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Executive Summary 

Load modeling is of great significance for various power grid studies, such as power system 

operation optimization, energy reservation, and stability analysis. The overall purpose of this 

project is to develop and apply cutting-edge data-driven and machine learning-based methods to 

accurately model power system loads using real utility data. 

 

First, we conducted a comprehensive review of the load models, analyze their advantages and 

disadvantages, research trends, and industrial applications, which laid a valid foundation for the 

model selection, parameter reduction, and order reduction. There are a variety of load models 

available in the power system industry and academia. The commonly used models be classified 

into static load models, dynamic load models, and composite load models.  

 

• Static load models: They include the constant impedance-current-power (ZIP) model, 

exponential model, and frequency dependent model. Static models express the active and 

reactive power at any instant of time as functions of bus voltage magnitudes and frequency, 

and the dynamics of load are neglected. 

• Dynamic load models: They include induction motor (IM) and exponential recovery load 

model. Dynamic models express the active and reactive powers as a function of voltage 

and time, and they consider the dynamics of load variations. 

• Composite load models:  For providing more accurate responses, composite load models 

are developed by combining static and dynamic load models. Typical composite load 

models are ZIP+IM composite load model, and Western Electricity Coordinating Council 

(WECC) model. The WECC model contains a substation transformer, shunt reactance, 

feeder equivalent, induction motors, single-phase AC motor, ZIP load, electronic load, and 

distributed energy resources (DER). It can effectively capture the commonly-observed 

fault-induced delayed voltage recovery (FIDVR) events and has drawn great attention 

recently. 

 

The WECC composite load model (WECC CMLD) produces accurate responses; nevertheless, the 

large number of parameters and high model complexity raises new challenges for power system 

studies. For the parameter identification problem, the large number of parameters brings great 

difficulties to search for global optimum when performing parameter identification. The reason is 

twofold: firstly, the large number of parameters results in a large search space that reduces the 

optimization efficiency; secondly, the insensitive parameters and parameter interdependencies 

usually result in a large number of local optima, which increases the difficulty of achieving global 

optimum. Although the parameters have physical meanings, some of them only have marginal 

impacts on the model response altogether or along certain parameter variation directions. 

Moreover, considering the full load model parameter set could significantly increase the 

complexity of power system studies. Therefore, it is imperative to develop a method to screen out 

the insensitive parameters. Then, only the sensitive parameters are to be determined in the 

parameter identification problem, while the others can be kept at their respective default values. In 

this way, the dimension of the search space of load model parameters can be significantly reduced. 

Thus, lower computational cost (less model runs) and higher accuracy (easier to find the optimum) 
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can be achieved when conducting power system studies such as parameter identification without 

compromising the fidelity of the load model.  

 

Second, we developed multiple data-driven and machine learning based methods for dimension 

reduction in parameter space to address the above-mentioned problems. Specifically, three major 

methods were proposed and validated, explained as follows. 

 

• A cutting-edge parameter reduction (PR) approach for WECC CMLD based on the active 

subspace method (ASM) was proposed, briefly explained as follows. Firstly, the WECC 

CMLD is parameterized in a discrete-time manner for the application of the proposed 

method. Then, parameter sensitivities are calculated by discovering the active subspace, 

which is a lower-dimensional linear subspace of the parameter space of WECC CMLD in 

which the dynamic response is most sensitive. The interdependency among parameters can 

be taken into consideration by our approach. Finally, the numerical experiments validate 

the effectiveness and advantages of the proposed approach for the WECC CMLD model.  

• A novel approach inspired by the evolutionary deep reinforcement learning (EDRL) with 

an intelligent exploration mechanism was obtained to perform parameter identification for 

the composite load model with distributed generation (CMPLDWG). First, to extract 

parameters’ contributions to dynamic power, parameter sensitivity analysis is conducted 

using a data-driven feature-wise kernelized Lasso (FWKL). Then, the EDRL with 

intelligent exploration, which can handle the natural high nonlinearity and nonconvexity 

of CMPLDWG, is employed to perform parameter identification. In the parameter 

identification process, the extracted parameter sensitivity weights are innovatively 

integrated into the EDRL with intelligent exploration to improve discovery efficiency. 

Finally, the proposed approach is validated using numerical experiments. 

• A Python-PSSE-combined autonomous parameter identification program was developed. 

It enables efficient information change between the optimization method sited in the 

Python environment and the WECC load module in PSSE software. As the WECC load 

module is the available most convincing representation of the WECC load module, this 

approach can eliminate the possible errors brought by the inaccurate representation of the 

WECC load modeling. As an example of the heuristic optimization methods, the SSA is 

adopted to optimize the WECC load parameters using real event data provided by AEP. 

The SSA sends the WECC parameters to the PSSE as its inputs. Based on these WECC 

parameters provided by SSA, a dynamic simulation is conducted in the PSSE using the 

PMU frequency measurements and voltage measurements. After the simulation is 

conducted, an active power curve and a reactive power curve are obtained, and they are 

provided to the SSA. The SSA then compares the simulated P, Q curves with the real P, Q 

measurement curves to update the WECC parameters. The obtained results are very 

promising, and they validate the efficiency and accuracy of our proposed Python-PSSE-

combined autonomous parameter identification program. 

 

Third, we developed a large-signal order reduction (LSOR) method using singular perturbation 

theory to reduce the order of the WECC composite load model. The WECC composite load model 

is a complex high-order nonlinear system with multi-time-scale property, which poses challenges 

on power system studies with a heavy computational burden. In order to reduce the model 
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complexity, an order reduction method was derived based on the singular perturbation theory. In 

this method, the fast dynamics are integrated into the slow ones to preserve the transient 

characteristics of the former. Then, accuracy assessment conditions are proposed and embedded 

into the LSOR to improve and guarantee the accuracy of the reduced-order model. Finally, the 

reduced-order WECC composite load model is derived by using the proposed algorithm. 

Simulation results show that the reduced-order large-signal model significantly alleviates the 

computational burden while maintaining similar dynamic responses as the original composite load 

model. The derived reduced-order model has guaranteed high accuracy that can replace the 

original load model in high-order system simulation to perform power system studies. This 

replacement can significantly reduce the difficulty of stability analysis and computational burden. 

 

The major research outcomes of this project are listed as follows. 

• Provided an all-inclusive review of load modeling. 

• Developed a general global sensitivity analysis method to reduce the dimension of input 

space of any nonlinear model with scalar output. 

• Proposed a WECC composite load model parameter identification approach using 

evolutionary deep reinforcement learning. 

• Developed an autonomous parameter identification approach by calling PSSE dynamic 

simulation in python-based optimization algorithms. 

• Derived an order reduction technique based on the singular perturbation theory to obtain a 

reduced load model. 

 

Some next steps to move the research toward applications are discussed as follows. 

• Test and validate the proposed methods using more real event data from the industrial 

partners, and finally make some software packages available to the public. 

• Develop novel models with reduced complexity and computational requirements to better 

represent active distribution networks, distributed generators, and microgrids. 

• Research parameter estimation algorithms that are able to process data from existing and 

emerging measurement devices with different resolutions, such as smart meters, PMUs, 

and SCADA. 
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real power and (b) reactive power ................................................................................................ 30 

Figure 3.5 The normalized eigenvalue separation of the magnitudes of eigenvalues of matrix 
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1. Introduction 

1.1 Background 

Load modeling is essential to power system analysis, planning, and control [1]-[2]. Although the 

need for accurate load models is recognized by power system researchers and engineers, more 

research is imperative to update existing load models and understand characteristics of modern 

loads with emerging smart grid technologies such as distributed generators (DGs), electric vehicles 

(EVs), and demand side management (DSM). The uncertainty and difficulty of load modeling 

comes from a large number of diverse load components, time-varying and weather-dependent 

compositions, and the lack of measurements and detailed load information. The goal of load 

modeling is to develop simple mathematical models to approximate load behaviors. 

Load modeling consists of two main steps: 1) selecting a load model structure, and 2) identifying 

the load model parameters using component or measurement-based approaches. Component-based 

or physically-based modeling has been extensively investigated in the literature, and this method 

is based on the knowledge of physical behaviors of loads and mathematical relations that describe 

the functioning of load devices. However, obtaining such information is not always possible, 

which motivates the research in measurement-based modeling. Measurement-based modeling 

collects measurements from data acquisition equipment to derive load characteristics. The main 

advantage is that this approach directly obtains the data from the actual network, and can be applied 

to any load. However, a developed model at one network location may not be applicable to other 

locations. The parameters of load models are estimated by fitting the acquired data to a load model 

structure using identification and estimation techniques. Other research suggested the use of 

artificial neural networks (ANNs) to model loads by mapping the input data set to the output. This 

approach is useful when the model structure is unknown or hard to be mathematically represented. 

However, data-driven techniques require a large number of datasets and considerable 

computational effort. 

1.2 Overview of the Problem 

The WECC composite load model is a highly nonlinear and complex load model, and it has a 

significant number of parameters, i.e.,133 parameters for the basic WECC composite load model 

in PSSE software and more parameters for the WECC model with DG. It is a challenging problem 

to using event data to identify the parameters of the WECC composite load model to fit the active 

and reactive power measurements. 

1.2.1 Main Issues 

It would be quite difficult if all the parameters of the WECC model are considered as control 

variables in the optimization problem formulation of the load modeling, since the searching space 

would be very prohibiting.  Also, it is not necessary to identify all the parameters, as not all the 

parameters are very sensitive in the curve-fitting. Parameter reduction (PR) is needed to identify 

those most sensitive parameters and simplify the problem. PR methods can be classified into local 

and global ones. Local PR methods are suitable for known parameters with small uncertainties, in 

which partial derivatives of output with respect to the model parameters are computed to evaluate 
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the relative variation of output with respect to each parameter. Nonetheless, the input parameters 

are subject to a range in typical load modeling problems. Therefore, a global sensitivity metric is 

necessary to measure the sensitivity of output with respect to parameters.  

There are many existing global PR approaches. One of the most common and simplest techniques 

in engineering is the so-called “One-At-A-Time” (OAT) method that varies one parameter while 

fixing the others. However, this method can only provide a rough qualitative approximation of the 

parameter sensitivities and cannot fully reveal the nonlinearity and interdependency among the 

parameters due to its low exploration of the parameter space. To quantitatively study the 

comprehensive parameter sensitivity patterns and their interdependencies, variance-based 

approaches such as Sobel indices were proposed for nonlinear and non-monotonic models. 

However, to precisely estimate the sensitivity indices with arbitrary order interactions between 

parameters, these approaches require a formidably large number of experiments. Thus, it motivates 

the recent research on exploring efficient numerical algorithms, including the analysis of variance 

(ANOVA) decomposition, Fourier Amplitude Sensitivity Test (FAST), and least absolute 

shrinkage and selection operator (LASSO). Despite the relative reduction in computational cost 

by these methods, they can result in instability and inaccuracy when the number of parameters 

increases. Considering the above-mentioned limitations of existing methods, more advanced 

methods should be developed to reduce the dimension of the load modeling problem. 

1.2.2 Secondary Issues 

The above WECC composite load model is a complex high order nonlinear dynamical system with 

multi-time-scale property, which means the state vector is high-dimensional and the transient 

velocity of each state varies significantly. These characteristics result in two main challenges. 

Firstly, it increases the difficulty of dynamic stability analysis due to the numerous state variables. 

Secondly, it makes simulation studies of a high-order power system computationally demanding 

or even infeasible. There are two main reasons for this high computational burden. One reason is 

the shear dimensionality of the problem. The other comes from the two-time-scale property of the 

model. This makes solving the model a stiff ordinary differential equation (ODE) problem, which 

requires small time steps to calculate the fast dynamics, and consequently results in long 

computational time to capture slow dynamics. The fast dynamics are often introduced by the 

intentionally added inductance and capacitance, moment of inertia, and parasitic elements inherent 

in the system. However, simply neglecting the fast dynamics may lead to modeling inaccuracies 

in dynamic response and stability property. In order to accelerate computation while maintaining 

the accuracy and faithful stability property of the original load model, it is imperative to develop 

a high-fidelity reduced-order load model. 

1.3 Report Organization  

The rest of this report is organized as follows. Chapter 2 provides an all-inclusive review of load 

modeling. Chapter 3 develops a general global sensitivity analysis method to reduce the dimension 

of input space of any nonlinear model with scalar output. A WECC composite load model 

parameter identification approach is proposed using evolutionary deep reinforcement learning in 

Chapter 4. Chapter 5  presents an autonomous parameter identification approach by calling PSSE 

dynamic simulation in python-based optimization algorithms. Chapter 6 derives an order reduction 
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technique based on the singular perturbation theory to obtain a reduced load model. Chapter 7 

concludes this report and describes the future research topics. 
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2. Load Modeling Review 

2.1 Introduction 

Load modeling is essential to power system analysis, planning, and control. For example, studies 

have shown the importance of accurate load representations in voltage stability assessment [1]. 

Although the need for accurate load models is recognized by power system researchers and 

engineers [2], more research is imperative to update existing load models and understand 

characteristics of modern loads with emerging smart grid technologies such as distributed 

generators (DGs), electric vehicles (EVs), and demand side management (DSM). The uncertainty 

and difficulty of load modeling comes from the large number of diverse load components, time-

varying and weather-dependent compositions, and the lack of measurements and detailed load 

information. The goal of load modeling is to develop simple mathematical models to approximate 

load behaviors. 

Load modeling consists of two main steps: 1) selecting a load model structure, and 2) identifying 

the load model parameters using component or measurement-based approaches. Component-based 

or physically-based modeling has been extensively investigated in literature [3]-[9]. The method 

is based on the knowledge of physical behaviors of loads and mathematical relations that describe 

the functioning of load devices. However, obtaining such information is not always possible, 

which motivates the research in measurement-based modeling [10]-[19]. Measurement-based 

modeling collects measurements from data acquisition equipment to derive load characteristics. 

The main advantage is that this approach directly obtains the data from the actual network, and 

can be applied to any load. However, a developed model at one network location may not be 

applicable to other locations. The parameters of load models are estimated by fitting the acquired 

data to a load model structure using identification and estimation techniques. Other research 

suggested the use of Artificial Neural Networks (ANN) to model loads by mapping the input data 

set to the output [25]-[30]. This approach is useful when the model structure is unknown or hard 

to be mathematically represented. However, data-driven techniques require a large number of 

datasets and considerable computational effort. Moreover, ANN-based models can only be applied 

to systems for which they were developed. 

A review on load modeling was performed in 1990s [31],[32], which included a bibliography [33] 

listing papers on load models and typical values of parameters. The International Council on Large 

Electric Systems (CIGRE) established a new working group to provide guidance with respect to 

load modeling. The working group C4.605: "Modelling and Aggregation of Loads in Flexible 

Power Networks" aims to provide an overview of existing load models with a critical analysis on 

parameter identification methods. Developing new load models and validation techniques are also 

part of the agenda for CIGRE C4.605. The working group conducted a survey on international 

industry practice on load modeling in [34]. The paper summarized the key findings from 

questionnaires collected from power system operators around the world, and identified the 

prevalent types of load models being used. In [35], CIGRE presented a general overview on load 

modeling and aggregation. The report included modeling of active distribution networks and a 

detailed description of the commercial and residential load sectors. In this paper, we present a 

concise and thorough review on load modeling, including DG models. We review the existing 

work on load modeling and present the outstanding issues and new research trends. The commonly 
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used load models are summarized and discussed. The ever-increasing integration of demand-side 

controls and DGs, particularly distributed PVs, further complicates load characteristics and poses 

additional challenges to load modeling. In addition, we introduce the latest advancements in 

developing load models, such as the use of real-time data for online modeling [21], modeling 

residential loads by considering both electrical characteristics and consumers’ behaviors [36], and 

modeling microgrids (MGs) using a combination of component- and measurement-based methods 

[37][38]. 

2.2 Types of Load Models 

Load modeling refers to the mathematical representation of the relationship between the power 

and voltage in a load bus [2]. Load models can be classified into two main categories: static and 

dynamic models. Fig. 2-1 shows the currently used load models in industry for static and dynamic 

studies [34]. 

 

 

 Fig. 2.1 Load models currently used in the industry for (a) steady-state analysis and dynamic 

studies (b) active power and (c) reactive power 

2.2.1 Static Load Models 

Static models express the active and reactive power at any instant of time as functions of bus 

voltage magnitudes and frequency. These models can be used to represent static loads e.g., 

resistive loads, and as an approximation for dynamic loads, e.g., induction motors. 

1) ZIP Model 

ZIP model is commonly used in both steady-state and dynamic studies [2]. This model represents 

the relationship between the voltage magnitude and power in a polynomial equation that combines 

constant impedance (Z), current (I), and power (P) components. 

2) Exponential Model 

The exponential model relates the power and the voltage at a load bus by exponential equations. 

This model has fewer parameters and is usually used to represent mixed loads [39]. More 
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components with different exponents can be included in these equations. For example, by using 

three exponential components, the exponential model can be converted to a ZIP model. 

3) Frequency Dependent Model 

This model is derived by multiplying the exponential or ZIP model by a factor that depends on the 

bus frequency. The factor can be represented as follows. 

( ) 01 ffaFactor f −+=                                                    (2.1) 

where f is the frequency of the bus voltage, f0 is the nominal frequency, and a, is the frequency 

sensitivity parameter. Adding the frequency term to the ZIP model has no physical meaning, since 

the component related to the constant impedance becomes dependent on the frequency [32]. 

4) Electric Power Research Institute (EPRI) LOADSYN Model 

This model is used in the EPRI LOADSYN computational program and Extended Transient 

Midterm Stability Program (ETMSP) for dynamic studies [40][41]. The model combines ZIP, 

exponential, and frequency-dependent models. 
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where P0 and Q0 are the power consumed at the rated voltage V0 of a device, if the model is used 

to represent a specific device. If it models the aggregate load at a bus, V0 , P0 and Q0 are initial 

operating conditions. The active power is represented by frequency dependent and independent 

components. The reactive power is composed of two terms. The first represents the reactive power 

consumption of the load, and the second approximates the effect of the reactive consumption minus 

compensation, which finds the initial reactive power flow at a bus. Pa1 is the frequency-dependent 

fraction of active power, Qa1 is the reactive load coefficient representing the ratio of 

uncompensated reactive load to active power, Kpv1 and Kpv2 are voltage exponents for frequency 

dependent and independent active power, respectively. Kqv1 and Kqv2 are voltage exponents for the 

reactive power without and with compensation, respectively. Kpf1 and Kqf1 are the frequency 

sensitivity coefficients for active and uncompensated reactive power load, respectively. Kqf2 is the 

frequency sensitivity coefficient for reactive power compensation. 

2.2.2 Dynamic Load Models 

Studies in voltage stability require the use of dynamic load models for accurate representation [2]. 

Dynamic models express the active and reactive powers as a function of voltage and time. 

Examples of the widely used dynamic models are presented as follows. 
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 Fig. 2.2 Schematics of (a) induction motor, (b) ZIP+IM, (c) CLOD, (d) WECC CLM 

1) Induction Motor (IM) 

In dynamic models, the active and reactive power is represented as a function of the past and 

present voltage magnitude and frequency of the load bus. This type of model is commonly derived 

from the equivalent circuit of an induction motor [2], shown in Fig. 2.2 (a), where Rs and Rr are 

the static and rotor resistances respectively, Xs, Xr and Xm are the static, rotor and magnetizing 

reactance, respectively, and s is the rotor slip. The induction motor model is considered as a 

physically- based model. 

2) Exponential Recovery Load Model (ERL) 

The exponential recovery load model [43],[44] represents active and reactive power responses to 

step disturbances of the bus voltage. This model is commonly used for representing loads that 

slowly recover over a time period, which ranges from several seconds to tens of minutes. ERL is 

also used to model on-load tap changers (OLTCs) which restore the nominal supply voltage after 

a disturbance. The model is developed as a non-linear first-order equation to represent the load 

response, as shown in (4-7). 

( ) ( ) ptps NN

p

p

p VVPVVPx
dt

dx
T 0000 // −+−=                                     (2.4) 

where xp and xq are state variables related to active and reactive power dynamics, Tp and Tq are 

time constants of the exponential recovery response, Nps and Nqs are exponents related to the 

steady-state load response, Npt and Nqt are exponents related to the transient load response. 

The ERL is further extended in [45] as an adaptive dynamic model. The model has the same 

characteristics as the exponential recovery model, but with the power being a function of the 
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voltage multiplied by the state variable.  

( ) ( ) ptps NN

p
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T 000 // +−=                                                (2.5) 
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2.2.3 Composite Load Models (CLM) 

Recent studies focus on combining the dynamic and static load models [11],[13],[21],[46][47]. 

References [46] and [47] compared simulation results of different load models with transient 

disturbances, and concluded that composite models can provide more accurate responses. The 

widely used composite models are summarized in this subsection. 

1) ZIP+IM 

According to the study in [34], the composite load model consisting of ZIP and an induction motor 

is the most commonly used model in the US industry for dynamic studies. In [13], several 

composite load models were considered including ZIP+IM and Exponential+IM. The report 

concluded that the ZIP+IM structure is able to model loads with various conditions, locations, and 

compositions. The equivalent circuit of the ZIP+IM model is shown in Fig. 2.2 (b). 

2) Complex Load Model (CLOD) 

This model is adopted by the Siemens PTI PSS/E stability program [31]. CLOD is an aggregate 

dynamic model of large and small motors, non-linear models of discharge lighting, transformer 

saturation effects, constant MVA, shunt capacitors, and a series impedance and tap ratio to 

represent the effect of intervening sub-transmission and distribution elements. Fig. 2.2(c) shows 

the schematic of this model. 

3) Western Electricity Coordinating Council (WECC) CLM 

After the 1996 blackout of the Western Systems Coordinating Council (WSCC) [48], an interim 

composite load model containing a static part and a dynamic part was implemented by WSCC 

[49]. The model is assumed to have 80% static loads and 20% dynamic ones. The static part is 

represented by existing data from WSCC members, and the dynamic part is an induction motor 

model. The model was designed to capture the effects of dynamic induction motor loads for highly 

stressed conditions in summer peaks. The interim load model was unable to represent delayed 

voltage recovery events from transmission faults [5][50],[51]. WECC improved the interim model 

[6] by adding the electrical distance between the transmission system and the electrical end-uses, 
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as well as adding special models for residential air- conditioners. By 2012, the WECC CLM was 

tested and implemented in major industry-level simulation software including PowerWorld 

Simulator and Siemens PTI PSSE [6]. Datasets were developed for four seasons in 12 climatic 

zones across the western region with different load sectors (residential, commercial, mixed and 

rural)[6]. The model structure is shown in Fig. 2.2 (d), which includes an electrical representation 

of a distribution system with a substation transformer, shunt reactance, and a feeder equivalent. At 

the consumer side, the load model includes a static load model, one power electronics model, and 

four types of motor models. Although CLM provides a detailed modeling, it is hard to implement 

as there are 131 parameters to be identified. 

2.2.4 Artificial Neural Network-Based Modeling 

ANN-based load modeling [25]-[30] matches observed system behaviors without using a physical 

form to obtain the output, i.e., it has no physical meaning and purely relies on measurement data. 

An ANN is composed by a set of processing units interconnected by weights. The ANNs are 

trained using a succession of input and output patterns, resulting in the final values of the 

connection weights that determine the load model. Reference [25] presented two ANN-based load 

modeling approaches. In [26], an ANN-based composite load model was proposed for stability 

studies. The authors used a two-step procedure with the first step to develop a recurrent neural 

network with simulation data and the second step to update it using measurement data. Although 

ANN is powerful in representing complex nonlinear systems., obtaining enough data over a wide 

range of operation conditions is challenging. In addition, ANN-based models must be updated 

periodically when new measurement datasets are available. 

2.3 Load Model Parameter Identification 

Load model identification methods can be classified into two categories: component-based and 

measurement-based. The component-based methods aggregate models of individual electrical 

components to form an aggregated load model. This approach requires knowledge on the load 

composition, i.e., the percentage of load consumed by each type of load components. 

Measurement-based approaches leverage data from devices such as PMUs, smart meters, etc. A 

model structure is selected and its parameters are derived using computation techniques such as 

statistics, artificial intelligence, and pattern recognition. Component-based methods start from the 

individual components, while measurement-based ones start from the measurement data as 

illustrated in Fig. 2.3. The two methods are summarized in Table I. 
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 Fig. 2.3 (a) component-based modeling approach, (b) measurements-based method approach 

2.3.1 Component-Based Approach 

The component-based method is a bottom-up approach as illustrated in Fig. 8 (a). Load is 

commonly divided into industrial, commercial, and residential classes. The approach requires three 

datasets: 1) models of individual components, 2) component composition, i.e., the percentage of 

load consumed by each load component, and 3) class composition, i.e., the percentage contribution 

of each load class to the aggregate load. This approach has been used by WECC to develop their 

composite load models [6]. 

The individual load components can be represented using static or dynamic models. Resistive 

components such as electric cooking appliances and water heaters can be modelled as constant-

impedance loads, while other loads such as SMPS are modeled as constant-power loads or the 

generic model in Fig. 2.3 [36]. The parameters for individual component models can be obtained 

through laboratory experiments [52]-[54]. 
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Table 2.1 Comparison of measurement and component based approaches 

 

Determining the load composition is the most challenging task as it is impossible to obtain detailed 

consumption information of all electrical components in a power system. In addition, load 

composition is affected by geographical locations and weather conditions. For example, Fig. 2.4 

show consumption profiles of different appliances in residential and commercial sectors during 

different seasons. Recently, the deployment of smart meters enables the two-way communication 

between customers and utilities, which provides a new and easy way to obtain accurate load 

compositions. To determine the load class composition, the metered demand at load buses can be 

used, which is typically available every 15 minutes. 

 

 Fig. 2.4 Typical consumption profiles for (a) winter commercial class, (b) winter residential 

class, (c) summer commercial class, and (d) summer residential class 

 Advantages Disadvantages 

 

M
ea

su
re

m
en

t-
b
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ed
 

- Based on data from actual systems 

- Provide accurate models for 

measured locations and time 

- A generic method that can be applied 

to various models 

- No need to have deep 

knowledge of loads 

- Unable to account for different 

operation conditions 

- Models are developed using data 

measured in certain periods at specific 

locations, which lacks generalizability 

- Measurements with large 

disturbances are hard to obtain 

 

C
o
m

p
o
n
en

t-
b
as

ed
 - Field measurement is not required 

- Physical representation of end-use 

devices 

- Can be applied to different operation 

conditions 

- Demand side management is 

considered 

- Requires characteristics of individual 

load components. 

- Accurate and comprehensive load 

composition information is hard to 

obtain 

- Low adaptability to the integration 

of new loads 
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A different bottom-up approach was proposed in [55] for industrial facilities. Instead of obtaining 

the full load model of the system by using composition values of load classes, the paper proposed 

to create specific models for industrial loads, then obtain the system model using an aggregation 

algorithm developed in [56]. 

2.3.2 Measurement-Based Approach 

Steps of the measurement-based approach are summarized in Fig. 2.3 (b): 1) obtain measurement 

data, 2) select a load model structure (e.g. ZIP, exponential, etc), 3) estimate model parameters, 

and 4) validate the load model. Measurement-based 

load modeling leverages actual field data to capture load characteristics. The measurements should 

be obtained under different conditions and disturbances. The model parameters are estimated by 

minimizing the difference between the response of the load model and the field measurements. 

The problem can be formulated as a curve fitting problem using the following equation: 

( ) ( ) 
=

−+−
n

i

e

i

m

i

e

i

m

i QQPP
n 1

221
min                                    (2.9) 

where Pi
m  and Qi

m are the measured active and reactive power, respectively, and Pi
e and Pi

e are the 

modeled active and reactive power, respectively. The parameters are calculated using algorithms 

such as least-squares, genetic algorithm (GA), support vector machines (SVM), Kalman Filter 

(KF), Levenberg-Marquardt algorithm, and Simulated Annealing. Table II summarizes existing 

measurement-based techniques. 
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Table 2.2 Examples of measurement-based techniques 

 

The measurement-based approach has been extensively studied in the literature. In [11], a 

multicurve identification technique was used to identify parameters of the ZIP+IM model. Multiple 

filed measurement datasets were collected and fitted to the model structure using a hybrid GA and 

simplex search algorithm. [21] presented an event-oriented method for online load modeling based 

on PMU data from the Illinois Institute of Technology MG. In [22], the authors used the sliding 

window technique to reflect the real-time dynamic behaviors of loads during disturbances such as 

voltage sags and interruptions. Least-square methods have been widely applied to identify 

parameters of various load models including ZIP+IM with frequency. The increasing installation 

of PMUs makes the online modeling an attractive approach. Reference [66] applied the unscented 

Kalman filter [67] to perform real- time estimation of the ERL model parameters. The developed 

approach was tested on both simulated and field measurements with a 3-second resolution. In [65], 

a time-varying exponential load model was used to represent the load, and a recursive least square 

Ref. Algorithms Load Models Data Sources 

[17] GA + Simplex search 

method 
ZIP+IM PMU: NE power grid in 

China 

[20] GA+LM ZIP+IM Simulation + Field 

measurements 

[22] Improved particle swarm 

optimization 
Exponential + IM 

Simulation + Laboratory 

experiments 

[42] LM ERL Simulation + Field 

measurements 

[57] Least Square 1st order IM model Simulation 

[58] 
Gauss-Newton + 

Trajectory sensitivity 
Differential- algebraic 

equations 
Simulation 

[59] 
Instrumental Variable-

based estimation 

ZIP and Exponential and 

dynamic models 
Simulation 

[60] 
Gradient-based 

parameter estimation 
Fifth-order single rotor cage 

model 
Laboratory experiments 

[61] Simulated Annealing EPRI Loadsyn and IM Simulation + Field 

measurements 

[62] Kalman Filter ZIP Korea Energy 

Management System 

[63] SVM ZIP+IM Simulation 

[64] Weighted recursive least 

squares 
Exponential and ZIP CPFL Energia, Brazil 

[65] Recursive least squares Exponential Field CVR test data 
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algorithm was employed to identify the load model parameters. The paper used the load model to 

assess conservation voltage reduction (CVR) effects [68]. The authors in [69] used robust least 

squares approach to estimate time-varying parameters of a ZIP model at the substation level. The 

proposed method was used to identify the load-to-voltage dependence and analyze CVR. 

There are studies using hybrid component- and measurement-based methods. [70] developed load 

models at high-voltage buses from load compositions of LV buses. SVM was used to classify the 

loads into various classes based on the load responses to large disturbances. The authors in [71] 

proposed a variable projection based optimization algorithm to identify the parameters of several 

different load models. For small disturbances, only the load component composition in each load 

class was identified, and the remaining parameters remained unchanged. The proposed method 

was tested on the 243-bus Indian Northern Regional Power Grid system. Reference [72] developed 

an approach to aggregate various load component models to obtain the system load model. 

Parameter estimation was used to determine the amount each component contributes to the total 

power consumption. A Gauss-Newton method based on trajectory sensitivities was used to 

determine the parameters of each load model structure. Trajectory sensitivities can quantify effects 

of small parameter changes on a dynamic system’s trajectory, which can guide the parameter 

updates. 

The authors in [14] used trajectory sensitivity for model simplification to reduce the number of 

parameters to be estimated. By applying the trajectory sensitivity analysis to measurement data, 

load model parameters were classified into two sets based on their sensitivities to the active and 

reactive power. Parameters with large sensitivities were grouped together and estimated using the 

measurement-based approach, while less sensitive parameters were set to be their default values. 

The parameters with low sensitivities are not necessarily unimportant, it means these parameters 

are hard to be identified from the current data. Reducing the number of parameters makes it 

possible to include more components in the load model. [23] presented an algorithm for estimating 

load model parameters based on the analytical similarity of model parameter sensitivities, and 

demonstrated its computational efficiency and accuracy. The authors in [73] analyzed model 

parameter sensitivities using eigenvalues of Hessian matrix. The paper used the LM algorithm to 

solve the optimization problem. The linear dependence between two load model parameters were 

then identified by examining the condition number of Jacobian matrix. This dependency analysis 

was used to ensure that low-sensitivity parameters were independent of high-sensitivity ones. 

Reference [74] presented a computationally efficient technique for estimating the composite load 

model (ZIP+IM) parameters based on analytical similarity of parameter sensitivity. The paper used 

the partial derivative of each parameter to identify parameters with similar sensitivities. LM 

algorithm was used to solve the optimization problem in (17). The presented technique was tested 

on real measurements collected from Cheongju and Suwon of South Korea. The computation time 

was reduced by three quarters after reducing the number of parameters from 12 to 9. 

2.4 Summary 

This section reviews the state-of-the-art of load models and parameter identification methods. New 

approaches for modeling LV networks and ADNs are also discussed. Load modeling is challenging 

due to the large number of diverse load components, the lack of precise load composition 

information, and the stochastic, time-varying and weather-dependent load behaviors. Currently, 

the ZIP+IM composite model is one of the most widely used models in US power industry [34]. 
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WECC and EPRI have been actively investigating load modeling techniques. WECC focused on 

the component-based approach while EPRI is developing hybrid approaches that integrate 

component- and measurement-based methods. The WECC composite load model is 

comprehensive and flexible, however, it is complicated and hard to apply. There are also concerns 

about the numerical stability and consistency of the WECC model. ZIP+IM is less complicated, 

but it is unable to capture the full system characteristics. Furthermore, ZIP+IM cannot represent 

DGs’ behaviors. CIGRE provided several overviews and recommendations on load modeling 

which were combined in [75][77]. 

For parameter identification, measurement-based techniques are prevalent as new devices such as 

PMUs and smart meters are installed. However, it is still challenging to identify a large number of 

unknown parameters. Sensitivity analysis has been proposed to reduce the number of parameters 

and identify the significant ones. Extreme sensitivities could lead to the failure of the load model 

with small changes in operating conditions. Further research on sensitivity analysis is needed. The 

deployment of smart measurement devices provides an opportunity to design hybrid approaches 

that integrate the measurement- and component-based methods. The introduction of new loads and 

controls will reshape the load composition. The deployment of smart meters provides an 

opportunity to improve the load composition estimation for component-based load modeling [78]. 

The amount of data collected from the measurement devices is massive, and processing a large 

number of data is challenging. Data collection and processing techniques such as data mining and 

clustering should be improved. Future research on parameter estimation algorithms should be able 

to process data from existing and emerging measurement devices with different resolutions, such 

as smart meters, PMUs, and SCADA. Meanwhile, the algorithms should be robust to bad data, 

missing measurements, changes in the voltage regulation scheme, and noises [79]-[80]. 
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3. Parameter Reduction of Composite Load Model using Active Subspace 

3.1 Introduction 

Load modeling is significant for power system studies such as parameter identification, 

optimization and stability analysis, which has been widely studied [81]. It can be classified into 

static and dynamic load models. Constant impedance-current-power (ZIP) model, exponential 

model and frequency dependent model are typical static loads models, and traditional dynamic 

load models include induction motor (IM) and exponential recovery load model [82]. To provide 

more accurate responses, composite load models are developed by combining static and dynamic 

load models. Motivated by the 1996 blackout reported by the Western Systems Coordinating 

Council (WSCC), the classic ZIP+IM composite load model was developed to model highly 

stressed loading conditions in summer peak hours [83]. However, this interim load model was 

unable to capture the fault-induced delayed voltage recovery (FIDVR) events [84]. Therefore, a 

more comprehensive composite load model was proposed by Western Electricity Coordinating 

Council (WECC) that contains substation trans-former, shunt reactance, feeder equivalent, 

induction motors, single-phase AC motor, ZIP load, electronic load, and DER [85]. WECC 

composite load model (WECC CMLD) produces accurate responses, nevertheless, the large 

number of parameters and high model complexity raise new challenges for power system studies. 

Name parameter identification as one significant example, where the large number of parameters 

brings great difficulties to search for global optimum when performing parameter identification. 

The reason is twofold: firstly, the large number of parameters result in a large search space that 

reduces the optimization efficiency; secondly, the insensitive parameters and parameter 

interdependencies usually result in a large number of local optima, which increases the difficulty 

of achieving global optimum [86]. Although the parameters have physical meanings, some of them 

only have marginal impacts on the model response altogether or along certain parameter variation 

directions [87]. Moreover, considering full load model parameter set could significantly increase 

the complexity of power system studies. Therefore, it is imperative to develop a method to screen 

out the insensitive parameters. Then, only the sensitive parameters are to be determined in the 

parameter identification problem while the others can be kept at their respective default values. In 

this way, the dimension of search space of load model parameters can be significantly reduced. 

Thus, lower computational cost (less model runs) and higher accuracy (easier to find the optimum) 

can be achieved when conducting power system studies such as parameter identification without 

compromising fidelity of the load model. 

The above problem can be resolved by dimension reduction in parameter space based on sensitivity 

analysis of a parameterized model whose inputs are system parameters. As discussed in [88], 

parameter reduction (PR) methods can be classified into local and global ones. Local PR methods 

are suitable for known parameters with small uncertainties, in which partial derivatives of output 

with respect to the model parameters are computed to evaluate the relative variation of output with 

respect to each parameter. Nonetheless, the input parameters are subject to a range in typical load 

modeling problems. Therefore, a global sensitivity metric is necessary to measure the sensitivity 

of output with respect to parameters. 

There are many existing global PR approaches. One of the most common and simplest techniques 

in engineering is the so-called “One-At-A-Time” (OAT) method that varies one parameter while 
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fixing the others. However, this method can only provide a rough qualitative approximation of the 

parameter sensitivities and cannot fully reveal the nonlinearity and interdependency among the 

parameters due to its low exploration of the parameter space. In [89], the OAT method was 

improved by proposing two sensitivity measures, mean µ and standard deviation σ based on the 

elementary effects methods. This method has higher exploration rate of the parameter space and 

can qualitatively analyze which parameter may have influence on nonlinear and/or interaction 

effects. This method is further extended by supersaturated design [90], screening by groups [91], 

sequential bifurcation method [92] and factorial fractional design [93] based on the number of 

parameters and experiments in a particular scenario [94]. 

To quantitatively study the comprehensive parameter sensitivity patterns and their 

interdependencies, variance-based approaches such as Sobel indices [95] were proposed for 

nonlinear and non-monotonic models. However, to precisely estimate the sensitivity indices with 

arbitrary order interactions between parameters, these approaches require a formidably large 

number of experiments [96]. In [97], a total-effect index was introduced, which can measure the 

contribution to the out-put variance of parameters, including all variance caused by its interactions 

of any order with any other parameters, as well as reducing the requirement of the number of 

experiments. These indices are usually estimated by Monte Carlo methods [98]. Such methods are 

accurate but suffer from high computational cost when large sample size is required. Thus, it 

motivates the recent research on exploring efficient numerical algorithms including the analysis of 

variance (ANOVA) decomposition [99], Fourier Amplitude Sensitivity Test (FAST) [100] and 

least ab-solute shrinkage and selection operator (LASSO) [101]. Despite the relative reduction in 

computational cost by these methods, they can result in instability and inaccuracy when the number 

of parameters increases (larger than 10) [94], [102]. Some researches delve into the trajectory 

sensitivity analysis, e.g., in [103], the time-varying parameter sensitivities of ZIP+IM model are 

derived based on perturbation and Taylor expansion method. However, such methods need explicit 

mathematical model and require the model output to be differentiable with respect to the 

parameters for the Jacobian matrices to exist, which makes it inapplicable for WECC CMLD. 

Different from OAT and and variance-based approaches, the active subspace method (ASM) is 

based on gradient evaluations for detecting and exploiting the most influential direction in the 

parameter space of a given model to construct an approximation on a low-dimensional subspace 

of the model’s parameters as well as quantify the interdependencies among parameters [104]. As 

a Monte Carlo sampling based method, ASM also requires multiple experiments, but it has better 

accuracy and requires relatively lower sample size. 

There are limited studies on the PR problem of WECC CMLD. In [81], the parameter sensitivity 

and interdependencies among parameters are analyzed using OAT method and clustering 

techniques, motivated by observing that different parameter combinations can give the same data 

fitting results in measurement-based load modeling. As discussed above, the OAT method suffers 

from low accuracy and low exploration rate of the parameter space. Moreover, the interdependency 

is simply determined by whether parameters have similar trajectory sensitivities in this work. In 

addition, the newly-approved aggregated distributed energy resources (DER A) model in WECC 

CMLD has not been considered. PR was conducted by means of data-driven feature-wise 

kernelized LASSO (FWKL) in [101], which uses multiple randomly-generated parameter vectors 

and corresponding output residuals to compute parameter sensitivities by solving a LASSO 

optimization problem. This approach avoids utilizing analytical gradient and can obtain the 

optimal sensitivity. In addition, the employment of LASSO ensures parameter interdependency is 
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captured in a feature-wise manner. However, due to high non-convexity of WECC CMLD, the 

result is very sensitive to parameter setting of the algorithm and the distribution of the dataset. 

Also, the large number of experiments and optimization process greatly increase its computational 

cost. 

In this chapter, a novel PR approach is proposed by leveraging the ASM. As an alternative PR 

technique, ASM is a relatively new dimension reduction tool that has shown its effectiveness in 

many fields such as bioengineering [105] and aerospace engineering [106]. The outstanding 

advantages of ASM include relatively low computational cost, high accuracy and the ability to 

quantify the parameter interdependency. 

Motivated by the fact that the WECC CMLD is a differential-algebraic system and ASM can only 

deal with algebraic functions, we first cast the WECC CMLD as a discrete-time system for 

parameterization. Secondly, a comprehensive PR approach tailored for WECC CMLD based on 

ASM is proposed. Thirdly, factors influencing accuracy of PR results are rigorously analyzed. 

Finally, statistical and numerical experiments are conducted to validate the effectiveness of the 

proposed method. Comparative case studies with three classical PR methods are also conducted 

and discussed. 

3.2 Problem Statement 

In this section, the structure and function of WECC CMLD are introduced, then a parameterized 

model of the composite load is established for PR. 

3.2.1 Introduction of WECC CMLD 

As shown in Fig. 3.1, WECC CMLD consists of three 3-phase motors, one single-phase motor, 

one ZIP load, one electronic load and one DER A model. Three 3-phase motors represent three 

different types of dynamic components. Motor A represents three-phase induction motors with 

low inertia driving constant torque loads, e.g. air conditioning compressor motors and positive 

displacement pumps. Motor B represents three-phase induction motors with high inertia driving 

variable torque loads such as commercial ventilation fans and air handling systems. Motor C 

represents three-phase induction motors with low inertia driving variable torque loads such as the 

common centrifugal pumps. Single-phase motor D captures behaviors of single-phase air with 

reciprocating compressors. However, it is challenging to model the fault point-on-wave and 

voltage ramping effects [85]. Moreover, new A/C motors are mostly equipped with scroll 

compressors and/or power electronic drives, making their dynamic characteristics significantly 

different than conventional motors. Therefore, WECC uses a performance-based model to 

represent single-phase motors. As increasing percentage of end-uses become electronically 

connected [83], the WECC CMLD adopts a simplistic representation of power electronic loads as 

constant power loads with unity power factor. A ZIP load is used as static one in this model. The 

DER model is specified as the newly-approved DER A model presented in [107]. 



 

19 

 

 Fig. 3.1 A schematic diagram of the WECC CMLD[108]  

3.2.2 Motivation for PR 

The WECC CMLD contains 183 parameters, which pose significant challenges for power system 

studies such as parameter identification, optimization and control. By observing that part of the 

parameters can be determined by engineering judgment, we can filter out them according to the 

analysis in [101]. In particular, the parameters of transformer, feeder, and the stalling and restarting 

of induction motors can be excluded since they have small range of uncertainties and are usually 

pre-determined by their default values to meet practical engineering requirements. In this way, 64 

parameters are screened out a priori. Nonetheless, the number of parameters that remains is still 

too large for power system studies. Therefore, in this chapter, we use ASM to further reduce the 

number of parameters. The WECC CMLD is a differential-algebraic system which is usually 

represented as a continuous-time state space model [84]. Considering that ASM requires a scalar 

function with domain as parameters and range as active or reactive power, in this section, we 

parameterize the WECC CMLD in a discretization manner. The parameterized model produces 

similar responses as the original one with high-fidelity as long as the Nyquist-Shannon sampling 

theorem is satisfied. 

3.2.3 Parameterized WECC CMLD 

The WECC CMLD is a hybrid model with dynamic and static components. The state vector 
dn

x ¡ of three-phase motors and DER is governed by the following differential equation 

( ) ( ) ( ) ( )( ),  ,  ,  x t f x t t u t=&                                                  (3.1) 

where ( ) pn
t  ¡ denotes the parameter vector; ( ) ( ) ( ) ( )   ,  ,  

T

u t V t t f t  
 =  is the input 

vector consisting of volt-age magnitude, voltage angle and frequency deviation, respectively; 
3: pd d

nn n
f   →¡ ¡ ¡ ¡  represents the dynamic model of three-phase motors, and DER; dn  and

pn  are the total number of dynamic states and parameters. The active and reactive power output 

of the dynamic components, ( ) ( ) ( ),
T

d d dy t P t Q t=    is given by 
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( ) ( ) ( ) ( )( ). ,  ,  d dy t g x t t u t=                                                (3.2) 

In PR using ASM, a mapping between parameters and active/reactive power is required for PR. 

Based on the fact that the input of load model u is usually sampled every T seconds, we can 

discretize (3.1) as 

( ) ( ) ( ) ( )( ) 1 ,  1 , , 1x k f x k k u k= − − −                                       (3.3) 

where f  is the discretized function of f, k = 1, 2, . . . , N, N is the total number of measurements. 

Note that the sampling rate should satisfy Nyquist-Shannon sampling theorem to guarantee that 

discrete sequence of samples can capture all the information from a continuous-time signal. Then, 

( )x k can be calculated from the initial state ( )0x  by iteratively evaluating f  using past 

sequences of parameters and inputs, ( ) ( ) ( ) ( )1 ,  . . . ,  0 ,  1 ,  . . . ,  0k u k u − −   . Finally, by 

substituting (3.3) iteratively into (3.2), we can obtain the desired mapping using some algebraic 

function dg : 

( ) ( ) ( ) ( ) ( ) ( )( )  ,  . . . ,  0 .,  ,  . . . ,  0 ,  0d dy k g k u k u x =                            (3.4) 

Regarding x and u as constants, Eq. (3.4) depicts the relation-ship between active/reactive power 

of dynamic components and parameters. 

As for the static components such as single-phase motor, electronic load, and static ZIP load, the 

mapping from parameters to active and reactive power outputs can be represented as 

( ) ( ) ( )( )  ,  .s sy k g k u k=                                                 (3.5) 

The total power output ( )y k  of the WECC CMLD can be calculated by adding the dynamic and 

static parameterized model together. For ease of deriving PR approach for the composite load 

model, we define the parameterized model as g in the form of 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )     ,  ,  0 ,  ,   ,  0 ,  0 . d sy k y k y k g k u k u x = + = K K       (3.6) 

If the parameters are considered as time-invariant during a short time period, Eq. (3.6) can be 

simplified as 

( ) ( ) ( ) ( )( )  ,  ,  . .. . ,  0 ,  0y k g u k u x=                                      (3.7) 

where ( ) ( ) ( ),
T

y t P t Q t=    , and ,
T

P Qg g g =   . 
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3.3 PR Approach for WECC CMLD using ASM  

In this section, we will use ASM to reduce the parameters of the WECC CMLD. Firstly, the 

preliminaries of ASM are introduced. Then, the application of ASM to WECC CMLD is 

elaborated in steps. Finally, the factors affecting the accuracy of PR is analyzed theoretically. 

3.3.1 Preliminaries of ASM 

An active subspace is a lower-dimensional linear subspace of the parameter space, along which 

input perturbations alter the model’s predictions more than the perturbations along the directions 

which are orthogonal to the subspace on average. This subspace allows for a global measurement 

of sensitivity of output variables with respect to parameters, and is often used to decrease the 

dimension of the parameter space. Con-sider a parameterized function :g  → ¡  that maps the 

parameters of a system,  : | 1 1, 1, ,m

ix x i m  =  −   =¡ K , to a scalar output of interest, 

e.g., active power P or reactive power Q, where   indicates a normalized set of parameter values. 

To discover the active subspace, we define the following C matrix, 

( )( ) ( )( ) ( ) . 
T

g gC d
 

    =                                      (3.8) 

where ( ) :   +→ ¡  is the joint probability function of parameters satisfying 

( ) 1.d

   =                                                             (3.9) 

For any smooth function ( )g  , the matrix C is called average derivative functional in the context 

of dimension reduction, which weights input values according to the density ( )  . Note that a 

single normalized parameter is a random variable taking values in [−1, 1], which when 

appropriately scaled represents a parameter in the original model (3.7). Since the dimension of the 

parameter space in this model is 64, we take m = 64 throughout. The matrix C is the average of the 

outer product of the gradient of ( )g   with itself and has some useful properties that will allow us 

to deduce information about how ( )g   is altered by perturbations in its arguments. 

Remark 1: From (3.8), each element of C is the average of the product of partial derivatives (which 

can be regarded as parameter sensitivity) 

, , 1, , ,ij

i j

C
g g

d i j m


 
 

   
= =      
 K                                 (3.10) 

where ijC  is the (i, j) element of C, and m is the number of parameters. If we consider ( )g


  

to be a random vector by virtue of 'i s density ρ, then C is the uncentered covariance matrix of 
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the gradient of output with respect to the parameters [104]. This allows us to use the covariance 

matrix C to measure the correlation between each pair of parameter gradients. For simplicity, 

denote 
i

g






 as is , denote the mean and standard 

deviation of gradient of ith parameter as 
is  and 

is , respectively. Then, the correlation between 

(i, j) parameter gradients is 

( )( )

,

cov( , )

i j

i j

i j

i j

i j

i j

i j

s s

s s

i s j s

s s

ij s s

s s

s s

s s

C


 

 

 

 

 

=

  − −
 =

−
=

                                       (3.11) 

Eq. (3.11) shows that the C matrix encodes the correlation information between parameter 

gradients, which means the ASM takes into consideration the interdependency of parameters. This 

is one of the advantages compared to other PR methods. 

The matrix C is symmetric, and thus permitting the spectral eigen-decomposition 

TC W W=                                                          (3.12) 

where W is an orthogonal matrix whose columns ( ), 1, ,i i m = K  are the orthonormal eigenvectors 

of C.  ( )1, , mdiag   = K , and 1 , , m  K . 

Since W is orthogonal, from the definition of eigenvectors and (3.8), the eigenvalues of C can be 

calculated as  

( )( ) ( )( ) ( )

( )( )( ) ( )
2

, 1, ,

T

i i i

T
T

i i

T

i

C

g g d

g d i m

 



  

     

    

=

=  

=  =



 K

                             (3.13) 

From (3.13) we see that the eigenvalues of the C matrix are the mean squared directional 

derivatives of ( )g   in the direction of the corresponding eigenvector. If an eigenvalue is small, 

then (3.13) shows that ( )g   is insensitive in the direction of the corresponding eigenvector on 

average. On the contrary, a large eigenvalue indicates that ( )g   changes significantly in the 

direction of the corresponding eigenvector. 
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After determining the eigen-decomposition (3.12), the eigen-values and eigenvectors can be 

separated according to the magnitudes of eigenvalues: 

1 1

2 2

0 0
,

0 0

W
W

W

   
 = =   

   
                                          (3.14) 

where 1  and 1W  contain the first n larger eigenvalues and corresponding eigenvectors, 2  and 

2W  contain the other m− n smaller ones. To determine such separation, one can find the spectral 

gap between the nth and (n+1) th eigenvalues on a log plot in the order of magnitudes. It is worth 

noting that the existence of a significant spectral gap directly indicates the existence of active 

subspace [24]. 

Keeping in mind that W is orthogonal, from (3.14), any parameter vector   can be represented as 

1 1 2 2

1 1 2 2

T

T T

WW

WW W W

W W

 

 

 

=

= +

= +

                                                 (3.15) 

Then, an output of interest with any parameter vector   is 

( ) ( )1 1 2 2g Wg W  = +                                               (3.16) 

From the definition of 1W  and 2W , we know that small perturbations on 2  have low impact on 

the value of g. Conversely, small perturbations on 1  will alter g significantly. According to this 

property, the range of 1W  is defined as the active subspace, and on the contrary, the range of 2W  

as the corresponding inactive subspace of the model. These subspaces describe the sensitivity of 

the output of interest with respect to parameter variations. 

It is worth noting that, though both ASM and principal components analysis (PCA) include the 

process of eigen-decomposition, they are intrinsically different. The PCA eigen-decomposed the 

covariance matrix of the parameter vector  , whereas the matrix to be eigen-decomposed in the 

active subspace is defined as (3.8). 
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3.3.2 PR Algorithm Based on ASM 

The overall algorithm for PR of WECC CMLD using ASM is summarized in Fig. 3.2. The key 

idea of the algorithm is elaborated in details as follows: 

 

 Fig. 3.2 The block diagram of the proposed PR algorithm based on ASM 

Step 1: Construct the parameter set  1,1
m

 = − , m = 64 as the normalized parameter space for all 

the selected parameters of WECC CMLD, and draw M samples  , 1, ,j j M = K from   

according to some probability density function satisfying (3.9). Usually, uniform distribution is 

chosen for simplicity. 

Step 2: For each sampled parameter vector 
j , approximate the gradient ( )j jg g

 
 =  using 

first order forward finite differences method as follows: 

( ) ( )

( ) ( )
,

,1 ,1 ,

,,

,

1

1

1

, ,

,

, 1, , ,( )

j j j

j

j m j m j m

j m

j

j

j m

gg

g

g

j M

g g g



  



 







 



 + − 
     
  = =  
  + − 
      





M M K                    (3.17) 

where j  is an arbitrarily small positive vector perturbation from the sampled parameter values. 

When g is a practical system, e.g., WECC CMLD, one needs to transform the normalized 

parameter vector 
j  to j  that is in the standard range of parameters, using the following linear 

mapping, 

( ) ( )( )
1

.
2

j upper lower j upper lowerdiag     = − + −                                (3.18) 

where upper  and lower  are upper and lower bounds of the parameter vectors, respectively. Thus, 

j in (3.18) denotes the vector of real parameter values of the WECC CMLD. 
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Step 3: Approximate the average derivative functional C using Monte Carlo simulation as 

( )( )
1

1ˆ .
M

T

j

j jC C g
M

g
 

=

 =                                                (3.19) 

Step 4: Compute the eigen-decomposition of approximate matrix Ĉ : 

'ˆ ˆ ˆ ˆ ,TC W W                                                            (3.20) 

which is equivalent to calculating the singular value decom-position of the matrix 

1

1 ˆ ˆ ˆ ,, , T

M Wg g V
M

 
=    K                                        (3.21) 

where the singular values are the square roots of the eigen-values of Ĉ  and the left singular vectors 

are the eigenvectors of Ĉ . The singular value decomposition perspective was first used in 

[109][29] to determine the active subspace that is related to the principal components of a 

collection of gradients. 

Step 5: After the decomposition (3.21), one needs to search for the largest spectral gap among 

eigenvalues in ̂  for subspace separation. The existence of a larger spectral gap indicates a more 

accurate determination of active subspace. To automatically find the optimal separation, we can 

use the following equation, 

1

1

ˆ ˆ
ˆ , 1, , 1,

ˆ
i i

i i m
 




+−
 = = −K                                             (3.22) 

Then, the dimension of the active subspace is 

( )( )1
1, , 1

ˆdim arg max i
i m

range W 
= −

= 
K

                                          (3.23) 

From (3.23), we know that the index of the largest value of ˆ
i  indicates the location of the largest 

spectral gap. In the dimension reduction context, often only the first value 
1̂  is considered such 

that the dimension of the active subspace is limited to one, which makes it more convenient for 

visualization of the output as a function of the active subspace [104][24]. Then, the magnitudes of 

elements in the first eigenvector describe the weights of parameters. 

Remark 1: The active subspace describes the most sensitive direction in the parameter space along 

which the output of interest evolves fastest. Thus, from (16) the output of parameterized model 

can be approximated by only the active subspace of parameter space, i.e., 

1 1 1 1( ) ( ), .Tg g W W    =                                         (3.24) 
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Eq. (3.24) indicates that g is related to 
1  which is a linear combination of original parameters  . 

This linear combination reflects the weight of each parameter and their collective influence on the 

output of interest. 

The accuracy of the approximation (3.24) depends mainly on two factors which will be further 

discussed in the next subsection. 

3.3.3 Accuracy Analysis of PR Based on ASM 

In this subsection, two main factors affecting the accuracy of PR using ASM introduced above 

will be discussed. 

1)Sample size M: In the above algorithm, the most costly computation processes are eigen-

decomposition and computing gradient for M times. In our case, the number of parameters is m = 

64, so the computational cost of eigen-decomposition is negligible compared to the computation 

of gradient. Thus, the selection of M that is large enough for approximating   and W while 

minimizing the computational cost is of vital importance. To estimate the first n eigenvalues of 

matrix C, the sample size M can be chosen as 

( )log ,M n m=                                                          (3.25) 

where β is an oversampling factor, which is usually selected between 70 and 120. In the next 

section, we will verify that this range of β is sufficient in the PR of WECC CMLD by experiment. 

The logarithm term log(m) follows from the bounds in the theorem proposed in [109]. 

2)Gradient approximation: The WECC CMLD suffers from high nonlinearity and complexity that 

render it difficult to derive a closed-form expression of gradient of output of interest with respect 

to the parameters. In view of the simulating g is not too expensive nor too noisy and m is not too 

large, we can utilize finite difference method to estimate the gradient. We know that, a smaller δ 

produces a more accurate approximation but with increased computational cost and vice versa. 

This relationship can be expressed as the following inequality by using (3.17), 

( ) ( )
( ) , 1, , ,( )

j j j

j j

j

m j
g g

g M





 
 



+ −
  =− K                (3.26) 

where ( )
0

lim 0
j

j


 
→

= . 

In the following, we will give a criterion for the selection of finite difference perturbation j  by 

restating Theorem 3.13 from [104]. 

Theorem 1 (Accuracy criterion of estimated active subspace [Thm. 3.13 in [104]]): Assume that 

( )jg L


  for   1,  . . . ,  ,j M=  and choose small parameter ε and β in (25) satisfying 
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1

1

0 ,
5

n n 



+−

                                                        (3.27) 

2

1

2 2

1

1
max , .

n

L

n




  

 
  

 
                                                (3.28) 

If the finite difference perturbation is small enough such that 

( ) ( )
2

' ' 1
ˆ ˆ5 10 , 1, , ,j j n nm L m j M      ++  − = K                          (3.29) 

then, the distance between real active subspace 1W  and the approximated one 
1Ŵ  using Monte 

Carlo and finite difference approximation method is bounded by 

( ) ( )( )
( ) ( )

( ) ( )

2

1 1

1

1

1

4 8
ˆ ,

1 1

4

j j

n n

n n

m L m
dist range W range W

   

   



 

+

+

+


− − +

+
−

                           (3.30) 

for 1, , ,j M= K with high probability. 

Proof: The proof follows the similar steps as in [104] by simply combining (3.25) and (3.28). 

We choose 61 10j
−=  , L = 1, m = 64, ε = 0.1, β = 100 and ( )j j  =  such that (3.27)-(3.29) 

hold. Then, based on Theorem 1, the error of active subspace estimate is bounded by 0.8 and the 

simulation result is not too far off. 

Remark 2: When the two factors are appropriately set, another most influential factor is the 

normalized eigenvalue separation 1 1/ n n   +−  in (3.30), which depends on the system 

characteristics only. The existence of significant spectral gap indicates a clear active subspace and 

accurate estimation. 

3.4 Case studies 

In this section, the proposed ASM is applied to analyze the sensitivities of the parameters of WECC 

CMLD. Firstly, a basic case study is conducted to show the implementation process and how to 

interpret the result. Then, the proposed method is also applied to the FIVDR case to show its 

effectiveness on more complicated voltage profile. Finally, three classical PR techniques are 

applied to the WECC CMLD for comparison with the proposed method. 
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3.4.1 Case I: Apply ASM to WECC CMLD and Result Analyses 

1)Simulation Setup: We first provide the simulation setup for the case studies. The range of 

parameters ,upper lower     is set by adding plus and minus fifty percent of perturbations on the 

standard values given in the guideline of WECC CMLD [108] as shown in Table 3.1. Using (3.25) 

with m = 64, n = 1 and β = 120, the sample size is calculated as 500ASMM  . In Section 3.4.3, we 

will show the convergence of parameter sensitivity with respect to increasing sample size, from 

which we can conclude that 500ASMM =  is a good balance between accuracy and computational 

cost. Then, the samples are drawn uniformly from  . When approximating the gradient using 

(3.17), the finite difference perturbation δ is chosen as 
61 10− , which is small enough to satisfy 

(3.29). Since ASM assumes scalar function g, we conduct the simulation by selecting active and 

reactive power as output of interest separately. The voltage and power measurements for PR in 

this simulation is generated by the Power System Simulator for Engineering (PSS/E) and the 

ACTIVSg500 test case with a line-to-ground fault [101] as shown in Fig. 3.3. The case study is 

conducted on a standard PC with an Intel(R) Xeon(R) CPU running at 3.70 GHz and with 32.0 

GB of RAM using MATLAB. 

 

 

 Fig. 3.3 The load bus inputs: (a) voltage magnitude; (b) voltage angle; (c) frequency 
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Table 3.1 Numerical range of load parameters of WECC CMLD 

Parameter LB UB Parameter LB UB Parameter LB UB 

Motor A LppC 0.06 0.24 Electronic Load 

TpoA 0.046 0.184 LsC 0.9 3.6 Frcel 0 0.38 

TppoA 0.001 0.004 RsC 0.015 0.06 Vd1 0.5 1.5 

LpA 0.05 0.20 HC 0.1 0.4 Vd2 0.25 1 

LppA 0.042 0.168 EtrqC 1.8 2.2 DER_A 

LsA 0.9 3.6 DC 0.5 2.0 Trv 0.01 0.04 

RsA 0.02 0.08 Motor D Trf 0.02 0.06 

HA 0.05 0.20 Kp1 0 1 Kqv 0.5 2 

EtrqA 0.5 2.0 Kp2 6 24 Tp 0.01 0.04 

DA 0.5 2.0 Kq1 3 12 Tiq 0.01 0.04 

Motor B Kq2 5.5 22 Tpord 2.5 10 

TpoB 0.05 0.20 Np1 0.5 2 Kpg 50 200 

TppoB 0.001 0.005 Np2 1.6 4.8 Kig 5 20 

LpB 0.08 0.32 Nq1 1 4 Tg 0.01 0.04 

LppB 0.06 0.24 Nq2 1.25 5 Tv 0.01 0.04 

LsB 0.9 3.6 CmpKpf 0 2 Xe 0.13 0.5 

RsB 0.015 0.06 CmpKqf -6.6 -1.6 Load Fraction 

HB 0.5 2.0 Static Load Fma 0 0.5 

EtrqB 1 3 P1c 0 0.4 Fmb 0 0.5 

DB 0.5 2.0 P2c 0 0.6 Fmc 0 0.5 

Motor C Q1c 0 0.4 Fmd 0 0.5 

TpoC 0.05 0.20 Q2c 0 0.6 Fel 0 0.5 

TppoC 0.001 0.005 Pfreq -0.2 0.2 Fzip 0 0.5 

LpC 0.08 0.32 Qfreq -2 -0.5 Fdg -0.5 0 

 

2)  Discovering Active Subspace and Parameter Sensitivities: To discover the active subspace, we 

can follow the algorithm provided in Section 3.3.2. Given the simulation setup as above, we firstly 

approximate the matrix C by Monte Carlo simulation (3.19) for 500ASMM =  with the gradient 

estimated by finite difference method (3.17). In this case study, the ( )j jg  +  and ( )jg   before 

transient are obtained using the mathematical model of WECC composite load developed in [110] 

for faster calculation of the gradient. Instead, one can also use other commercial software such as 

PSS/E or PSLF with potentially longer simulation time. Once the approximate C is constructed, 

the singular value decomposition is applied to abstract the eigenvalues and corresponding 

eigenvectors. The eigenvalues of Ĉ  are shown in Fig. 3.4 in descending order. Recall that a 

significant spectral gap indicates the existence of active subspace, so it is important to look into 

the gaps of eigenvalues in Fig. 4. Note that the largest spectral gap exists between the first and 

second ones even though it seems that the one between the 45th and 46th ones is larger since it is a 

semilog plot. To clearly show the largest spectral gap, we conduct the normalized eigenvalue 

separation (3.22) and the result in Fig. 3.5 clearly shows the dominance of the gap between the 

first and second eigenvalues. 
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Fig. 3.4 The semilog plot of the magnitudes of eigenvalues of matrix Ĉ  with respect to (a) real 

power and (b) reactive power 

 

 Fig. 3.5 The normalized eigenvalue separation of the magnitudes of eigenvalues of matrix Ĉ  

with respect to (a) real power and (b) reactive power 

Then, the first eigenvector forms the active subspace of and the magnitude of each element of the 

eigenvector describes the sensitivity of each corresponding parameter and their interdependency. 

The weights of parameters with respect to the real and reactive power are shown in Fig. 3.6 and 

Fig. 3.7, respectively. The parameters in the red rectangles that have the largest weights imply the 

reduced parameter space. However, noting that the weights of parameters in the green rectangle 

though dominated by those in the red, are still larger than those that are almost zero. Thus, one 

may wonder whether these parameters also have significant impacts on the output of the interest 

as well. To verify the PR result, we will perform further studies in the following subsections. 

3)Sufficient Summary Plot: In this subsection, we utilize sufficient summary plot to empirically 

validate the active subspace discovered in the last subsection. Sufficient summary plot was 

originally developed as a visualization tool for deter-mining low-dimensional combination of 

inputs in regression graphics. In the context of PR, it is often used to verify the active subspace, 

because it reveals the relationship between the output of interest P or Q, and the linear combination 

of input parameters 
1

T

jW  . If the relationship presents evidently tight and univariate trend, then 

one can conclude that the discovered active subspace is validated. 
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 Fig. 3.6 The magnitudes of first eigenvector denoting the sensitivities of parameters of WECC 

CMLD with respect to real power 

 

 Fig. 3.7 The magnitudes of first eigenvector denoting the sensitivities of parameters of WECC 

CMLD with respect to reactive power 
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 Fig. 3.8 Sufficient summary plots of (a) real and (b) reactive power using 500 samples 

Fig. 3.8 shows the sufficient summary plots of real and reactive power with respect to 
1

T

jW  . The 

obvious linear trends verify the effectiveness of active subspace. 

4)PR Result Validation: To finally determine the dimension of reduced parameter space, we 

conduct the following simulations on the WECC CMLD. We first add 20% of positive 

perturbations to the insensitive parameters outside the red rectangles of Fig. 3.6 and Fig. 3.7. The 

results are shown as red lines in Fig. 3.9 and Fig. 3.10, respectively. Then, we add same 

perturbations to the parameters outside both rectangles to test whether restricting the PR result will 

lead to significant accuracy improvement. The results are shown in green dashed lines in Fig. 3.9 

and Fig. 3.10. Finally, we add the same perturbations to the most sensitive parameters in the red 

rectangles, and the results are denoted in blue dotted lines. 

 

 Fig. 3.9 Typical consumption profiles for (a) winter commercial class, (b) winter residential 

class, (c) summer commercial class, and (d) summer residential class 
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 Fig. 3.10 Validation of PR result for reactive power of WECC CMLD, with different 

combinations of parameters perturbed by twenty percent 

From Fig. 3.9 and Fig. 3.10, we find that the real and reactive power are sensitive to the parameters 

inside the red rectangles and insensitive to the others. Moreover, including the parameters inside 

the green rectangles as sensitive ones does not have a noticeable impact on accuracy. Therefore, 

we can conclude that the parameters of the WECC CMLD can be reduced to the ones in the red 

rectangles only with almost the same dynamic response, which verifies the effectiveness of ASM. 

3.4.2 Case II: Influence of FIDVR on Reduction Result 

In this subsection, we will test the performance of the proposed method on FIDVR case which is 

obtained from real utility data, as shown in Fig. 3.11. This case contains multi-phase faults, 

including phase-to-phase, phase-to-phase-to-ground and three-phase-to-ground faults. The other 

simulation setup is the same as that in Case I. 
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 Fig. 3.11 The load bus input profile of FIDVR case: (a) voltage magnitude; (b) voltage angle; 

(c) frequency 

 

 Fig. 3.12 Parameter sensitivities of WECC CMLD with respect to active power in FIDVR case 
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 Fig. 3.13 The parameter sensitivities of WECC CMLD with respect to reactive power in FIDVR 

case 

Comparing the parameter sensitivity results in Fig. 3.12 and Fig. 3.13 with Case I, we can find that 

the parameters of single-phase motor become sensitive. This can be attributed to that the single-

phase motor plays an important role in capturing the dynamics during the delayed-recovery stage. 

Same as in Case I, 20% of perturbation is added to three parameter sets: parameters with lowest 

sensitivities (outside all the rectangles in Fig. 3.12 and Fig. 3.13), parameters with lower 

sensitivities (outside the red rectangles), and most sensitive parameters (inside the red rectangles). 

The comparison results in Fig. 3.14 and Fig. 3.15 show that the output of interest is altered 

significantly in the calculated sensitive direction but is almost not influenced when perturbing the 

insensitive parameters. This verifies the effectiveness of our method on FIDVR case. 
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 Fig. 3.14 Validation of PR result for real power of WECC CMLD, with different combinations 

of parameters perturbed by twenty percent 

 

 Fig. 3.15 Validation of PR result for reactive power of WECC CMLD, with different 

combinations of parameters perturbed by twenty percent 

 

3.4.3 Case III: Comparison with Three Classical PR methods 

In this subsection, the proposed ASM method is compared with three representative and widely-

used methods: FWKL method [101], Sobel method [97] and Morris method in [89]. The 

regularization parameter λ of FWKL is chosen as 100. The sample size of Monte Carlo simulation 

for Sobel method is selected as 1500SobelM = . The times of repetition for Morris method is selected 

as 15MorrisM = . The other simulation setups are the same as in Case I. Since the results of active 
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and reactive power are consistent, for simplicity, only the results of active power are shown here. 

 

 

 

 Fig. 3.16 Parameter sensitivities calculated by FWKL method. 12 parameters in the red 

rectangle are considered as sensitive ones 

 

 Fig. 3.17 Parameter sensitivities calculated by Sobel method. 9 parameters in the red rectangle 

are considered as sensitive ones 
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 Fig. 3.18 Parameter sensitivities calculated by Morris method 

 

 Fig. 3.19 Comparison of results validation of four methods by adding 20% perturbation on: (a) 

sensitive parameters; (b) insensitive parameters 
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The parameter sensitivities calculated by three methods are shown in Fig. 3.16~3.18, respectively. 

In Fig. 3.18, 24 parameters outside the red rectangle are considered as sensitive ones.   and   

are the mean and standard deviation of the elementary effects, respectively. We can observe that, 

Morris method reduces least number of parameters, while Sobel method reduces the most. 

Moreover, the identified sensitive parameter indices by Sobel are the most similar to those by 

ASM. The result validation is conducted by adding 20% on all sensitive and insensitive parameters 

sets, respectively. From Fig. 3.19, we can observe that, the blue line (ASM) deviates farthest away 

from the black line (original) in the sensitive direction, and is closest to that in the insensitive one. 

This indicates that ASM is the most accurate among the four methods for this case. 

Table 3.2 Comparison of key features of the four PR methods 

 Category Accuracy Interaction Computation 

ASM 
Gradient, Monte 

Carlo 
Accurate Quantitative 2 ASMmM  

FWKL Optimization Rough Qualitative Depends 

SOBEL 
Variance, Monte 

Carlo 
Accurate Quantitative ( 2)SobelM m +  

Morris OAT Rough Qualitative ( 1)MorrisM m +  

 

 

 Fig. 3.20 Comparison of convergence rates of: (a) ASM; (b) Sobel 
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Some key features of the four methods can be concluded as Table. 3.2. Note that the computational 

cost of ASM, Sobel and Morris are considered in terms of the number of experiments. FWKL is 

optimization-based, thus its computational cost depends on the numbers of both iterations and 

experiments, which makes it take more time than the other three methods. To further compare the 

computational cost of ASM and Sobel methods, we sequentially increase the Monte Carlo sample 

sizes to observe the converge rate of parameter sensitivities. Fig. 3.20 shows that the sensitivities 

obtained by ASM converge after 500 samples, while Sobel needs about 1500 ones. As a 

conclusion, the ASM is the most accurate with relatively lower computational cost (than Sobel and 

FWKL methods). 

3.5 Summary 

A novel PR approach for the WECC CMLD is proposed based on ASM. With this approach, the 

sensitivities of parameters are computed while the interdependency among the parameters is taken 

into consideration. By applying the proposed algorithm to the WECC CMLD, the dimensions of 

parameter spaces can be significantly reduced. The PR result is validated by sufficient summary 

plot and perturbation tests with different voltage cases. The comparison with other classical 

methods has shown the advantages of the proposed method. 

Note that the ASM requires scalar function which limits its application to vector-valued 

parameterized model whose output is  ,
T

P Q . Therefore, it cannot be directly used to analyze the 

parameter sensitivity for both real and reactive power simultaneously. One may use a scalar to 

combine them, however such output of interest may lack the physical meaning. We would like 

trying to extend the scalar ASM to deal with vector-valued functions in the future work. 
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4. WECC Composite Load Model Parameter Identification using 

Evolutionary Deep Reinforcement Learning 

4.1 Introduction 

Parameter identification of load models is essential to power systems studies, such as planning, 

operation and control [81],[85],[103],[111]. Due to the increasing diversity of load types and the 

integration of distributed energy resources (DERs) [112],[113], parameter identification still 

remains a challenging problem to academic researchers and industrial practitioners. Measurement-

based approaches are widely employed to perform parameter identification, where voltage and 

power measurements in fault-induced delayed-voltage-recovery (FIDVR) events are used to 

determine the parameters of given dynamic load models. 

Previous works have mainly focused on identifying parameters of a composite load model which 

consists of a ZIP and an induction motor, where ZIP model is a combination of a constant-

impedance load, a constant-current load and a constant-power load. In [103], based on trajectory 

sensitivities, the induction motor parameter number is reduced and only critical parameters are 

identified. The proposed approach is validated using real field measurements, and it is 

demonstrated that the approach can decrease identification time without losing the composite load 

model’s dynamic characteristics. In [114], a robust time-varying parameter identification approach 

is proposed for synthesis load modeling. The synthetic load model includes time-varying ZIP, 

induction motor, and equivalent line impedance model. To achieve the goal of robustness 

enhancement, dynamic programming is used to detect voltage disturbances, and then a time-

varying parameter identifier with a smaller iteration threshold is designed. In [115], a multi-modal 

long short-term memory deep learning method is employed to identify the time-varying parameters 

of the composite load model. In [116], a computationally efficient technique is utilized for 

identifying the composite load model parameters, by performing a similarity analysis of parameter 

sensitivity. The partial derivative of each parameter is employed to identify parameters with 

similar sensitivities, and Levenberg-Marquardt algorithm is used to solve the optimization 

problem. To improve computational efficiency, in [117], model parameter sensitivities are 

analyzed using eigenvalues of Hessian matrix, and the linear dependence between two parameters 

are then identified by examining the condition number of the Jacobian matrix. In [82], a robust 

time-varying parameter identification approach is developed for the composite load model. A 

batch-mode regression form is constructed to guarantee data redundancy, and the down-weighting 

coefficient for each measurement is calculated to reduce the impacts of outliers. To sum up, in 

previous works, both traditional optimization methods and modern learning-based approaches are 

employed to perform parameter identification of the composite load model which consists of a ZIP 

model and an induction motor model. 

In recent years, as a large number of DERs are integrated into distribution systems, the composition 

of loads has changed significantly [118]-[120]. In order to accurately capture the characteristics of 

this new type of load in modern power grids, the Western Electricity Coordinating Council 

(WECC) has developed a composite load model with distributed generation (CMPLDWG) [121]. 

Also, researchers have dedicated great efforts into studying this newly-proposed advanced load 

model. In [8], an easy-to-use tool is developed to generate dynamic load data to enhance utilities’ 

planning studies. This tool can be adjusted to accommodate different customer types, various load 
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components and characteristics. In [85], a generic modeling and open-source implementation of 

the WECC composite load model are presented, which reduces the gap between the WECC model 

and its further implementation. In [81], an approach is proposed for dynamic composite load 

modeling, where parameter dependency of the complex dynamic load model is analyzed and 

visualized using matrix decomposition and data clustering techniques. Meanwhile, the parameter 

identification performance is improved by adding a regularization term to include apriori 

parameter information into the objective function. However, the apriori parameter information is 

not generally available. In addition, the newly-approved aggregated distributed energy resources 

(DER_A) model in CMPLDWG has not been considered in [81]. In [122], the parameter 

identification process is divided into two steps: determining load composition and selecting a best-

fit parameter vector candidate from Monte-Carlo simulations. To sum up, the primary 

disadvantages of previous WECC model parameter identification approaches are that they rely on 

prior knowledge of parameters or a comprehensive library of parameter candidates. 

The CMPLDWG model contains 183 parameters, and the order of differential equations reaches 

25. Therefore, the traditional optimization methods might not be able to handle the high-

dimensional parameter vector and the severe nonconvexity of model structure. Considering this, 

we seek to perform parameter identification for CMPLDWG using an advanced learning-based 

approach with an embedded intelligent exploration (IE) mechanism, which is inspired by the 

evolutionary deep reinforcement learning (EDRL) technique. The proposed approach can 

efficiently avoid deceptive local optima and can handle the high-dimensional parameter vector 

[123],[124]. Specifically, first, the parameter sensitivity analysis (PSA) is conducted to obtain 

sensitivity weights reflecting contributions of parameters to dynamics, using feature-wise 

kernelized Lasso (FWKL), where Lasso denotes the least absolute shrinkage and selection 

operator. Then, the extracted parameter sensitivity weights are integrated into EDRL with IE to 

perform intelligent CMPLDWG parameter exploration by avoiding purely randomized or 

ineffective search. Parallelly, the EDRL with IE performs parameter exploitation using 

evolutionary strategy. Finally, the EDRL with IE guides the identifier to balance exploitation and 

exploration by designing time-varying dynamic weights assigned to the approximated 

performance gradient and novelty gradient. 

The main innovations and contributions of the work in this chapter are summarized as follows: (1) 

To address the challenges of parameter identification caused by the nonlinearity of CMPLDWG 

model, we have designed a mechanism of intelligent exploration for encouraging the parameter 

identifier to escape from deceptive local optima. The exploration mechanism is achieved through 

time-varying dynamic weights which intelligently balance the exploitation and exploration. Most 

importantly, once the parameter identifier is stuck in a local optimum, it is stimulated to 

aggressively explore undiscovered parameter space. (2) The extracted CMPLDWG parameter 

sensitivity weights are innovatively integrated into the intelligent exploration to achieve directed 

and efficient parameter space discovery. By doing this, the parameter identifier can avoid purely 

randomized or inefficient exploration. 
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4.2 CMPLDWG Model and Overall Parameter Identification 

4.2.1 CMPLDWG Model 

This chapter focuses on the comprehensive WECC composite load model, which consists of three 

sections: substation, feeder and load, as illustrated in Fig. 3.1. The substation section is com-posed 

of a transformer model and a shunt capacitor model. The feeder section is denoted using an 

equivalent feeder model. The load section includes three three-phase induction motor models with 

different dynamic characteristics, one single-phase A/C performance-based motor model, an 

electronic load model, a static load model and a distributed generator model. In this chapter, the 

distributed generator model is specified as the newly-approved DER_A model presented in 

[107][21]. Table I shows a list of WECC CMPLDWG model parameters of which detailed 

definitions can be found in [121],[107]. In addition, the mathematical state-space representations 

of CMPLDWG model are presented in [110]. 

4.2.2 Overall Framework of the Proposed Approach 

The process of identifying unknown CMPLDWG parameters comes down to finding optimal 

parameters by reducing the following estimation residual [81]: 

( ) ( )( )2

2

1
min min , .

2
 , , Yl Y V f V

 
 = −                                    (4.1) 

where, Y  denotes active/reactive power measurement vector,   represents the vector of 

parameters to be identified, V  denotes voltage measurement vector, l  represents calculating the 

estimation residual, 
2
  is the 2l -norm, and ( )f  denotes the mathematical representation of 

CMPLDWG model developed in [110]. More detailed variable definitions will be elaborated in 

Section 4.3. To determine the optimal parameters for CMPLDWG, the EDRL approach with IE is 

developed in this chapter.  

 

 Fig. 0.1 Overall structure of the proposed parameter identification approach for CMPLDWG 

model 
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The components of parameter identification framework are illustrated in Fig. 4.1: Component I - 

Sensitivity Analysis: Sensitivity analysis evaluates the contributions of parameters to dynamic 

power measurements, and is based on the observation that the change of some parameters has an 

insignificant impact on power measurements. The high-order characteristic of induction motors 

and DER_A in CMPLDWG can significantly complicate PSA when using traditional methods. To 

address this challenge, an alternative data-driven PSA approach, FWKL, is proposed. The FWKL 

utilizes a set of randomly-generated CMPLDWG parameter vectors and corresponding calculated 

residuals to extract weights indicating parameter sensitivities. The PSA is formulated as a Lasso 

optimization problem given as 

2

12
min .

1
 

2d

T

W
e W W


− +

¡
                                          (4.2) 

where, e  is the estimation residual vector,   denotes the randomly-generated parameter vectors 

in a matrix form,  1, ,
T

dW W W= K  represents the parameter sensitivity weight vector, 
1
  is the 

1l -norm and   is the regularization parameter which is determined using grid search with cross-

validation. Note that sensitivity analysis is a one-off work for each fault event. The extracted 

parameter sensitivity weight vector, W, is passed to the novelty gradient estimator in each iteration 

whose number is denoted by t. Component II - Parameter Vector Perturbator: In each iteration, to 

per-form evolution, a perturbator is designed to generate multiple mutated parameter vectors, '

t

’s, using the identified parameter vector in the last iteration, t , and random variance vector, t . 
'

t ’s and t ’s are then sent to a performance gradient estimator and a novelty gradient estimator to 

approximate performance and novelty gradients, respectively. Component III - Performance 

Gradient Estimator: This estimator achieves the function of exploitation of EDRL. Specifically, 

using '

t ’s and t ’s generated by the parameter vector perturbator, the performance gradient 

estimator determines the direction in which t  should move to improve expected reward. The 

performance gradient, et

t , is then passed to a parameter updater. Component IV - Novelty 

Gradient Estimator: This component performs exploration by estimating the novelty gradient, 
er

t , using the generated '

t ’s and t ’s, and it also intelligently encourages the parameter 

identifier to explore unvisited parameter space. er

t  is then sent to the parameter updater. 

Component V - Parameter Updater: To balance exploitation and exploration, the parameter updater 

assigns time-varying dynamic weights to the approximated performance and novelty gradients: 

( )1 ,et er

t t t t t     =  + −                                                    (4.3) 

where, t  denotes a dynamic weight. Then, 1t +  is calculated and added into the parameter vector 

archive to update the explored parameter space. Component VI - Archive: The archive collects the 

previously generated parameter vectors which are passed to the novelty gradient estimator for 

novelty evaluation. Component II to V compose the EDRL algorithm with IE. Since the 

construction of the parameter vector archive is straightforward, we will focus on elaborating the 

modules of sensitivity analysis and EDRL with IE in the next two sections. 
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4.3 Parameter Sensitivity Analysis 

PSA examines the sensitivity of dynamic power measurements with respect to load model 

parameters. In previous works, partial derivative of dynamic power to each parameter is calculated 

to conduct sensitivity analysis of induction motor parameters [116]. However, it becomes 

challenging to directly apply analytical approaches to calculate partial derivatives because of the 

high order and the complicated structure of mathematical differential equations of the WECC 

composite load model. For example, the three-phase induction motor model in CMPLDWG is of 

5th order and the DER_A model has ten state variables. Such a complex high-order nonlinear 

system can significantly complicate the calculation of partial derivatives. To address this 

challenge, we seek to employ a high-dimensional feature selection technique to evaluate the 

dependence of dynamic power on the CMPLDWG parameters [125]. Specifically, we use a data-

driven FWKL instead of employing analytical derivatives [116]. 

Let d

i  ¡ be a randomly-generated parameter vector and d be the number of parameters, 

therefore, the power residual corresponding to i  can be calculated as 

( )
2

, ,i ie f V Y= −                                                   (4.4) 

where, 
KV  ¡  is a vector of voltage measurements, K denotes the total number of measurement 

points, ,
T

T TY P Q =   , KP ¡  and KQ ¡  represent the vector of recorded active power and 

reactive measurements, respectively. Also, T denotes the transpose. With a large number of 

generated i ’s, we can obtain n independent and identically distributed (i.i.d.) sample and residual 

pairs: 

( ) , , 1, , .i ie i n = K                                                     (4.5) 

To perform supervised feature selection, first, we represent the original parameter vectors and 

corresponding residuals in a matrix format as 

 1, , ,d n

n  = K ¡                                                (4.6a) 

 1, , .
T n

ne e e= K ¡                                                   (4.6b) 

Then, PSA is formulated as a Lasso optimization problem formulated in (4.2) which works well 

for linear regression. However, the nonlinear dependency in our specific problem hinders its 

application. Therefore, we employ the feature-wise nonlinear Lasso to solve our problem and the 

key idea is to apply a nonlinear transformation in a feature-wise manner. Specifically, the generated 

parameter matrix,  , is represented in a feature-wise manner: 

 1, , ,
T d n

d   = K ¡                                                 (4.7) 

where, ,1 ,, ,
T n

k k k n   =  K ¡  is a vector denoting the k-th feature for all samples. To capture 
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the nonlinear dependency of e  on  , dynamic power residual and parameter vector are 

transformed by a nonlinear function ( ) : n p  →¡ ¡ . Then, the Lasso optimization problem given 

in the objective function (4.2) in the transformed space is reformulated as 

( ) ( )
2

1
1 2

1
min .

2d

d

k k
W

k

e W W   


=

− +
¡

                                      (4.8) 

Although the objective function (4.8) can capture nonlinear dependency, there is no constraint for 

, 1, ,kW k d= K , and the same transformation function ( )  for e  and k  limits the flexibility of 

capturing nonlinearity. To solve this, we seek to employ a revised FWKL to perform feature 

selection [125], and the revised objective function is formulated as 

( )
2

1
1

1
min ,

2d

d
k

k
W

k Frob

U W V W


=

− +
¡

                                        (4.9a) 

1. . , , 0.ds t W W K                                                                  (4.9b) 

where, 
Frob
  denotes the Frobenious norm, U U=    and 

( ) ( )k k
V V=    are centered Gram 

matrices, ( ), ,i j i jU U e e=  and ( ) ( ), , ,,
k

i j k i k jV V  =  are Gram matrices, ( ), 'U e e  and ( ), 'V e e  are 

kernel functions, 
1

1 1T

n n nI
n

 = −  denotes the centering matrix, nI  represents the n-dimensional 

identity matrix, and 1n  denotes the n-dimensional vector with all ones. For the two kernel functions 

( )U   and ( )V  , we employ the Gaussian kernel which is formulated as 

( )
( )

2

2

'
, ' exp ,

2 x

x x
K x x



 −
= − 

 
 

                                           (4.10) 

where, x  is the Gaussian kernel width. 

In the objective function (4.9a), the decoupling between ( )U   and ( )V   provides more flexibility 

compared with the objective function (4.8). In addition, the non-negativity constraint in (4.9b) fits 

the specific application in our problem, since negative sensitivity parameter weights do not have 

practical interpretability. Intuitively, problem (4.9) tends to find non-redundant parameters with 

significant contributions to power residual, and equivalently, to dynamic power. Also, for two 

strongly dependent features, either of their sensitivity weights tends to be eliminated. The 

parameter sensitivity weight vector, W, is then integrated into the parameter identification 

algorithm to accelerates the learning process, which will be presented in Section 4.4. 
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4.4 Parameter Identification using the EDRL with IE 

As stated in previous sections, the severe nonlinearity, high nonconvexity and the large number of 

parameters bring significant challenges to perform parameter identification for the CMPLDWG 

model when using existing approaches. This motivates us to tackle this challenge utilizing the 

EDRL with IE, which is recently demonstrated to be able to perform well on high-dimensional 

optimization tasks [123],[126]. The basic idea of performing optimization tasks using evolution 

strategy is: During each iteration, a population of parameter vectors is perturbed based on one 

selected parameter vector among a meta-population, and then, these mutated vectors are 

recombined to update the selected ancestor vector. In this chapter, the EDRL is also hybridized 

with IE to improve exploration. Compared with traditional random and blind search strategy, the 

IE module achieves efficient and directed exploration, which can efficiently assist EDRL to escape 

from local optima. The detailed steps are described as follows: 

 

 Fig. 0.2 Detailed structure of the EDRL with an intelligent exploration mechanism 
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Step I - Initialization: The first step is to initialize M random parameter vectors which will be 

updated in each iteration. Note that only one vector is probabilistically selected to update in each 

iteration. The initialized M vectors are denoted as  1

1 1, , MS  = K , where t denotes the number of 

iteration. The objective of constructing a meta-population is to enhance additional diversity. M and 

the tuning parameters in the remaining sections are determined using grid search with cross-

validation which is a general hyperparameter optimization technique. 

Step II - Sampling: In each iteration t, we probabilistically determine which parameter vector 

among the M meta-population to be updated based on parameter vectors’ novelties. The novelty is 

evaluated in terms of Euclidean distances from a vector to the vectors in the newest archive. 

Specifically, first, the originality of each parameter vector in S, k

t , conditioned on current 

parameter vector archive, A, is evaluated as 

( ) ( )
2

1
, , . ,k k k

t t t j

j C

O o W A W
C

  


= =  −                             (4.11) 

where, 1 ≤ k ≤ M, ( )  1 ', , ,k

t NC kNN A  = = K , kNN denotes k-nearest neighbors algorithm, 

and .* denotes the element-wise multiplication operation. The purpose of kNN is to select 

representative parameter vectors in A for evaluating the novelty of k

t . Intuitively, a small k can 

introduce higher distance variance, while a large k means higher computational cost. We have 

conducted numerical experiments to determine the optimal k value which is sufficient for 

evaluating the novelty of a newly explored parameter vector while avoiding high computational 

time. The intro-duction of W, which is obtained from PSA, aims to revise Euclidean distances 

between vectors. This revision is based on the consideration that parameters with different 

sensitivity weights have different contributions to vector novelty. Then, for each parameter vector 

in S, the novelty score which determines the probability of being selected to be updated is 

calculated as 

1

.
k

k t
t M j

tj

O
P

O
=

=


                                                     (4.12) 

k

tP  tells us that selecting the parameter vectors with high novelty scores can achieve directed or 

guided exploration.  

Step III - Variation: In this step, variation is performed on the selected parameter vector in Step II, 
k

t , to generate multiple workers. The function of these workers is explained as follows: First, 

EDRL produces parameter vectors in the neighborhood of k

t , and then k

t  is updated by 

following the direction determined by the population of the produced parameter vector workers. 

To obtain N workers, Gaussian noise is applied to k

t  as follows 

, 1, , ,i k k i

t t t i N  = + = K                                            (4.13) 
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where,   is a fixed noise standard deviation, ( )0,i

t I :  and I is an N-dimensional identity 

matrix. 

Step IV - Gradient Estimation: In this step, the performance and novelty gradients determined by 

the meta-population of generated vectors in Step III are approximated. For each mutated parameter 

vector, ,i k

t , its fitness can be evaluated via calculating the difference between the estimated 

dynamic power and the real dynamic power. First, the power residual caused by the mismatch 

between estimated parameters and real parameters, ,i k

te , is calculated by substituting ,i k

t  into 

(4.4). Then, the reward is obtained by inversing ,i k

te : 

( ), ,

,

1
, , 1, , ,i k i k

t t i k

t

R r V Y i N
e

= = = K                                    (4.14) 

Equation (4.14) indicates that as the residual decreases the reward increases. Thus, the 

performance gradient of k

te  is approximated via taking a sum of the sampled parameter vector 

perturbations weighted by the reward: 

, ,

1

1
,

N
et k i k i

t t t

i

R
N

  
 =

                                                  (4.15) 

where,   is a learning rate. In (4.15), ,et k

t  indicates a stochastic reward experienced over a full 

iteration of multiple worker interactions, which means the performance gradient relies on multiple 

workers and this can effectively avoid the high variance brought by a certain single mutated vector. 

Note that the calculated reward, ,i k

tR , is normalized through 1 to N before performing the gradient 

approximation in (4.15). 

For the novelty gradient, first, the novelty with respect to each perturbed vector, ,i k

tO , is calculated 

using (4.11). Then, the novelty gradient of k

t  is approximated as 

, ,

1

1
,

N
er k i k i

t t t

i

O
N

  
 =

                                                (4.16) 

Similar with ,i k

tR , ,i k

tO , is normalized before computing the novelty gradient. Intuitively, ,er k

t  

indicates the direction which the parameter identifier should follow to increase the average 

originality of parameter vector distribution. 

Step V - Gradient Combination: Using the computed performance and novelty gradients with 

respect to k

t , we can balance exploitation and exploration by introducing a time-varying dynamic 

weight, t . Thus, the overall gradient based on which k

t  should be updated is computed as 

follows: 

( ), ,1 ,k et k er k

t t t t t     =  + −                                           (4.17) 
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Intuitively, the algorithm follows the approximated gradient in parameter-space towards directions 

that both exhibit novel behaviors and achieve high rewards. A large t  tends to encourage k

t  to 

follow the performance gradient and restrain it to follow the novelty gradient. In comparison, a 

small 
t  tends to aggressively guide k

t  to mutate to unseen parameter space and hold back 

exploitation. 

Step VI - Updating: After obtaining k

t , the updating of k

t  is expressed as follows: 

1 ,k k k

t t t  + = +                                                        (4.18) 

1

k

t +  is then added into the archive A for updating the pre-existing vector landscape. As more 

learned parameter vectors are saved into A, the base for evaluating future parameter vectors’ 

novelty changes and stimulates the algorithm to discover unexplored parameter space.  

In addition to updating k

t  and A in each iteration, the dynamic weight, t , should also be updated 

for avoiding local optima. To do this, first, the latest reward, 1

k

tR + , which is brought by 1

k

t + , is 

calculated. We also define a “drag hand”, t

bR , to record the best reward among historical rewards. 

Then, the dynamic weight in (4.17), t , is updated using Algorithm 1, where,   denotes the 

weight updating rate, and t

bC  counts the number of rewards that are less than t

bR  in succession. 

setC  is a threshold which determines the frequency of updating t  when the parameter vector is 

stuck in a local optimum. Also, t

bC  and t

bR  are updated in each iteration, as presented in Algorithm 

1. Note that Step II to VI constitute the entire operation in each iteration t. 

4.5 Case study 

In this section, the proposed parameter sensitivity analysis and parameter identification algorithms 

are validated using numerical experiments. Before performing verification, we firstly screen out 

the CMPLDWG parameters that are necessary to be identified. This screening is based on the 

consideration that CMPLDWG contains multiple types of parameters, of which some parameters 

can be determined by field measurements and engineering judgement. Specifically, the transformer 

impedance, substation shunt capacitive susceptance, feeder impedance and capacitive susceptance 

can be accurately calculated using transformer, capacitor and feeder parameters [127],[128]. For 

the stalling and restarting of induction motors, engineering judgement can be lever-aged to 

estimate the settings [121],[129]. This is based on the observation that the stalling or restarting of 

a large number of induction motors can cause abrupt current, voltage and power changes 

[130],[131], which can be further corroborated in [81]. Also, the tripping of a large number of 

induction motors can cause sudden current decrease, power decrease and voltage increase. 

Excluding the parameters which can be accurately calculated using the electric power grid 

modeling technique can significantly reduce the complexity of parameter identification process. 

On the other hand, indistinguishably identifying all CMPLDWG parameters can pose an 

unnecessary computational burden on the proposed parameter identification algorithm. In our 

problem, 61 CMPLDWG parameters are screened out for parameter identification, as shown in 

Table III, and the remaining parameters are set with default values. 
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In this case study, the Power System Simulator for Engineering (PSS/E) and the ACTIVSg500 test 

case are employed to generate voltage and power measurements for parameter identification [132]. 

The fault-induced voltage-recovery curves are shown in Fig. 4.3. MATLAB is used to execute the 

processes of parameter sensitivity analysis and parameter identification. The case study is 

conducted on a standard PC with an Intel Xeon CPU running at 3.70 GHz and with 32.0 GB of 

RAM. 

 

 Fig. 0.3 Fault-induced voltage-recovery curves at the load bus 

4.5.1 Parameter Sensitivity Identification  

To fully extract the sensitivity weights hidden in the randomly-generated parameter samples and 

corresponding power residuals, first, we have created a comprehensive library containing 40,000 

parameter vector and residual pairs which are divided into two sections, training dataset and test 

dataset, for cross-validation. Note that the dataset size is determined based on our numerical 

experiment result that once the dataset size exceeds 16,000, the FWKL gives us stable extracted 

parameter weights for different sets of the randomly selected parameter vector and residual pairs. 

Generating each pair of the parameter vector and the corresponding residual takes about 0.3 
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seconds. Then, the tuning parameters of FWKL are determined using grid search with cross-

validation based on the training and test datasets [133]. Finally, the FWKL algorithm is applied to 

the entire dataset to conduct parameter sensitivity analysis. Based on our sensitivity analysis result, 

the load fraction parameters, the synchronous and sub-transient reactances of three-phase 

induction motors, and the exponential load torque coefficients of three-phase induction motors 

have a significant effect on the load dynamics in the fault event specified in Fig. 4.3, as shown in 

Fig. 4.4. The remaining parameters have small or no effect on the dynamic procedure. It should be 

noted that the values of parameter sensitivity weights change according to specific dynamic events 

since the weight vector in (4.9) partially depends on the voltage and power measurements, which 

are determined by specific fault cases. Therefore, PSA should be conducted on a case-by-case basis 

to obtain more accurate parameter sensitivity weights for specific fault events. 

 

 Fig. 0.4 Sensitivity weights of WECC composite load model parameters 

4.5.2 Parameter Identification 

The extracted parameter sensitivity weights are integrated into EDRL algorithm with IE to perform 

parameter identification using given voltage and power measurements. There are only a couple of 

published technical reports involved with WECC model parameter settings. In this case, the 

numerical intervals of parameters for randomly selecting initial values are determined based on 

[134],[135], along with our experience on deriving detailed mathematical representation of WECC 

composite load model [110]. The numerical intervals are presented in Table 4.1, where, LB 

denotes lower bound and UB denotes upper bound. Table 4.2 shows the real and corresponding 

identified parameter values of CMPLDWG. As can be observed, the EDRL with IE can give us 

satisfying identified parameters. The identification accuracy is further corroborated by Fig. 4.5, in 

which, the estimated active and reactive power curves can closely fit the actual curves. While our 

approach is not designed for online parameter identification, it is of importance to examine the 

computational time. In our case studies, each iteration takes about 2 seconds. 
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Table 0.1 Numerical interval of load parameters 

Parameter LB UB Parameter LB UB Parameter LB UB 

Motor A LppC 0.06 0.24 Electronic Load 

TpoA 0.046 0.184 LsC 0.9 3.6 Frcel 0 0.38 

TppoA 0.001 0.004 RsC 0.015 0.06 DER_A 

LpA 0.05 0.20 HC 0.1 0.4 Trv 0.01 0.04 

LppA 0.042 0.168 EtrqC 1.8 2.2 Trf 0.02 0.06 

LsA 0.9 3.6 DC 0.5 2.0 Kqv 0.5 2 

RsA 0.02 0.08 Motor D Tp 0.01 0.04 

HA 0.05 0.20 Kp1 0 1 Tiq 0.01 0.04 

EtrqA 0.5 2.0 Kp2 6 24 Tpord 2.5 10 

DA 0.5 2.0 Kq1 3 12 Kpg 50 200 

Motor B Kq2 5.5 22 Kig 5 20 

TpoB 0.05 0.20 Np1 0.5 2 Tg 0.01 0.04 

TppoB 0.001 0.005 Np2 1.6 4.8 Tv 0.01 0.04 

LpB 0.08 0.32 Nq1 1 4 Xe 0.13 0.5 

LppB 0.06 0.24 Nq2 1.25 5 Load Fraction 

LsB 0.9 3.6 CmpKpf 0 2 Fma 0 0.5 

RsB 0.015 0.06 CmpKqf -6.6 -1.6 Fmb 0 0.5 

HB 0.5 2.0 Static Load Fmc 0 0.5 

EtrqB 1 3 P1c 0 0.4 Fmd 0 0.5 

DB 0.5 2.0 P2c 0 0.6 Fel 0 0.5 

Motor C Q1c 0 0.4 Fdg -0.5 0 

TpoC 0.05 0.20 Q2c 0 0.6 Fzip 0 0.5 

TppoC 0.001 0.005 Pfreq -0.2 0.2    

LpC 0.08 0.32 Qfreq -2 -0.5    
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Table 0.2 Real and identified CMPLDWG parameters 

Parameter Real Identified Parameter Real Identified Parameter Real Identified 

Motor A LppC 0.12 0.1064 Electronic Load 

TpoA 0.092 0.0906 LsC 1.8 1.7535 Frcel 0.25 0.1551 

TppoA 0.002 0.0024 RsC 0.03 0.0286 DER_A 

LpA 0.1 0.1037 HC 0.2 0.2839 Trv 0.02 0.0262 

LppA 0.083 0.0495 EtrqC 2 2.3741 Trf 0.03 0.0221 

LsA 1.8 1.8637 DC 1 1.0687 Kqv 1 1.4408 

RsA 0.04 0.0275 Motor D Tp 0.02 0.0207 

HA 0.1 0.1188 Kp1 0 0.8636 Tiq 0.02 0.0153 

EtrqA 1 0.8368 Kp2 12 11.675 Tpord 5 4.0030 

DA 1 0.9661 Kq1 6 8.0773 Kpg 100 68.3279 

Motor B Kq2 11 10.950 Kig 10 9.9675 

TpoB 0.1 0.0883 Np1 1 1.3602 Tg 0.02 0.0156 

TppoB 0.0026 0.0034 Np2 3.2 4.4470 Tv 0.02 0.0163 

LpB 0.16 0.1094 Nq1 2 1.6632 Xe 0.25 0.2239 

LppB 0.12 0.1797 Nq2 2.5 2.5239 Load Fraction 

LsB 1.8 2.0663 CmpKpf 1 0.5 Fma 0.2 0.1969 

RsB 0.03 0.0302 CmpKqf -3.3 -4.2400 Fmb 0.3 0.4393 

HB 1 1.4290 Static Load Fmc 0.3 0.3113 

EtrqB 2 2.4816 P1c 0.2 0.1953 Fmd 0.1 0.1300 

DB 1 1.2146 P2c 0.3 0.2094 Fel 0.2 0.1804 

Motor C Q1c 0.2 0.1588 Fzip 0.1 0.1774 

TpoC 0.1 0.0941 Q2c 0.3 0.1727 Fdg -0.2 -0.2053 

TppoC 0.0026 0.0034 Pfreq 0 -0.0942    

LpC 0.16 0.1268 Qfreq -1 -0.8593    

 

It is also of significance to examine the collected best reward t

bR  and dynamic weight t  in each 

iteration, which are shown in Fig. 4.6 and 4.7, respectively. In Fig. 4.6, the loss corresponding to 

the collected best reward, t

be , is also shown for examining parameter identification performance. 

It can be seen that during Iteration 1 to 1226, the proposed parameter identification approach 

simultaneously performs exploitation and exploration, and the best reward increases continuously, 

as shown in Fig. 4.6.  
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 Fig. 0.5 The real power curves and the estimated power curves using the identified parameters 

 

 Fig. 0.6 The best reward and corresponding loss 

The corresponding learning process in this iteration range can be confirmed in Fig. 4.7, in which 

t  is firstly initialized as 0, once it stays invariant for 10 continuous iterations ( setC ), it is decreased 

in a step size of 0.05 (  ) to force the parameter identifier to follow more closely with novelty 

gradient. Once an unseen better reward occurs, t  gradually increases to 1 to encourage the 

identifier to act following the approximated performance gradient. During Iteration 1 to 1226, 

although  t  alternatively decreases and increases, it does not reach 0. From Iteration 1227 to 
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1717, the parameter identifier is stuck in a local optimum and the best reward stays invariant, as 

shown in Fig. 4.6. During this iteration range, first, t  is designed to gradually decrease to 0, 

which means the identifier is stimulated to explore more aggressively in the unseen parameter 

space, as presented in Section IV. This is verified by the variation of dynamic weight t , as shown 

in Fig. 4.7, where, from Iteration 1227 to 1717, t  decreases to 0 and keep unchanged, which 

means the identifier completely inhibits the performance gradient. At Iteration 1718, the identifier 

discovers a parameter vector which can give higher reward than any of the previous best rewards. 

As expected, t  immediately jumps to 1 to avoid possible sliding out from the newly explored 

optimum with higher reward, due to novelty exploration inertia. From Iteration 1718 to 2342, the 

identifier simultaneously performs exploitation and exploration as shown in Fig. 4.6, accordingly, 

t  varies in the range of a non-zero value to 1, as shown in Fig. 4.7. This is simi-lar to the process 

which occurs in the range of Iteration 1 to 1226. Similar with the range of Iteration 1227 to 1717, 

in the range of Iteration 2343 to 3324, t  decreases to 0 and t

bR  stays invariant, as shown in Fig. 

4.7 and 4.6, respectively. At Iteration 3325, t  jumps to 1 to force the identifier immediately per-

form exploitation, which is similar at Iteration 1718, as shown in Fig. 4.7. Also, the best reward 

starts to increase at Iteration 3325, as shown in Fig. 4.6. The aforementioned cyclic process 

continues to pursue better rewards as the number of iterations increases, as shown in Fig. 4.6 and 

4.7. 

 

 Fig. 0.7 Variation of the time-varying dynamic weight 

It is interesting to examine the efficaciousness of integrating sensitivity weights into the IE module. 

To do this, we perform additional CMPLDWG parameter identification using EDRL with IE 

without revising parameter vector novelty scores. Fig. 4.8 shows two best reward collection curves 

corresponding to EDRL with IE by integrating W and without integrating W, respectively. As can 

be seen, the introduction of W accelerates the exploitation and exploration in reaching the same 

best reward. 
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 Fig. 0.8 The introduction of parameter sensitivity weights into EDRL with IE improves learning 

performance 

 

 Fig. 0.9 Performance comparison of EDRL, SSA and DQN 

It is also significant to compare the proposed parameter identification approach with the presented 

algorithms in previous works. First, we focus on comparing our algorithm with the proposed 

parameter identification approach in [81], which also aims to identify a large number of 

parameters. The comparison shows that our approach can achieve better parameter identification 

accuracy and does not rely on apriori knowledge. And also, our method is easier to implement due 

to the utilization of mathematical representation of CMPLDWG model. In addition, the parameter 

identification accuracy using the proposed approach in [81] significantly relies on apriori 

knowledge about parameter setting. We have also compared the performance of our proposed 

approach with that of two other state-of-the-art optimization algorithms, Salp Swarm algorithm 

(SSA) and deep Q-networks (DQN). SSA is a newly proposed metaheuristic optimizer inspired by 

the process of looking for a food source by salps. SSA has demonstrated satisfying performance 

compared with other metaheuristic algorithms [136]. DQN is a cutting-edge reinforcement 

learning technique designed for sequential decision-making tasks [137]. The performance of the 

three algorithms (EDRL, SSA and DQN) is shown in Fig. 4.9. It can be seen that our proposed 
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approach outperforms the other two methods in terms of the average fitness error, t

be . In 

comparison, SSA shows the fastest convergence rate. DQN takes the longest time to converge and 

shows the largest average fitness error. It is also important to point out that DQN needs a 

significantly longer time to train a stable actor with satisfying identification performance. 

4.6 Summary 

This chapter presents a parameter identification approach for WECC composite load model. The 

proposed method employs a data-driven nonlinear feature selection technique to perform 

parameter sensitivity analysis, which avoids solving highly complex analytical derivatives caused 

by the high order and nonlinearity of differential equations of WECC composite load model. After 

that, the proposed method utilizes a cutting-edge approach inspired by evolutionary reinforcement 

learning technique, which is hybridized with an intelligent exploration mechanism to perform 

parameter identification. The parameter sensitivity weights are innovatively embedded in the 

reinforcement learning process to achieve efficient exploration. The numerical experiments 

demonstrate that the proposed approach can achieve promising accuracy. It is also shown that the 

proposed identifier can escape from local optima through the assistance of the intelligent 

exploration mechanism when stuck in local optima. Finally, it is verified that the integration of 

sensitivity weights into the reinforcement learning process accelerates the learning rate. 

While our proposed approach can perform parameter identification of WECC composite load 

model with satisfying accuracy, the computational cost hinders its online application. Also, the 

model complexity stands in the way of widely applying WECC composite load model in the 

electric power industry. Considering this, one prospect for research on CMPLDWG is to simplify 

the model or develop a surrogate model to significantly reduce the computation cost and/or model 

complexity, while keeping the primary characteristics of WECC model. 
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5. Python-PSSE-Combined Autonomous Parameter Identification Program  

5.1 Introduction 

The WECC composite load model is widely used in power system stability analysis, energy 

conservation, and power system operation optimization, etc. A brief description of the WECC 

composite load model (CMPLDW) is shown in Fig. 5.1. The CMPLDW consists of a bus, a feeder, 

three three-phase motors, a single-phase motor, an electronic load, a static load. The transformer 

and feeder contain 18 parameters, the three-phase motors contain 65 parameters, the single-phase 

motor contains 34 parameters, the electronic load contains 5 parameters, and the static load 

contains 11 parameters. In total, the CMPLDW has 133 parameters. 

In some more advanced versions of the WECC model, a distributed generator (DG) is also 

included, which forms a WECC composite load model with DG (CMPLDWG). The DG contains 

46 parameters, so the CMPLDWG has 179 parameters in total. 

A purpose of this project is to identify the parameters of the WECC composite load model to fit 

the active and reactive power measurements using event data, and it is a pretty challenging task 

considering that the WECC model is a highly nonlinear and complex load model with a huge 

number of parameters. In order to identify the parameters, it is essential to have a convincing 

representation of the WECC model. It is possible for the researchers/scholars to code the WECC 

model in Matlab or other programming languages (e.g., python), but considering the great 

complexity of the WECC model, especially those nonlinear equations and the protection actions, 

it is very difficult that the WECC model coded in Matlab/python can 100% accurately represent 

the characteristics of the WECC model. In such cases, some errors may in incurred by the imperfect 

representation of the WECC load model. An alternative is to use the WECC load module in the 

PSSE commercial software, which is believed to be the available most accurate representation of 

the WECC load model. But it is worth noting that the DG is currently unmodeled in the PSSE 

software. 

 

 Fig. 0.1 Brief introduction of WECC load model 
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5.2 Python-PSSE Autonomous Parameter Identification Approach 

There are various kinds of optimization methods available, such as conventional methods and 

heuristic methods. The conventional methods include Lagrangian relaxation, benders 

decomposition, branch and bound algorithm, linear programing, and mixed-integer programming. 

The heuristic methods include artificial intelligence methods and bio-inspired methods. The deep 

Q-learning, asynchronous advantage actor (A3C) algorithm in the category of reinforcement 

learning are good examples of artificial intelligence methods. And the particle swarm optimization 

(PSO), genetic algorithm (GA), and salp swarm algorithm (SSA) are good examples of bio-

inspired optimization methods. 

While the conventional optimization methods are powerful and widely applied, but they could not 

be applied to solve the parameter identification problem of the WECC load model. This is because 

the WECC load model is highly nonlinear and could not perform the transformation required 

during the solution process of the conventional optimization methods. Rather, the heuristic 

methods have a much less requirement, and they are good candidates for solving the WECC load 

model parameter identification problem. 

 

 Fig. 0.2 Problem description of Python-PSSE autonomous parameter identification approach 

A lot of the heuristic methods can be coded conveniently in the python environment. And the 

CMPLDW model is sited in the PSSE environment. Thus, a practical problem is that how can we 

establish a stable connection between the optimization methods sited in the python environment 

and the CMPLDW model sited in PSSE, and how can we enable them to exchange information 

efficiently for solving the WECC load model validation problem. 

G L
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PMU frequency 

measurements

Playback 

generator model

WECC 

load model

Line

Salp swarm algorithm
P, Q curves
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 Fig. 0.3 Overview of Python-PSSE autonomous parameter identification approach 
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An overview of our proposed Python-PSSE autonomous parameter identification approach is 

shown in Fig. 5.3. We can flexibly select various optimization methods to efficiently optimize the 

CMPLDW parameters. The salp swarm algorithm [136] is used here as an example due to its high 

efficiency of searching, and it is coded in python. The salp swarm algorithm mimics the behaviors 

of a group of salps searching for food. Based on the current best food positions, the leader salp and 

the following salps update their positions. More details about this algorithm can be found at [136]. 

In the PSSE environment, a dynamic power system simulation model is built, and it consists of a 

generator connected to a load via a transmission line. For the generator, the playback generator 

model is adopted as it allows us to inject disturbance recorded by real PMU data. For the load, the 

WECC load model is adopted. For the line, the typical parameters of a short transmission line are 

adopted. The SSA sends the WECC parameters to the PSSE as its inputs. Based on these WECC 

parameters provided by SSA, a dynamic simulation is conducted in the PSSE using the PMU 

frequency measurements and voltage measurements. After the simulation is conducted, an active 

power (P) curve and a reactive power (Q) curve are obtained, and they are provided to the SSA. 

The SSA then compares the simulated P, Q curves with the real P, Q measurement curves to update 

the WECC parameters. When the convergence of the SSA is reached, the optimal WECC 

parameters can be obtained.  

 

 Fig. 0.4 Program flowchart of Python-PSSE autonomous parameter identification approach 

The program flowchart of the Python-PSSE autonomous parameter identification approach is 

depicted in Fig. 5.4 and explained in detail as follows. 

Start

Initialize the positions of the salp swarm 

Update the WECC parameters based on the 

positions of the salp swarm

Call PSSE to perform dynamic simulation 

Get the errors between the simulated 

curves and PMU measurements

Update food position based on the errors

Update the positions of the salp swarm

Satisfy termination?

End

Yes

No
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• Step 1: Initialize the positions of the salp swarm. Each salp is a candidate solution of the 

WECC parameter identification problem, and the dimension of a salp equals to the number 

of WECC parameters to be identified. In order to better explore the searching space, it is 

better that the values of the salps are randomly distributed within the allowed range. 

• Step 2: As each salp is a candidate solution of the WECC parameter identification problem, 

the WECC parameters are updated based on the positions of the salps. 

• Step 3: Call PSSE to perform the dynamic simulation. As mentioned before, the dynamic 

simulation model has a playback model generator connected to a load modeled by WECC 

with a short transmission line. 

• Step 4: After obtained by simulated P, Q curves, the error between the simulated curves 

and real PMU measurements can be obtained. It should be noted that the objective function 

of the SSA is to minimize the root mean square error shown as follows: 

mi n√
1

2𝑁
∑ [(𝑃𝑖

𝑠𝑖𝑚 − 𝑃𝑖
𝑃𝑀𝑈)

2
+ (𝑄𝑖

𝑠𝑖𝑚 − 𝑄𝑖
𝑃𝑀𝑈)

2
]𝑁

𝑖=1                 (5.1) 

where 𝑃𝑖
𝑠𝑖𝑚 is the simulated active power curve; 𝑃𝑖

𝑃𝑀𝑈is the active power curve by PMU; 

𝑄𝑖
𝑠𝑖𝑚 is the simulated reactive power curve; 𝑄𝑖

𝑃𝑀𝑈 is the reactive power curve by PMU; 𝑁 

is the number of measurements. As can be seen in (5.1), the reactive power and active 

power are treated equally. 

• Step 5: Update food position based on the error, i.e., the position of the salp with the 

minimal error is the updated food position. 

• Step 6: Update the positions of the salp swarm. This step can be conducted based on the 

principles of the SSA algorithm. 

• Step 7: Check if the termination condition is satisfied or not. In this program, the maximum 

number of iterations is used as the termination criterion. If the termination criterion is not 

satisfied, the program will go to step 2 and repeat. 

5.3 WECC Parameter Identification using AEP Data 

Our industrial partner has provided us some real event PMU data. It is about a fault that happened 

on a 138 kV line. And the fault event was recorded by PMU at a nearby 12.47 kV substation. The 

recorded voltage curve and frequency deviation curves are shown in Figs. 5-5 and 5-6, 

respectively. As can be seen in Fig. 5-5, there is a severe frequency drop after the fault, and the 

voltage quickly recovered to normal after the fault was cleared. The fault has also resulted in some 

frequency deviations concurrent with the voltage fluctuation, and it is observed in Fig. 5-6 that the 

frequency deviation is not too severe, but its impact on the load modeling could not be ignored. 
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 Fig. 0.5 Recorded voltage curve 

 

 Fig. 0.6 Recorded frequency deviation curve 

Each of the 133 CMPLDW parameters has a specific physical meaning; thus, their initial values 

should be carefully chosen. To the best of our knowledge, there are no well-established 

upper/lower bounds and typical values of the 133 CMPLDW parameters in the literature. So, we 

carefully check the industrial report and academic paper, including those reports written by NREL 

and NERC, and obtain the initial values of the CMPLDW parameters as listed in Table 5-1. All 

the parameters are within their ranges of physical meanings. These parameters provide a good 

initial estimation and serve as the basis for further optimization. 
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Table 0.1 Initial CMPLDW parameters 

J+ 

index 
Name Value J+ 

index 
Name Value J+ 

index 
Name Value J+ 

index 
Name Value J+ 

index 
Name Value 

0 MVA -1 27 P1e 2 54 Ftr2A 0.3 81 LpC 0.19 108 Np1 1 

1 SubstB 0 28 P1c 0.3 55 Vrc2A 0.1 82 LppC 0.14 109 Kq1 6 

2 Rfdr 0.04 29 P2e 1 56 Trc2A 999 83 TpoC 0.2 110 Nq1 2 

3 Xfdr 0.04 30 P2c 0.7 57 MtypB 3 84 TppoC 0.0026 111 Kp2 12 

4 Fb 0.75 31 Pfrq 0 58 LFmB 0.75 85 HC 0.1 112 Np2 3.2 

5 XXf 0.08 32 Q1e 2 59 RaB 0.03 86 EtrqC 2 113 Kq2 11 

6 Tfixhs 1 33 Q1c -0.5 60 LsB 1.8 87 Vtr1C 0 114 Nq2 2.5 

7 Tfixls 1 34 Q2e 1 61 LpB 0.19 88 Ttr1C 999 115 Vbrk 0.86 

8 LTC 0 35 Q2c 1.5 62 LppB 0.14 89 Ftr1C 0 116 Frst 0.3 

9 Tmin 0.9 36 Qfrq -1 63 TpoB 0.2 90 Vrc1C 999 117 Vrst 0.95 

10 Tmax 1.1 37 MtypA 3 64 TppoB 0.0026 91 Trc1C 999 118 CmpKpf 1 

11 Step 0.00625 38 LFmA 0.75 65 HB 0.5 92 Vtr2C 0 119 CmpKpf -3.3 

12 Vmin 1.025 39 RsA 0.04 66 EtrqB 2 93 Ttr2C 999 120 Vc1off 0.5 

13 Vmax 1.04 40 LsA 1.8 67 Vtr1B 0 94 Ftr2C 0 121 Vc2off 0.4 

14 Tdelay 30 41 LpA 0.12 68 Ttr1B 999 95 Vrc2C 999 122 Vc1on 0.65 

15 Tstep 5 42 LppA 0.104 69 Ftr1A 0 96 Trc2C 999 123 Vc2on 0.55 

16 Rcmp 0 43 TpoA 0.095 70 Vrc1B 999 97 Tstall 0.0333 124 Tth 7 

17 Xcmp 0 44 TppoA 0.0021 71 Trc1B 999 98 Trestart 0.3 125 Th1t 0.4 

18 FmA 0.237 45 HA 0.1 72 Vtr2B 0 99 Tv 0.025 126 Th2t 3 

19 FmB 0.119 46 EtrqA 0 73 Ttr2B 999 100 Tf 0.1 127 Fuvr 0 

20 FmC 0.1 47 Vtr1A 0.65 74 Ftr2B 0 101 CompLF 1 128 UVtr1 0 

21 FmD 0.24 48 Ttr1A 0.2 75 Vrc2B 999 102 CompPF 0.98 129 Ttr1 999 

22 Fel 0.162 49 Ftr1A 0.3 76 Trc2B 999 103 Vstall 0.45 130 UVtr2 0 

23 Pfel 1 50 Vrc1A 0.1 77 MtypC 3 104 Rstall 0.124 131 Ttr2 999 

24 Vd1 0.7 51 Trc1A 999 78 LFmC 0.75 105 Xstall 0.114 132 FrstPel 1 

25 Vd2 0.5 52 Vtr2A 0.65 79 RaC 0.03 106 Lfadj 0       

26 PFs 1 53 Ttr2A 0.33 80 LsC 1.8 107 Kp1 0       

Table 0.2 Selection of parameters for identification 

J+ Index Name Initial value Range J+ Index Name Initial value Range 

18 FmA 0.237 [0.0474, 0.711] 35 Q2c 1.5 [-3, 3] 

19 FmB 0.119 [0.0238, 0.357] 38 LFmA 0.75 [0.375, 1.125] 

20 FmC 0.1 [0.02, 0.3] 39 RaA 0.04 [0.02, 0.06] 

21 FmD 0.24 [0.048, 0.72] 58 LFmB 0.75 [0.375, 1.125] 

22 Fel  0.162 [0.0324, 0.486] 59 RaB 0.03 [0.015, 0.045] 

23 PFel 1 [0.95, 1] 78 LFmC 0.75 [0.375, 1.125] 

24 Vd1 0.7 [0.42, 0.77] 79 RaC 0.03 [0.015, 0.045] 

25 Vd2 0.5 [0.3, 0.55] 109 Kq1 6 [4.8, 9] 

26 PFs 1 [0.85, 1] 110 Nq1 2 [1.6, 3] 

28 P1c 0.3 [0.15, 1.5] 124 Tth 5 [4, 10] 

30 P2c 0.7 [0.35, 3.5] 125 Th1t 0.4 [0.32, 0.8] 

33 Q1c  -0.5 [-1, 1] 126 Th2t 3 [2.4, 6] 
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Ideally, our approach is able to optimize all the parameters within any range. However, it would 

be very challenging if we want to identify all the parameters. Also, after some sensitivity analysis, 

like using the active subspace method described in chapter 3, it is found that not all the parameters 

have a significant influence on the performance of the WECC load model. So, 24 most critical 

parameters are selected for identification, as marked in blue in Table 5-1, and their ranges are 

chosen as shown in Table 5-2. In addition, in practice, we found that the random selection of some 

parameters (such as LsA, LpA, LppA, TpoA, TppoA, HA, EtrqA, Vtr1A, Ttr1A, Ftr1A, Vrc1A) 

may collapse the PSSE software during the simuation. Considering all those factors, the parameters 

and their ranges shown in Table 5-2 are adopted for optimization in the Python-PSSE-combined 

autonomous parameter identification program. All other 109 parameters are kept unchanged based 

on their values in Table 5-1. It is worth noting that since it is very convenient to adjust the 

parameters to be optimized and their ranges, we can quickly update our program and re-run the 

simulation if needed. 

Using the SSA method in python and dynamic simulation in PSSE, simulations are carried out 

based on the real PMU event data. Specifically, 30 salps are adopted in the simulation, and the 

optimization is conducted for 50 iterations for each salp, i.e., in total, 1500 dynamic simulations 

with different WECC parameters are performed. The convergence curve of the SSA is shown in 

Fig. 5-7. It can be seen that the root mean square error between the simulated curves and real PMU 

measurement curves drops rapidly with the iterations.  

The simulation takes 39 minutes in total. The main computation time is spent on the PSSE dynamic 

simulation and output data processing, which is inevitable. And the time spent on the SSA itself is 

negligible. All those demonstrate the efficiency of our proposed Python-PSSE-combined 

autonomous parameter identification approach. 

 

 Fig. 0.7 Convergence of SSA 

The finally obtained CMPLDW parameters are shown in Table 5-3. It is important to clarify that 

according to the rules encoded in the WECC load model of PSSE software, if the sum of load 

fractions FmA, FmB, FmC, FmD, Fel is less than 1, the remainder is static load; if sum of fractions 

FmA, FmB, FmC, FmD, Fel is greater than 1, fractions are normalized to 1, and there will be no 

static load. 
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Table 0.3 Identified CMPLDW parameters 

J+ 

index 
Name Value J+ 

index 
Name Value J+ 

index 
Name Value J+ 

index 
Name Value J+ 

index 
Name Value 

0 MVA -1 27 P1e 2 54 Ftr2A 0.3 81 LpC 0.19 108 Np1 1 

1 SubstB 0 28 P1c 0.679 55 Vrc2A 0.1 82 LppC 0.14 109 Kq1 6.091 

2 Rfdr 0.04 29 P2e 1 56 Trc2A 999 83 TpoC 0.2 110 Nq1 2.965 

3 Xfdr 0.04 30 P2c 0.352 57 MtypB 3 84 TppoC 0.0026 111 Kp2 12 

4 Fb 0.75 31 Pfrq 0 58 LFmB 0.44 85 HC 0.1 112 Np2 3.2 

5 XXf 0.08 32 Q1e 2 59 RaB 0.015 86 EtrqC 2 113 Kq2 11 

6 Tfixhs 1 33 Q1c 0.234 60 LsB 1.8 87 Vtr1C 0 114 Nq2 2.5 

7 Tfixls 1 34 Q2e 1 61 LpB 0.19 88 Ttr1C 999 115 Vbrk 0.86 

8 LTC 0 35 Q2c -1.841 62 LppB 0.14 89 Ftr1C 0 116 Frst 0.3 

9 Tmin 0.9 36 Qfrq -1 63 TpoB 0.2 90 Vrc1C 999 117 Vrst 0.95 

10 Tmax 1.1 37 MtypA 3 64 TppoB 0.0026 91 Trc1C 999 118 CmpKpf 1 

11 Step 0.00625 38 LFmA 0.837 65 HB 0.5 92 Vtr2C 0 119 CmpKpf -3.3 

12 Vmin 1.025 39 RsA 0.023 66 EtrqB 2 93 Ttr2C 999 120 Vc1off 0.5 

13 Vmax 1.04 40 LsA 1.8 67 Vtr1B 0 94 Ftr2C 0 121 Vc2off 0.4 

14 Tdelay 30 41 LpA 0.12 68 Ttr1B 999 95 Vrc2C 999 122 Vc1on 0.65 

15 Tstep 5 42 LppA 0.104 69 Ftr1A 0 96 Trc2C 999 123 Vc2on 0.55 

16 Rcmp 0 43 TpoA 0.095 70 Vrc1B 999 97 Tstall 0.0333 124 Tth 5.663 

17 Xcmp 0 44 TppoA 0.0021 71 Trc1B 999 98 Trestart 0.3 125 Th1t 0.422 

18 FmA 0.233 45 HA 0.1 72 Vtr2B 0 99 Tv 0.025 126 Th2t 2.80 

19 FmB 0.141 46 EtrqA 0 73 Ttr2B 999 100 Tf 0.1 127 Fuvr 0 

20 FmC 0.026 47 Vtr1A 0.65 74 Ftr2B 0 101 CompLF 1 128 UVtr1 0 

21 FmD 0.197 48 Ttr1A 0.2 75 Vrc2B 999 102 CompPF 0.98 129 Ttr1 999 

22 Fel 0.224 49 Ftr1A 0.3 76 Trc2B 999 103 Vstall 0.45 130 UVtr2 0 

23 Pfel 1 50 Vrc1A 0.1 77 MtypC 3 104 Rstall 0.124 131 Ttr2 999 

24 Vd1 0.743 51 Trc1A 999 78 LFmC 0.686 105 Xstall 0.114 132 FrstPel 1 

25 Vd2 0.314 52 Vtr2A 0.65 79 RaC 0.037 106 Lfadj 0       

26 PFs 1 53 Ttr2A 0.33 80 LsC 1.8 107 Kp1 0       

 

 

 Fig. 0.8 Comparisons of simulated curves and PMU measurements 
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Using the identified CMPLDW parameters shown in Table 5-3 and the WECC load module in 

PSSE, the obtained active power and reactive power curves are shown in Fig. 5-8. They are 

compared with the real PMU measurements, and it can be observed that the simulated curves match 

pretty well with the PMU measurements, which validates the accuracy of our proposed Python-

PSSE-combined autonomous parameter identification approach. Specifically, it is calculated that 

the root mean square error is 0.46 MW (or 0.46 MAV as we treat active power and reactive 

equally), which is pretty small and acceptable.  

5.4 Summary 

This chapter presents a Python-PSSE-combined autonomous parameter identification program. It 

enables efficient information change between the optimization method sited in Python 

environment and the WECC load module in PSSE software. As the WECC load module is the 

available most convincing representation of the WECC load module, this approach can eliminate 

the possible errors brought by the inaccurate representation of the WECC load modeling. As an 

example of the heuristic optimization methods, the SSA is adopted to optimize the WECC load 

parameters using real event data provided by AEP. The obtained results are promising, and they 

validate the efficiency and accuracy of our proposed Python-PSSE-combined autonomous 

parameter identification program. 
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6. Dynamic Large-Signal Order Reduction of Composite Load Model 

6.1 Introduction 

Load modeling is important to stability analysis, optimization, and controller design [1]. However, 

due to the diversity of load components and lack of detailed load information and measurements, 

modeling load is still challenging. 

Load models can be classified as static and dynamic models. Static load models such as static 

constant impedance-current power (ZIP) model and exponential model have simple model 

structures, nevertheless, they cannot capture the dynamic load behaviors [82],[80]. Motivated by 

the 1996 blackout of the Western Systems Coordinating Council (WSCC), a widely-used dynamic 

composite load model was developed [5]. The model consists of a ZIP and a dynamic induction 

motor (IM). It was designed to represent highly stressed conditions in summer peaks. However, 

this interim load model was unable to approximate the fault-induced delayed voltage recovery 

(FIDVR) events [81]. A preliminary WECC composite load model (WECC CLM) was proposed 

by adding an impedance representing the electrical distance between substation and end users, an 

electronic load and a single-phase motor [83],[85]. After a series of improvements, the latest 

WECC composite load model (CMPLDWG) is developed, as shown in Fig. 6.1. The electrical 

distance between the substation and end-users is represented by a substation transformer, a shunt 

reactance, and a feeder equivalent. The model consists of three three-phase motors, one AC single-

phase motor, one static load, one power electronics component, and a distributed energy resource 

(DER). The DER in CMPLDWG is currently represented by the PVD1 model [107]. However, 

PVD1 has 5 modules, 121 parameters and 16 states, which is as complex as the CMPLDW itself. 

Therefore, the Electric Power Research Institute (EPRI) has developed a simpler yet more 

comprehensive model to replace PVD1, which is named as DER A model [107]. 

The above WECC CMPLDW + DER_A model is a complex high-order system, which makes the 

studies that need numerical solutions time consuming and even computationally infeasible. There 

are two main reasons for this high computational burden. One is the high-order characteristic 

increases the computational dimension. The other is the two-time-scale property makes the 

computation a stiff problem, which requires small time steps to calculate the fast dynamics and 

results in a long computational time to capture slow dynamics. The fast dynamics are often 

introduced by the intentionally added inductance and capacitance, moment of inertia, and parasitic 

elements inherent in the system. However, simply neglecting the fast dynamics does not guarantee 

stability and accuracy of the model. In order to accelerate computation while maintaining the 

accuracy and stability of the load model, it is imperative to develop an accurate and easy-to-use 

reduced-order load model. 

The existing model reduction methods usually project the higher dimensional counterpart into a 

lower dimensional subspace where dynamic features of the original model dominate. The singular 

perturbation is such kind of method that considers the fast dynamics as boundary layers and 

includes their solutions into slow dynamics. Singular perturbation method is suitable for analyzing 

two-time-scale problems and is widely used in power systems analyses. Previous applications of 

singular perturbation in power systems include reduced-order model of synchronous machines and 

induction motors, modeling the utility distribution grid-tied systems with wind turbines, and 
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reduced-order microgrid model [84]. This chapter will develop a reduced-order large-signal model 

of WECC CMPLDW + DER A model using singular perturbation method. 

 

 Fig. 0.1 A schematic diagram of the WECC CMPLDWG 

6.2 Introduction to Order Reduction Method Based on Singular Perturbation 

Singular perturbation method was originally developed to analyze a problem with a small 

parameter that cannot be approximated by simply setting the parameter value to be zero. It avoids 

the discontinuity of solution by analyzing the problem in separate time scales. Consider a standard 

singular perturbation model as follows. 

6.2.1 LSOR Based on Singular Perturbation Theory 

Consider a standard singular perturbation model as follows, 

( ), , , ,x f t x z =&                                                       (6.1) 

( ), , , ,z g t x z =&                                                       (6.2)  

where 
nx ¡ , mz ¡ , 1[0, ]t t , and 0[0, ]  ; f  and g  are Lipshitz continuous functions. 

Selecting the perturbation coefficient   for real physical systems is challenging. In most cases, 

we pick it based on our knowledge of the real system. In cases where it is unclear which parameter 

is small, we can locally linearize the system around the equilibrium point and use modal 

decomposition to identify the slow and fast dynamics. 

When   is small, the fast transient velocity /z g =&  can be much larger than that of the slow 

transient x&. To solve this two-time-scale problem, we can set 0 = , then equation (6.2) 

degenerates to the following algebraic equation, 
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( )0 , , ,0 .g t x z=                                                           (6.3) 

Assuming that equation (6.3) has at least one isolated real root, and satisfies the implicit function 

theorem, then for each argument, we can obtain the quasi-steady-state (QSS) solution in a local 

vicinity around the isolated root, 

( ), .z h t x=                                                                  (6.4) 

Substituting equation (6.4) into equation (6.1) and setting 0 = , we obtain the QSS model, 

( )( ), , , ,0 .x f t x h t x=&                                                             (6.5)  

We call the QSS system (6.5) the reduced-order model since its order drops from n m+  to n . The 

slow states can be obtained by solving the reduced-order model (6.5), whereas the fast states are 

represented by equation (6.4). However, (6.4) only gives approximate solution unless   is zero. 

To quantify the error between approximate and actual fast states, we denote the error as 

( , )y z h x u= − . Then in the fast-time-scale /t = , the dynamics of y  are governed as follows, 

d
( , , , ) ( , , ( , ) , ) ( , , ( , ) , ).

d

y h h
G t x y g t x h t x y f t x h t x y

t x
    



 
= = + − − +

 
         (6.6) 

Let 0 = , we obtain the boundary-layer model: 

( )( )
d

, , , ,0 .
d

y
g t x y h t x


= +                                                  (6.7) 

Note that the exact fast states are ( , )z y h t x= + , but we do not know ( , )x y . Therefore, if we can 

guarantee the accuracy of reduced-order model and boundary-layer model, then we can use their 

solutions ( )ˆ ˆ,x y  instead of ( , )x y . However, these models are exact only when   is exactly zero, 

which is obviously not the case for the studied system. Thus, we need to quantitatively assess the 

accuracy of reduced-order model when   is small yet nonzero. This motivates the next subsection. 

6.2.2 Accuracy Assessment 

Before deriving the performance guarantee of the proposed high-fidelity order reduction approach, 

we first introduce a few technical definitions and assumptions: 

Assumption 1: On a compact subset of x y  , the functions f  and g  are 
1C  and has bounded 

first partial derivative with respect to x, z and  ; g  has bounded and continuous first partial 

derivative with respect to t ; h  and the Jacobian /g z   have bounded first partial derivatives; 

/f x   is Lipschitz in x  uniformly in t ;    

Assumption 2: the origin of the reduced model (6.5) is a uniformly exponentially stable 

equilibrium and there is a Lyapunov function ( , )V t x  satisfying 
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1 2( ) ( , ) ( )W x V t x W x„ „  

3( , ) ( )
V V

f t x W x
t x

 
+ −

 
„                                               (6.8) 

where iW   are continuous positive definite functions on x  and  1| ( )x W x c„  is a compact subset 

of x ; 

Assumption 3: the origin of the boundary-layer model (6.7) is a uniformly exponentially stable 

equilibrium; 

By Tikhonov's theorem on the infinite time interval [138], there are compact sets x , y  and 

positive constant 
* , and ik , such that for all 0 0t … , 0( ) xx t  , 0( ) yy t   and 

*0    , the 

original system (6.1) and (6.2) has unique solutions ( , )x t   and ( , )z t   uniformly satisfying 

1( , ) ( )x t x t k −‖ ‖„                                                         (6.9) 

     2
ˆ( , ) ( , ( )) ( / )z t h t x t y t k  − −‖ ‖„                                           (6.10) 

where ( )x t  and ˆ( )y   are solutions of the reduced model (6.5) and boundary-layer model (6.7), 

respectively. Moreover, for any given 0T t , there exists a positive constant 
** * „  such that for 

 ),t T   and 
**  , it follows uniformly that 

3( , ) ( , ( ))z t h t x t k −‖ ‖„                                                   (6.11) 

We can consider the reduced model as an approximation of the original model. To guarantee its 

accuracy, the solutions of both slow and fast dynamics of the reduced model should converge to 

those of the original model exponentially fast and the errors between them should be bounded and 

small enough (as shown in (6.9) and (6.10)). Note that equation (6.11) means that for small enough 

 , the solution of fast transient can be estimated by only quasi-steady-state solution ( , ( ))h t x t  

after 0T t . This plausible result can significantly simplify the original problem. 

6.3 Mathematical Representation of WECC Composite Load Model 

To apply the singular perturbation theory, we need the mathematical representation of WECC 

composite load model, which can be found in our previous work [110]. This section will only 

introduce the dynamic components. 

6.3.1 Three-Phase Motor Model 

WECC composite load model uses three three-phase motors, A, B and C to represent different 

types of dynamic components. These three-phase motors have the same structure but different 
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parameter settings. The block diagram of the fifth-order induction motor model is shown in Fig. 

6.2. There are four dynamic equations with respect to qE  , dE  , ''qE  and ''dE . We can represent 

the complete fifth-order model as follows, 

 

 Fig. 0.2 The diagram of three-phase motor 

( )
0

' ''

0 0

1
q d sq

p

p d PE i L L E SLIP TE
T

 − − − −   
 

=&                        (6.12) 

( ) '

0

'

0

'

0

1
d q s pd

p

q PE i L L E SLIP
T

TE  =
 
− + − +   &                        (6.13) 

( ) ( )0 00 0'' ' '' ''

0

0 0 0 0 0

1pp s p p p ppp pp

d d q d q

p pp p pp pp

T L L T L LT T
E E i E SLIP E

T T T T T


− + −−
= + − +  &         (6.14) 

( ) ( )0 00 0'' ' '' ''

0

0 0 0 0 0

1pp s p p p ppp pp

q q d q d

p pp p pp pp

T L L T L LT T
E E i E SLIP E

T T T T T


− + −−
= − − −  &         (6.15) 

'' ''

2

d d q qp E i q E i TL
SLIP

Hw

  +   −
= −&                                   (6.16) 



 

73 

( )2

0 0

E

mTL T Aw Bw C Dw= + + +                                 (6.17) 

'' ''

0m d d q qT pE i qE i= +                                                   (6.18)  

1w SLIP= −                                                          (6.19) 

The algebraic equations are: 

'' ''

2 2 2 2
( ) ( )

pps
d d d q q

s pp s pp

Lr
i V E V E

r L r L
= + + +

+ +
                           (6.20) 

'' ''

2 2 2 2
( ) ( )

pps
q q q d d

s pp s pp

Lr
i V E V E

r L r L
= + − +

+ +
                           (6.21) 

,d d q qP V i V i= +                                                   (6.22) 

,d q q dQ V i V i= −                                                   (6.23) 

where the five state variables are qE  , dE  , ''qE , ''dE  and SLIP ; sL , pL  and ppL  are synchronous 

reactance, transient and subtransient reactance, respectively; 0pT  and 0ppT  are transient and 

subtransient rotor time constants, respectively; and 0  is the synchronous frequency. 

6.3.2 DER_A Model 

Recently, EPRI developed a new model to represent aggregate renewable energy resources which 

is called DER_A. The DER_A model has fewer states and parameters than the previous PVD1 

model. Fig. 6.3 shows the diagram of DER_A model. Here we only summarize the dynamic 

equations that will be used in the order reduction. The complete detailed mathematical model can 

be found in [149]. 
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 Fig. 0.3 The diagram of DER_A model 
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6.4 Order Reduction of WECC Composite Load Model 

In this section, we will derive the reduced-order large-signal model of WECC composite load 

model using singular perturbation method. For the purpose of order-reduction, we only focus on 

the dynamic components. These components are connected in parallel and we will reduce each 

individual component's order. 

6.4.1 Reduced-Order Three-Phase Motor Model 

Each three-phase motor model has five states, , , , , .M q d q dx E E E E SLIP   
 =  %  When applying the 

singular perturbation method, the first step is to identify the slow and fast dynamics. Since the fast 

dynamics are characterized by the small perturbation coefficient  , we rewrite the left-hand-side 

of the dynamic equations as 

0 0 0 0, , , , .
T

p q p d pp q pp dT E T E T E T E H SLIP   
  

& & & & &                                (6.34) 

Given one set of parameters setting in Table 6.1, equation (6.34) becomes 

0.1 ,0.1 ,0.0026 ,0.0026 ,0.1 .
T

q d q dE E E E SLIP   
  

& & & & &                           (6.35) 

 

 

 



 

76 

Table 0.1 Parameters of three-phase motor model 

Motor A Motor B Motor C 

sAr  0.04 sBr  0.03 sCr  0.03 

sAL  1.8 sBL  1.8 sCL  1.8 

pAL  0.1 pBL  0.16 pCL  0.16 

ppAL  0.083 ppBL  0.12 ppCL  0.12 

poAT  0.092 poBT  0.1 poCT  0.1 

ppoAT  0.002 ppoBT  0.0026 ppoCT  0.0026 

AH  0.05 BH  1 CH  0.1 

AA  0 BA  0 CA  0 

AB  0 BB  0 CB  0 

AC  0 BC  0 CC  0 

AD  1 BD  1 CD  1 

trqAE  0 trqBE  2 trqCE  2 

Ap  -1 Bp  -1 Cp  -1 

Aq  -1 Bq  -1 Cq  -1 

0 A  120π 0B  120π 0C  120π 

 

The smaller perturbation coefficients in equation (6.35) suggest that dynamic response velocities 

of , ,q dE E SLIP 
    are much slower than the rest of the states.  This difference is also an evidence 

of the two-time-scale property of this model. Then the slow and fast dynamics are divided as 

follows 
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M

M

M

x
x

z

 
=  
 

&                                                              (6.36) 

where , ,M q dx E E SLIP 
 =   , ,M q dz E E 

 =   . For consistence, define the input voltages ,q dV V    

as MU . Following the singular perturbation method (6.1)-(6.5), we can obtain the reduced-order 

large-signal model of three-phase motor as   

( )1 1 0 0 2 3

0

1
M M d s p P M M

p

x x i L L T x x
T

 = − − − −   
 

&                                 (6.37) 
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&                                 (6.38) 
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where the quasi-steady-state solutions are 

( ) ( ) ( ) ( ) ( )2

1 1 2 1 22 2

1
M p pp s M p pp s M p pp p p pp s

s p

h x L L r x L L r x L L L U L L rU
r L

 = + − − − − − −
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     (6.40) 
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     (6.41) 

the other algebraic equations are derived as  

( ) ( ) ( )
2

0 3 3 0 31 1 1
Etrq

m M M MTL T A x B x C D x = − + − + + −
 

                   (6.42) 

       ( ) ( )0 2 1m M d M qT p h x i q h x i=   +                                             (6.43) 

        ( ) ( )1 1 2 22 2 2 2

ps
q M M M M

s p s p

Lr
i U x U x

r L r L
= + − +

+ +
                            (6.44) 

              ( ) ( )1 1 2 22 2 2 2

p s
d M M M M

s p s p

L r
i U x U x

r L r L
= + + +

+ +
                            (6.45) 

After obtaining the quasi-steady-state model, we should also derive the boundary-layer model and 

check whether the Assumptions 1-3 are satisfied. If satisfied, then we can proceed to approximate 

slow and fast states in terms of the solutions of the reduced model and boundary-layer model. If 

not, we should make some modification like coordinate transformation or redefining the states, 

then reselect the slow and fast states. In this case, it can be verified that the assumptions are 
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satisfied under such parameter setting. Moreover, the small perturbation coefficient satisfies the 

condition of equation (6.11). Therefore, the fast states can be approximated by the quasi-steady 

state ( )i Mh x  only. This approximation significantly simplifies the reduced model. 

6.4.2 Reduced-Order DER_A model 

The DER_A model has 10 states in total,  0 1 9, , , .Dx S S S= %  Different from the three-phase 

motor model, due to the existence of switches such as FlagPf  and FlagPQ , the DER_A model is 

actually a switching system consisting of 62  subsystems. Each subsystem is determined when the 

switches are fixed. Since these switches are preset, we only need to derive the reduced-order model 

for each subsystem. For brevity, we give the reduced-order model for one of the subsystems to 

illustrate the reducing procedure. The reduced models for other subsystems can be obtained using 

the same method.  

To find the small perturbation coefficient  , we rewrite the dynamics a 

0 1 2 3 4 5 6 7 8 9, , , , , , , , , .
T

rv p iq g v rf p rf pord gT S T S T S T S T S T S T T S S T S T S  
& & & & & & & & & &            (6.46) 

Given the parameter setting in Table 6.2, equation (6.46) becomes 

0 1 2 3 4 5 6 7 8 90.01 , 0.01 , 0.005 , 0.005 , 0.005 ,0.01 , 0.01 0.01 , , 0.005 , 0.005 .
T

S S S S S S S S S S  
& & & & & & & & & &  

The smaller perturbation coefficients in equation (6.47) suggest that dynamic response velocities 

of  0 1 5 7, , ,S S S S  are much slower than the rest of the states.  This difference is also an evidence 

of the two-time-scale property of this model. Then the slow and fast dynamics are divided as 

follows 

 .
D

D

D

x
x

z

 
=  
 

&                                                                 (6.47) 

where  0 1 5 7, , ,Dx S S S S= ,  2 3 4 6 8 9, , , , ,Dz S S S S S S= . Defining the input voltages  ,tV Freq  as 

DU , following the same procedure as above (6.1)-(6.5), we can derive the reduced-order large-

signal model of DER_A as 

( )1 1 1

1
D D D

rv

x U x
T

= −&                                                   (6.48) 

  ( )2 4 2

1
D D D

p

x x x
T

= −&                                                   (6.49) 
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 ( )3 2 3

1
D D D

rf

x U x
T

= −&                                                  (6.50) 

 4 0Dx =& .                                                                      (6.51) 

Table 0.2 Parameters of DER_A model 

Parameters Values Parameters Values 

rvT  0.02 s Tpord 0.02 s 

pT  0.02 s mindP  -0.5 pu/s 

iqT  0.02 s maxdP  0.5 pu/s 

0refV  0 pu tripflagV  1 

qvK  5 pu/pu 1qlI  -1 pu 

gT  0.02 s 1qhI  1 pu 

FlagPf  1 eX  0.25 pu 

maxI  1.2 tripflagF  1 

dbd1 -99 flagPQ  0 

dbd2 99 typeflag 1 

vT  0.02 s prV  0.8 pu 

loV  0.44 pu upD  0 

1lV  0.49 pu emaxf  99 pu 

0hV  1.2 pu eminf  -99 pu 

1hV  1.15 pu 1dbdf  -0.0006 

0vlt  0.16 s 2dbdf  0.0006 
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1vlt  0.16 s flagFreq  0 

0vht  0.16 s minP  0 pu 

1vht  0.16 s maxP  1.1 pu 

rfracV  0.7 pgK  0.1 pu 

rfT  0.02 s igK  10 pu 

dnD  20 c 1 s 

a 0.8 pu d 0.9 pu 

b 5 Base: 12.47 kV and 15.0 MVA 

The d - q  axis currents di  and qi  are states 3S  ( 2Dz ) and 9S  ( 6Dz ), respectively. Their equations 

are 

  ( )2 1 2
ˆ( ) ,q D D rfrac Di sat x VP x V y=  +                                    (6.52) 
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( )7 4
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1 1
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i sat VP x V y

sat x

 
=  + 

  

                            (6.53) 
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D qv V ref D

D

pfaref x
x K sat DB V x

sat x
  = + −

 
                           (6.54) 

where 2
ˆ

Dy  and 6
ˆ

Dy  are the solutions of boundary-layer model: 

1 1D Dy y= −&                                                             (6.55) 

 ( )     2 3 2 1 2 2 1, ( ) ( )D D D D rfrac D D Dy y y VP x V sat x sat y x = − −  + +&                  (6.56) 

 3 3D Dy y= −&                                                             (6.57) 

 4 5D rf Dy T y= −&                                                         (6.58) 

 5 5D Dy y= −&                                                             (6.59) 

( )
( )

( )
( )7 4 7 5 4

6 6 9 1 9 3 1

1 1 1 1
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D D
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      

&  (6.60) 
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As mentioned above, only if the assumptions are satisfied, we can use the reduced model to 

estimate the original model. It can be verified that the assumptions 1-3 are satisfied in this case. 

However, the condition of equation (6.11) is not guaranteed. Therefore, we should add a 

complementary term ˆ( / )y t   which is the solution of boundary-layer model. 

The two-time-scale property makes the load model a stiff ordinary differential equation problem. 

A problem is stiff if the solution being searched varies slowly, however there are nearby solutions 

varying rapidly. Therefore, the numerical method must take small steps to obtain satisfactory 

results. The stiffness can increase the computational time. The application of singular perturbation 

method reduces the order as well as convert the load model from a stiff problem to a non-stiff one, 

thus reducing the computational time from both sides and allowing the use of non-stiff solver. 

6.5 Model Validation via Simulation 

In this section, the reduced-order model derived in this chapter is verified through simulation. The 

reduced-order models of three-phase motor and DER_A are tested on Matlab using different 

solvers. We compare the performance of the reduced model with the original model to verify the 

effectiveness of the reduced model. Moreover, we compare the computational time between the 

two models and different solvers to show the efficiency of reducing computational burden.   

6.5.1 Validation of Reduced-Order Three-Phase Motors 

To verify the proposed reduced-order model of three-phase motor, we simulated the reduced and 

original model in Matlab with the same input voltage. Consequently, we can compare their output 

power and other states. Refer to [107], the bus voltage input is generated by (6.61). The parameters 

are set as shown in Table 6.2. 

( )

( )

( )

1 1 / 60

(1 )( 1 )
1 1 / 60 1

/ 60

1

a if t b

d c t
V t if b t c

b c

otherwise

  +


− + −
= + +  +

−



„

„                                (6.61) 

Fig. 6.4 shows the generated input voltage. As shown in Fig. 6.5, 6.6 and 6.7 are the state response 

qE   and dE   of motor A, motor B and motor C, respectively. The blue solid line denotes the qE   

and dE   of original model, while the red dashed line represents that of reduced-order model. Fig. 

6.8, 6.9 and 6.10 shows the output real and reactive power. The blue solid line denotes the real and 

reactive power of original model, while the red dashed line represents that of reduced-order model.  

The mean squared errors of real and reactive power between the original and reduced model are 

shown in Table. 6.3. The small errors show the accuracy of the proposed reduced-order three-

phase model. Moreover, if using ODE45, which is a non-stiff ODE solver, the computational time 

of the original and reduced model are 8.8120 s and 0.1926 s, respectively. If using ODE15s, which 

is a stiff ODE solver, the computational time of the original and reduced model are 1.0975 s and 

0.1785 s, respectively. This comparison shows that the singular perturbation method converts the 

original high-order stiff problem to a reduced-order non-stiff problem while reducing the 
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computational time remarkably. This reduction will be more significant in large-scale system with 

multiple composite loads. 

Table 0.3 The mean squared errors between original and reduced-order model of three-phase 

motor 

         Motor 

Power 

Mean square error (MSE) 

Motor A Motor B Motor C 

Real power 41.0509 10−  
41.1295 10−  

58.0264 10−  

Reactive power 51.1422 10−  
51.4294 10−  

52.1112 10−  

 

 Fig. 0.4 Bus voltages of reduced and original model of three-phase motors 
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 Fig. 0.5 Parameters of reduced and original model of three-phase motor A 

 

Fig. 0.6 Parameters of reduced and original model of three-phase motor B 
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 Fig. 0.7 Parameters of reduced and original model of three-phase motor C 

 

 Fig. 0.8 Real and reactive power of reduced and original model of three-phase motor A 
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 Fig. 0.9 Real and reactive power of reduced and original model of three-phase motor B 

 

 Fig. 0.10 Real and reactive power of reduced and original model of three-phase motor C 
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6.5.2 Validation of DER_A model 

Similar to the verification process of three-phase motor, we simulated the reduced and original 

model of DER_A in Matlab. The voltage input is the same as (6.61). The frequency input is set to 

be 60 Hz. The parameters are set as shown in Table 6.2. 

Fig. 6.11 shows the filtered voltage and frequency inputs of DER_A. Fig. 6.12 shows the dynamic 

power responses of DER_A. The blue solid line denotes the power output of original model, while 

the red dashed line represents that of reduced one. Fig. 6.13 shows filtered voltage tfiltV , filtered 

generated power genfiltP , and filtered current qi  and di  of reduced and original model of DER_A. 

The mean square errors (MSE) of real and reactive power are 
47.1363 10−  and 

51.3045 10− , 

respectively. Furthermore, the computational time of the original and reduced model using ODE45 

are 11.205 s and 0.2074 s, respectively; the computational time of the original and reduced model 

using ODE15s are 2.0012 s and 0.1598 s, respectively. 

 

 

 Fig. 0.11 Filtered input voltages and frequency of original and reduced model of DER_A 
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 Fig. 0.12 Real and reactive power of reduced and original model of DER_A 

 

 Fig. 0.13 Filtered voltage, filtered generated power, and filtered current of reduced and original 

model of DER_A 
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6.6 Summary 

This work developed the reduced-order large-signal model of WECC CMPLDW + DER_A model. 

Several simulations are conducted in Matlab. The comparison analysis shows the accuracy of the 

proposed reduced model. It also shows that the computational time is reduced significantly using 

reduced model. 
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7. Conclusion and Future Work 

In this report, we first reviewed the state-of-the-art of load models and parameter identification 

methods. Second, a cutting-edge parameter reduction approach based on active subspace is 

proposed to deal with the high dimensional parameter space of the WECC composite load model, 

which is more comprehensive but with large number of parameters. Third, we proposed a novel 

deep reinforcement learning based parameter identification for the WECC composite load model. 

Then, we also test the real PMU data from utility on Python and PSSE using the salp swarm 

algorithm. Finally, we also proposed the large-signal order reduction method for WECC composite 

load model which is able to reduce the computational time of each call of the WECC composite 

load model. 

The future research directions are suggested in terms of modeling and identification technologies: 

For load model structure development, more sophisticated models that balance flexibility and 

complexity are needed. Load consumption is time varying due to human behaviors and weather 

conditions; thus, different load models may be found in different time periods. Conventional load 

modeling methods using measurement data in a certain period may not be able to capture time-

varying load behaviors, and lack generalizability. More research is needed to develop advanced 

algorithms to perform online load modeling using the real-time data. After developing new load 

models, they should be integrated in power system analysis programs. How to model and represent 

seasonal and geographical variations in load models and load composition is also an ongoing 

research topic. Capturing the time-varying nature of load behaviors is useful to voltage control, 

state estimation, and energy management. The increasing penetration of DGs and the 

implementation of demand-side management poses additional challenges to load modeling. 

WECC identified DGs as one of the main priorities in their further efforts to update CLM. DGs 

and power electronic loads may have complex control systems, which need to be taken into account 

in the model development. Customer behavior-driven and DR-enabled load models need to be 

built to facilitate DR studies. Distribution system models were not well studied in the past. There 

is a need to develop novel models with reduced complexity and computational requirements to 

represent ADNs and MGs. Modeling and aggregating DGs, controllable loads, and other 

technologies in ADNs and MGs is a major research topic. New loads such as electric vehicles and 

storage devices should be modeled to accurately represent the system. Moreover, modeling the 

interface and control logics of power electronics and testing their impact on stability and dynamic 

studies is an important research topic. 

Future research on parameter estimation algorithms should be able to process data from existing 

and emerging measurement devices with different resolutions, such as smart meters, PMUs, and 

SCADA. Meanwhile, the algorithms should be robust to bad data, missing measurements, changes 

in the voltage regulation scheme, and noises. 

  



 

90 

References 

[1] C. W. Taylor, Power system voltage stability, McGraw-Hill, 1994.  

[2] P. Kundur, Power system stability and control, EPRI series, New York: McGraw-Hill, 

1994. 

[3] K. E. Wong, M. E. Haque and M. Davies, “Component-based dynamic load modeling of 

a paper mill,” in Proc. 2012 22nd Australasian Universities Power Eng. Conf., Bali, 2012, 

pp. 1-6.  

[4] I. Dzafic, M. Glavic and S. Tesnjak, “A component-based power system model-driven 

architecture,” IEEE Trans. Power Syst., vol. 19, no. 4, pp. 2109-2110, Nov. 2004.  

[5] D. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin, R. Bravo and S. 

Yang, “Load modeling in power system studies: WECC progress update,” in Proc. IEEE 

PES General Meeting, Pittsbugh, PA, 2008,pp. 1-8. 

[6] WECC MVWG Load Model Report ver. 1.0 (June 2012). [Online] 

Available:https://www.wecc.biz/Reliability/WECC%20MVWG%20Load%20Model%2

0Reprt%20ver%201%200.pdf 

[7] Electrical Power Research Institute (EPRI), “Advanced load modeling,” Tech. Rep. 

1007318, Sept. 2002. 

[8] A. Gaikwad, P. Markham and P. Pourbeik, “Implementation of the WECC Composite 

Load Model for utilities using the component-based modeling approach,’’ in Proc 

IEEE/PES Transmission and Distribution Conf. and Expo., Dallas, TX, 2016, pp. 1-5. 

[9] L. Zhu, X. Li, H. Ouyang, Y. Wang, W. Liu and K. Shao, “Research on component-based 

approach load modeling based on energy management system and load control system,” 

in Proc. IEEE PES Innovative Smart Grid Technologies, Tianjin, 2012, pp. 1-6. 

[10] S. -H. Lee, S. -E. Son, S. -M. Lee, “Kalman-filter based static load modeling of real power 

system using K-EMS data,” J. Elect. Eng. Technol, vol. 7, no. 3, pp. 304-311, June 2012. 

[11] H. Renmu, Ma Jin and D. J. Hill, “Composite load modeling via measurement approach,” 

IEEE Trans. Power Syst., vol. 21, no. 2, pp. 663¬672, May 2006. 

[12] Byoung-Kon Choi et al., “Measurement-based dynamic load models: derivation, 

comparison, and validation,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1273-1283, 

Aug. 2006. 

[13] Electrical Power Research Institute (EPRI), “Measurement-Based Load Modeling,” 

Tech. Rep. 1014402, Sept. 2006. 

[14] J. Ma, D. Han, R. M. He, Z. Y. Dong and D. J. Hill, “Reducing identified parameters of 

measurement-based composite load model,” IEEE Trans. Power Syst., vol. 23, no. 1, pp. 

73-83, Feb. 2008. 

[15] Ma Jin, H. Renmu and D. J. Hill, “Load modeling by finding support vectors of load data 

from field measurements,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 723-735, May 

2006. 



 

91 

[16] I. F. Visconti, D. A. Lima, J. M. C. d. S. Costa and N. Sobrinho, “Measurement-based 

load modeling using transfer functions for dynamic simulations,” IEEE Trans. Power 

Syst., vol. 29, no. 1, pp. 111-120, Jan. 2014. 

[17] D. Han, J. Ma, R. m. He and Z. Y. Dong, “A real application of measurement-based load 

modeling in large-scale power grids and its validation,” IEEE Trans. Power Syst., vol. 

24, no. 4, pp. 1753-1764, Nov.2009. 

[18] B. K. Choi and H. D. Chiang, “Multiple solutions and plateau phenomenon in 

measurement-based load model development: issues and suggestions,” IEEE Trans. 

Power Syst., vol. 24, no. 2, pp. 824-831, May 2009. 

[19] F. Hu, K. Sun, A. Del Rosso, E. Farantatos and N. Bhatt, “Measurement based real-time 

voltage stability monitoring for load areas, ^ IEEE Trans. Power Syst., vol. 31, no. 4, pp. 

2787-2798, July 2016. 

[20] H. Bai, P. Zhang and V. Ajjarapu, “A novel parameter identification approach via hybrid 

learning for aggregate load modeling,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1145-

1154, Aug. 2009. 

[21] Y. Ge, A. J. Flueck, D. K. Kim, J. B. Ahn, J. D. Lee and D. Y. Kwon, “An event-oriented 

method for online load modeling based on synchrophasor data,” IEEE Trans. Smart Grid, 

vol. 6, no. 4, pp. 2060-2068, July 2015. 

[22] P. Regulski, D. S. Vilchis-Rodriguez, S. Djurovic and V. Terzija, “Estimation of 

composite load model parameters using an improved particle swarm optimization 

method,” IEEE Trans. Power Del., vol. 30, no. 2, pp. 553-560, April 2015. 

[23] J. K. Kim et al., “Fast and reliable estimation of composite load model parameters using 

analytical similarity of parameter sensitivity,” IEEE Trans. Power Syst., vol. 31, no. 1, 

pp. 663-671, Jan. 2016. 

[24] X. Zhang, S. Grijalva and M. J. Reno, “A time-variant load model based on smart meter 

data mining,” in Proc. IEEE PES General Meeting Conf. and Expo., National Harbor, 

MD, 2014, pp. 1-5. 

[25] B. Y. Ku, R.J. Thomas, C.-Y. Chiou, C.-J. Lin, “Power system dynamic load modeling 

using artificial neural networks,” IEEE Trans. Power Syst., vol. 9, no. 4, pp. 1868-1874, 

Nov. 1994. 

[26] A. Keyhani, W. Lu, G.T. Heydt, “Composite neural network load models for power 

system stability analysis,” in Proc. IEEE PES Power Syst. Conf. and Expo., 2004, pp. 

1159-1163. 

[27] M. Bostanci, J. Koplowitz, C.W. Taylor, “Identification of power system load dynamics 

using artificial neural networks, IEEE Trans. Power Syst., vol.12, no.4, pp.1468-1473, 

Nov. 1997. 

[28] G. W. Chang, C. I. Chen and Y. J. Liu, “A neural-network-based method of modeling 

electric arc furnace load for power engineering study,” IEEE Trans. Power Syst., vol. 25, 

no. 1, pp. 138-146, Feb. 2010. 



 

92 

[29] Dingguo Chen and R. R. Mohler, “Neural-network-based load modeling and its use in 

voltage stability analysis,” IEEE Trans. on Control Syst. Tech., vol. 11, no. 4, pp. 460-

470, July 2003. 

[30] T. Hiyama, M. Tokieda, W. Hubbi and H. Andou, “Artificial neural network based 

dynamic load modeling,^ IEEE Trans. Power Syst., vol. 12, no. 4, pp. 1573-1583, Nov. 

1997. 

[31] IEEE Task Force on Load Representation for Dynamic Performance, “Load 

representation for dynamic performance analysis (of power systems),” IEEE Trans. 

Power Syst., vol. 8, no. 2, pp. 472-482, May 1993. 

[32] IEEE Task Force on Load Representation for Dynamic Performance, “Standard load 

models for power flow and dynamic performance simulation,” IEEE Trans. Power Syst., 

vol. 10, pp. 1302-1313, 1995. 

[33] IEEE Task Force on Load Representation for Dynamic Performance, “Bibliography on 

load models for power flow and dynamic performance simulation,” IEEE Trans. Power 

Syst., vol. 10, no. 1, pp. 523-538, Feb. 1995. 

[34] J. V. Milanovic, K. Yamashita, S. Villanueva, S. Djokic and L. M. Korunovic, 

“International industry practice on power system load for modeling,” IEEE Trans. Power 

Syst., vol. 28, no. 3, pp. 3038-3046, Aug. 2013. 

[35] J. V. Milanovic, et al., “CIGRE WG C4.605: Modelling and aggregation of loads in 

flexible power networks,” 2014. 

[36] A. J. Collin, G. Tsagarakis, A. E. Kiprakis and S. McLaughlin, “Development of low-

voltage load models for the residential load sector,” IEEE Trans. Power Syst., vol. 29, 

no. 5, pp. 2180-2188, Sept. 2014. 

[37] S. M. Zali and J. V. Milanovic, “Generic model of active distribution network for large 

power system stability studies,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3123-3133, 

Aug. 2013. 

[38] J. V. Milanovic and S. Mat Zali, “Validation of equivalent dynamic model of active 

distribution network cell,” IEEE Trans. Power Syst., vol. 28, no.3,pp. 2101-2110, Aug. 

2013. 

[39] Kuo-Hsiung Tseng, Wen-Shiow Kao and Jia-Renn Lin, “Load model effects on distance 

relay settings,” IEEE Trans. Po'wer Del., vol. 18, no.4, pp. 1140-1146, Oct. 2003. 

[40] W.W. Price, K.A. Wirgau, A. Murdoch, F. Nozari, “Load modeling for power flow and 

transient stability studies,” EPRI Report EL-5003, Project 849-7, 1987. 

[41] EPRI, “Extended transient-midterm stability program package FACTS version user’s 

manual,” EPRI Project 1208-9, September 1990. 

[42] P. Jazayeri, W. Rosehart and D. T. Westwick, “A multistage algorithm for identification 

of nonlinear aggregate power system loads,” IEEE Trans. Power Syst., vol. 22, no. 3, pp. 

1072-1079, Aug. 2007. 

[43] D. Hill, “Nonlinear dynamic load models with recovery for voltage stability studies,” 

IEEE Trans. Power Syst., vol. 8, no. 1, pp. 163-176, Feb.1993. 



 

93 

[44] D. Karlsson, D.J. Hill, “Modeling and identification of nonlinear dynamic loads in power 

systems,” IEEE Trans. Power Syst., vol.9, no.1, pp.157¬166, Feb 1994. 

[45] W. Xu and Y. Mansour, “Voltage stability analysis using generic dynamic load models,” 

IEEE Trans. Power Syst., vol. 9, no. 1, pp. 479-493, Feb. 1994. 

[46] W. S. Kao, C. J. Lin, C. T. Huang, Y. T. Chen, and C. Y. Chiou, “Comparison of 

simulated power system dynamics applying various load models with actual recorded 

data,” IEEE Trans. Power Syst., vol. 9, no. 1, pp. 248-254, Feb. 1994. 

[47] W. S. Kao, “The effect of load models on unstable low-frequency oscillation damping in 

Taipower system experience w/wo power system stabilizers,” IEEE Trans. Power Syst., 

vol. 16, no. 3, pp. 463-472, Aug. 2001. 

[48] D. N. Kosterev, C. W. Taylor and W. A. Mittelstadt, “Model validation for the August 

10 1996 WSCC system outage,” IEEE Trans. Power Syst., vol. 14, pp. 967-979, Aug. 

1999. 

[49] L. Pereira, D. Kosterev, P. Mackin, D. Davies, J. Undrill and W. Zhu, “An interim 

dynamic induction motor model for stability studies in the WSCC,” IEEE Trans. Power 

Syst., vol. 17, no. 4, pp. 1108-1115, Nov. 2002. 

[50] B. Williams, W. Schmus, D. Dawson, “Transmission voltage recovery delayed by stalled 

air conditioner compressors,” IEEE Trans. Power Syst., vol.7, no.3, pp.1173-1181, Aug. 

1992. 

[51] J. Shaffer, “Air conditioner response to transmission faults,” IEEE Trans. Power Syst., 

vol.12, no.2, pp.614-621, May 1997. 

[52] A. Bokhari, et al., “Experimental determination of ZIP coefficients for modern 

residential, commercial and industrial loads,” IEEE Trans. Power Del., vol. 29, no. 3, pp. 

1372-1381, Oct. 2013. 

[53] L. M. Hajagos and B. Danai, “Laboratory measurements and models of modern loads and 

their effect on voltage stability studies,” IEEE Trans. Power Syst., vol. 13, no. 2, pp. 584-

592, May 1998. 

[54] N. Lu, Y. Xie, Z. Huang, F. Puyleart, and S. Yang, “Load component database of 

household appliances and small office equipment,” in Proc. IEEEPES Gen. Meeting, 

Pittsburgh, PA, 2008, pp. 1-5. 

[55] X. Liang, “A new composite load model structure for industrial facilities,” IEEE Trans. 

on Ind. Appl., to be published. 

[56] X. Liang, and W. Xu, “Aggregation method for motor drive systems,” Electric Power 

Systems Research (Elsevier), vol. 117, pp. 27 - 35, Dec. 2014. 

[57] Q. S. Liu, Y. P. Chen, D. F. Duan, “The load modeling and parameter identification for 

voltage stability analysis,” in Proc. Int. Conf. Power Syst. Technol., 2002, pp. 2030-2033. 

[58] I. Hiskens, “Nonlinear dynamic model evaluation from disturbance measurements,” 

IEEE Trans. Power Syst., vol. 16, no. 4, pp. 702-710, Nov. 2001. 



 

94 

[59] S. Z. Zhu, J. H. Zheng, S. D. Shen, G. M. Luo, “Effect of load modeling on voltage 

stability,” in Proc. IEEE Power Eng. Soc. Summer Meeting, Seattle, WA, 2000, pp. 395 

- 400. 

[60] S. Kamoun and R. P. Malham6, “Convergence characteristics of a maximum likelihood 

load model identification scheme,” Automatica, vol. 28, no. 5, pp. 885-896, Sept. 1992. 

[61] V. Knyazkin, C. Caizares, and L. Sder, “On the parameter estimation and modeling of 

aggregate power system loads,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1023-1031, 

May 2004. 

[62] S.-H. Lee, S.-E. Son, S.-M. Lee, J.-M. Cho, K.-B. Song, and J.-W. Park, “Kalman-filter 

based static load modeling of real power system using K EMS data,” J. Elect. Eng. 

Technol., vol. 7, no. 3, pp. 742-750, May 2012. 

[63] J. Ma, Z.Y. Dong, P. Zhang, “Using a support vector machine (SVM) to improve 

generalization ability of load model parameters,” in Proc. IEEE PES Power Syst. Con/ 

and Expo., Seattle, WA, 2009, pp. 1-8. 

[64] L. T. M. Mota, A. A. Mota, “Load modeling at electric power distribution substations 

using dynamic load parameters estimation,” Int. J. Elect. Power Energy Syst., vol. 26, no. 

10, pp. 805-811, 2004. 

[65] Z. Wang and J. Wang, "Time-Varying Stochastic Assessment of Conservation Voltage 

Reduction Based on Load Modeling," IEEE Trans. On Power Syst., vol. 29, no. 5, pp. 

2321-2328, Sep. 2014 

[66] A. Rouhani and A. Abur, “Real-time dynamic parameter estimation for an exponential 

dynamic load model,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1530-1536, May 2016. 

[67] E. A. Wan and R. Van der Merwe, “The unscented Kalman filter,” Kalman Filtering and 

Neural Networks, Wiley, 2001. 

[68] Z. Wang and J. Wang, "Review on implementation and assessment of conservation 

voltage reduction," IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1303-1315, May 2014. 

[69] J. Zhao, Z. Wang, and J. Wang, "Robust time-varying load modeling for conservation 

voltage reduction assessment," IEEE Trans. Smart Grid, accepted for publication. 

[70] Vignesh V, S. Chakrabarti and S. C. Srivastava, “Classification and modelling of loads 

in power systems using SVM and optimization approach,” in Proc. IEEE PES General 

Meeting, Denver, CO, 2015, pp. 1-5. 

[71] G. Golub and V. Pereyra, “Separable nonlinear least squares: the variable projection 

method and its applications,” Inverse Problems, vol. 19, no. 2, Feb. 2003. 

[72] A. Patel, K. Wedeward, and M. Smith, “Parameter estimation for inventory of load 

models in electric power systems,” in Proc. The World Congress on Eng. and Comp. Sci., 

San Francisco, USA, 2014, pp. 233¬238. 

[73] S. Sonet al., “Improvement of composite load modeling based on parameter sensitivity 

and dependency analyses,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 242-250, Jan. 

2014. 



 

95 

[74] J. K. Kim et al., “Fast and reliable estimation of composite load model parameters using 

analytical similarity of parameter sensitivity,” IEEE Trans. Power Syst., vol. 31, no. 1, 

pp. 663-671, Jan. 2016. 

[75] Z. Wang and J. Wang, "Analysis of performance and efficiency of conservation voltage 

optimization considering load model uncertainty," J. of Energy Eng., 

10.1061/(ASCE)EY.1943-7897.0000190, 2014. 

[76] Z. Wang, J. Wang, B. Chen, M. Begovic, and Y. He, "MPC-based voltage/var 

optimization for distribution circuits with distributed generators and exponential load 

models," IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2412-2420, Sep. 2014. 

[77] Z. Wang and Y. He, "Two-stage optimal demand response with battery energy storage 

systems," IET Generation, Transmission & Distribution, vol. 10, no. 5, pp. 1283-1293, 

Apr. 2016. 

[78] Electrical Power Research Institute (EPRI), “End-use load composition estimation using 

smart meter data,” Tech. Rep. 1020060, Dec. 2010. 

[79] J. Zhao, G. Zhang, M. La Scala, and Z. Wang, “Enhanced robustness of state estimator 

to bad data processing through multi-innovation analysis,” IEEE Trans. on Ind. 

Informatics, accepted for publication. 

[80] J. Zhao, Z. Wang, C. Chen, and G. Zhang, "Robust voltage instability predictor," IEEE 

Trans. Power Syst., vol. 11, no. 2, pp. 401-408, Jan. 2017 

[81] K. Zhang, H. Zhu, and S. Guo, “Dependency analysis and improved parameter estimation 

for dynamic composite load modeling,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 

3287–3297, Jul. 2017. 

[82] C. Wang, Z. Wang, J. Wang, and D. Zhao, “Robust Time-Varying Parameter 

Identification for Composite Load Modeling,” IEEE Trans. Smart Grid, vol. 10, no. 1, 

pp. 967–979, Jan. 2019. 

[83] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao,“Load Modeling-A 

Review,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5986–5999, Nov. 2018. 

[84] Z. Ma, Z. Wang, D. Zhao, and B. Cui, “High-fidelity large-signal order reduction 

approach for composite load model,” IET Gener. Transm. Distrib., vol. 14, no. 21, pp. 

4888–4897, Aug. 2020. 

[85] Q. Huang, R. Huang, B. J. Palmer, Y. Liu, S. Jin, R. Diao, Y. Chen, and Y. Zhang, “A 

generic modeling and development approach for WECC composite load model,” Electr. 

Power Syst. Res., vol. 172, pp. 1–10, Jul. 2019. 

[86] A. Saltelli, “Sensitivity analysis for importance assessment,” Risk Anal., vol. 22, no. 3, 

pp. 579–590, Jun. 2002. 

[87] T. Homma and A. Saltelli, “Importance measures in global sensitivity analysis of 

nonlinear models,” Reliab. Eng. Syst. Saf., vol. 52, no. 1, pp. 1–17, Apr. 1996. 

[88] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, “A methodology for performing 

global uncertainty and sensitivity analysis in systems biology,” J. Theor. Biol., vol. 254, 

no. 1, pp. 178 – 196, Sep. 2008. 



 

96 

[89] M. D. Morris, “Factorial sampling plans for preliminary computational experiments,” 

Technometrics, vol. 33, no. 2, pp. 161–174, May 1991. 

[90] D. K. Lin, “A new class of supersaturated designs,” Technometrics, vol. 35, no. 1, pp. 

28–31, Feb. 1993. 

[91] A. Dean and S. Lewis, Screening: methods for experimentation in industry, drug 

discovery, and genetics. Springer Science & Business Media, 2006. 

[92] B. Bettonvil and J. P. Kleijnen, “Searching for important factors in simulation models 

with many factors: Sequential bifurcation,” Eur. J. Oper. Res., vol. 96, no. 1, pp. 180–

194, Jan. 1997. 

[93] K. Hinkelmann and O. Kempthorne, Design and analysis of experiments. Wiley Online 

Library, 1994, vol. 1. 

[94] B. Iooss and P. Lemaıtre, “A review on global sensitivity analysis methods,” in 

Uncertainty management in simulation-optimization of complex systems. Springer, 

2015, pp. 101–122. 

[95] I. M. Sobol, “Global sensitivity indices for nonlinear mathematical models and their 

monte carlo estimates,” Math. Comput. Simul., vol. 55, no. 1-3, pp. 271–280, Feb. 2001. 

[96] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola,“Variance 

based sensitivity analysis of model output. design and estimator for the total sensitivity 

index,” Comput. Phys. Commun., vol. 181, no. 2, pp. 259–270, Feb. 2010. 

[97] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and 

S. Tarantola, Global sensitivity analysis: the primer. John Wiley & Sons, 2008. 

[98] A. Saltelli and P. Annoni, “How to avoid a perfunctory sensitivity analysis,” Environ. 

Model. Softw., vol. 25, no. 12, pp. 1508–1517, Dec. 2010. 

[99] H. Scheffe, The analysis of variance. John Wiley & Sons, 1999. 

[100] A. Saltelli and R. Bolado, “An alternative way to compute fourier amplitude sensitivity 

test (FAST),” Compu. Stat. Data An., vol. 26, no. 4, pp. 445 – 460, Feb. 1998. 

[101] F. Bu, Z. Ma, Y. Yuan, and Z. Wang, “WECC composite load model parameter 

identification using evolutionary deep reinforcement learning,” IEEE Trans. Smart Grid, 

vol. 11, no. 6, pp. 5407–5417, Jul. 2020. 

[102] J.-Y. Tissot and C. Prieur, “Bias correction for the estimation of sensitivity indices based 

on random balance designs,” Reliab. Eng. Syst. Safe., vol. 107, pp. 205 – 213, Nov. 2012. 

[103] J. Ma, D. Han, R.-M. He, Z.-Y. Dong, and D. J. Hill, “Reducing identified parameters of 

measurement-based composite load model,” IEEE Trans. Power Syst., vol. 23, no. 1, pp. 

76–83, Jan. 2008. 

[104] P. G. Constantine, Active subspaces: Emerging ideas for dimension reduction in 

parameter studies. SIAM-Society for Industrial and Applied Mathematics, 2015. 

[105] T. Loudon and S. Pankavich, “Mathematical analysis and dynamic active subspaces for 

a long term model of HIV,” Math Biosci Eng, vol. 14, no. 3, pp. 709–733, Jun. 2016. 



 

97 

[106] P. Constantine, M. Emory, J. Larsson, and G. Iaccarino, “Exploiting active subspaces to 

quantify uncertainty in the numerical simulation of the hyshot ii scramjet,” J. Comput. 

Phys., vol. 302, pp. 1 – 20, Dec. 2015. 

[107] “The new aggregated distributed energy resources (DER A) model for transmission 

planning studies: 2019 update,” Electrical Power Research Institute (EPRI), Tech. Rep., 

2019. 

[108] “Technical reference document: dynamic load modeling,” North American Reliability 

Cooperation, Tech. Rep., 2016. 

[109] T. M. Russi, “Uncertainty quantification with experimental data and complex system 

models,” Ph.D. dissertation, UC Berkeley, 2010. 

[110] Z. Ma, Z. Wang, Y. Wang, R. Diao, and D. Shi, “Mathematical representation of the 

WECC composite load model,” J. Modern Power Syst. Clean Energy, vol. 8, no. 5, pp. 

1015–1023, Aug. 2019. 

[111] R. Huang et al., “Calibrating parameters of power system stability models using advanced 

ensemble Kalman filter,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2895–2905, Oct. 

2017. 

[112] Y. Zhang, J. Wang, and Z. Li, “Uncertainty modeling of distributed energy resources: 

Techniques and challenges,” Curr. Sustain. Energy Rep., vol. 6, no. 2, pp. 42–51, Jun. 

2019. 

[113] M. Cui, J. Wang, and B. Chen, “Flexible machine learning-based cyberattack detection 

using spatiotemporal patterns for distribution systems,” IEEE Trans. Smart Grid, vol. 11, 

no. 2, pp. 1805–1808, Mar. 2020. 

[114] M. Cui, J. Wang, Y. Wang, R. Diao, and D. Shi, “Robust time-varying synthesis load 

modeling in distribution networks considering voltage disturbances,” IEEE Trans. Power 

Syst., vol. 34, no. 6, pp. 4438–4450, Nov. 2019. 

[115] M. Cui, M. Khodayar, C. Chen, X.Wang, Y. Zhang, and M. E. Khodayar,“Deep learning 

based time varying parameter identification for systemwide load modeling,” IEEE Trans. 

Smart Grid, vol. 10, no. 6, pp. 6102–6114, Nov. 2018. 

[116] J.-K. Kim, K. An, and J. Ma, “Fast and reliable estimation of composite load model 

parameters using analytical similarity of parameter sensitivity,” IEEE Trans. Power Syst., 

vol. 31, no. 1, pp. 663–671, Jan. 2016. 

[117] S. Son et al., “Improvement of composite load modeling based on parameter sensitivity 

and dependency analyses,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 242–250, Jan. 

2014. 

[118] U.S. Energy Information Administration. (2011). Share of Energy Used by Appliances 

and Consumer Electronics Increases in U.S. Homes. [Online]. Available: 

https://www.eia.gov/consumption/residential/reports/2009/electronics.php 

[119] U.S. Energy Information Administration. (2018). EIA Electricity Data Now Include 

Estimated Small-Scale Solar PV Capacity and Generation. [Online]. Available: 

https://www.eia.gov/todayinenergy/detail.php?id=23972 

https://www.eia.gov/consumption/residential/reports/2009/electronics.php
https://www.eia.gov/todayinenergy/detail.php?id=23972


 

98 

[120] J. Zhang, M. Cui, and Y. He, “Robustness and adaptability analysis for equivalent model 

of doubly fed induction generator wind farm using measured data,” Appl. Energy, vol. 

261, pp. 1–12, Mar. 2020. 

[121] WECC Composite Load Model Specifications. Accessed: Jan. 27, 2015. [Online]. 

Available: http://home.engineering.iastate.edu/∼jdm/ee554/ 

WECC%20Composite%20Load%20Model%20Specifications%2001-27-2015.pdf 

[122] X. Wang, Y. Wang, D. Shi, J. Wang, and Z. Wang, “Two-stage WECC composite load 

modeling: A double deep Q-learning networks approach,” IEEE Trans. Smart Grid, early 

access, Apr. 15, 2020, doi: 10.1109/TSG.2020.2988171. 

[123] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune, “Improving 

exploration in evolution strategies for deep reinforcement learning via a population of 

novelty-seeking agents,” in Proc. Adv. Neural Inf. Process. Syst., Dec. 2018, pp. 5032–

5043 

[124] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber, “Natural 

evolution strategies,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 949–980, Mar. 2014. 

[125] M. Yamada, W. Jitkrittum, L. Sigal, E. P. Xing, and M. Sugiyama. (2019). High-

Dimensional Feature Selection by Feature-Wise Kernelized Lasso. [Online]. Available: 

https://arxiv.org/abs/1202.0515. 

[126] S. Wang et al., “A data-driven multi-agent autonomous voltage control framework using 

deep reinforcement learning,” IEEE Trans. Power Syst., early access, Apr. 23, 2020, doi: 

10.1109/TPWRS.2020.2990179. 

[127] W. Kersting, Distribution System Modeling and Analysis. New York, NY, USA: CRC 

Press, 2011. 

[128] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis and Design, 5th 

ed. Stamford, CT, USA: Cengage Learn., 2011. 

[129] A. Hughes and B. Drury, Electric Motors and Drives, 4th ed. Amsterdam, The 

Netherlands: Elsevier, 2013. 

[130] H. Wu and I. Dobson, “Analysis of induction motor cascading stall in a simple system 

based on the cascade model,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3184–3193, 

Aug. 2013. 

[131] D. C. Yu, H. Liu, H. Sun, S. Lu, and C. Mccarthy, “Protective device coordination 

enhancement for motor starting programs,” IEEE Trans Power Del., vol. 20, no. 1, pp. 

535–537, Jan. 2005. 

[132] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, “Grid structural 

characteristics as validation criteria for synthetic networks,” IEEE Trans. Power Syst., 

vol. 32, no. 4, pp. 3258–3265, Jul. 2017. 

[133] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY, USA: 

Springer, 2009. 

[134] R. D. Quint. (2015). A Look Into Load Modeling: The Composite Load Model. [Online]. 

Available: https://gig.lbl.gov/sites/all/files/6bquint-composite-load-model-data.pdf 

https://arxiv.org/abs/1202.0515


 

99 

[135]  “Reliability guide: Parameterization of the DER_A model,” North Amer. Elect. Rel. 

Corporat., Atlanta, GA, USA, Rep., 2019. 

[136] R. Abbassi, A. Abbassi, A. A. Heidari, and S. Mirjalili, “An efficient SALP swarm-

inspired algorithm for parameters identification of photovoltaic cell models,” Energy 

Convers. Manag., vol. 179, pp. 362–372, Jan. 2019. 

[137] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An 

introduction to deep reinforcement learning,” Found. Trends Mach. Learn., vol. 11, nos. 

3–4, pp. 219–354, 2018. 

[138] H. K. Khalil: ’Nonlinear Systems’. New Jersey: Prentice Hall, 2000 

 


	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	1.1 Background
	1.2 Overview of the Problem
	1.2.1 Main Issues
	1.2.2 Secondary Issues

	1.3 Report Organization

	2. Load Modeling Review
	2.1 Introduction
	2.2 Types of Load Models
	2.2.1 Static Load Models
	2.2.2 Dynamic Load Models
	2.2.3 Composite Load Models (CLM)
	2.2.4 Artificial Neural Network-Based Modeling

	2.3 Load Model Parameter Identification
	2.3.1 Component-Based Approach
	2.3.2 Measurement-Based Approach

	2.4 Summary

	3. Parameter Reduction of Composite Load Model using Active Subspace
	3.1 Introduction
	3.2 Problem Statement
	3.2.1 Introduction of WECC CMLD
	3.2.2 Motivation for PR
	3.2.3 Parameterized WECC CMLD

	3.3 PR Approach for WECC CMLD using ASM
	3.3.1 Preliminaries of ASM
	3.3.2 PR Algorithm Based on ASM
	3.3.3 Accuracy Analysis of PR Based on ASM

	3.4 Case Studies
	3.4.1 Case I: Apply ASM to WECC CMLD and Results Analyses
	3.4.2 Case II: Influence of FIDVR on Reduction Result
	3.4.3 Case III: Comparison with Three Classical PR methods

	3.5 Summary

	4. WECC Composite Load Model Parameter Identification using Evolutionary Deep Reinforcement Learning
	4.1 Introduction
	4.2 CMPLDWG Model and Overall Parameter Identification
	4.2.1 CMPLDWG Model
	4.2.2 Overall Framework of the Proposed Approach

	4.3 Parameter Sensitivity Analysis
	4.4 Parameter Identification using the EDRL with IE
	4.5 Case Study
	4.5.1 Parameter Sensitivity Identification
	4.5.2 Parameter Identification

	4.6 Summary

	5. Python-PSEE-Combined Autonomous Identification Program
	5.1 Introduction
	5.2 Python-PSSE Autonomous Parameter Identification Approach
	5.3 WECC Parameter Identification using AEP Data
	5.4 Summary

	6. Dynamic Large-Signal Order Reduction of Composite Load Model
	6.1 Introduction
	6.2 Introduction to Order Reduction Method Based on Singular Perturbation
	6.2.1 LSOR Based on Singular Perturbation Theory
	6.2.2 Accuracy Assessment

	6.3 Mathematical Representation of WECC Composite Load Model
	6.3.1 Three-Phase Motor Model
	6.3.2 DER_A Model

	6.4 Order Reduction of WECC Composite Load Model
	6.4.1 Reduced-Order Three-Phase Motor Model

	6.5 Model Validation via Simulation
	6.5.1 Validation of Reduced-Order Three-Phase Motors
	6.5.2 Validation of DER_A model

	6.6 Summary
	References

	7. Conclusion and Future Work



