developed a physics-based ML approach for online event (e.g., 

generation loss and line trips) identification. The proposed approach takes advantage of knowledge 

of the system dynamics by characterizing event signatures based on their modal information that 

can be directly extracted from phasor measurement unit (PMU) measurements, and subsequently 

applying ML techniques to produce a robust classifier from limited but feature-rich training data.  

However, including all possible measurements channels at each PMU allows exploiting diverse 

features but also requires learning classification algorithms over a high-dimensional space. To this 

end, various feature selection methods are implemented in order to choose the best subset of 

features. Using the obtained subset of features, we investigate the performance of two well-known 

classification algorithms, namely, logistic regression and support vector machines (SVM) to 

identify generation loss and line trip events in two different datasets. The first dataset is obtained 

from simulated generation loss and line trip events in Texas 2000-bus synthetic grid using PSSE 

software and the second is a proprietary dataset with labeled generation losses and line trip events 

obtained from a utility in the US, involving measurements from nearly 500 PMUs. Our simulation 

results indicate that the proposed framework is promising for identifying the two types of events 

in both real and simulated datasets. 
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1. Generation of synthetic time series load data for steady state applications 

1.1 Introduction  

In recent years, the field of machine learning (ML) has matured to the point where it can provide 

real value to power system operations; for this reason, a large portion of research work focuses on 

applying ML to power system applications. Within this new paradigm, the availability of large 

amounts of real data is crucial. Unfortunately, while power system models of all kinds are readily 

available, data is a much scarcer resource and the research community must rely on the very few 

and limited datasets that are publicly available.  

 

The goal of our project is to develop a mechanism for the generation of synthetic time-series 

transmission-level load data. Leveraging a proprietary dataset of high-resolution measurements 

from hundreds of phasor measurement units (PMUs) across many years of operation, we can model 

the behavior of real system loads and subsequently generate realistic-looking data on demand. The 

focus on bus-level load data is motivated by the fact that loads are one of the main external drivers 

of power system behaviors; loads depend on phenomena outside of the power system itself 

(consumer behaviors, weather, etc.). Thus, realistic load profiles can be used as an input to existing 

power system programs to accurately determine electric quantities such as voltages and currents 

via dynamic simulation. 

1.2 Generative Adversarial Network 

1.2.1 Basic GAN 

Generative adversarial networks [7] are a novel ML framework in which a generative model (or 

generator) is trained by making it compete against a discriminator. The goal of the generator G is 

to capture the distribution of the real data pr, while the discriminator D is trained to distinguish the 

real data from the synthetic data produced by the generator. The generator is trained to learn a 

mapping G(z;Θg) from a known noise distribution pz to pg, where G is a differentiable function 

represented by a multilayer neural network with parameters Θg and z is a noise vector sampled 

from pz. Given a data sample x, the discriminator determines the probability D(x,Θd) that the 

sample came from the real data distribution pr rather than from the generator pg. The training of D 

and G is represented by a two-player minimax game, where the optimal solution is obtained when 

the discriminator assigns a probability of 0.5 to all samples, meaning that it cannot distinguish 

between real and generated data.  

1.2.2 Conditional GAN 

Conditional generative adversarial networks (cGAN) [8] are an improvement on the basic GAN 

framework which allow for a more targeted generation of synthetic data. The conditioning is 

performed by labelling the real data and then providing this label y as a further input to both the 

generator and the discriminator. By doing this, the generator learns the conditional distribution pg 

over x|y and the generation process can be guided by requesting synthetic data belonging to a 

specific class. The final structure of a generic cGAN can be seen in the figure below. 
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1.2.3 Dataset Description 

The foundation of this project is a large dataset of real PMU data obtained from a utility in the 

USA. The data spans two years (2017 and 2018) and about 500 PMUs installed at the transmission 

level. Based on the system topology and the location of the measurement devices, we identified 

12 load buses whose lines are entirely monitored by PMUs. The net injection at these buses 

represents the load demand and this allowed us to compute the active and reactive power of the 12 

loads with a resolution of 30 samples per second. As discussed in the introduction, the focus of 

this work is the generation of week-long profiles at a resolution of 1 sample per hour for a total of 

168 hours. The raw, PMU-speed load data is then down sampled by computing the hourly load 

average and broken into weeks. When combining all weekly profiles from all 12 loads, the final 

dataset is a 1158x168 matrix. The total number of profiles (1158) is lower than the theoretical 

maximum (2 years x 12 loads x 52 weeks = 1248) because profiles containing any data dropout 

have been discarded. Each week-long profile is normalized by dividing it by the average load over 

the week; the entire dataset is further normalized between 0 and 1 for the training of the cGAN.  

 

 

Figure 1.1 Structure of a conditional GAN. 

1.2.4 Load Characteristics 

Different factors influence the way system loads behave over time. To appropriately generate 

realistic synthetic load profiles for a given application, these elements need to be captured and 

modeled by the GAN. When looking at the week-long time-series data described in the previous 

section, two main driving factors can be identified: time of the year, and type of load.  

 

The differences between load profiles due to seasonal changes in energy consumption can be easily 

visualized. The figure above shows four week-long profiles for a load, across the four different 

seasons. In winter and fall, the load pattern presents two daily peaks, one in the morning and one 

in the afternoon. During spring and especially summer, the load is more regular, with a large spike 

during the day and dips at night. This type of behavior can be observed in a more or less 

pronounced manner across all the loads in our dataset. For this reason, the season of the year to 

which a profile belongs is an important indicator (label) of the expected profile.  
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At the transmission level, each load represents the aggregate demand of one or more distribution 

feeders. Thus, the behavior of a load is given by the sum of all the customers at the distribution 

level that it serves. Because of this, the second main factor that determines the temporal profile of 

a load is its composition in terms of residential, commercial, and industrial portions since each of 

these types of loads tend to have very distinctive patterns. In our dataset, we have observed two 

classes of loads with very distinct behaviors: loads that are mainly residential and/or commercial 

and loads that are mainly industrial. The figure below shows some selected examples: on the top 

and bottom left are mainly residential loads from winter and summer respectively, while on the 

right are winter and summer profiles of a mainly industrial load. As we can see, loads that are 

mainly residential have very regular and predictable patterns, whereas industrial loads do not 

necessarily follow recognizable daily patterns. We used a $k$-means clustering algorithm to label 

each load as mainly residential or mainly industrial. When using 3 clusters, two main groups of 

loads are identified, each containing five and six loads, while one single load is grouped separately. 

We observed that the loads where the top two factors in terms of percentage composition are 

residential and commercial are clustered as one, while the loads in which the industrial component 

is first or second are grouped as another cluster. Thus, for training purposes, six loads are labeled 

as mainly residential and six as mainly industrial. 

 

 

 

Figure 1.2 Examples of real load profiles; different seasons present different patterns. 
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Figure 1.3 Examples of real load profiles. Top row: mainly residential winter load (left) and 

mainly industrial winter load (right). Bottom row: mainly residential summer load (left) and 

mainly industrial summer load (right). 

1.3 cGAN Model 

In this section, we will describe the implementation of the cGAN and its training process. 

Convolutional neural networks (CNNs) are chosen for the discriminator and the generator for their 

ability to learn multiple spectral properties of the data. While similar in size and complexity, the 

two models present some differences.  

 

The discriminator receives two inputs: first, the raw time-series is processed by two convolutional 

layers, then the flattened output is concatenated to its label and fed to three fully connected layers. 

The output of the discriminator is a scalar indicating if a profile is real (1) or fake (0). In the 

generator, the two inputs are the load label and a 25-dimensional Gaussian noise vector. These are 

concatenated and fed to three fully connected layers and the output is up sampled via three 

transposed convolution layers. The final output is a synthetic load profile whose characteristics 

match the input label. The Architecture of the cGAN is illustrated below  
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Figure 1.4 Structure of the cGAN used for the generation of week-long profiles. 

As we have seen in the previous section, two characteristics of loads are used as labels for the 

conditional GAN: the season and whether a load is mainly residential or industrial. The factors are 

represented as one-hot encoded vectors, i.e., the seasons are represented via the following four 

labels: (1 0 0 0) for winter, (0 1 0 0) for spring, (0 0 1 0) for summer, and (0 0 0 1) for fall. 

Similarly, the load type is encoded as: (0 1) for mainly residential and (1 0) for mainly industrial.  

 

The training process is performed by iteratively training the discriminator to distinguish between 

real and generated data and the generator to create realistic-looking profiles. It is to be noted that 

the discriminator is trained twice at every iteration to give it an advantage against the generator; 

this forces the generator to produce better samples. The figure below shows how the training 

process progresses as the epochs proceed. The three curves represent the average discriminator 

prediction at each epoch for three sample datasets: real data used during training (blue), real data 

never used during training (validation data, green), and fake data created by the generator (orange). 

We can see that at the beginning the discriminator easily distinguishes between real and fake data, 

assigning high values to both real datasets and low value to the generated data. As training 

progresses, the generator improves, and the discriminator is unable to differentiate between the 

two data sources. At around 3000 epochs, the training converges: the discriminator assigns very 

similar values to all three datasets. It is interesting to notice that some overfitting is happening (the 

blue curve reaches 0.53) but it is not very significant. More importantly, the discriminator assigns 

the same values to both the generated data and the validation data; this means the output of the 

generator matches the real data.  
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Figure 1.5 Training progress of the cGAN based on the predictions of the discriminator at each 

epoch. The blue curve shows the average prediction over a batch of real training profiles. The 

green curve represents real validation data and the orange one predictions on generated data. 

1.4 Data Generation 

Once the training process is terminated, the generator can be used to create any number of synthetic 

profiles. Based on the required data type, the user only needs to define the appropriate label and 

generate a noise vector according to the predetermined distribution; feeding these to the generator 

will result in a synthetic load profile. As an example, in the figure below, two synthetic summer 

profiles (right) are compared to two randomly selected real profiles (left) of the same label. The 

blue profiles (top) correspond to a mainly residential load and the green plots (bottom) to a mainly 

industrial load. It is important to notice that while the synthetic profiles present all the same 

characteristics as real data, they do not simply repeat real profiles. 

 

 

Figure 1.6 Comparison between some real summer profiles (left) and generated profiles (right). 

Top: mainly residential load. Bottom: mainly industrial load 
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1.4.1 Evaluation of Synthetic Data 

While visual inspection does not yield clear differences between real and synthetic profiles, a 

quantitative analysis is required to verify that the generator captures all of the characteristics and 

behaviors present in the real data. In this section, we present multiple tests to validate the quality 

of the synthetic data.  

1.4.2 Wasserstein Distance 

As explained earlier, the goal of the generator is to learn a mapping function from the known noise 

distribution to the distribution of real data. Training is successful when the distribution of 

generated data matches that of the real data. Wasserstein distance is a measure of distance between 

two distributions, and it can be used to quantitatively assess how close the distributions of 

generated and real data are.  

 

Figure 1.7 Center plot: Wasserstein distance between real and generated data as a function of the 

epochs. Side plots: comparison between the distribution of real data (blue) and generated data 

(orange) at epoch 0 (left) and epoch 3000 (right). 

The center plot in the figure above shows the Wasserstein distance computed during training at 

each epoch between a batch of generated data and a batch of validation data. It can be seen that as 

the training progresses, the distance between the distributions tends to zero. This can be further 

seen by looking at the two smaller plots on either side. The plots to the left and right show the 

histograms (empirical distributions) of the real data (blue) and that of the generated data (orange), 

at epoch 0 (left plot) and at epoch 3000 (right plot), respectively. While initially the two 

distributions are very different, at the end of training the generated data almost perfectly matches 

the distribution of real data.  

1.4.3 Power Spectral Density 

An important characteristic of time-series load data is its periodicity. Because loads are tied to the 

routine and behavior of people, they present different recurring patterns. One way to identify these 

periodicities is by looking at the power spectral density of the time-series data. The figure below 
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shows the power spectral density for real data (blue) and generated data (orange). It can be seen 

that the two plots match very closely, confirming that the generated data captures the periodic 

behavior of real data. It is also interesting to look at the various peaks that appear in spectral 

density: in particular, the highest peak, which occurs  at a frequency of 0.04/hour, corresponds to 

a time period of 24 hours, thus representing the daily load cycle.  

 

Figure 1.8 Comparison between the power spectral density of real data (blue) and generated data 

(orange). 

1.4.4 Forecasting Application 

The main goal of this paper is to create a mechanism for the generation of realistic synthetic load 

data that can be used by researchers when real data is either not available or not rich enough. In 

the next two sections we present the results of two example applications that show that the 

synthetic data successfully captures the behavior of real data and that it can be used for downstream 

applications.  

 

One of the most common uses of time-series load data is the development of the forecasting 

algorithms needed for power system operations and markets. While many different techniques are 

used, often in combination, one of the latest advancements in ML-based forecasting is a class of 

recurrent neural networks called long short-term memory (LSTM). Because feedback loops are 

present, the LSTM architecture can process sequences of data (such as time-series data) 

maintaining a memory of the previous inputs. To verify the quality of our load data generator, we 

trained an LSTM on a batch of synthetic data and then tested the learnt model on the real data.   

 

An LSTM network with three layers and 48 units per layer is trained to predict the value of a load 

at one point in time, given the previous 48 hours (48 points). This model is trained on two separate 

datasets independently: synthetic mainly residential summer profiles and synthetic mainly 

residential fall profiles. Each of the datasets consists of 1200 week-long profiles generated using 

the trained cGAN according to their respective labels. To evaluate the performance of the LSTM, 

for each of the two load types, the trained models are used to predict the load values of two batches 
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of profiles: new generated data and real data of the same class. The percentage error between the 

forecasted value and the actual value is computed for each profile in a batch and the first and 

second moments are computed. The table below summarizes the results of the forecasting test for 

the two types of loads (summer and fall residential). In both cases we can see that even though the 

model was trained only on synthetic data, the error when applied to real data is comparable. In 

general, this suggests that a user could train a ML model on our synthetic data and be confident 

that it would still capture the characteristics of real data.  

 

Table 1.1 Comparison of the forecasting error between generated and real load data, for summer 

and fall residential profiles. 

 
 

1.4.5 Optimal Power Flow 

The synthetic data is also tested to verify that the generated profiles can be correctly mapped to a 

power system model. One way to check this is to ensure that all the resulting load cases form a 

feasible AC power flow. This test is performed by first generating individual, week-long profiles 

for each load in the Polish test case: this system model has 2383 buses and 1822 loads. Two 

datasets are generated: one corresponding to a winter week and one for a summer week. Each of 

these profiles is mapped to the Polish system loads: since the base case of the Polish system is a 

peak case, the profiles are matched so that the peak of each profile corresponds to the base case 

value. AC optimal power flow (OPF) is then run on each case corresponding to each of the 168 

hours of the week. The results showed that OPF converged in every case to a solution with bus 

voltages and generator outputs within their predefined limits.   

1.5 Conclusion  

We presented a method to generate synthetic transmission load data at a bus level leveraging 

conditional generative adversarial networks. A user can specify the time of the year and type of 

load for which to generate time-series load profiles. Extensive testing is performed, and we have 

verified the validity of our method and quality of the generated data. Our trained generative model 

will be available to researchers to be used for any type of power system and ML application. 

Moreover, the proposed conditional learning framework can be leveraged for the generation of 

other datasets highlighting different characteristics, such as the level of penetration of renewables 

or electric vehicle charging. Finally, we are working on expanding the generative model to create 

a tool for the generation of synthetic datasets at any time resolution (from 30 samples/second to a 

few samples/week) and for any length of time (from a few minutes to multiple years). 
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2. Generation of synthetic voltage data for dynamic studies 

2.1 Introduction 

Over the past decade, thousands of PMUs have been deployed in backbone transmission systems 

across North America and around the world. Transient dynamic data captured by PMUs are of 

value to the research community of distinct research interests. However, these data are mostly 

prevented by the critical energy/electric infrastructure information (CEII) across the U.S. Besides, 

the eventful PMU data shortage is also partially attributed to the fact of limited real-world 

oscillation events recorded by PMUs. For example, we find only seven recorded system-wide 

voltage oscillation events in one real PMU data set from an anonymous large U.S. utility company 

that contains measurements of approximately 400 PMUs from 2017 to 2019. The shortage of 

eventful PMU data becomes a bottleneck preventing data-driven methods, such as oscillation 

detection and event identification, to develop, calibrate, and validate based on the real data set.  

 

While researchers recently have contributed to the creation of large-scale realistic synthetic grid 

models [1] for analysis such as macro-scope energy portfolio transition [2] and major event 

reproduction [3], existing work is infeasible to transfer real eventful PMU data to synthetic grids 

and exploit their values via simulation. Alternatively, other recent research work contributed to 

developing machine learning-based power system data generation methods, such as load profiles 

generation, renewable generation scenario generation [4], and eventful PMU generation [5]. While 

the prior work proposed the potential use of synthetic PMU data, machine learning-based 

approaches that generate realistic multi-time-scale eventful PMU data of arbitrary length 

nevertheless need efforts to develop, with several gaps in the existing work. First, prior success of 

PMU data generation methods in small-scale IEEE standard systems may not meet the demand of 

synthetic data based on the real-world PMU data set. Second, the short horizon of synthetic data 

limits the generalization of its applications. Finally, the lack of incorporating time-varying load 

conditions may undermine the fidelity of synthetic PMU data of long length. 

 

To this end, this section aims at creating massive realistic synthetic eventful data from the given 

limited real data using the proposed two-stage method that leverages Generative Adversarial Nets 

(GAN) [7] and Neural Ordinary Differential Equations (NeuralODEs) [6]. The key to the success 

of the proposed idea is to make sure that the synthetic data are realistic and diverse rather than a 

simple clone of the real data, which is achieved by the proposed PMU data creation algorithm. 

Here, with only access to the power flow model of the large-scale real system but no knowledge 

of the dynamic model, we will scale up the limited real eventful PMU data set by a multi-time-

scale PMU voltage data generation method that leverages GAN in creating time-varying load 

conditions and Neural ODE in mimicking system transient behaviours during voltage oscillation 

events, which is potentially generalizable in other real power systems. 

 

In summary, the proposed multi-time-scale eventful PMU voltage measurement generation 

method can create multiple realistic-looking PMU streams that capture the patterns of load change 

and system oscillation in distinct time scales. The synthetic time-series load data (generated by the 

method in the last section) can capture the inherent property of load change at varying resolutions 

by combining the load time series of various lengths and time resolutions. Voltage measurement 
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oscillation generation: The synthetic small-signal oscillation data can learn the pattern of real 

system voltage oscillation events dominated by the underlying ODE. 

2.2 Problem Statement 

Consider a set of historical eventful PMU measurements obtained covering pre-event, during event 

and post-event periods, where the label refers to the event type. For PMU𝑖, we denote historical 

phasor domain voltage and current data by𝑉𝑖 and 𝐼𝑖, which are collected by a time window of 𝑇with 

a time step 𝛥𝑇. Define one entire sample of an event as 𝑆 = [𝑉1, 𝐼1, . . . , 𝑉𝑁𝑃𝑀𝑈
, 𝐼𝑁𝑃𝑀𝑈

], where 𝑁𝑃𝑀𝑈 

is the total number of PMUs. The data creation problem tackled by this paper is to develop a data 

creation algorithm to create synthetic eventful PMU data of certain event type using the 

corresponding historical samples  {𝑆𝑖}, 𝑖 = 1, . . . , 𝑁𝑠 as the training data, where 𝑁𝑆is the number of 

the historical samples, in such a way that the created synthetic data exhibit relevant properties 

possessed by the historical data. 

2.3 Review of Generative Models 

GAN was proposed in 2104 which has now arguably become one of the most popular and 

successful deep generative models, of which the architecture is shown in the following figure. 

 

Both generative model (generator) G and discriminate model (discriminator) D are implemented 

by neural networks, which are trained by optimizing the following objective function J: 

 

𝑚𝑖𝑛𝐺  𝑚𝑎𝑥𝐷  𝐽 = 𝔼𝒙𝑙𝑜𝑔(𝐷(𝑥))  + 𝔼𝒛 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) 

 

 

Figure 2.1 The architecture of vanilla GAN. 

2.3.1 Review of NeuralODE model 

The Neural ODE model, which is used for time-series modeling, contains two key components: a 

neural network and an ODE solver. Instead of specifying a discrete sequence of hidden layers, this 

model parameterized the derivative of the state, using a neural network 𝑓. It can be trained by 

supervised learning to minimize the scalar-valued loss function as follows: 
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𝑖𝑛𝑓  𝐿(𝑠) =
1

𝑡1 − 𝑡0
∑ || ∫ 𝑓(𝑠(𝜏))𝑑𝜏 + 𝑠(𝑡0)

𝑡

𝑡0

− 𝑠(𝑡)||2

𝑡1

𝑡=𝑡0

 

where ∫ 𝑓(𝑠(𝜏))𝑑𝜏 + 𝑠(𝑡0)
𝑡

𝑡0
 represents the estimated state based on the neural network given the 

initial state 𝑠(𝑡0), 𝑠(𝑡) represents the measurements at time 𝑡, and the function f is a neural network 

parameterized by 𝜃𝑓 that indicates how the measurements evolve along the timeline. 

2.4 Two-stage Synthetic Eventful Voltage Measurement Generation 

2.4.1 Frame of Two-time-scale Eventful PMU Data Generation under Time-varying Load 

Condition 

Here, we assume that the created multi-time-scale PMU measurements are a linear combination of 

steady state and small signal oscillation, which are respectively determined by the pattern of load 

change and the nature of system dynamics. Therefore, we separate the task of multi-time-scale 

eventful PMU data generation into two subtasks. First, we aim to create realistic time-varying load 

profiles and then estimate the steady-state voltage measurements via power flow simulation based 

on the accompanied real static PSS/E system model. Second, we learn the pattern of small signal 

voltage oscillation based on the pre-processed real eventful data. With such instructive principle, 

leveraging the GAN and Neural ODE, a novel two-stage PMU data generation algorithm is 

proposed as shown in the figure below, where GAN creates synthetic time-varying load profiles, 

while Neural ODE creates the voltage profiles under the given time-varying load condition. In the 

training process, we train the GAN and Neural ODE models separately with the limited real PMU 

data. In the data creation process, we combine the well-trained G and f models to generate the 

PMU data of an entire event of arbitrary length. 

 

Figure 2.2 The proposed two-stage GAN-based algorithm incorporates the architecture of GAN 

and NeuralODE models. 
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The rest of this section will introduce the detailed algorithms of load profile generation, steady 

state estimation, and voltage oscillation generation, and show the methods of data quality check. 

2.4.2 Load Profile Generation 

This algorithm aims to develop a scheme to generate realistic time-series load data varying in 

length from a few minutes to a year and at varying resolutions (from one sample per week down 

to 30 samples per second). This approach relies on training a generative model for different time 

resolutions and length levels; when all the models are trained, the synthetic data can be generated 

at the appropriate levels and combined depending on the user's requirements. The basic framework 

for each level's training consists of using generative adversarial networks (GANs). GANs are a 

novel machine learning framework in which a generative model (or generator) is trained by making 

it compete against a discriminator. The goal of the generator G is to capture the distribution of the 

real data pr, while the discriminator D is trained to distinguish the real data from the synthetic data 

produced by the generator. The details of this technique are introduced in the last section, namely 

generation of synthetic load time series data for steady state application. 

2.4.3 Steady-state Voltage Measurements Estimation 

We estimate the steady-state voltage measurements under a certain load condition via simulation 

on the accompanied static PSS/E model. Note that the obtained system model is only compatible 

for solving power flow, rather than transient simulation due to the lack of dynamic modelling of 

generators. 

 

Leveraging the well-trained load profile generation model, we can generate massive realistic load 

profiles during a certain time period, which possess similar pattern but meanwhile exhibit 

diversity. Assigning load profiles to load buses in the simulation model and proportionally scaling 

generation dispatch, we can obtain the steady-state voltage measurements by solving power flow 

at each moment. Note that applying realistic generation dispatch methods is out of this paper's 

scope. 

2.4.4 Voltage Oscillation Generation  

In the context of our problem, with the voltage measurements at all targeted buses as the state, the 

corresponding f function of the eventful time series is time-invariant during a short period. In other 

words, given an initial state, the entire trajectory is uniquely defined. Therefore, we intuitively use 

the NeuralODE to implement the event time series modelling by supervised learning. The 

NeuralODE model will be another core of the proposed two-stage networked eventful PMU data 

creation algorithm. 

 

The NeuralODE model is trained independently by a supervised learning to minimize the scalar-

valued loss function: 

𝑚𝑖𝑛𝑓  𝐿(𝑠) =
1

𝑡1 − 𝑡0
∑ || ∫ 𝑓(𝑠(𝜏))𝑑𝜏 + 𝑠(𝑡0)

𝑡

𝑡0

− 𝑠(𝑡)||2

𝑡1

𝑡=𝑡0
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where 𝑠(𝑡) represents the measurement at time 𝑡;  the integral ∫ 𝑓(𝑠(𝜏))𝑑𝜏 + 𝑠(𝑡0)
𝑡

𝑡0
 represents 

the estimated state based on the neural network for an initial state, and the function 𝑓is a neural 

network parameterized by 𝜃𝑓that indicates how the measurements evolve along the timeline. Note 

that since we assume the post-event power system model is a time-invariant dynamic system, we 

can randomly sample arbitrary PMU data segments in the post-event period as the training data of 

the Neural-ODE model.  

 

The proposed two-stage algorithm has two advantages, respectively addressing the two challenges 

of physical constraints and computation burden. On one hand, this two-stage design makes the 

GAN model create the PMU measurements at only very few special time instants, which 

significantly reduces the size of the GAN model and improves the computational efficiency. On 

the other hand, this algorithm embeds the ODE format by incorporating the NeuralODE model, 

which can effectively learn the temporal correlation of the oscillation measurements from different 

PMUs. 

 

Additionally, we verify the physical meaning of the post-event synthetic PMU data. In this paper, 

modal analysis is used to quantitatively show whether synthetic voltage oscillation data possess 

realistic dynamic characteristics of power systems, i.e., modal properties. Specifically, we use 

Prony analysis, a classical ring-down analysis method, to analyze the synthetic data and extract 

important modal properties including oscillation frequency and damping.  

 

Since modes are the fingerprint of a given linear system (or the linearized part of a nonlinear 

dynamic system), we can compare the modes of the real data and synthetic data for validating the 

fidelity of the synthetic data. Without loss of generality, here we select the voltage angle 

measurements for validation. Details of the validation are summarized below: 

● Modal Property Estimation:  Calculate the oscillation frequency, damping coefficient, 

amplitude, and phase of all active modes via Prony analysis for real and synthetic voltage 

angle profiles. 

● Modes Selection: Only the modes with amplitude greater than a threshold are selected as 

active modes. The threshold is fixed as the 10% of the maximum value of all mode 

amplitudes.   

● Validation: For each synthetic profile, modal frequencies and damping ratios of the active 

modes are compared with those of all real profiles at the same generator bus. We say that 

the synthetic profile passes the test if all active modes of the tested synthetic profile appear 

in the real data. We declare a pair of modes as the same mode if their relative error is less 

than 5%. 

2.5 Results of Voltage Oscillation Measurements Generation 

Case Study on IEEE 39-bus System  

The IEEE 10-machine 39-bus system is simulated to provide the training and test data sets. 

Specifically, we focus on three types of events: bus fault, line tripping and load shedding. Table 

below shows the simulation configuration of these three types of events. Note that both bus fault 

and line tripping events are triggered by solid three phase grounding faults, and all simulations 

start from the same steady state.  We randomly sample the simulation parameters and get the 



 

15 

 

simulated eventful data from PowerWorld, which include voltage magnitude and angle profiles at 

all generator buses covering the pre-event, during event and post-event periods.  

 

Table 2.1 Simulation setting of three event types, including bus fault, line tripping, and load 

shedding. Note that both of bus fault and line tripping events are triggered by solid three phase 

grounding faults. 

Event Type Parameter Simulation Setting 

Bus fault 

Fault duration 0-0.1 s 

Fault location Random bus 

Sampling frequency 60 Hz 

Time window 15 s 

Line tripping 

Fault duration 0-0.1 s 

Fault location Random line 

Sampling frequency 60 Hz 

Time window 15 s 

Load shedding 

Shedding percentage 5-50% 

Fault location Random load bus 

Sampling frequency 60 Hz 

Time window 15 s 

 

Figure below illustrates the real (top row) and synthetic (bottom row) eventful voltage angle 

profiles at all generator buses in a 5s time window which includes the pre-event, during event and 

post-event periods. Note that we randomly select the synthetic sample for each event type and then 

determine the real sample by looking for the one that is closest to the synthetic sample. It is 

observed from the visual comparison that: (i) real and synthetic profiles have similar settling 

patterns; (ii) the ranges of real and synthetic profiles are nearly the same. These observations imply 

that the proposed two-stage GAN-based model can generate transient PMU data that capture the 

inherent temporal correlation. 
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Figure 2.3 Visual comparison between real (top) and synthetic (bottom) eventful voltage angle 

profiles at generator buses. The examples of bus fault, line tripping and load shedding are 

respectively shown in the subfigure (a), (b) and (c). 

According to the modal analysis-based synthetic data quality check method, we separately test the 

synthetic data of all event types, with the training and test data sets generated being the benchmark. 

The modal analysis test result of bus fault, line tripping and load shedding are shown in the table 

below. From this table, we can observe that: (i) fidelity: High success rate indicates that the 

synthetic data approximately capture the dynamic characteristics of the real data, (ii) diversity: 

The difference of the success rate between training and test benchmark indicates that the generative 

model does not simply memorize the training data but also it creates new and meaningful modes 

that exist in the test data set. 

 

Table 2.2 Modal analysis test 

Event type Bus fault Line tripping Load shedding 

Accuracy Train 88.10% 86.60% 80.28% 

Accuracy Test 90.23% 87.30% 82.81% 

 

Case Study on A Real Large-scale System  

The available real PMU data set is obtained from an anonymous U.S. utility company, which 

covers the duration from 2017 to 2019 and contains single phase and positive sequence 

measurements of voltage and current at a rate of 30 samples per second. The accompanied static 

system model contains 7577 buses, 709 generators, 338 loads and 10338 branches, where there 

are a total of 366 PMUs deployed starting from 2017. 

 

We implement the same voltage oscillation generation algorithm as implemented in the last 

subsection. Specifically, we achieve the model f in NeuralODE by a 3-layer fully connected neural 

network, of which the number of neurons is respectively 128, 128 and the number of 

measurements. To demonstrate the learning capacity of NeuralODE, we will show the results of 

synthetic voltage oscillation data in events of distinct durations that exhibit different dynamic 

behaviors. We train and test the NeuralODE model based on a 10-second event, as shown in the 
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figure below. The visual comparison and quantified average error demonstrate the strong learning 

capacity. Moreover, the extended synthetic profiles in the following additional 5 seconds show its 

flexibility of generating time series of arbitrary length. 

 

 

Figure 2.4 Visual comparison between real (red) and synthetic (blue) eventful voltage angle 

profiles at illustrated 4 PMUs. 

 

Illustrated Application of Synthetic Voltage Oscillation Data  

We show that the number of samples in the training data set has a significant impact on the event 

classification accuracy, and then show the improvement of the event classification accuracy by 

incorporating the synthetic PMU data based on the case of IEEE 39-bus system.  

 

Based on the case of IEEE 39-bus system, we have a training data pool and a test data set for the 

event classifiers that respectively have 400 and 800 samples for each event type. We will randomly 

sample several training data from the training data pool and test the trained event classifiers on the 

whole test data set. 

 

Firstly, we show the impact of the number of samples in the training data set on the event 

classification accuracy in the table below. The first row of the table represents the number of 

samples in the training data set for each event type. The notation in the first column means the 

classification methods. For example, PCA-SVM refers to a classification method that extracts the 

features by PCA and classifies the features by SVM. We randomly pick the given number of 

samples in the training data set, and then train all four event classification methods. To mitigate 

the randomness, we repeat this procedure 10 times and calculate the mean and standard deviation 

of the event classification accuracy as shown in each cell. The following can be observed from this 

table: although these four classification methods have distinct performances, the increasing 

number of training data always benefits their classification accuracy in the sense of mean value 

and the standard deviation. Given the fact that there are always only a limited number of real 
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events, the accuracy of these classification methods is expected to be low in the practical 

application. It also shows the need for more data to improve the event classification accuracy. 

 

Table 2.3 Impacts of the number of training data on the event classification accuracy 

Synthetic 

training data 
20 40 60 80 100 

PCA-SVM 
68.97
± 7.79% 

72.10
± 2.68% 

76.15
± 2.40% 

74.80
± 1.64% 

76.28
± 1.88% 

WT-SVM 
80.88
± 3.11% 

84.76
± 2.40% 

88.24
± 2.29% 

90.98
± 1.01% 

91.16
± 1.36% 

PCA-Ensemble 
79.27
± 3.85% 

84.72
± 2.19% 

89.38
± 1.55% 

92.08
± 0.97% 

92.93
± 0.76% 

WT-Ensemble 
82.73
± 3.03% 

90.90
± 1.92% 

95.71
± 0.82% 

96.83
± 0.37% 

97.28
± 0.59% 

 

Next, we show the improvement of the event classification accuracy by incorporating the synthetic 

PMU data as shown in the table below. Note that NeuralODE models used to generate the synthetic 

data are trained by only 20 real samples for each event type. Since the data creation method can 

generate massive synthetic data, we also randomly sample a given number of synthetic data 

samples and mix them with the real samples for training the event classifiers. Then, we use the 

created hybrid training data set to train all four event classification methods. To mitigate the 

randomness, we repeat this procedure 10 times as well and calculate the mean and the standard 

deviation of the event classification accuracy as shown in the table below. Comparing two tables, 

we have the following observations: 

● Incorporating the synthetic data can effectively and consistently improve the event 

classification accuracy by 2 to 5 percent, compared to the results based on only 20 real training 

data for each event type. 

● When the number of the real data increases from 20 to 100, it always leads to a better 

classification accuracy than the cases with synthetic PMU data, meaning the synthetic data 

can aid in the classification accuracy due to the lack of training data but cannot replace the 

real ones. 

● When the synthetic data overwhelms the real training data, the classification accuracy is not 

negatively affected, implying that the synthetic data are of good quality. 
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Table 2.4 Improvement of event classification accuracy by incorporating synthetic data 

Synthetic 

training data 
100 200 300 400 

PCA-SVM 73.85 ± 1.69% 73.77 ± 1.27% 73.01 ± 2.83% 73.32 ± 1.72% 

WT-SVM 82.73 ± 2.29% 82.69 ± 1.27% 81.76 ± 2.02% 81.52 ± 2.41% 

PCA-Ensemble 85.47 ± 2.94% 82.32 ± 2.23% 82.52 ± 2.82% 81.74 ± 2.77% 

WT-Ensemble 90.05 ± 1.42% 88.97 ± 2.31% 90.27 ± 1.50% 88.16 ± 2.18% 

2.6 Conclusions  

In this project, we have presented a method to generate synthetic transmission load data at a bus 

level leveraging conditional generative adversarial networks. A user can specify the time of the 

year and type of load for which to generate time-series load profiles. Extensive testing is 

performed, and we have verified the validity of our method and quality of the generated data. Our 

trained generative model will be available to researchers to be used for any type of power system 

and ML application. Moreover, the proposed conditional learning framework can be leveraged for 

the generation of other datasets highlighting different characteristics, such as the level of 

penetration of renewables or electric vehicle charging. Finally, we are working on expanding the 

generative model to create a tool for the generation of synthetic datasets at any time resolution 

(from 30 samples/second to a few samples/week) and for any length of time (from a few minutes 

to multiple years). On the other hand, we propose to create synthetic voltage oscillation data via a 

two-stage generation method, which can be separated into steady-state and oscillation data 

generation. This approach can scale up the otherwise limited real-world PMU data as follows. 

First, it leverages the capability of GAN to guarantee the diversity of massive synthetic data. 

Second, it leverages NeuralODEs to provide meaningful voltage oscillation time-series data. Such 

synthetic data sets can then be fed into subsequent monitoring and decision-making processes. As 

an example, we show that the synthetically created PMU data improves the performance of data-

driven event classification. We validate the fidelity of the synthetic data via visual comparison and 

modal analysis approaches and verify that the synthetic data can improve the accuracy of four 

selected event classification methods. 
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1. Event Detection and Prediction of Island Formation 

1.1 Introduction 

Extreme weather events such as hurricanes can cause unforeseen contingencies in power systems. 

Despite real time contingency analysis (RTCA) and security constrained economic dispatches 

trying to ensure N-1 reliability, these events can cause cascading failures. Power outages in 

Louisiana during Hurricane Gustav in 2008 [1], and power interruptions in Florida during 

Hurricane Irma in 2017 [2] are examples of such extreme weather events. The focus of this 

research is on detecting and predicting extreme events that result in island formation due to 

multiple outages. 

A critical component of contingency analysis for dealing with extreme weather events is the speed 

of detection. The power flow based contingency analysis is not fast enough to perform an 

exhaustive N-1 RTCA [3]. In the event of successive outages, N-k contingency analysis has to be 

carried out and the computational burden increases even more [4]. Conversely, if the analysis is 

limited to small subsets, critical scenarios might be missed. A tool for enhanced situational 

awareness of critical contingencies in the power system is required especially in the presence of 

potential cascading failure-triggering outages.  

A novel approach based on graph-theoretic principles and network analysis is proposed here to 

protect the system against uncontrolled islanding [5]-[7]. Initially, the focus is on identifying 

contingencies that will create vulnerable bottlenecks in power networks when multiple outages 

manifest in rapid succession [5]-[6]. Subsequently, mitigation strategies for the identified 

bottlenecks are discussed [7]. The proposed algorithm requires time synchronized bus power 

injections as one of the inputs. A machine learning (ML)-based framework is proposed to satisfy 

this requirement. Figure 1 describes the outline of the proposed approach, which consists of three 

research segments. The first segment delves with time synchronized bus power injection 

estimation. The second segment focuses on saturated cut-set detection. The final segment describes 

the mitigation strategies for alleviating saturated cut-sets. 

 

Figure 1.1 Outline of the proposed approach 
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1.1.1 Mathematical Background 

A cut-set is defined as a set containing a minimum number of branches which when removed splits 

the network into two disjoint islands. Any cut-set which transfers more power from one area to 

another than is permissible by the maximum power transfer capability of that cut-set is a saturated 

cut-set. Let branches 𝑒1, 𝑒2,…, 𝑒𝑧 belong to the cut-set 𝐾. If the flows through the cut-set branches 

are 𝑓1, 𝑓2,… 𝑓𝑧, and the ratings of those branches are 𝑟1, 𝑟2,… 𝑟𝑧, cut-set 𝐾 is called a saturated 

cut-set if the following equation holds: 

                                                        ∑ 𝑓𝑖
𝑧
𝑖=1 ≤ ∑ 𝑟𝑖

𝑧
𝑖=1 , ∀𝑒𝑙𝑖 ∈  𝐾                                                 (1) 

where ∑ 𝑓𝑖
𝑧
𝑖=1 = 𝐹𝐾 is the actual power flow occurring through cut-set 𝐾 and ∑ 𝑟𝑖

𝑧
𝑖=1 = 𝑅𝐾 is the 

maximum power that can be transferred across cut-set 𝐾. The objective here is to identify if a 

contingency creates a saturated cut-set or not. 

Saturated or overloaded cut-sets denote vulnerable bottlenecks in power grids across which 

islanding is likely [8]. Hence, it is important to detect contingencies that saturate (or overload) a 

cut-set. However, it must be noted that a single branch can be associated with multiple cut-sets. 

Thus, to assess the impact of the loss of any power system asset (e.g., line, transformer) on any 

cut-set of the power system, the power transfer capability of all cut-sets associated with that asset 

should be checked. For a big system containing thousands of buses, a single asset could be 

associated with numerous cut-sets. Therefore, quantifying the impact of an outage on any cut-set 

of the power network is a computationally intensive task. 

As cascading failures can lead to system islanding, a methodology to detect such scenarios is 

proposed first. Subsequently, efficient methods to take corrective actions when a saturated cut-set 

is detected so that cascading failures are prevented, is discussed. The algorithm for the detection 

of saturated cut-set requires the time synchronized bus power injections and the topology of the 

network. The first segment of the research thus focuses on bus power injection estimation from 

phasor measurement unit (PMU) measurements. 

1.2  Time Synchronized Bus Power Injection Estimation 

The bus power injections are an essential input to the proposed saturated cut-set detection 

algorithm. In general, there are many challenges to estimating the time synchronized bus power 

injections at every bus in a network. A combination of classical static state estimation and circuit 

laws could have been thought of as a method to estimate the bus power injections. However, since 

this study focuses on situational awareness tools for extreme event scenarios, there is a high 

possibility that the classical state estimation algorithms might face convergence issues under such 

conditions [9]. Moreover, the bus power injections thus computed will not be time-synchronized. 

A PMU-based linear state estimator in a system that is completely and independently observed by 

PMUs, is a possible solution. However, due to the high cost of synchrophasor infrastructure [10], 

PMUs are placed only on some of the buses in the network (e.g., the highest voltage buses). 

Therefore, it makes sense to come up with a new methodology to estimate time synchronized bus 

power injections using an extremely limited number of PMUs. To attain this objective, a data attain 
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this objective, a data driven mapping rule estimation technique using PMU measurements is 

proposed. The proposed method learns the mapping rule between the PMU measurements and bus 

power injections using ML.  

1.2.1 Kernel density estimation 

ML algorithms require a large amount of historical data for their training. For a given loading 

condition, an optimal power flow (OPF) solution can be used to generate bus power injections and 

synthetic PMU measurements. The challenge, however, is generating realistic load scenarios for 

any test system. Hourly power consumption data for a year is publicly available for the 2000-bus 

synthetic Texas system [11]. However, this results in only 366 values per bus for a given hour. To 

create more data, a probability density function (PDF) is slapped onto the power injection data 

obtained at a given hour for every bus using Kernel Density Estimation (KDE). KDE is a non-

parametric method to find the best-fit PDF to a given dataset. Once the PDF is obtained, any 

number of scenarios can be generated using it. 

The different bandwidths in KDE introduces a bias-variance trade-off problem. This challenge is 

overcome by using the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality for bandwidth tuning. By 

employing the DKW inequality, a 95% confidence interval is maintained. The effect of this tuning 

can be observed in the following figures. 

 

Figure 1.2 Bandwidth tuning for KDE 

The three sub-figures in Figure 2 have the same histogram (blur bars) for active power injection at 

a bus. The estimated PDF of active power injection at the same bus using KDE is shown using the 

orange curve. The left subfigure shows the PDF obtained when a low bandwidth is used in KDE. 

It can be observed that the PDF obtained in this case is overfitting the actual histogram. 

Conversely, the middle subfigure corresponds to using a high bandwidth in KDE and 

consequently, the resulting curve underfits the actual histogram. The right most figure corresponds 

to optimal bandwidth obtained by using DKW inequality with 95% confidence interval. This PDF 

appropriately fits the actual histogram and was thus used for ML training. 

The best-fit PDF was identified for different loads of the 2000-bus synthetic Texas system. The 

results for best-fit PDFs for different buses are shown below. Once a PDF is obtained, as many 

data samples as desired can be generated. Next, the buses of the 2000-bus synthetic Texas system 

were mapped to the load buses in the IEEE 118-bus test system based on similar power ratings. 

Subsequently, 15,000 load scenarios are sampled using these PDFs. For each of the 15,000 load 
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scenarios, OPF was solved in MATPOWER to generate simulated PMU measurements and bus 

power injections. This data was used to train ML algorithms to learn the underlying mapping rule. 

 

 

Figure 1.3 KDE for different buses 

1.2.2 Data-driven methods for time synchronized bus power injection estimation 

PMU measurements and the corresponding bus power injection data generated are used for the 

training of two ML algorithms, namely, deep neural networks (DNNs) and support vector 

regression (SVR). The objective is to estimate the mapping rule considering a setup where a limited 

number of PMUs are present in the network, thereby emulating a real-world scenario. In particular, 

IEEE 118-bus test system was selected for this experiment and PMUs were assumed to be placed 

on only the 11 high voltage buses of this network. The objective of this problem was to estimate 

the time-synchronized bus power injections of all the buses in the IEEE 118-bus system using 

PMU measurements from just the 11 high voltage buses.  

First, a DNN was trained to learn the mapping relation between the 11 PMU measurements and 

the 118 bus power injections. The input features consist of voltage measurements of the buses on 

which PMUs are placed and the current measurements of the branches that are observed by the 

PMUs. It was found that a DNN with 4 hidden layers is giving optimal performance. The training 
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of the DNN was conducted using the ADAM optimizer. L2 regularizer was used to avoid the 

problem of overfitting. Table I shows the detailed list of hyperparameters. The mean absolute 

relative error (MARE) of the estimated bus power injections and the true bus power injections 

obtained using DNN are shown in Figure 4.  

 

Table 1.1 DNN hyperparameters for bus power injection estimation 

DNN Architecture 

Number of neurons in Input Layer 800 

Number of neurons in first Hidden Layer 600 

Number of neurons in second Hidden Layer 600 

Number of neurons in third Hidden Layer 500 

Number of neurons in fourth Hidden Layer 400 

Number of neurons in output Layer 118 

Loss Function Mean Absolute Error (MAE) 

Learning rate for ADAM optimizer 10−3 

Batch Size 64 

L2 Regularization On 

 

 

Alternatively, an SVR was used to learn the mapping rule and estimate the bus power injections. 

SVR finds a hyperplane that maximizes the margin between the hyperplane and the support 

vectors. The learned hyperplane is then used to estimate the power injection from the testing data. 

A polynomial kernel of degree 2 was used to implement the SVR kernel. The SVR based method 

has similar set of inputs and outputs as those used for the DNN, i.e., a combination of magnitude 

and phase angle values of voltage and current measurements obtained from the PMUs placed at 

the selected buses of the system are used as inputs, and the bus power injections at every bus are 

the outputs. The MARE of the estimated bus power injections obtained using SVR is shown in  

Figure 5.  
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It can be observed that both DNN based method and the SVR based method was able to estimate 

the synchronized bus power injections to a very high degree of accuracy even though the PMUs 

were placed only on 11 of the 118 buses. In the case of DNN, the MARE was less than 0.5% for 

95% of the load buses, and less than 3% for all the buses. The SVR was able to estimate 91% of 

the load buses with less than 0.5% MARE, while the highest error was less than 3.5%. Because 

only 11 PMUs were placed in the 118-bus test system, these data-driven methods are found to give 

bus power injection estimation to a very high degree of accuracy. The bus power injections thus 

obtained are used as inputs for the saturated cut-set detection algorithm.  

1.3 Fast Identification of Saturated Cut-sets 

To uniquely determine if a contingency saturates a cut-set in the network, a novel graph-theory 

based network analysis technique called the feasibility test (FT) algorithm is developed. The 

Figure 1.4 Result - DNN for bus power injection estimation 

Figure 1.5 Result - SVR for bus power injection estimation 
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working principle of the FT algorithm is described as follows. Let a branch 𝑒𝑙 (transmission line 

or transformer) connect buses  𝑣𝑙
𝐹 and 𝑣𝑙

𝑇 as shown in Figure 6. Since branch 𝑒𝑙 is a single element 

that joins bus  𝑣𝑙
𝐹 to 𝑣𝑙

𝑇 it is called a direct path from bus 𝑣𝑙
𝐹 to 𝑣𝑙

𝑇. 𝑓𝑙 marked on Figure 6 denotes 

the flow through branch 𝑒𝑙. There could be many other electrical paths to transfer the power from 

bus 𝑣𝑙
𝐹 to bus 𝑣𝑙

𝑇. An indirect path is the path that contains multiple branches from 𝑣𝑙
𝐹 towards 𝑣𝑙

𝑇. 

 

Figure 1.6 Network connectivity between two vertices 

The total extra power that can be re-routed through the indirect paths of a branch (denoted as 𝑇𝐶𝑙 

in Figure 6) is found by FT by using the breadth first search (BFS) graph traversal scheme. If the 

indirect paths do not have sufficient capacity to reroute the power flowing through the direct path, 

it means that the outage of the direct path saturates a cut-set in the network (i.e., 𝑇𝐶𝑙 < 𝑓𝑙); and the 

direct path is termed a special asset. If the outage of a branch saturates more than one cut-set, the 

FT screens out the cut-set that is saturated by the largest margin; this cut-set is known as the 

limiting critical cut-set, 𝐾𝑐𝑟𝑖𝑡. The FT also provides the transfer margin, 𝑇𝑚 (calculated as 𝑇𝑚 =

𝑇𝐶𝑙 − 𝑓𝑙) by which 𝐾𝑐𝑟𝑖𝑡 is saturated. 

The utility of the proposed algorithm for enhanced situational awareness is explained with a case-

study on the IEEE-118 bus test system. Due to a hurricane, let the following transmission asset 

outages occur one after another: 15-33, 19-34, 37-38, 49-66, and 47-69 (marked 𝑂1 through 𝑂5 in 

Figure 7). From Figure 7 and Table II, following information is obtained when the FT algorithm 

is applied as outages manifest: 

1) Base-case: In the base-case scenario, the asset 26-30 fails the graph theory-based FT and is 

classified as a special asset. The loss of 26-30 would saturate the limiting critical cut-set 𝐾𝑐𝑟𝑖𝑡
0  

by a margin of -77 MW, i.e., 𝑇𝑙
0= -77 MW.  

2) 1st Outage: When 15-33 is lost, no additional special assets are identified.  

3) 2nd Outage: When 19-34 is lost, no additional special assets are identified. 

4) 3rd Outage: When 37-38 is lost, the asset 42-49 fails the FT and is classified as a special 

asset. The loss of 42-49 would saturate the limiting critical cut-set 𝐾𝑐𝑟𝑖𝑡
3  by a margin of -186 

MW, i.e., 𝑇𝑙
3= -186 MW. 

5) 4th Outage: When 49-66 is lost, no additional special assets are identified. 

Figure 6: Network connectivity between two vertices 
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The value of the information obtained above can be realized by considering the following scenario: 

after the occurrence of the fifth outage, the proposed FT algorithm would inform the power system 

operator that if any of the four assets identified in the last row, second column of Table II is lost 

next (as the 6th outage), the corresponding cut-set identified in the third column would be saturated 

by the margin mentioned in the fourth column. The operator must preemptively reduce the power 

flowing through the identified cut-set by at least the amount mentioned in the fourth column to 

avoid the anticipated overload. Thus, the proposed network analysis tool is an enhanced power 

system connectivity monitoring scheme that improves the power system operators’ situational 

awareness by augmenting their visualization in real-time.  

To validate the severity of the contingencies (special assets) identified by the FT algorithm we 

have performed an independent cascading failure simulation using MATCASC [12]. MATCASC 

is a software package linked with MATPOWER that facilitates the simulation of cascading failures 

for any initiating contingency. The amount of load shed at the end of the cascade (shown in the 

sixth column of Table II) indicates the severity of the contingency. It can be observed that all the 

critical contingencies identified by the cascading failure analysis (that results in some load 

shedding) have also been identified by the graph-theory based FT analysis (compare the second 

and fifth columns of Table II). 

 

 

Figure 1.7 Detection of post-contingency cutset saturation on the IEEE 118 bus system 
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Table 1.2 Performance comparison of Feasibility Test (FT) algorithm 

Event 

Feasibility Test (FT) Analysis 
Cascading failure 

analysis by MATCASC 

New special 

asset 

Limiting critical 

cut-set 

Transfer 

margin 

(MW) 

Critical 

Contingency 

Load 

shed 

(%) 

Base-case 26-30 
𝐾𝑐𝑟𝑖𝑡

0 = {26-

30,25-27,25-23} 
𝑇𝑙

0=-77 26-30 12.20% 

Outage 1 (15-33) - - - - - 

Outage 2 (19-34) - - - - - 

Outage 3 (37-38) 42-49 
𝐾𝑐𝑟𝑖𝑡

3 = {42-49,44-

45} 
𝑇𝑙

3= -186 42-49 29.87% 

Outage 4 (49-66) - - - - - 

 

Outage 5 (47-69) 

59-56 
𝐾𝑐𝑟𝑖𝑡

5𝑎 = {59-56,59-

54,59-55,69-49} 
𝑇𝑙

5𝑎= -64 59-56 25.27% 

63-59 
𝐾𝑐𝑟𝑖𝑡

5𝑏 = {63-59,61-

59,60-59,69-49} 
𝑇𝑙

5𝑏= -191 63-59 28.68% 

63-64 
𝐾𝑐𝑟𝑖𝑡

5𝑐 = {63-64,61-

59,60-59,69-49} 
𝑇𝑙

5𝑐= -191 63-64 28.26% 

64-65 
𝐾𝑐𝑟𝑖𝑡

5𝑑 = {64-65,66-

62,66-67,69-49} 
𝑇𝑙

5𝑑= -219 64-65 28.92% 

1.4 Mitigation of Saturated Cut-sets 

After detection of saturated cut-sets, their quick alleviation is the next requirement. Towards this 

end, a two-component methodology is proposed. The first component is named integrated 

corrective action (iCA) and it combines the proposed feasibility test with RTCA. This helps the 

system to be secure against post-contingency cut-set saturation and critical branch overloads. The 

second component is named relaxed corrective action (rCA) and it uses the feasibility test results 

to secure the system against post contingency cut-set saturation alone. While rCA is more 

computationally efficient, iCA is more comprehensive. Implementing both in parallel, with rCA 

being used only when iCA cannot provide a solution before next redispatch occurs, enhances the 

system security significantly in comparison to only relying on RTCA all the time. 
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1.4.1 Integrated corrective action (iCA) 

Post contingency cut-set saturation as well as critical branch overloads are a big concern for power 

system operators as they can lead to successive contingencies and compromise system security to 

a great extent. iCA is designed by combining the results from FT and RTCA. iCA ensures the 

critical contingencies detected by RTCA do not create post-contingency branch overloads and the 

special assets identified by FT do not create saturated cut-sets, while also finding a least cost 

redispatch solution. Generation redispatch and load-shedding are the two actions to mitigate all 

the identified overloads. Since load-shedding has higher socio-economic costs, it is not a preferred 

action. However, during multiple contingency scenarios, generation redispatch alone might not be 

able to mitigate all identified overloads and load-shedding should be used as a last resort. The 

mathematical formulation and derivation of iCA is explained below. 

Consider that the generator at bus 𝑖 ∈ 𝐺 in the system is associated with a quadratic cost curve as 

shown below: 

                                                  𝐹𝑖(𝐺𝑖) = 𝑎𝑖 + 𝑏𝑖𝐺𝑖 + 𝑐𝑖𝐺𝑖
2                                                      (2) 

where, 𝐺𝑖 is the power produced (in MW) by the generator at bus 𝑖, and 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are the fixed 

cost coefficient (in $), the linear cost coefficient (in $/MW), and the quadratic cost coefficient (in 

$/MW2), respectively, for the corresponding generator. Let 𝐺𝑖
𝑜 and 𝐺𝑖

𝑛 denote the power produced 

before and after the new dispatch. The change in generation cost as a function of change in power 

generation, ∆𝐺𝑖(= 𝐺𝑖
𝑛 − 𝐺𝑖

𝑜), is given by, 

                                 ∆𝐹𝑖(∆𝐺𝑖) = {𝑎𝑖 + 𝑏𝑖𝐺𝑖
𝑛 + 𝑐𝑖(𝐺𝑖

𝑛)2} − {𝑎𝑖 + 𝑏𝑖𝐺𝑖
𝑜 + 𝑐𝑖(𝐺𝑖

𝑜)2} 

                                                   = 𝑐𝑖∆𝐺𝑖
2 + 𝑑𝑖∆𝐺𝑖                                                                   (3) 

where, 𝑑𝑖 = (2𝑐𝑖𝐺𝑖
𝑜 + 𝑏𝑖). Now, the cost of shedding the load at bus 𝑗 ∈ 𝐿 can be written as: 

                                                 ∆𝐹𝑗(∆𝐿𝑗) = 𝑚𝑗∆𝐿𝑗                                                                 (4) 

where, ∆𝐿𝑗 denotes the amount of load-shed, and 𝑚𝑗 is the cost coefficient of load-shed (in $/MW); 

𝑚𝑗 is chosen to be significantly higher compared to the generator cost coefficients because the 

goal is to use load-shed only when generation redispatch alone cannot mitigate all violations. The 

optimization problem that minimizes the total cost of change in generation and load-shed can now 

be written as: 

                                           Minimize: ∑ (𝑐𝑖∆𝐺𝑖
2 + 𝑑𝑖∆𝐺𝑖)𝑖∈𝑮 +  ∑ (𝑚𝑗∆𝐿𝑗)𝑗∈𝑳                             (5) 

While this optimization problem can find the minimum cost for the total change in generation and 

load-shed, there are some constraints that should be satisfied to ensure practicality. The first 

constraint is the branch power flow constraint. This ensures the power flow is within the minimum 

and maximum flow limits. Let the power transfer distribution factor (PTDF), 𝑃𝑇𝐷𝐹𝑙,𝑖, denote the 

change in flow in branch 𝑒𝑙 for one unit of power added at bus 𝑖 and one unit of power withdrawn 
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from the reference bus of the system. Then, the change in flow, ∆𝑓𝑙, through 𝑒𝑙 for the change in 

bus power injections can be obtained as follows:                                                   

∆𝑓𝑙 = ∑ 𝑃𝑇𝐷𝐹𝑙,𝑖∀𝑖 ∈ 𝑮 ∆𝐺𝑖 − ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗∀𝑗 ∈ 𝑳 ∆𝐿𝑗                               (6) 

Defining  𝑓𝑙
𝑜, 𝑓𝑙

𝑚𝑎𝑥 and 𝑓𝑙
𝑚𝑖𝑛 to be the original power flow, maximum and minimum power flow 

limits respectively, the branch power flow constraint can be expressed as 

                     𝑓𝑙
𝑚𝑖𝑛 − 𝑓𝑙

0 ≤ ∑ 𝑃𝑇𝐷𝐹𝑙,𝑖∆𝐺𝑖∀𝑖∈𝑮 − ∑ 𝑃𝑇𝐷𝐹𝑙,𝑗∆𝐿𝑗∀𝑗∈𝑳 ≤ 𝑓𝑙
𝑚𝑎𝑥 − 𝑓𝑙

0, ∀𝑒𝑙 ∈ 𝑬       (7) 

In (7), 𝑬 denotes the set of all edges of the power system network. The maximum and minimum 

power generation constraint is given as follows: 

                                                       𝐺𝑖
𝑚𝑖𝑛 − 𝐺𝑖

0 ≤   ∆𝐺𝑖 ≤ 𝐺𝑖
𝑚𝑎𝑥 − 𝐺𝑖

0 ,    ∀𝑖 ∈ 𝑮                          (8) 

where, 𝐺𝑖
𝑜, 𝐺𝑖

𝑚𝑎𝑥, and 𝐺𝑖
𝑚𝑖𝑛 denote the original power produced, maximum power and minimum 

power that can be produced by the generator at bus 𝑖, respectively. Similarly, the constraints for 

minimum and maximum power demand at a load bus 𝑗 is given as follows: 

                                                       𝐿𝑗
𝑚𝑖𝑛 − 𝐿𝑗

0 ≤ ∆𝐿𝑗 ≤ 𝐿𝑗
𝑚𝑎𝑥 − 𝐿𝑗

0                                               (9) 

The post-contingency branch flow constraints can be efficiently modeled using the line outage 

distribution factors (LODFs). Let LODF𝑙,𝑘 represent the change in flow through branch 𝑒𝑘 that will 

appear on branch 𝑒𝑙 for an outage of branch 𝑒𝑘. The post-contingency flow, 𝑓𝑙
𝑐, through 𝑒𝑙 for a 

potential outage of 𝑒𝑘 is given as follows: 

                                                             𝑓𝑙
𝑐 = 𝑓𝑙

𝑛 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
𝑛                                                          (10) 

where, 𝑓𝑙
𝑛 and 𝑓𝑘

𝑛 denote the new flows corresponding to the new redispatch solution through 

branches 𝑒𝑙 and 𝑒𝑘, respectively. Now, (10) can be re-written as: 

                                                       𝑓𝑙
𝑐 = (𝑓𝑙

0 + ∆𝑓𝑙) + 𝐿𝑂𝐷𝐹𝑙,𝑘(𝑓𝑘
0 + ∆𝑓𝑘)                                        (11) 

where, 𝑓𝑙
0 and 𝑓𝑘

0 denote the original flows through branches 𝑒𝑙 and 𝑒𝑘, respectively, and ∆𝑓𝑙 and 

∆𝑓𝑘 represent the incremental change in flows through branches 𝑒𝑙 and 𝑒𝑘 as obtained from the 

redispatch. Substituting ∆𝑓𝑙 and ∆𝑓𝑘 from (6) into (11), and using the respective branch flow limits, 

we obtain the following equations for post-contingency branch flow constraints: 

𝑓𝑙
𝑚𝑖𝑛 − (𝑓𝑙

0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘
0) ≤ ∑ (𝑃𝑇𝐷𝐹𝑙,𝑖 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑖)∆𝐺𝑖

∀𝑖∈𝑮

− 

∑ (𝑃𝑇𝐷𝐹𝑙,𝑗 +  𝐿𝑂𝐷𝐹𝑙,𝑘𝑃𝑇𝐷𝐹𝑘,𝑗)∆𝐿𝑗

∀𝑗∈𝑳

≤ 𝑓𝑙
𝑚𝑎𝑥 − 

                                        −(𝑓𝑙
0 + 𝐿𝑂𝐷𝐹𝑙,𝑘𝑓𝑘

0),      ∀𝑒𝑘 ∈ 𝑬𝑣 , ∀𝑒𝑙 ∈ 𝑬                                        (12)                                        

where, 𝑬𝑣 contains the critical contingencies detected by RTCA. Equation (12) is modeled for all 

post-contingency overloads for the critical contingencies detected by RTCA.  
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For the special assets detected by the FT algorithm, (13) is formulated.  

                                                    ∑ ∆𝑓𝑙∀𝑒𝑙∈ 𝑲𝑐𝑟𝑖𝑡
≤ 𝑇𝑚,                                                                       (13) 

Note that (13) reduces the total power transfer across the limiting critical cut-set 𝑲𝑐𝑟𝑖𝑡 by the 

respective transfer margin, 𝑇𝑚. Now substituting ∆𝑓𝑙 from (6) into (13), the constraint for cut-set 

power transfer is obtained as follows: 

∑ ( ∑ 𝑃𝑇𝐷𝐹𝑙,𝑖

∀𝑒𝑙 ∈ 𝑲𝑐𝑟𝑖𝑡

) ∆𝐺𝑖

∀𝑖 ∈ 𝑮

− 

                                      ∑ (∑ 𝑃𝑇𝐷𝐹𝑙,𝑖∀𝑒𝑙 ∈ 𝑲𝑐𝑟𝑖𝑡
)∆𝐿𝑗∀𝑗 ∈ 𝑳 ≤ 𝑇𝑚, ∀ 𝑲𝑐𝑟𝑖𝑡 ∈ 𝓚𝑐𝑟𝑖𝑡                        (14) 

where, the set 𝓚𝑐𝑟𝑖𝑡 contains the limiting critical cut-sets detected by the FT corresponding to 

different special assets.  

Note that the difference between iCA and the traditional security constrained economic dispatch 

(SCED) is the additional cut-set power transfer constraint described by (14). Thus, iCA creates a 

more comprehensive corrective action than SCED as the iCA considers both post-contingency cut-

set saturation and post-contingency branch overloads. 

1.4.2 Relaxed corrective action (rCA) 

A second component is proposed to provide a high-speed corrective action. This utilizes the results 

from FT to create a relaxed corrective action (rCA) as shown in Figure 8.  The rCA solves the 

same optimization problem (given by (5)), but without modeling the post-contingency branch flow 

constraints (described by (12)). However, the cut-set power transfer constraints, described by (14), 

are retained in rCA, i.e., the rCA utilizes the results from FT to only secure the system against 

post-contingency cut-set saturation. Note that the optimization problem given by (5) can reduce to 

an optimal power flow (OPF) problem if it is solved without modeling any security constraints 

(neither (12) nor (14)). Therefore, by considering (14), the rCA adds a relaxed criterion of power 

system security onto an OPF problem.  

If the set 𝐸𝑠 contains the special assets detected by FT, the number of cut-set power transfer 

equations modeled by the rCA is |𝐸𝑠|. Now, as the number of cut-set violations identified will be 

smaller than the total number of branches of a power system, |𝐸𝑠| ≪ |𝐸|, and consequently, |𝐸𝑠| ≪

|𝐸𝑣| × |𝐸|. This implies that the number of security constraints modeled by the rCA is significantly 

less compared to the number of security constraints modeled by the iCA (or SCED). This is the 

primary reason for the very high speed of rCA. 
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Figure 1.8 The second component - The results from FT are only utilized to create a relaxed 

corrective action (rCA) 

The priority of usage of the first (iCA) and the second (rCA) components can be explained using 

Figure 9. Let an outage occur at time t0. Both first and second components should be initiated 

simultaneously but independently. 

 

Figure 1.9 (a) If the first component provides a dispatch solution before the scheduled time for 

the next redispatch, then the solution obtained from the first component should be implemented. 

(b) If the first component does not provide a dispatch solution before 

Let ti and tr denote the time taken to compute the first and second component solutions. Moreover, 

let td denote the time at which the redispatch solution is implemented. Then as shown in Figure 9, 

if ti < td, the solution obtained by the first component should be used since it has better quality. If 

ti >td and tr < td, then the solution obtained from the second component should be implemented to 

at least secure the system against post-contingency cut-set saturation. Even for large power 

systems, the possibility of tr > td is small. However, if that happens the solution from the first 

(preferred) or the second component should be implemented in the next redispatch depending upon 

their availability.  
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1.4.3 Performance results 

The performance of the first and second components are evaluated in this subsection. The 

performance of the proposed two-component methodology against traditional approaches, such as 

RTCA-SCED or DC-OPF, is verified using a detailed case-study that involves a sequence of six 

outages. All simulations were done in MATLAB. GUROBI was used to solve the optimization 

problems. Table III compares the performance of the first component with the RTCA-SCED 

framework when six outages manifest successively in the IEEE 118-bus test system. The second 

column shows the special assets detected by the FT. An outage of any of these special assets (after 

the outage that has already occurred in the corresponding row of the first column), will create post-

contingency cut-set saturation. The third column shows the critical contingencies detected by 

RTCA that result in post-contingency branch overloads. A two-step procedure was used to 

determine the entries of the third column. First, PTDFs and line ratings were used to rank the 

contingencies following every outage. Subsequently, top 30% of the contingencies were evaluated 

by RTCA to determine the post-contingency branch overloads.    

Table 1.3 Comparative analysis of the first component and RTCA-SCED for a sequence of six 

outages in the IEEE 118-bus test system 

 

Event 

(branch 

outages) 

First component (FT-RTCA-iCA) RTCA-SCED 

FT RTCA MATC

ASC 

(before 

correcti

on) 

Gen. 

Cost 

(k$) 

MATCA

SC 

(after 

correctio

n) 

RTCA MATCA

SC 

(before 

correctio

n) 

Gen. 

Cost 

(k$) 

MAT

CASC 

(after 

correc

tion) 

Outage 

1: 15-33 
- - - 

126.

2 
- - - 

126.

2 
- 

Outage 

2: 19-34 
- 5-8 - 

126.

3 
- 5-8  

126.

3 
- 

Outage 

3: 37-38 
42-49 

42-49, 

 5-8, 

26-30 

42-49 
126.

5 
- 

42-49 

5-8, 

26-30 

42-49 
126.

5 
- 

Outage 

4: 42-49 

45-46, 

45-49 

45-46,  

45-49 

45-46,  

45-49 

126.

7 
- 

45-46, 

45-49 

45-46, 

45-49 

126.

7 
- 

Outage 

5: 49-66 
- 5-8 - 

126.

7 
- 5-8 - 

126.

7 
- 

Outage 

6: 66-67 

64-65, 

65-66 
64-65 

64-65,  

65-66 

127.

1 
- 64-65 

64-65, 

65-66 

126.

9 
65-66 

 

An independent cascading simulation analysis was conducted using MATCASC [12], a software 

package that evaluates the consequence of cascading failures in power systems. Every outage was 

evaluated by MATCASC to screen out outages that will trigger a cascade and result in unserved 

power demand. Cascade triggering contingencies detected by MATCASC before and after the 

implementation of iCA are shown in columns 4 and 6 of Table III. The fifth column presents the 
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redispatch solution (generation cost) obtained from the iCA. The solution obtained from iCA does 

not contain any cascade triggering contingencies is shown in column 6.  

The results of the first component and RTCA-SCED are identical for the first five outages. This is 

because for these outages the FT does not identify additional violations to those already detected 

by RTCA (compare the second and third columns of Table III). However, after the sixth outage 

FT detects the special asset 65-66 in addition to the critical contingency 64-65 identified by RTCA 

(see second and third column of the last row). This becomes the basis for the difference in the 

redispatch solutions of the first component and RTCA-SCED as seen in the fifth and ninth columns 

of the last row of Table III. Finally, it is observed that the RTCA-SCED solution contains one 

cascade triggering contingency (65-66), while the solution obtained from iCA did not have any 

(compare the sixth and the tenth columns of the last row of Table III). This observation proves that 

integrating the results from FT with RTCA enhances the ability of power system security 

assessment in mitigating the risk of cascade triggering contingencies. 

Now, there could be situations when the first component takes a long time to generate a solution, 

in which case the second component should be utilized as shown in Figure 9. Table IV presents 

the application of the second component and compares it with a simple DC-OPF. Note that it is 

fair to compare the second component with a DC-OPF instead of an AC-OPF because the DC-

OPF solves a linearized constrained optimization problem (like rCA used in the second 

component) while the optimization problem solved in AC-OPF is non-linear. Moreover, the focus 

here is on high-speed, and it is well-known that for any given system, a DC-OPF problem can be 

solved much faster than an AC-OPF problem.  

The first column of Table IV lists the sequence of events. Columns two through five present the 

results of the second component. Note that only the FT results are shown in this section as the 

RTCA results are not considered in the second component. Cascading analysis done after the 

corrective action indicates that the redispatch obtained from rCA does not contain any cascade 

triggering contingency for the first five consecutive outages (see fifth column of Table IV). 

However, after the sixth outage, two cascade triggering contingencies manifest before the 

corrective action is initiated (see last row, third column of Table IV), of which, only one is 

addressed by rCA. That is, the solution obtained using the rCA still contains one cascade triggering 

contingency (see last row, fifth column of Table IV). This happened because the contingency 64-

65 triggered cascading failures due to branch overloads, even after the rCA alleviated all post-

contingency cut-set saturation. 

However, the second component performs significantly better than a DC-OPF (see columns six 

and seven of Table IV). The sixth column presents the DC-OPF redispatch solution, while the 

seventh column presents the results of the cascading analysis by MATCASC on the redispatch 

solution. Since a DC-OPF does not model any security constraints, the number of cascade 

triggering contingencies in its solution is significantly high in comparison to the one obtained using 

rCA (in the second component). This shows that in situations when the first component takes a 

long time to generate a solution due to heavy computational burden, the second component should 



 

16 

 

be used to secure the system against post-contingency cut-set saturation, and thereby reduce the 

risk of cascading failures. 

Table 1.4 Comparative analysis of the second component and DC-OPF for a sequence of six 

outages in the IEEE 118-bus test system 

Event 

(Branch 

outages) 

Second component (FT-rCA) DC-OPF 

FT MATCASC 

(before 

correction) 

Gen. Cost 

(k$) 

MATCASC  

(after 

correction) 

Gen. 

Cost  

(k$) 

MATCASC  

 

Outage 

1: 15-33 

- - 126.2 - 125.9 26-30 

Outage 

2: 19-34 

- - 126.2 - 125.9 26-30 

Outage 

3: 37-38 

42-49  42-49  126.3 - 125.9 26-30, 42-49 

 Outage 

4: 42-49 

45-46,  

45-49 

45-46,  

45-49 

126.4 - 126.2 26-30, 45-46 

42-49 

Outage 

5: 49-66 

- - 126.4 - 126.2 26-30, 45-46 

45-49 

Outage 

6: 66-67 

64-65,  

65-66 

64-65, 

65-66 

126.7 64-65 126.2 26-30, 45-46, 

45-49,  

64-65, 65-66 

1.5 Conclusions  

A methodology for detecting if a contingency will create a saturated cut-set, namely, the feasibility 

test (FT) algorithm, is proposed. This is important particularly in the presence of extreme weather 

events where successive contingencies can take place leading to uncontrolled islanding of the 

power system. For generating inputs to the FT algorithm, data-driven methods for time 

synchronized bus power injections using deep neural networks and support vector regression are 

developed. Results show that even in presence of PMUs at only the highest voltage buses of the 

network, both the data driven methods can estimate the time synchronized bus power injections of 

all the buses in the network with sufficient accuracy. Subsequently, a two-component methodology 

that enhances the scope and speed, respectively, of static power system security assessment during 

multiple outage scenarios is developed. The first component of the proposed methodology 

combines the results from the FT algorithm and RTCA to create an integrated corrective action 

(iCA). The iCA initiates a comprehensive response to the violations detected by FT and RTCA to 

protect the system against saturated cut-sets as well as critical branch overloads.  The second 

component of the proposed methodology presents an alternative method that complements real-

time power system operations during extreme event scenarios, when detailed network analysis 

tools such as the first component or traditional RTCA-SCED take longer to generate a solution. 

Under such circumstances, by only employing the FT algorithm, a relaxed corrective action (rCA) 

is implemented that quickly secures the system against post-contingency cut-set saturation.  
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2. Real Time Event Identification Based on Modal Analysis of Phasor 

Measurement Unit Data 

2.1 Introduction 

Power systems are prone to a variety of events (e.g., line trips and generation loss) and real-time 

identification of such events is crucial in terms of situational awareness, reliability, and security of 

the system. However, power systems are inherently nonlinear with complex spatial-temporal 

dependencies; as a result, in many cases, it is not possible to develop accurate and sufficiently low 

order dynamical models that can be used to identify each distinct event. This makes real-time 

identification of events a challenge. 

Prior research in the context of real-time identification of events in power grids can be categorized 

into two main approaches, namely model-based and data-driven.  Model-based methods (see e.g., 

[13]-[15]) involve modeling of power system components and estimation of the system states. The 

performance of such methods highly depends on the accuracy of dynamic models and estimated 

states of the system, which in turn limits their implementation for real world problems. Data-driven 

methods have begun receiving increased attention, mainly due to the growing penetration of phasor 

measurement units (PMUs) in the electric grid which can help address situational awareness 

challenges. Such methods can be further classified into two subcategories: (i) well-studied physics-

based signal processing methods such as modal analysis for feature extraction that are directly 

applied to PMU measurements to detect events [16]-[18], and (ii) purely data-driven classification 

methods using PMU measurements which has begun to recently gain traction [19][20].  In this 

study, we develop a technique that seeks to take the best of both worlds: we take advantage of 

knowledge of the physics of the system by characterizing event signatures based on their modal 

information that can be directly extracted from PMU measurements, and subsequently apply ML 

techniques to produce a robust classifier from limited but feature-rich training data. The overview 

of the proposed approach is shown in Fig. 10. It has three main steps:  

Step 1) The first step is to identify the precise physics-based method that can help detect a set of 

delineating features for different events using spatio-temporally correlated PMU data from 

multiple units; in turn, this will help characterize events based on a set of features obtained from 

modal analysis of various PMU measurements.  

Step 2) determining an optimal subset of features that succinctly describes the system dynamics 

using all the features extracted from step 1 above, and  

Step 3) designing a set of learning models that can be classified using the chosen optimal subset 

of features from step 2 above.  

In step (1), for each set of PMU measurements (positive sequence magnitude and angle of voltages 

and currents, frequency, and rate of change of frequency) obtained from multiple PMUs, 

techniques such as multi-signal matrix pencil (MSMP) can be applied to find a single set of modes 

that best represent the underlying dynamical behavior of the system. Based on this approach, 

power system events can be described as a set of features, e.g., via angular frequencies, damping 

values and the corresponding residue magnitudes. However, extracting features using all channels 

of PMU measurements across multiple PMUs will inevitably lead to a high-dimensional feature 
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set, and thus, a key question is to determine which subset of these features can guarantee accurate 

classification performance. Hence in step (2) we will test different data-driven filter methods to 

choose the best subset of features. Our goal here is to avoid overfitting or underfitting while 

ensuring that multiple events can be distinguished by the same set of sufficient features. Finally, 

using the extracted features via steps (1) and (2), in step (3) we investigate the performance of two 

well-known classification algorithms, namely, logistic regression and support vector machine on 

two different datasets, one obtained from simulated generation loss and line trip events in Texas 

2000-bus synthetic grid using PSSE software and the other is a proprietary dataset with labeled 

generation loss and line trip events obtained from a large utility in the US involving measurements 

from nearly 500 PMUs. 

 

Figure 2.1 Overview of the proposed approach. 

2.2 Problem statements 

The first step in identifying a system event from PMU data is to extract the relevant features from 

the data stream. Because the PMU data-rate is so high, particularly if multiple PMUs 

simultaneously observe the same event, it would be overly naive to plug the raw data into a 

machine learning model. Rather, it is advantageous to use domain knowledge to identify features 

in the data streams that are likely to contain information regarding the class of the event. Using the 

fact that temporal effects in a power system are driven by the interacting dynamics of system 

components, we propose to use mode decomposition as the framework with which to extract 

features. Specifically, we assume that the PMU data streams after an event consist of a 

superposition of several dynamic modes — thus, the features will be the frequency and damping 

ratio of these modes, as well as the residual coefficients indicating the quantity of each mode 

present in each data stream.  



 

19 

 

Consider a power grid with 𝑚 installed PMUs. In general, each PMU has multiple channels 

through which we can obtain different types of measurements relative to the bus where the PMU 

is installed. For the sake of clarity, we focus on one channel (e.g., positive sequence voltage 

magnitude) to describe the modal representation of PMU measurements. Let 𝑦𝑖(𝑛) ∈ ℝ,𝑖 =
1, . . . , 𝑚, and 𝑛 = 0, . . . , 𝑁 − 1 denotes the positive sequence voltage magnitude (VPm) 

measurement obtained from the 𝑖th PMU at sample 𝑛 with a sampling period of 𝑇𝑠. We assume that 

each PMU measurement signal, 𝑦𝑖(𝑛), after an event consists of a superposition of several dynamic 

modes. It is well known that in a large electric grid, multiple PMUs can capture the dynamic 

response of the system after an event [27]. However, in case of individual modal analysis of PMU 

measurements, we obtain varying modal estimates due to the noise and nonlinear inherent power 

system dynamics [28]. Hence, we aim to analyze multiple measured signals simultaneously to 

obtain one optimum set of mode estimates which can accurately represent the underlying dynamic 

behavior of the system. Thus, each PMU measurement signal, 𝑦𝑖(𝑛), can be represented as a 

superposition of 𝑝 damped sinusoidal modes as follows: 

𝑦𝑖(𝑛)  =  ∑ 𝑅𝑘
(𝑖)

(𝑍𝑘)𝑛 

𝑝

𝑘=1

+  𝜖𝑖(𝑛),     𝑖 = 1, . . . , 𝑚 (1) 

where  

𝑍𝑘 = 𝑒𝜆𝑘𝑇𝑠 ,        𝜆𝑘 = 𝜎𝑘 ± 𝑗𝜔𝑘 (2) 

and  𝜖𝑖(𝑛) represents the noise in the 𝑖th PMU signal, 𝑍𝑘 is the 𝑘th mode associated with each PMU 

signal and 𝜎𝑘 and 𝜔𝑘 are its corresponding damping factor and angular frequency, respectively. 

Furthermore, residue 𝑅𝑘
(𝑖)

  corresponding to each mode 𝑘 and 𝑖th PMU signal is defined by its 

magnitude |𝑅|𝑘
(𝑖)

 and angle 𝜃𝑘
(𝑖)

.   

Using estimated modes, {𝑍𝑘}𝑘=1
𝑝

, the corresponding residues {𝑅𝑘
(𝑖)

}𝑘=1
𝑝

 for each signal 𝑖 = 1, . . . , 𝑚 

are obtained by solving  

 

(3) 

Note that the idea here is that the parameters of (1) are the key to capturing signatures of an event, 

and hence are used as the features to distinguish between various types of events. For instance, 

using the positive sequence voltage magnitude measurements, we would obtain a set of features, 

𝓕VPm, as follows:  

                   𝓕VPm = [{𝜔𝑘 :𝑘 = 1, . . . , 𝑝},{𝜎𝑘:𝑘 = 1, . . . , 𝑝}, 

                            {|𝑅|𝑘
(𝑖)

:𝑖 = 1, . . . , 𝑚,𝑘 = 1, . . . , 𝑝},{𝜃𝑘
(𝑖)

:𝑖 = 1, . . . , 𝑚,𝑘 = 1, . . . , 𝑝}]              
(4) 
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which consists of 𝑝 angular frequencies, 𝑝 damping values and corresponding residues magnitude 

and angle for each PMU 𝑖 = 1, . . . , 𝑚, and mode 𝑘 = 1, . . . , 𝑝. A crucial point worth noting here is 

that to make the features comparable across the events, we must sort the features in a meaningful 

manner. Since the residue coefficients indicate the quantity of each mode present in each PMU 

data stream, one can sort the modes based on their average residue across all the PMUs. So, in our 

notation in (4), 𝑘 = 1, . . . , 𝑝, represent the sorted modes based on their average residue in a 

descending order. For instance, 𝑘 = 1 always represents the mode with the largest average residue. 

Moreover, residue magnitudes corresponding to each mode 𝑘, are the sorted values of |𝑅|𝑘
(𝑖)

, 𝑖 =

1, . . . , 𝑚 in descending order and we use the same order to sort the corresponding 𝜃𝑘
(𝑖)

.  

Similarly, using other types of measurement, i.e., positive sequence voltage angle (VPa), positive 

sequence current magnitude (IPm), and corresponding angle (IPa), frequency (F), and rate of 

change of frequency (DF), we would obtain the corresponding set of features, denoted as 𝓕VPm, 

𝓕VPa, 𝓕IPm , 𝓕IPa , 𝓕F , 𝓕DF , respectively. 

2.2.1 Multi Signal Matrix Pencil method 

Various modal analysis techniques have been used in power systems to estimate the parameters of 

(1). It is now well understood that matrix pencil method (MPM) is more robust to noise relative to 

other similar techniques such as Prony analysis and dynamic mode decomposition (see, for 

example, [21],[22], and [23]) and, hence, will be the main modal analysis approach we use. A brief 

overview of the matrix pencil method is presented in this section (we refer readers to [24], [25], 

and [26] for a comprehensive study of the multi-signal matrix pencil method in the presence of 

noise in the signal). 

Matrix pencil method involves constructing the Hankel matrix over a block of 𝑁 samples obtained 

from the 𝑖th PMU as 

                                                    (5) 

where 𝐿 is the pencil parameter. It is well studied that choosing 𝐿 = 𝑁/2 will result in the best 

performance of the matrix pencil method in a noisy environment (close to Cramer-Rao bound) 

[12]. We define ℋ𝑖
(1)

as the matrix consisting of first 𝐿 columns of ℋ𝑖 and ℋ𝑖
(2)

 as the matrix 

comprised of its last 𝐿 columns. Then the parameters 𝑍1, . . . , 𝑍𝑝 are the generalized eigenvalues of 

(ℋ𝑖
(1)

)†ℋ𝑖
(2)

 [26]. 
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The MPM method described above may be extended to find a single set of modes which best 

represent the underlying dynamical behavior of a set of measurements. This is done by vertically 

concatenating Hankel matrices ℋ1, . . . , ℋ𝑚 corresponding to each PMU measurements over a 

block of 𝑁 samples (this matrix is denoted as H) and the same method as the original MPM for a 

single signal can be applied to the H matrix to identify a single set of modes 𝑍1, . . . , 𝑍𝑝 .  

Following the assumption that PMU measurements after an event can be represented as a 

superposition of 𝑝 dynamic modes and because only a small number of modes are enough to 

represent the underlying dynamical behavior of the system (𝑝 ≪ 𝐿), one can show that rank(H)=

𝑝 for a noise free signal [26]. This implies that, for noisy PMU measurements, the number of 

significant singular values obtained from singular value decomposition (SVD) of H, is associated 

with the number of dominant modes in the signal and the remaining singular values are linked to 

minor noisy variation in the signal. Hence, the best way to approximate 𝑝 in (1) and remove small 

variations derived by the noise in the signal is to find the best rank 𝑝approximation of H, denoted 

as  𝐇𝑝. The rank 𝑝 approximation error is given by 

 
(6) 

where ||H||F is the Frobenius norm of the matrix H.  

 

Figure 2.2 Rank p approximation error of the matrix H, for different values of p. 

Figure 11 demonstrates the rank 𝑝 approximation error of the matrix, H, which is constructed using 

the positive sequence voltage magnitude measurements (after a line trip event) from nearly 500 

PMUs over a block of 𝑁 = 180 samples with a pencil parameter of 𝐿 = 90. Low rank 

approximation error of the H considering the first 6 largest singular values (𝑝 = 6), would be less 

than 1% for all the events in our dataset. Thus, throughout the report, we assume that 𝑝 = 6. 
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2.3 Feature Engineering of PMU Time Series Data 

To characterize the dynamic response of the power system after an event, modal analysis is 

conducted on each type of PMU measurement (i.e., VPm, VPa, IPm, IPa, F,  and DF) obtained 

from multiple locations across the grid. Each event 𝑗 can be described as a vector of features as   

 𝜙𝑗 = [𝓕VPm, 𝓕VPa, 𝓕IPm , 𝓕IPa , 𝓕F , 𝓕DF ]T (7) 

where each 𝓕s, s∈{VPm, VPa, IPm,  IPa, F, DF} consists of the modal analysis results 

corresponding to the selected type of PMU measurement (e.g., see (4) for 𝓕VPm). However, using 

all the estimated parameters of (1) obtained from different types of measurement, will result in a 

high dimensional vector of features, 𝜙𝑗. To avoid overfitting or underfitting while ensuring that 

multiple events can be distinguished by the same set of sufficient features, we propose a two-step 

approach to reduce features into a more manageable number. In the first step, we select a subset 

of features based on our domain knowledge of the system under study. The second step is to select 

the most informative and relevant features using a feature selection technique called filter method. 

The details are provided in the following subsections. 

2.3.1  Feature selection based on the domain knowledge 

As discussed in section 2.2, parameter 𝑝 represents the number of dominant modes in the signal 

and can be obtained by finding the best rank 𝑝 approximation of H. We also showed that 𝑝 =
6 results in 𝐸𝑝 < 1% for all the events in our dataset. In general, these modes are complex 

conjugate pairs (i.e., 3 complex conjugate pairs and 6 modes in total). However, for a given type 

of measurement, s, in order to remove redundant modal information present in the complex 

conjugate modes, we only include one of them in the corresponding vector of features 𝓕s,  

s∈{VPm,  VPa, IPm,  IPa, F, DF}. However, the problem which arises here is that for small portion 

of the events, the modal analysis may result in different combinations of real and complex 

conjugate modes and in that case, we need to specify the number of modes that are used for feature 

selection, such that we obtain the same number of features for all the events. Since the residue 

coefficients indicate the quantity of each mode present in each PMU data stream, one can sort the 

modes based on their average residue across all the PMUs. Then, we choose 𝑝′ = 3 modes with 

the largest average residues across all the PMUs where 𝑝′ is the number of distinct (complex 

conjugate or real) modes that will be used in the vector of features for each event. 

Moreover, among all the 𝑚 installed PMUs in the grid, only a small portion of them (𝑚′ < 𝑚) 

with the largest residue magnitudes will be affected by the event, thereby capturing dynamic 

behavior of the system after a disturbance. Hence, just the residues of those PMUs are included in 

the vector of features.  

2.3.2 Feature selection using filter method 

As detailed above, each mode is captured by the angular frequency and damping factor and thus, 

for 𝑝′ modes, there are 2 × 𝑝′ such variables; further, every PMU measurement when expressed 

via the modes has 𝑝′ residues and thus for a total of 𝑚′ out of 𝑚 PMUs, the total number of residues 

(including their magnitude and angle) is 2 × 𝑚′𝑝′. Hence, assuming 𝑛𝑐ℎ represents the number of 
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channels at a PMU that are used for modal analysis, each event 𝑗 can be described as a set of 𝑑 

features 𝜙𝑗 = [𝜑1, . . . , 𝜑𝑑]T∈ ℝ𝑑, where 𝑑 = 2 × 𝑛𝑐ℎ × (𝑝′ + 𝑚′𝑝′)and a label 𝜉𝑗which describes 

the type of an event (i.e., line trips and generation loss events are labeled as 0 and 1, respectively). 

We define our dataset as 𝜱 = [𝜙1, . . . , 𝜙𝑗 , . . . , 𝜙𝑁𝑒
]T ∈ ℝ𝑁𝑒×𝑑 and 𝚵=[𝜉1, . . . , 𝜉𝑗 , . . . , 𝜉𝑁𝑒

]T ∈

{0,1}𝑁𝑒 where 𝑁𝑒 is the total number of labeled events.  

In general, a designer of the feature extraction methodology has multiple hyperparameters at their 

disposal including: (a) number of modes 𝑝′ that suffices to delineate events; (b) number of PMUs 

𝑚′ out of a total of 𝑚 in the system to generate features via modal analysis; and (c) number of 

channels 𝑛𝑐ℎ per PMU to use. For instance, for 𝑚′ = 20, 𝑝′ = 3, and using 𝑛𝑐ℎ = 6 channels at a 

PMU, we obtain a total of 𝑑 = 756 features. While this may not seem many features, when the 

number of labeled events is small (e.g., 70 labeled events in our dataset) which is typically the case 

in practice, a nearly 750-dimensional feature set can be extremely large.  

Moreover, high dimensionality of the feature space compared to the number of labeled samples 

available for training makes it impossible to learn the relative contribution of each feature precisely 

[29]. So, a necessary pre-processing step before using any classification algorithm is to select 

relevant and most informative features.  

Common statistical approaches for selecting features include filter methods, wrapper methods and 

embedded methods [30]. Because filter methods, unlike wrapper and embedded methods, are 

independent from classification algorithms, they are computationally inexpensive and are more 

efficient for real time applications [31] and will be the main tool for features selection in this study 

which will be further explained in the following paragraphs. 

Filter methods employ some measure of dependence between a feature and the type of event in the 

training dataset to rank the features and retain only top ranked features. Various statistical tests, 

including one-way analysis of variance (ANOVA) F-value test (F) [32], sure independence 

screening (S) [33], mutual information (M) [34], Pearson correlation (P) [29], and Kendall 

correlation (K) [35] are used to quantify the correlation between features and target variables.  

Based on the correlation of each feature 𝜑𝑖, 𝑖 = 1, . . . , 𝑑 and target variable 𝚵, we sort the features 

and then remove all the features except 𝑑′ with highest correlation with the target variable. 

However, due to the small number of samples, we will rely on a well-known approach in machine 

learning: bootstrapping: this is a technique of sampling with replacement to create multiple 

datasets from the original dataset thereby attempting to select the most informative features with 

some statistical degree of confidence. Let us define 𝜋𝜑𝑖

(𝑏)
 as the correlation measure of feature 𝜑𝑖 

and target variable 𝚵 over the 𝑏th bootstrap samples (𝑏 = 1, . . . , 𝐵), i.e.  𝜋𝜑𝑖

(𝑏)
= 𝐅𝑥(𝝋𝒊, 𝚵 )where 𝑥 

represents the type of the statistical test that is used to quantify the correlation. The details are 

shown in Fig. 12. We sort the features based on different correlation measures, 𝜋𝜑𝑖

(𝑏)
= 𝐅𝑥(𝝋𝒊, 𝚵), 

where 𝑥 represents the type of the statistical test (i.e., F-value test, sure independence screening, 

mutual information, Pearson correlation, and Kendall correlation), and 𝜋𝜑𝑖

(𝑏)
 is the correlation 

measure of feature 𝜑𝑖 and target variable 𝚵 over the 𝑏th bootstrap samples. We select 𝑑′ feature 

with the highest average score over all the bootstrap samples. 
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Figure 2.3 Overview of the feature selection step using filter method. 𝐷trainrepresents the training 

dataset. 

2.4 Model Validation 

The final step in our proposed framework for event identification is to use the optimal subset of 

features to learn a classification model by finding decision boundaries between various types of 

events in the feature space.  A crucial point worth mentioning here is the choice of classifier that 

is best suited for the event identification task. With any machine learning model, there is a tradeoff 

inherent in the choice of complexity of the classification model. A simpler model may be more 

easily interpreted and are less likely to encounter overfitting problems whereas a more complex 

model may be more capable of uncovering subtle characteristics of the underlying phenomena and 

may thereby perform better. Hence, we investigate the performance of two well-known 

classification algorithms: logistic regression and support vector machine on two different datasets, 

one obtained from simulated generation loss and line trip events in Texas 2000-bus synthetic grid 

using PSSE software and the other is a proprietary dataset with labeled generation loss and line 

trip events obtained from a large utility in the US involving measurements from nearly 500 PMUs.  

The key steps to evaluate the performance of each classification algorithm is shown in Fig. 13. In 

order to validate the performance of each classification algorithm, we split the data set into a 

training and a test data and then all the feature engineering techniques are implemented on the 

training dataset to find the most relevant and informative subset of features. Due to the limited 

number of real labeled generation loss and line trip events, and for a fair evaluation of each 

classification algorithm, we generate B bootstrapped reduced order training datasets (with only an 

optimal subset of features) to learn a classification model. To evaluate the performance of the 

classification, we use the area under curve (AUC) of receiver operator characteristic (ROC) which 

illustrates the accuracy of a binary classifier based on various discrimination threshold. ROC plot 

shows the relation between true positive rate (also known as recall) against the false positive rate 

at various threshold settings.  ROC AUC value is bounded between 0 and 1. The closer AUC to 1, 

the classifier has a better ability to classify the positive and negative samples whereas an 

uninformative classifier yields a 0.5 AUC score [36]. To quantify the accuracy of the learned 

classifier on the test dataset, we compute the average AUC, and 5%, and 95 % confidence interval 

of the AUC values over all the bootstrap samples.  
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Figure 2.4 Evaluation of classification algorithms. For each chosen classifier, we will learn a 

model on each bootstrap dataset with an optimal subset of features and then use the learned 

model to predict target variables in the corresponding reduced order test d 

2.5 Simulation results 

Case study 1: identifying generation loss and line trip events using the generated synthetic event 

scenarios.  

 

As the real data with event labels is often scarce, we find it better, as is the case with recent other 

studies, to generate synthetic data for training and testing of machine learning models. Synthetic 

data can never fully replace real data, but it can be a powerful tool in a variety of circumstances. 

To this end, we perform dynamic simulations of power system events using PSSE for the Texas 

2000-bus synthetic grid to generate synthetic data streams from 95 PMUs across the grid. Total 

number of synthetic generation loss and line trip event scenarios are:   

 

● Generation Loss: 400 (i.e., 200 in normal loading and 200 in 80% of normal loading)   

●  Line trip: 400 (i.e., 200 in normal loading and 200 in 80% of normal loading) 

●  600 samples are used for training and 200 for test 

 

Figure 14 shows the performance of the logistic regression classifier w.r.t. number of selected 

features in the generated synthetic dataset. We choose 𝑑′ = 10 as the number of desired features 

obtained from the features selection step. Moreover, the average AUC score of the two classifiers 

(i.e., logistic regression and SVM with RBF kernel) as well its corresponding 5% and 95% 

confidence intervals are shown in Fig. 15. SVM with radial basis function (RBF) kernel has a 

slightly better performance than logistic regression in identifying the two types of the events in 

our synthetic dataset. In terms of performance of the models with respect to the type of filter 

method, apart from the sure independence screening method, using other measures of the 

correlations to find the optimal features result in a similar accuracy of the classifiers.  

 

Case study (2): identifying generation loss and line trip events using a proprietary dataset with 

labeled generation loss and line trip events obtained from a large utility in the US involving 

measurements from nearly 500 PMUs.   

 

Total number of 70 labeled events (23 generation loss and 47-line trip events) are used in this 

study. Total number of 59 events are included in the training dataset to obtain the most informative 

and relevant features and learn classification models from each bootstrapped dataset using only 

the selected features. The average AUC score of the two classifiers (i.e., logistic regression and 
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SVM with RBF kernel) as well its corresponding 5% and 95% confidence intervals are shown in 

Fig. 16. The main reason for a lower accuracy of classification algorithms in identifying the events 

in the real dataset compared with the generated synthetic dataset is the limited number of events 

(i.e., 70 labeled events over a period of three years).  

 

 

Figure 2.5 Performance of the logistic regression algorithm considering different number of 

selected features 

 
Figure 2.6 Performance of classification algorithms logistic regression (left), and SVM with rbf 

kernel (right) using the synthetic dataset with simulated generation loss and line trip events 

considering an optimal subset of 10 features. Note that F, S, M, P, and K represent one-way 

ANOVA F-value, Sure Independence Screening, Mutual Information, Pearson correlation, and 

Kendall correlation. 

 

Performance of classification algorithms logistic regression (left), and SVM with rbf kernel (right) 

using the synthetic dataset with simulated generation loss and line trip events considering an 

optimal subset of 10 features. Note that F, S, M, P, and K represent one-way ANOVA F-value, 

Sure Independence Screening, Mutual Information, Pearson correlation, and Kendall correlation. 
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An interesting observation in both case studies is that angular frequency and first few residue 

magnitudes corresponding to the first mode of VPm, VPa and F signal are included in the set of 

optimal features obtained from various filter methods. 

Figure 2.7 Performance of classification algorithms logistic regression (left), and SVM with rbf 

kernel (right) using the real PMU dataset with labeled generation loss and line trip events 

considering an optimal subset of 10 features. Note that F, S, M, P, and K represent one-way 

ANOVA F-value, Sure Independence Screening, Mutual Information, Pearson correlation, and 

Kendall correlation. 

2.6 Conclusion 

In this study, we proposed a novel framework for real time identification of events in the electric 

grid based on the modal analysis of various types of PMU measurements. Power system events 

are characterized by a set of features obtained from the modal analysis result of PMU 

measurements (positive sequence magnitude and angle of voltages and currents, frequency, and 

rate of change of frequency) from multiple locations in the grid where the features are the angular 

frequencies, damping values and the corresponding residue magnitudes. However, extracting 

features using all channels of PMU measurements across multiple PMUs will inevitably lead to a 

high-dimensional feature set, and thus, we use different data-driven filter methods to choose the 

best subset of features. Our key goal here is to avoid overfitting or underfitting while ensuring that 

multiple events can be distinguished by the same set of sufficient features. Finally, using the 

extracted features, the performance of two well-known classification algorithms, namely, logistic 

regression and support vector machine on two different datasets (one based on the synthetic events 

scenarios and the other from a proprietary dataset with labeled generation loss and line trip 

historical events) are compared. Based on the simulation result, both classifiers achieve similar 

classification accuracy. SVM with RBF Kernel slightly performs better in identifying the events 

in the synthetic real dataset whereas logistic regression is more accurate in identifying the events 

in the real dataset. Future work will focus on localizing events based on the PMU data by 

leveraging signal processing techniques based on spatial correlation of features.   
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