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Executive Summary 

The project uses point on wave measurements made in power system following disturbances of 

different types and severity to first determine accurate three-phase load composition along 

distribution feeders. Based on the detailed three-phase load composition characterization obtained, 

more accurate load compositions for conducting positive-sequence time domain simulations will 

be developed. The operational and planning benefits of more detailed load compositions in making 

electric utilities more competitive will be quantitatively evaluated.  

This project is collaboration between Arizona State University and Texas A&M University. The 

project report is composed of contributions from both universities. The first part of this project, 

title “Load Synthesis in Distribution Feeders Using Point on Wave Measurements”, is presented 

from Chapter 1 through Chapter 5. The second part, title “Enhanced Transmission and Distribution 

System Operation and Planning with Improved Dynamic Load Modeling”, demonstrates the 

benefits and applications of the advanced load models established in the first part of this project. 

With the increasing penetration of renewables in the distribution systems, the need to address the 

challenges of load modeling is becoming essential. Some of these challenges include obtaining an 

accurate and a realistic representation of the aggregated load model parameters and the load 

composition to represent the feeder and load models in grid studies. With an emphasis on tackling 

these issues in the topic of load modeling, this report presents the following intermediary steps in 

developing accurate load models: 

1. Synthesis of a three-phase standard feeder and load model using the measured voltages and

currents, for events such as faults and feeder pickup cases, obtained at the head of the

feeder.

2. Synthesis of more accurate three-phase feeder and load models at different substations

using the standard feeder and load model developed in Step 1.

3. Investigated issues relate to motor stalling phenomenon in positive sequence software

packages (such as PSLF) and proposed an analytical approach to estimate the motor stalling

in PSLF.

In the first phase of this project, a standard feeder and load model had been synthesized by 

capturing the current transients when three-phase voltage measurements (obtained from a local 

electric utility) are played-in as input to the synthesized model. The comparison between the 

measured currents and the simulated currents obtained using an electromagnetic transient analysis 

software (PSCAD) are made at the head of the designed feeder. The synthesized load model has a 

load composition which includes impedance loads, single-phase induction motor loads and three-

phase induction motor loads. The parameters of the motor models are adjusted to obtain a good 

correspondence between measured three-phase currents and simulated current responses at the 

head of the feeder when subjected to events under which measurements were obtained on the 

feeder. These events include faults which occurred upstream of the feeder at a higher voltage level 

and a feeder pickup event that occurred downstream from the head of the feeder. Two different 
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load compositions have been obtained for this feeder and load model, depending on the types of 

load present in the surrounding area (residential or industrial/commercial). 

The second phase of this project develops a more systematic algorithmic approach to obtain better 

feeder and load model based on the substation it originates from and at different loading conditions 

(in summer and winter). The standard feeder and load model obtained from the first phase of this 

project is used as the starting point to apply the proposed algorithmic approach to obtain more 

accurate feeder and load models. Like the first phase of this project, both load parameters and load 

composition have been determined for these feeder and load models depending on their physical 

location and the nature of the load supported by these feeders. 

In the third phase of this project, the impact of feeder and load modeling studies in positive 

sequence time domain simulation environments such as PSLF has been investigated. One of the 

feeder and load models obtained from the second phase of this project has been used to study the 

motor stalling phenomenon issues in PSLF. An analytical approach based on multi-variable linear 

regression has also been proposed in this work to estimate motor stalling in PSLF accurately.  

In the remaining phase of this project, we study the enhanced transmission and distribution 

operations and planning due to improved dynamic load modeling. In particular, Chapter 1 of Part 

2 studies the enhanced operation in distribution grid with more accurate three-phase load 

composition information. Chapter 2 of Part 2 presents an enhanced transmission operation by look-

ahead coordination reactive power support devices. Chapter 3 of Part 2 proposes a new business 

model for the future distribution utilities by explicitly accounting for the “grid-friendliness” of 

individual customers.  

This team is grateful for the encouragement and support received from the list of industry advisors. 

The PSERC staff members have also provided enormous support during the progress of this 

project. 
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1. Introduction

1.1 Project Goals and Overview

The primary objective of this project is to synthesize distribution feeder and load models to study 
the effects of events such as faults and feeder pick-up events at the distribution and 
sub-transmission levels of a local utility in Arizona. The feeder and load model proposed in this 
work is comprised of single-phase induction motors, three-phase induction motors, impedance 
loads, distribution line segments and distribution transformers. It should also be noted that the 
following project objectives have been achieved in this work:

Case 1: A fault induced delayed voltage recovery (FIDVR) event, which is a 69 kV Phase A  
fault at a substation K, has been investigated in detail using the proposed feeder and 
load model by using the measured voltages and currents at the head of a 69/12.47 
kV substation (substation A). This event occurred during summer conditions.

Case 2: The same model obtained in Case1 has been used to investigate another fault event at the
69-kV voltage level on phase A, which occurred during the winter season. The only
change made in this model compared to the model used in summer case is that the load
composition of the model in Case1 is scaled appropriately (by exactly a factor of 0.4) to
match the pre-fault and post-fault measured steady state current values in this case.
Similarly, the measurements of voltages and currents at the same 69/12.47 kV substation A
(as used in summer case) has been used for this case.

Case 3: A feeder pick-up case, at another 69/12.47 kV substation (substation B), has been investi-
gated using the same feeder and load model used in Case1 and Case2 except for the 
variation in the ratio of single-phase to three-phase induction motor load composition. This 
different ratio of motor load composition is accounted for by considering the types of 
load present in substation B area. From discussions with the local utility engineers, it has 
been determined that the load present on the substation B feeder is predominantly 
industrial/commercial type. For this reason, more three-phase induction motors loads 
compared to single-phase induction motor loads have been considered for this case. 
This event also occurred during summer conditions.

Case 4: The same event, that was investigated in Case 1, which is a 69 kV Phase A fault at 
a substation K, has been investigated in detail using the proposed feeder and load model, 
that was obtained from Case 3, by using the measured voltages and currents at the head 
of a different 69/12.47 kV substation (substation C). As mentioned before, this 
event occurred during summer conditions. In the cases mentioned above, Case1, Case2, 
Case3 have been analyzed by comparing the simulated current responses 
obtained in PSCAD to the measured current responses. In these cases, the measured 
voltages for all three-phases are played-in to the developed standard model in 
PSCAD to obtain the simulated current responses. This procedure is useful in obtaining 
two standard feeder and load models with a fixed set of load parameters (in all 
three phases and all the cases) and varying load composition according to its location.
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Additionally, using Case 1, Case 2 and Case 4, the feeder and load models obtained using the 
above approach have been improved using an algorithmic (Gauss-Newton) approach to obtain 
the final set of parameters (varying in all three phases and in all cases) and varied load 
composition for each case. An application of the developed feeder and load models in positive 
sequence software packages, such as PSLF, has also been discussed in this report.

1.2 Organization of the Report

This report is organized into five chapters. The first chapter presents the objectives of this work. 
Chapter 2 mainly deals with developing a manual tuning approach to obtain different types of 
feeder and load models depending on its geographical location and load class. This chapter also 
contains the details of the individual components used to make up these feeder and load models. 
Chapter 3 provides a systematic analytical approach to obtain the parameters and the load 
composition of the feeder and load models using the measurements of voltages and currents from 
a 69-kV bus fault event in both summer and winter conditions at different locations. Chapter 
4 presents the development of a linear regression model used to predict single-phase 
induction motor stalling in PSLF. The conclusions from this work has been provided in the 
Chapter 5 of this report. Possible future works based on the obtained standard feeder and 
load models and the proposed approaches has also been discussed in this chapter.
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2. Manual Tuning Method to Synthesize Feeder and Load Models Using
Voltage and Current Measurements

2.1 Introduction

To obtain a clear understanding of the load composition in the local utility system, a close consul-
tation was held with its engineers. From this discussion, by analyzing three test cases as described 
below, efforts were made to obtain two standard three-phase feeder and load models with a 
fixed set of parameters (in all three phases and across all three cases) and according to its load 
class.

Two of these cases dealt with disturbances for which measurements at substation A were obtained 
and one case for which measurements at the substation B were obtained. The feeders at the 
substation A primarily supplied residential loads (for example: a large number of single-Phase air 
conditioner units) and the feeders at the substation B primarily supplied commercial and industrial 
loads (for example: large three-phase air-conditioner units in commercial buildings). This 
information provided the basis to design the load model composition depending on the substation 
at which measurements were obtained. It should also be noted that the main objective of this 
Chapter is to obtain a consistent set of parameters for a standard load model irrespective of the 
type of loads supplied by the feeders. However, varying the load composition by adjusting the 
percentage of different types of loads components depending on the nature of the load supplied is 
critical in capturing the transient behavior of the feeder and load model.

A systematic analytical approach, non-linear least squares Gauss-Newton method, has been 
pre-sented in Chapter 3 to obtain the load composition and the parameters of the considered 
feeder and load models. However, it is important to have a good initial condition to implement 
this analytical approach. Therefore, in this chapter, a manually tuned approach has been 
presented to obtain a good set of initial conditions (for both load composition and load 
parameters).

2.2 Individual Components Configuration of the Feeder Models

The feeder and load model used in this work is shown in Fig. 2.1. The loads and feeder 
components that makeup this feeder model, to recreate the fault and feeder pick-up events at 
substation A and substation B respectively, are:

• Single-phase induction motor loads.

• Three-phase induction motor loads.

• Impedance loads.

• Distribution line segments

• Distribution transformers

The details of the individual components that are part of the considered feeder and load model are 
presented below:
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Figure 2.1: Feeder and Load Model used in Case 1, Case 2, Case 3 and Case 4
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Table 2.1: Line Impedances considered in the model

Impedance Type Positive Sequence
Impedance Value

Negative Sequence
Impedance Value

Zero Sequence
Impedance Value

Resistance
(ohm/mile)

0.3 0.3 0.798

Inductive Reac-
tance (ohm/mile)

0.64 0.64 2.04

Capacitive
Reactance
(Mohm/mile)

0.01 0.01 0.01

2.2.1 Overhead Lines

The feeder model is assumed to have a total of less than 5% voltage drop across its length, 
in accordance with the recommendation provided by National Electrical Code (NEC) [1]. From 
Fig. 2.1, it can be clearly seen that the proposed feeder is divided into three parts of equal 
length. In the PSCAD model, this line is represented using a short length coupled pi-section 
between each segment. It should also be noted that in this model the distribution lines are 
represented as overhead lines. The line data for this pi model is provided in terms of positive, 
negative and zero sequence data per mile [2]. Therefore, the length of each coupled pi-
section has been obtained for each case to ensure a maximum drop of 5% is achieved across 
the feeder. The impedance data used to represent these overhead lines, from [2], are shown in 
Table 2.1.

2.2.2 Three-Phase Induction Motors

The three-phase induction motor model considered is the squirrel cage type because of its 
ubiquitous presence in most of the motors present in practical distribution feeders. For this 
model, in PSCAD/EMTDC [3], torque control mode is used to operate the three-phase induction 
motors. These are motors which are typically rated at 460 V line-line RMS. Table 2.2 provides 
the data for the standard parameters considered for this model.

This motor model is available in the PSCAD library. The mechanical torque, in pu, of this 
motor is modeled using the following equation:

(2.1)Tmechanical = k

Where, k is the initial load percentage pickup factor (0.65 in this case)

ω is the speed of the motor in pu

5



Table 2.2: Three-phase Induction Motor Parameters

Parameter Values
Voltage Rating (line-line RMS) 460 V
H (Inertia Constant) 0.3 s
Stator Resistance 0.013 pu
Inner Rotor Resistance 0.009 pu
Outer Rotor Resistance 0.15 pu
Stator Leakage Inductance 0.067 pu
Inner Rotor Leakage Inductance 0.17 pu
Outer Rotor Leakage Inductance 0.225 pu
Magnetizing Inductance 3.8 pu
Initial Load Percentage Pickup 65%
Type of Mechanical Load D =1
Power Factor 0.88

Figure 2.2: 2 Load Torque Profile for SPIM [4]

2.2.3 Single-Phase Induction Motors

The single-phase loads in the feeder model developed are represented as aggregated loads. 
For example, to represent 100 single-phase induction motors (SPIMs) at a particular location 
on the feeder, a single aggregated motor rated at 450 kVA is deployed (The rating of each SPIM 
is of 4.5 kVA rating).

The most predominant type of load that needs to be considered in the residential areas are 
the single-phase air conditioner compressor motors. It should be noted that this model is not 
available in the PSCAD library. For this reason, a user-defined single-phase induction motor 
(SPIM) model developed in [4] has been used for this work. From Fig. 2.2, it can be clearly 
seen that the load torque of the single-phase induction motor is represented in the form of a 
saw-tooth wave which includes both speed dependent load torque and angle dependent load 
torque.

The parameters of this model are obtained from [4] and are shown in Table 2.3.
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Table 2.3: Initial Single-phase Motor Parameters [4]

Parameter Values
Voltage Rating (line-line RMS) 230 V
Rotor Diameter 0.065 m
Stator Resistance 0.3 ohm
Main to auxiliary winding turns 1.4
Rotor Resistance 0.3 ohm
Stator Leakage reactance 0.5 ohm
Rotor Leakage reactance 0.2 ohm
Speed dependent load torque 8 N-m
Angle dependent load torque 6 N-m
Magnetizing reactance 30 ohm

The terminal resistance of a single SPIM is considered to be 5 µohm. This terminal resistance 
represents the line resistance between the distribution transformer and the SPIM. Similarly, the run 
capacitor of a single SPIM is assumed to be 80 µF. It should be noted that in this model, if 
the SPIM is scaled by a factor ‘x’ to represent the aggregated load, then the terminal resistance and 
the run capacitor should be scaled by the same factor ‘x’ to represent their equivalent values for 
the aggregated SPIM load.

2.2.4 Distribution Transformers

The modeling of the distribution transformers has been discussed in detail in the later sections of 
this chapter to investigate the effects of transformer saturation on feeder pick-up currents 
transients.

2.3 Case 1: Substation A Summer Event

2.3.1 Introduction and Case Setup

To obtain a novel residential feeder and load model, efforts are directed towards estimating 
appropriate (when compared to corresponding measured responses) current responses, for a 
FIDVR event, when measured three-phase voltages are played-in to the model. The details of this 
FIDVR event are given below:

Event type: Phase A line to ground fault at substation K on a 69-kV circuit breaker.

Event time of occurrence: 10:33 AM on 8th August 2016.
Available DFR measurements: Voltages, Currents point on wave data at substation A (12.47 kV

– low voltage side of the substation)

For this feeder analysis, the available three-phase voltage measurements are played into a three-7
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phase feeder model in PSCAD. The three-phase played-in voltages for this event are presented 
below in Fig. 2.3.

Figure 2.3: Case 1 RMS Three-Phase Voltage Profiles

Note1: Although only phase-A is faulted, phase-B voltage also seems to be severely affected due to 
the Delta-Wye configuration of the transformers between the sub-transmission level and the 
distribution level

From Fig. 2.3, it can be clearly seen that the voltage plot characterizes a FIDVR event because the 
phase A voltage takes a long time to recover to the nominal state after the fault is cleared. Although, 
Fig. 2.3, shows the RMS voltage waveforms, corresponding POW three-phase voltage waveforms 
have been played-in to the model. The POW played-in voltage of Phase A is presented in Fig. 2.4.

It should be noted that in this work, Case 1, Case 2, Case 3 and Case 4 have been represented in 
PSCAD, using the schematic shown in Fig. 2.5.

2.3.2 Load composition

After consulting with the local utility engineers, it was determined that the substation A feeders 
are located in residential areas and primarily serve residential load. This information was used as 
a starting point to formulate the load model composition.

A large percentage of the load is assumed to be SPIM because residential areas usually have a 
large percentage of load which comprises of air conditioners, ceiling fans, refrigerators and other 
appliances driven by SPIMs. A smaller portion of three-phase motor loads has been assumed 
to represent a few commercial buildings or offices with air conditioners driven by three-
phase motors. An even smaller amount of lighting loads has also been represented in the 
model. The load compositions for this FIDVR case was determined after iterating using a simple 
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Figure 2.4: POW Played-in Phase-A Voltage Measurement for Case 1

Figure 2.5: Simulation vs Actual System Representation
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trial and error process to obtain the best match between the simulated current obtained from 
PSCAD with the played-in measured voltage and the actual measured current is presented in 
Table 2.4.

Table 2.4: Load Composition for Substation A Summer Case Feeder Model
Type of load Phase A Phase B Phase C
Lighting Load 0.594 MW 0.594 MW 0.594 MW
Single-Phase Load 4.56 MVA 4.56 MVA 4.56 MVA
Three-Phase Load (1/3 Total
Load)

1.14 MVA 1.14 MVA 1.14 MVA

The load composition across the three segments of the feeder is shown in Table 2.5.

Table 2.5: Load Composition Across Three Segments of the Feeder Per Phase

Type of load Segment 1 Segment 2 Segment 3
Lighting Load 0.2 MW 0.2 MW 0.2 MW
Single-Phase Load 1.2 MVA 1.68 MVA 1.68 MVA
Three-Phase Load 0.38 MVA 0.38 MVA 0.38 MVA

From Table 2.5, it can be observed that both lighting loads and three-phase loads are 
distributed equally along each segment of the feeder in each phase. Whereas, the single-
phase loads are distributed in the ratio of 1:1.4:1.4 along the three segments of the feeder in 
each phase. The primary reason for choosing this ratio of SPIM loads across the three 
segments is to capture the FIDVR phenomenon observed in the measured voltages and is known 
to occur due to the stalling of SPIMS. It should also be noted that during this process to 
determine the load composition in this feeder model, the parameters of SPIM obtained from 
Table 2.3 are used as the starting point of this analysis.

Based on Table 2.4 and Table 2.5, the final percentages of all the loads in the considered 
residential feeder and load model are presented in Table 2.6.

Table 2.6: Residential Feeder and Load Model Composition

Feeder Type (Geo-
graphical)

Single-phase Load Three-phase Load Impedance Load

Residential 72% 18% 10%

Therefore, motor load comprising of 90% of the total load has been obtained in this model. 
It should be noted that the same percentage of motor loads (90%) and lighting loads (10%) as 
used in this case are used in both Case2 (substation A winter case), Case3 (substation B feeder 
pick-up case).

2.3.3 Parameter Sensitivity Analysis

As shown in Fig. 2.5, the POW voltages corresponding to their RMS waveforms, in Fig. 2.3, 
are played-in to this feeder and load model to capture accurate simulated current responses. For 
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this reason, parameter sensitivity analysis has been done in this work. The feeder current 
profiles of all three-phases, in this case, have been presented in Fig. 2.6, Fig. 2.7 and Fig. 2.8. 
A vertical line has been shown in Fig. 2.6, Fig. 2.7, Fig. 2.8 to represent the instant of fault 
initiation in all the three-phases.

From Fig. 2.6, it can be clearly observed that the post-fault current in Fig. 2.6 is higher than the 
pre-fault current by around 300 Amps. This indicates stalling of motors, where the stalled motors 
draw locked rotor current until they are tripped due to internal protection. Since, in the available 
data obtained from Schneider ION 7650 and Schneider ION 8650A meters, the time span after the 
fault is cleared is only about 1 sec, the locked rotor current does not die away in the observed time 
span. It should also be noted that this phenomenon is not observed in Fig. 2.7, Fig. 2.8. Hence, 
efforts have been concentrated on making motors stall (after the fault is applied) in only phase 
A of the feeder.

Figure 2.6: Phase A Faulted Current at Substation A for Case 1

The procedure to match the pre-fault simulated three-phase currents at the head of the feeder 
with their corresponding measured responses has been documented in detail in [5]. After 
obtaining the pre-fault currents, as mentioned earlier, load composition has been determined for 
this feeder model. Thereafter, parameter sensitivity analysis has been done to get a close match 
of the fault transients as seen from Fig. 2.6. This is because, the FIDVR phenomenon is observed 
in the Phase A (faulted phase) and it is important to capture the post-fault steady state current 
in the faulted phase in the PSCAD simulations using this feeder and load model.

Critical Parameters:

The following parameters of the SPIM are tuned in the sensitivity analysis to obtain a good 
match of the post-fault steady state simulated current in the faulted phase, Phase A, when 
compared to its corresponding measured post-fault steady state current:
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Figure 2.7: Phase B Non-Faulted Current at Substation A for Case 1

Figure 2.8: Phase C Non-Faulted Current at Substation A for Case 1
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Number of SPIMs: It is known that during the fault, the voltage level in the system decreases.
Due to this, the speeds of the SPIM motors reduce until the fault is cleared. After the fault is 
cleared, the SPIMs require more reactive power to get back to the nominal speed. This 
indicates that more the number of motors in an aggregated motor, the more probable it is to 
stall (thereby all the individual motors stall) because the aggregated motor requires reactive 
power to re-accelerate to the nominal speed. From this observation, it can be concluded that 
this parameter (number of motors) is very important in the sensitivity analysis. The final 
value of this parameter has been obtained from the load composition as mentioned earlier in 
this chapter.

Rotor Resistance: The slip of an induction motor is directly affected by the rotor resistance. Since,
slip is a function of the rotor speed this is another parameter which is found to be the most 
sensitive in the sensitivity analysis. This parameter is especially important in matching the 
current during the faulted condition (before the fault is cleared).

Inertia of SPIMs: It was observed that, after the rotor resistance, the inertia of the motors was
found to be the most sensitive parameter in the simulations conducted. It played an 
important role in determining at what time the SPIMs reach the nominal speed after a fault 
clearance. The inertia of the motor is closely related to its rotor diameter. Therefore, using a 
base value of 6.5 cm from Table 2.3 the sensitivity analysis from 6 cm to 8 cm has been 
considered for different SPIM motors. It was observed that at 7 cm, the desired results 
(to get a good match between the post-fault simulated and measured current responses in 
the faulted phase) has been obtained.

It should be noted that the above sensitivity analysis has also been performed on the other 
parameters of SPIM and their sensitivity order has been presented below:

Rotor resistance > Inertia > Stator resistance > Rotor reactance > Stator reactance (2.2)

Using the obtained sensitivity order, as shown in (2.2), the SPIM parameters are tuned 
manually by changing them individually to ensure that a good match between the post-fault 
simulated steady state current and its corresponding measured response has been obtained in the 
faulted phase.

Note: The magnetizing reactance of the SPIMs barely had any impact on the simulated 
feeder currents and therefore, was not manually tuned using the sensitivity approach 
mentioned in the above paragraph.

In PSCAD simulations, it is observed from the plots of the speeds of the motors, that after a fault 
is applied, the SPIMs are the most affected by the fault whereas the three-phase motors are 
the least affected. This impact on SPIMs seems to be logical considering that the inertia of the 
SPIMs is very low whereas the three-phase motors have a higher inertia. Another reason for this 
impact on SPIMS might also be due to the fact that only one phase is faulted. Hence, the 
two other phases are supporting the three-phase motors. For these reasons, the sensitivity 
analysis and the manual tuning of the parameters for this substation A case has been conducted 
only for SPIMS.

13



Figs. 9-11 depict the end-result of the sensitivity investigation. These figures show the speeds 
of the nine blocks of single-phase motors (see Fig. 2.1) from a single simulation conducted using 
the final parameter values of SPIMs as shown in Table 2.7.

Table 2.7: Single-phase Motor Parameters

Parameter Values
Voltage Rating (line-line RMS) 230 V
Rotor Diameter 0.07 m
Stator Resistance 0.3 ohm
Main to auxiliary winding turns 1.4
Rotor Resistance 0.5 ohm
Stator Leakage reactance 0.6 ohm
Rotor Leakage reactance 0.4 ohm
Speed dependent load torque 7.1 N-m
Angle dependent load torque 5.1 N-m
Magnetizing reactance 30 ohm

Figure 2.9: SPIM Speeds at Three Different Segments Across the Feeder in Phase A

From Fig. 2.10, it can be clearly observed that the speeds of the SPIMs are not as affected as 
observed in phase A from Fig. 2.9. This is to be expected because phase B is not the faulted 
phase. The speeds of SPIMs in Fig. 2.11 (phase C) are even less affected due to the phase A fault. 
This is because as mentioned earlier in Note1, the voltage in phase B has a dip similar to phase A 
due to the Y-Delta transformers whereas voltage in phase C sees the least dip as it is not the 
faulted phase nor is affected by the Y-Delta transformers in the 69-kV network.
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Figure 2.10: SPIM Speeds at Three Different Segments Across the Feeder in Phase B

Figure 2.11: SPIM Speeds at Three Different Segments Across the Feeder in Phase C
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2.3.4 Case 1: Results and discussion

The final simulated currents at the head of the feeder are as shown below in Fig. 2.12, Fig. 
2.13, Fig. 2.14. From Fig. 2.12, it can be clearly seen that for the faulted phase A current, a good 
match between the simulated current and measured current has been obtained. This is a clear 
indication that stalling occurred in the SPIM’s of this phase due to this FIDVR event.

From Fig. 2.13, it can be observed that apart from the time period of 0.25 sec to 0.35 sec a 
very good match between the simulated current and measured current for phase B is obtained. 
From sensitivity analysis, it is observed that mismatch from 0.25 sec to 0.35 sec can be 
reduced by changing the inertia of SPIM’s from chosen rotor diameter value of 7 cm to 8 cm. 
However, to keep the parameters for all the motors in all phases to be same the final result for 
rotor diameter of 7 cm is presented here.

From Fig. 2.14, it can be concluded that even for the least affected phase the simulated current 
obtained has a very good match with the measured current of phase C.

Figure 2.12: Phase A Current Comparison for Summer Case

2.4 Case 2: Substation A Winter Event

2.4.1 Introduction

In this case, the same feeder and load model used in the substation A summer case (Case 1) has 
been used to verify the validity of the model during winter conditions. As shown below, the only 
difference in this case (compared to Case 1) being the sub-transmission SLG fault occurred 
during winter conditions (very low loading conditions).

Event Details:

Event type: Phase A line to ground fault at substation K 69 kV bus.
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Figure 2.13: Phase B Current Comparison for Summer Case

Figure 2.14: Phase C Current Comparison for Summer Case
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Event time of occurrence: 5:36 PM on 11th November 2016.

Available DFR measurements: Voltages, Currents point on wave data at substation A (12.47 kV 
–low voltage side of the substation)

Fig. 2.15 shows the measured voltages that are played into this model to obtain the 
simulated currents at the head of the feeder.

Figure 2.15: Three-Phase RMS Voltage Profiles for Case 2

From Fig. 2.15, it can be seen that all three voltages recover to the nominal voltage (after the fault 
is cleared) very quickly compared to the phase A voltage response of Case 1: Substation A 
Summer case. From this, it should be expected that there would be no stalling of SPIMs being 
involved in this case. It should also be noted that the three-phase POW voltage waveforms 
corresponding to the RMS voltage waveforms in Fig. 2.15 are played-in to this feeder and load 
model.

2.4.2 Substation A Winter: Load composition

The load composition from Table 2.4, Table 2.5 are scaled by exactly a factor of 0.4 to obtain the 
load composition for this case. This scaling is done to match the pre-fault current measured values 
from the obtained simulated responses. Although, the total load from the substation A summer 
case (Case 1) is scaled down by 0.4 the ratio between the single-phase motor load to three-phase 
motor load and the lighting load percentage composition is kept constant for these two cases.

2.4.3 Substation A Winter: Critical parameters and parameter sensitivity analysis

The same parameters for the feeder and load used in substation A summer model have been used 
for this case. Hence, sensitivity analysis and manual tuning of the parameters is not required.
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2.4.4 Substation A Winter: Results and Discussion

Fig. 2.16, Fig. 2.17, Fig. 2.18 show that a very good correspondence has been achieved 
between simulated and measured currents by using the same feeder and load model from 
substation A summer case in winter conditions. These results also illustrate that this residential 
feeder and load model is able to capture the transient fault characteristics for both summer and 
winter conditions consistently.

Figure 2.16: Phase A Current Comparison for Winter Case

Figure 2.17: Phase B Current Comparison for Winter Case

It should also be noted that as expected, it was observed from the simulations conducted that 
no stalling of SPIMs is involved in this case.
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Figure 2.18: Phase C Current Comparison for Winter Case

2.5 Case 3: Substation B Summer Event

2.5.1 Introduction

This section details the procedure for obtaining a novel feeder model to estimate accurate current 
responses, for a three-phase feeder pick-up event at the substation B, when measured three-phase 
voltages are played-in to the model. From the information provided by the local utility engineers, it 
was identified that the major load composition near substation B primarily consists of commercial 
buildings and industrial loads dominated by three-phase loads. The one-line diagram of substation 
B and its downstream feeders is presented in Fig. 2.19.

Event Details:

Event type: Three-phase feeder pick-up

Event time of occurrence: 8:59 PM on 29th July 2016.

Available DFR measurements: Voltages, Currents point on wave data at substation B (12.47 kV –
low voltage side of the substation)

It should be noted that a storm was present in this area and a fault was cleared on Feeder 3 by tripping 
the feeder. The event considered in Case 3, from Table 2.1, is the pick-up of this feeder 27 minutes 
after the feeder was tripped (during this interval the feeder had been completely deenergized).

For this event, the three-phase POW measured voltages, corresponding to the RMS voltages as 
shown in Fig. 2.20, are played-in to this model. The parameters of the distribution transformers 
considered for this model are presented in Table 2.5. It should also be noted that the same 
distribution transformer model is used for the residential feeder and load model in Case 1 and Case 
2.
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Figure 2.19: Single Line Diagram of the Substation B Area

Figure 2.20: Three-Phase RMS Voltage profiles for Case 3
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Note2: Similar to Case1, Case2, the voltages played into this feeder model are 
instantaneous representations of Fig. 2.20.

Similar to Case1 and Case2, the primary objective of this chapter is to obtain an accurate 
estimate of the feeder currents measured at the head of the substation B feeder.

2.5.2 Critical Parameters of Distribution Transformers

From the simulations conducted, it is observed that the transformer saturation is the major 
contributor in obtaining the desired simulated currents at the head of the feeder for this feeder 
pick-up event. In PSCAD [3], the transformer knee curve characteristic to represent saturation 
in a transformer is shown in Fig. 2.21. From Fig. 2.21, it can be observed that the air core 
reactance is given by the slope of the asymptote. From Table 2.8, it is seen that the air core 
reactance is assumed to be the same as the leakage reactance of the transformer. To ensure that 
the voltage regulation in the transformer is kept minimal, the leakage reactance is assumed to be 
2%.

Figure 2.21: Transformer Knee Curve Characteristic [3]

Additionally, from Fig. 2.21, the magnetizing current characterizes the degree of nonlinearity of 
the flux-current characteristic of the transformer and the knee point represents the y-intercept of 
the asymptote. From [6], it is seen that the magnetizing current for a typical 1 MVA transformer is 
about 1-2 %. Using these critical parameter values, it is observed that at a knee voltage of 1.17 pu
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a good match between the simulated currents and the measured currents is achieved for the starting 
transient in the three phases as shown in Fig. 2.22, 2.23 and 2.24.

It should also be noted that the three-phase transformers, in this feeder and load model, are rep-
resented using three single-phase transformers (equivalent to Y-Y configuration in three-phase 
transformers). Table 2.8 shows the parameters obtained for these single-phase distributed trans-
formers.

Apart from these parameters, the critical parameters used to obtain a good match between the 
measured currents and the simulated currents are given below:

Series Resistance: A resistance in series with the primary winding of the single-phase transformer 
plays an important role in ensuring that the transformer saturation dies out after first few cycles of 
the transient. The optimum value of this resistance is found to be 0.5 ohm. This resistance 
signifies the distance of the distribution transformer from each segment of the feeder model.

Switch Closing Instant: The instant the circuit breaker closes has a huge impact on the DC offset 
present in the starting transient of the simulated currents. In this case, the instant of breaker 
closing for Phase A is the closest to voltage zero crossing. Therefore, the highest DC offset 
is observed in Phase A current transient.

Table 2.8: Single-phase Distribution Transformers Parameters

MVA Rating 1 MVA
Leakage Reactance 0.02 pu
Air Core Reactance 0.02 pu
Inrush Decay Constant 0.25 sec
Magnetizing Current 2 %
Knee Voltage 1.17 pu
Saturation Enabled Yes
Voltage Ratio (line to neutral RMS) 7.96 kV/ 265 V

2.5.3 Case 3: Load Composition

From the geographical information provided by the local utility near substation B, it is known 
that most of the loads located near substation B, are of industrial/commercial type. For this 
reason, the load composition for this feeder model has been modified, using the same procedure 
mentioned in Case 1 load composition analysis, from the feeder model used in substation A 
summer and winter cases. This modification can be seen in Table 2.9 and Table 2.10:

From Table 2.10, Table 2.11 it can be clearly observed that the following proportions, as shown 
in Table 2.11 of loads has been used to match the pre-event measured P, Q values:

It should also be noted that in the load compositions shown in Table 2.9, Table 2.10 the ratio 
of load composition across the three segments of the feeder is as shown below:
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Table 2.9: Load Composition for Substation B In-service Feeder

Type of load Phase A Phase B Phase C
Impedance Load 0.283 MW 0.283 MW 0.283 MW
Single-phase Load 0.8 MVA 0.8 MVA 0.8 MVA
Three-phase Load (1/3
Total Load)

2.06 MVA 2.06 MVA 2.06 MVA

Table 2.10: Load Composition for Substation B Reclosed Feeder

Type of load Phase A Phase B Phase C
Impedance Load 0.08 MW 0.08 MW 0.08 MW
Single-phase Load 0.225 MVA 0.225 MVA 0.225 MVA
Three-phase Load (1/3
Total Load)

0.588 MVA 0.588 MVA 0.588 MVA

• Resistive Load – 1:1:1

• Three-phase Load – 1:1:1

• Single-phase Load – 1: 1.4: 1.4

The key point to be noted here is that the above proportions are the same as the proportions used 
to represent the load composition across the three segments of the substation A summer and 
winter case feeder and load models.

2.5.4 Results and Discussions

The simulated currents at the head of the substation B are compared with their 
corresponding measured currents as shown in Fig. 2.22, Fig. 2.23, Fig. 2.24:

From Fig. 2.22, Fig. 2.23, Fig. 2.24 it can be observed that a good approximation of the 
starting inrush characteristic of the three-phases of the measured currents has been achieved 
from this substation B feeder and load model.

From Fig. 2.25, it can be observed that at high knee voltage values (transformer saturation is not 
present) the initial cycles of the simulated current transient do not have good correspondence with 
the corresponding measured current transient. However, at a low knee voltage value (final 
obtained value) the desired effect has been achieved.

Table 2.11: Feeder and Load Composition depending on location

Feeder Type (Geographical) Single-phase
Load

Three-phase
Load

Impedance
Load

Industrial/Commercial 25% 65% 10%
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Figure 2.22: Phase-A Currents Comparison

Figure 2.23: Phase-B Currents Comparison
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Figure 2.24: Phase-C Currents Comparison

Additionally, from Fig. 2.26, it can be observed that the starting cycles of the transient is not 
affected with the reduction of load (total load of 1.08 MVA in the picked-up feeder is reduced) 
and the difference can only be observed in the latter cycles by which time the transformer 
saturation has died out. From this observation, it can be inferred that the first few cycles of the 
current inrush characteristics do not depend primarily on the type of load present on the feeder 
and is mainly dependent on the distribution transformer saturation characteristics.

It should also be noted that the load parameters for the standard feeder and load model (see 
Fig. 2.1) are obtained using Case 1 and Case 2 as the distribution transformers are already 
energized at the time of fault initiation and hence its parameters on the current transient response 
is negligible. However, in this case, for the feeder pick-up event, the starting characteristic of 
the transformers played a significant role in the transient response of the current whereas the load 
parameters didn’t have much impact on it. Therefore, the combination of these three cases (Case 
1, Case 2 and Case 3) have been useful in obtaining the load compositions and the feeder and 
load model parameters for a standard feeder and load model.
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Figure 2.25: Phase-A Current Comparison for Different Knee Voltages

Figure 2.26: Phase-A Current Comparison for Different Load Conditions
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3. Algorithmic Approach to Synthesize Feeder and Load Models Using 
Voltage and Current Measurements

3.1 Introduction

As discussed in Chapter 2, two standard feeder and load models, depending on their 
geographical location with a fixed set of feeder and load parameters, have been obtained. Although, 
the residential feeder and load model obtained from Case 1 (in summer conditions) has been 
validated in Case 2 ( in winter conditions), there is no guarantee that these feeder and load 
models would give the best match possible between the simulated and measured current 
responses at the head of the feeder at any general substation. Therefore, a systematic 
analytical approach has been proposed in this Chapter to estimate the load composition and the 
load parameters of the two feeder and load models obtained from Chapter 2.

This approach has been implemented on Case 1, Case 2 and Case 4 (whose details are 
presented below).

Case 4 Event Details:

Event type: Phase A line to ground fault at substation K 69 kV bus.

Event time of occurrence: 10:33 AM on 8th August 2016.

Available DFR measurements: Voltages, Currents point on wave data at substation C (12.47 kV 
–low voltage side of the substation)

It should be noted that this approach has not been implemented on Case 3 because, as mentioned 
in Chapter 2, the parameters of the load didn’t have much impact (almost negligible) on the 
simulated current responses at the head of the industrial feeder and load model in Case 3. 
Therefore, another case (Case 4) has been chosen for this approach, whose feeders are 
located in predominantly industrial and commercial areas (this information was obtained from 
the local utility engineers) and the event in this case is the same as in Case 1. Hence, the 
impact of the load parameters on the current transient responses would be significant in Case 4 
and would also be useful to test the efficacy of the proposed algorithmic approach on 
both residential and industrial/commercial type feeder and load models.

The POW voltage measurements utilized in Case 4 is presented in Fig. 3.1 and Fig. 3.2. It 
should be noted that the POW voltages corresponding to the RMS voltages presented in Fig. 
3.1 are played-in to the Case 4 feeder and load model.
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Figure 3.1: Played-in Voltage Measurements for Case 4
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Figure 3.2: POW Played-in Phase A Voltage of Case 4
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3.2 Gauss-Newton Approach: Implementation

3.2.1 Objective Function

In this work, a Gauss-Newton, non-linear least squares optimization [7] is used to determine 
the parameters of the motor loads and the load composition of the two feeder and load models 
obtained in Chapter 2. This is done by reducing the root mean square (RMS) error between the 
measured POW three-phase currents and simulated POW three-phase currents at the head of the 
feeder when three-phase POW voltage measurements are played-in to the feeder and load models. 
The objective function for this approach is defined as shown in (3.1):

arg min
µ
Eµ[(Im − I(µ))ᵀ(Im − I(µ))] (3.1)

In (3.1), Im is the measured current vector at the head of the feeder and I(µ) is the simulated 
current, for a set of µ parameters, generated in PSCAD by playing-in the POW measured 
voltages at the head of the feeder. E(µ) is the objective function that needs to be minimized 
by updating the µ vector, containing parametric variables, after each iteration.

The structure of the current vectors Im and I(µ) varies according to the load model and the 
load composition in consideration and is discussed in detail below:

Single-phase induction motors (SPIMs): The parameters of the SPIMs of each phase are 
optimized     with respect to its corresponding phase current individually. To compute phase A 

SPIM parameters, Im = Ima and I(µ) = Ia(µ) are considered. Where, Ima is the phase 
A measured current and Ia(µ) is the phase A simulated current at the head of the feeder. 
The same procedure is applied for phase B and phase C SPIM parameters, respectively.

Three-Phase Motors: In this case, all the three phase currents are augmented into a single vector
as shown below in (3.2). This is because the change in the parameter of three-phase motors   

Im =
 [

Ima Imb Imc
]ᵀ
, I(µ) =

[
Ia(µ) Ib(µ) Ic(µ)

]
(3.2)

Load Composition: Similar to three-phase motors, in this case, all the three phase currents are
augmented into a single vector as shown in (3.2). This is because, to obtain the 
load composition, the optimization procedure is applied on the ‘Scale’ parameter of three-
phase motors which is dependent on all three-phase currents. More description about the 
‘Scale’ parameter has been presented in the later sections of this Chapter.

3.2.2 Jacobian, Step length and Parameter Updates

The considered Gauss-Newton approach is applied to one parameter at a time for the SPIMs 
and the three phase motors using (3.3), (3.4) and (3.5). It should be noted that representing 
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simulated currents and the measured currents by an analytical function is not possible for this 
work. This is because these currents are in the form of sinusoidal waves with a transient that is 
difficult to represent as an analytical function. Therefore, the first order differential 
Jacobian function has been calculated numerically by calculating the first order forward 
difference as shown in (3.3).

J(µ0) =
I(µ0 + β) − I(µ0)

β
(3.3)

Where, J(µ0) is the Jacobian column vector corresponding to parameter µ0, whose dimension is 
the number of samples of the measured current. β is a small perturbation value whose value is 
chosen for each parameter accordingly using engineering judgement. Values such as 0.05, 0.2 and 
0.4 are found to be good choices for β.

Additionally, backward difference and central difference methods have been tested, in this work, 
to compute the Jacobian vector numerically. However, these methods did not significantly change 
or improve the results of this algorithm when compared to the forward difference method.

The increment in parameter µ0, at each iteration is evaluated using (3.4).

∆µ0 = (JᵀJ)−1Jᵀ(Im − I(µ0)) (3.4)

Where, J is the Jacobian vector obtained from (3.3).

Another important feature, along with the search direction, to consider in this approach is the 
step length of the update of the parameters at each step. The parameters, at the end of each 
iteration, are updated using (3.5).

µfinal = µprev + α∆µ0 (3.5)

Where, µfinal is the new parameter obtained at the end of the iteration, µprev is the value of the 
parameter from previous iteration, α is the step length and ∆µ is obtained from (3.4). Typical 
values of α used in this work are 0.25, 0.5 and 1.

3.2.3 Choosing Parameter Bounds

While implementing this algorithm, it is important that appropriate bounds are considered 
for the parameters of the motor models to ensure that the parameters obtained after 
convergence are realistic. The upper and lower bounds considered for SPIMs and three-phase 
motors are shown in Table 3.1 and Table 3.2. A voltage behind reactance (VBR) based dual-rotor 
squirrel cage induction motor model has been considered in this work to represent the three-phase 
motors.

The bounds of SPIM parameters, as shown in Table 3.1, are obtained using the following criteria:

• Efficiency of SPIM is assumed to be between 90-95%

• Total motor losses at the rated conditions are calculated for the assumed efficiency range.
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• Copper losses are assumed to be 60% of the total losses (25% stator copper losses and
35%copper rotor losses).

• Typically, combination of stator reactance and rotor reactance is approximately equal
to the sub-transient reactance of the motor. Additionally, sub-transient reactance is
usually in the range of 5% - 15% for a SPIM. Using this assumption, the bounds on
rotor and stator reactances has been chosen in this work.

Table 3.1: SPIM Parameter Bounds

Parameter Lower Bound Upper Bound
Rotor Resistance 0.3 ohm 0.6 ohm
Inertia Constant 0.0313 s 0.1 s
Stator Resistance 0.2 ohm 0.4 ohm
Rotor Reactance 0.3 ohm 0.7 ohm
Stator Reactance 0.3 ohm 0.7 ohm

Table 3.2: Three-Phase Motor Parameters Bounds

Parameter Lower Bound Upper Bound
Inner Rotor Resistance 0.002 pu 0.02 pu
Outer Rotor Resistance 0.1 pu 0.2 pu
Inertia Constant 0.1 s 0.35 s
Stator Resistance 0.002 pu 0.05 pu
Inner Rotor Reactance 0.05 pu 0.2 pu
Outer Rotor Reactance 0.05 pu 0.25 pu
Stator Reactance 0.05 pu 0.15 pu

The SPIM’s considered in this work are used to represent the air-conditioner compressor 
motors which have very small inertia. Therefore, 6 cm – 8 cm bounds on rotor diameter has been 
chosen to represent small induction motors in the air conditioners. The inertia constant values 
corresponding to the chosen rotor diameter bounds are presented in Table 3.1.

There are several references available in the literature that provide the parameters of the three-
phase motors. Using [8] and [9], the bounds in Table 3.2, for a 460 V dual rotor three- phase 
induction motor [10], has been chosen in this work.

It is also important to have bounds on the load composition distribution between the three-
phase motor load and the SPIM load. The following points are used to choose the bounds on 
the load composition of the loads:

1. The constraint used in this approach is that the total load is always comprised of 90% of
motor load and 10% impedance load.

33



2. The optimization approach is applied on the scale parameter of 3PHIM’s (‘Scale1’) which 
is defined as follows:

• If ‘Scale’ = 1 for 3PHIM, it corresponds to 3PHIM consuming 50 kVA.
• Similarly, If ‘Scale’ = 1 for SPIMs, then it corresponds to 3PHIM consuming 3.83 

kVA.
• For Example: Scale1*0.05 + Scale2*0.00383 = 2.17 MVA (in Phase A of Case 

2), where, ‘Scale1’ corresponds to 3PHIMs and ‘Scale2’ corresponds to SPIMs. 
Simi-larly, 0.05 corresponds to the rating of the three-phase motors (50 kVA) and 
0.00383 corresponds to the rating of the single-phase motors (3.83 kVA)

3. Therefore, the bounds on the ‘Scale 1’ are calculated for each case based on the 
following distribution between the three-phase motor load and the SPIM load:

• Upper bound on three-phase motor load: 85%
• Lower bound on three-phase motor load: 5%

3.2.4 Implementing Parameter Bounds

The bounds on the considered parameters cannot be applied as a hard constraint in the 
Gauss-Newton algorithm. The bounds are implemented, in an interactive environment 
consisting of a Fortran script and PSCAD, in this work. Therefore, the logit transformation has 
been used in this paper to implement bounds on the parameters. In this transformation, the 
parameter of interest with bounds, is transformed into a new parameter with no bounds using 
(3.6) as shown below.

Ω0 = log(
µ0 − µ0,lower bound

µ0,upper bound − µ0
) (3.6)

Where, µ0 is the original parameter, µ0,lower bound is the lower bound of the original parameter, 
µ0,upper bound is the upper bound of the original parameter and Ω0 is the new transformed parameter 
and has limits (−∞, +∞).

After the transformation, (3.1) becomes a function of Ω (vector of transformed parameters) as 
shown in (3.7), which is free of the bounded constraints on the parameters.

arg min
Ω
EΩ[(Im − I(µ))ᵀ(Im − I(µ))] (3.7)

After the convergence criterion is met, the transformed parameter vector Ω is transformed back to 
the original parameter vector µ using (3.6).

3.2.5 Convergence Criterion

The main objective of this work is to obtain a close match between the measured currents and the 
simulated currents. Hence, a small tolerance for the difference in parameters between two
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consecutive iterations has been chosen as the convergence criterion as shown in (3.8).

Ωk −Ωk−1 < 10−2 (3.8)

Where, Ωk is the transformed parameter in the current iteration k and Ωk−1 is the transformed 
parameter in the previous iteration k-1. The convergence criterion used in (3.8) is equivalent to 
having a tolerance of less than 10−3 for the original parameter µ0 between two successive 
iterations.

3.3 Results and Discussion

An interactive setup comprising of PSCAD (generates simulated currents) and a Fortran 
script (conducts the optimization procedure) has been implemented in this work. The flow chart 
describing this process has been presented in detail in Fig. 3.3.

In this algorithmic approach, it is important to have a good initial estimate of the parameters 
of SPIMs and three-phase motors as mentioned in Chapter 2. The parameters of SPIMs and 
three-phase motors that are obtained using the manually tuned technique in Chapter 2, for 
the same considered feeder and load models in this work are used as the initial values in this 
work as shown in Table 2.2 and Table 2.7. Similarly, the final load compositions obtained for the 
residential feeder and load model (from Case 1 and Case 2 in Chapter 2) and the final load 
compositions obtained for the industrial feeder and load model (from Case 3 in Chapter 2) are 
used as the initial conditions to estimate the load composition using the Gauss-Newton algorithm.

Based on the sensitivity analysis conducted in Chapter 2, the order of parameters given (from top 
to bottom) for SPIMs and three-phase motors, in (2.2) are used to conduct the optimization 
procedure in this work.

As mentioned earlier, a residential feeder and load model has been considered for Case 1 and 
Case 2 whose load is predominantly single-phase motor load. However, an industrial and 
commercial feeder and load model has been considered for Case 4 which is mainly comprised 
of three-phase motor loads. Therefore, in Case 1 and Case 2, the proposed optimization 
procedure has been applied initially to the SPIM parameters assuming SPIMs would have the 
most impact on the total current at the head of the feeder. After updating the SPIM parameters 
with their converged optimized parameters, the optimization procedure has been implemented 
for three-phase motor ‘Scale’ parameter. However, for Case 4, the optimization approach is 
first applied to the three-phase motors and then the single-phase motors due to the dominant 
presence of the three-phase motor loads in the considered industrial feeder and load model 
before applying the optimization approach to estimate the load composition of the feeder and 
load model.

It should be noted that once the converged parameters are obtained for all the loads, in the 
order mentioned above, the optimization procedure is implemented to estimate the load 
composition in Case 1, Case 2 and Case 4.

The final converged parameters of the SPIM for Case 1, Case 2 and Case 4 is presented in 
Table 3.3, Table 3.4 and Table 3.5 respectively. 
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Figure 3.3: Flow Chart Describing the Optimization Process Implemented in PSCAD and the 
Fortran Script
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Table 3.3: Final SPIM Parameters for Case 1

Parameter Phase A Phase B Phase C
Rotor Resistance 0.487 ohm 0.6 ohm 0.531 ohm
Inertia Constant 0.066 s 0.086 s 0.044 s
Stator Resistance 0.297 ohm 0.2 ohm 0.2 ohm
Rotor Reactance 0.408 ohm 0.416 ohm 0.3 ohm
Stator Reactance 0.653 ohm 0.62 ohm 0.61 ohm

Table 3.4: Final SPIM Parameters for Case 2

Parameter Phase A Phase B Phase C
Rotor Resistance 0.6 ohm 0.577 ohm 0.52 ohm
Inertia Constant 0.058 s 0.057 s 0.054 s
Stator Resistance 0.289 ohm 0.2 ohm 0.4 ohm
Rotor Reactance 0.497 ohm 0.7 ohm 0.3 ohm
Stator Reactance 0.6 ohm 0.7 ohm 0.443 ohm

Table 3.5: Final SPIM Parameters for Case 4

Parameter Phase A Phase B Phase C
Rotor Resistance 0.385 ohm 0.436 ohm 0.6 ohm
Inertia Constant 0.1 s 0.053 s 0.065 s
Stator Resistance 0.4 ohm 0.4 ohm 0.3 ohm
Rotor Reactance 0.479 ohm 0.309 ohm 0.3 ohm
Stator Reactance 0.6 ohm 0.61 ohm 0.3 ohm
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The final converged parameters for the three-phase motors for Case 1, Case 2 and Case 4 are 
shown in Table 3.6.

Table 3.6: Final Three-Phase Motor Parameters for Case 1, Case 2 and Case 4

Parameter Case 1 Case 2 Case 4
Inner Rotor Resistance 0.02 pu 0.002 pu 0.02 pu
Outer Rotor Resistance 0.2 pu 0.2 pu 0.2 pu
Inertia Constant 0.1 s 0.1 s 0.35 s
Stator Resistance 0.048 pu 0.015 pu 0.045 pu
Inner Rotor Reactance 0.171 pu 0.2 pu 0.2 pu
Outer Rotor Reactance 0.226 pu 0.05 pu 0.05 pu
Stator Reactance 0.065 pu 0.119 pu 0.15 pu

From Table 3.6, it is observed that the final obtained inertia parameter for the three-phase 
motors are low for Case 1 and Case 2 and much higher for Case 4. This is to be expected 
because the three-phase motors in a typical industrial area are much larger compared to the three-
phase motors present in residential areas.

In Table 3.7, the final load compositions obtained for all the cases are presented. It can clearly 
be observed that the amount of three-phase motor load is much higher in Case 4 when 
compared to the single-phase motor load in an industrial/commercial area which is to be 
expected. Similarly, for Case 1 and Case 2, the single-phase motor load is much higher when 
compared to three-phase motor load for the residential feeder and load model.

Table 3.7: Final Load Composition for Case 1, Case 2 and Case 4

Three-Phase
Motor Load

Single-Phase
Motor Load

Impedance
Load

InitialCondition (Case 1
and Case 2)

18% 72% 10%

Initial Condition (Case
4)

65% 25% 10%

Case 1 (after optimiza-
tion)

26% 64% 10%

Case 2 (after optimiza-
tion)

35% 55% 10%

Case 4 (after optimiza-
tion)

69% 21% 10%

While optimizing the SPIM parameters, the error between the measured currents and the 
simulated currents reduces phase by phase as shown in Table 3.8. However, as discussed 
earlier, while optimizing the three-phase motor parameters all the three phase currents are 
augmented into a single vector in (3.2). The reduction of RMS error per sample for this single 
current vector using this approach is presented in Table 3.9.
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Table 3.8: Effectiveness of the Optimization Approach When Optimizing SPIM Parameters

Phase Test
Case

RMS Error per sample
(with initial values of pa-
rameters)

RMS Error per sam-
ple (after optimizing pa-
rameters)

Improvement

A Case 1 161.87 144.68 + 11%
B Case 1 140.25 119.38 + 15%
C Case 1 97.03 87.64 + 10%
A Case 2 74.23 61.9 + 17%
B Case 2 77.57 69.74 + 10%
C Case 2 35.82 35.45 + 1%
A Case 3 143.29 111.78 + 22%
B Case 3 155.9 153.3 + 2%
C Case 3 177.38 173.20 + 2%

Table 3.9: Effectiveness of the Optimization Approach When Optimizing Three-Phase 
Motor Parameters for Overall Current Vector

Test Case RMS Error per sample
(with initial values of pa-
rameters)

RMS Error per sam-
ple (after optimizing pa-
rameters)

Improvement

Case 1 184.99 145.67 + 22%
Case 2 59.36 58.23 + 2%
Case 3 220.58 159.51 + 28%
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In Table 3.10, the total decrease of the RMS error per sample between the measured currents and 
the simulated currents after applying the optimization approach to all the motor loads (both 
parameters and composition) is presented in detail. It can be observed that the proposed 
optimization approach has made the maximum impact on Case 4 currents. Although, in Case 
1 and Case 4, the same SLG fault event at 69 kV level is considered, and both the cases have 
very close pre-fault nominal currents, this approach seems to work more efficiently on 
the industrial feeder and load model (Case 4) with pre-dominantly three-phase motor loads 
when compared to the residential feeder and load model (Case 1) with pre-dominantly SPIM 
loads. Additionally, in Chapter 2, the same set of parameters (initial values in this work for 
all three cases) of the motor load models are manually tuned in such a way that a good fit is 
obtained between the measured currents and the simulated currents in Case 1 and Case 2. The 
parameters of loads obtained in those cases have not been tuned by considering Case 4. 
This could be another factor contributing to major improvement of currents in all three phases 
in Case 4 using the proposed optimization procedure.

Table 3.10: Effectiveness of the Optimization Approach after Optimizing all the Load 
Parameters and ‘Scale’ Parameter
Phase Test

Case
RMS Error per sample
(with initial values of pa-
rameters)

RMS Error per sam-
ple (after optimizing pa-
rameters)

Improvement

A Case 1 161.87 100.2 + 38%
B Case 1 140.25 121.81 + 13%
C Case 1 97.03 89.85 + 7%
A Case 2 74.23 58.54 + 20%
B Case 2 77.57 65.72 + 16%
C Case 2 35.82 35.1 + 2%
A Case 3 161.17 107.98 + 33%
B Case 3 215.15 154.49 + 30%
C Case 3 273.56 172.15 + 38%

In Fig. 3.4, Fig. 3.5 and Fig. 3.6 the comparison of the three-phase simulated currents 
with their corresponding measured currents, at the head of the feeder, has been presented for 
Case 4. These plots demonstrate the qualitative improvement in the matching of simulated 
currents with their respective measured currents when the optimization algorithm is employed 
to estimate the parameters of the load models.

In Fig. 3.4, Fig. 3.5 and Fig. 3.6, when the fault occurs, at the 20000th sample, and when the 
fault is cleared, at the 40000th sample, it can be observed that there is a significant improvement 
in the simulated current response in all three phases when the optimization approach is used. 
However, in the steady state, after 70000 samples, there does not seem to be much impact of the 
optimization algorithm on the simulated current responses. This is to be expected because 
parameters such as rotor resistance and motor inertia have a significant role on the transient 
response during a fault and after a fault is cleared respectively. However, in steady state, the 
impact of parameter sensitivity is much less pronounced.
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Figure 3.4: Impact of Optimization Approach on Phase A Current of Case 4

Figure 3.5: Impact of Optimization Approach on Phase B Current of Case 4
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Figure 3.6: Impact of Optimization Approach on Phase C Current of Case 4
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4. Application of Synthesized Feeder and Load Models in Positive Sequence
Software Packages

4.1 Introduction

The feeder and load models developed in Chapter 2 and Chapter 3 can be utilized only in 
EMTP environment software packages to analyze the power system. However, in the planning 
studies [11] the positive sequence software packages such as PSLF [12], PSSE [13] are used 
to conduct the simulations on the bulk power system. Therefore, in this Chapter, an application 
of the synthesized three-phase feeder and load models in the PSLF environment has been 
presented in detail.

Efforts have been made, in this work, to study the impact of playing-in the voltage measurements 
of Case 1 and Case 2 into the load models of PSLF. Based on the simulations conducted, it was 
observed that the SPIM stalling phenomenon that was observed in Case 1 (in Chapter 2) in a 
FIDVR type event, is not captured in the PSLF simulations. Therefore, the main objective of this 
chapter is to present a systematic approach to estimate SPIM stalling in PSLF for fault type 
events.

4.2 PSLF Simulations

4.2.1 Positive Sequence Voltage Generation

To conduct the feeder and load model studies in PSLF, the three-phase measured voltages from 
Case 1 and Case 2 are transformed into their respective positive sequence voltages by 
calculating their d-q components, using Park’s transformation in ‘Matlab’. It should be noted 
that these measured three-phase voltages are not perfectly balanced in all conditions (pre-fault, 
during the fault and post-fault). This unbalance between the three-phase voltages leads to a 120 
Hz component, within the positive sequence voltages calculated from ‘Matlab’, which would not 
be captured by the PSLF (it only captures the 60 Hz voltage component). Therefore, a first 
order low pass filter has been used to filter out the 120 Hz component in the evaluated positive 
sequence voltages in Case 1 and Case 2.

The positive sequence voltages obtained for Case 1, without filtering the 120 Hz component 
and with filtering the 120 Hz component are presented in Fig. 4.1 and Fig. 4.2 respectively.

Similarly, the positive sequence voltages obtained for Case 2, without filtering the 120 Hz 
component and with filtering the 120 Hz component are presented in Fig. 4.3 and Fig. 4.4 
respectively.

The voltages obtained in Fig. 4.2 and Fig. 4.4 are played-in to a positive sequence feeder and 
load model (whose details are mentioned in detail in the next sub-section of this chapter) in 
PSLF. It should also be noted that the voltage nadir in Fig. 4.2 (Case 1) is significantly lower 
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Figure 4.1: Un-Filtered Positive Sequence Voltage Obtained for Case 1

Figure 4.2: Filtered Played-in Positive Sequence Voltage Obtained for Case 1
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compared to the voltage nadir in Fig. 4.4 (Case 2). Similarly, the time taken for the post-fault 
voltage to reach the nominal voltage is much higher in Case 1 when compared to Case 2. This is 
to be expected because Case 1 is a severe FIDVR type event whereas Case 2 is a much less 
severe non-FIDVR type event.



Figure 4.3: Un-Filtered Positive Sequence Voltage Obtained for Case 2

Figure 4.4: Filtered Played-in Positive Sequence Voltage Obtained for Case 2
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4.2.2 Feeder and Load Models in PSLF

It is important to accurately represent the SPIMs and three-phase motors, used in the EMTP type 
simulations, in PSLF feeder and load models. Therefore, ‘Motor1’ model [12] is used to represent 
three-phase motors. The type ‘D’ SPIM model in PSLF [12] is a performance-based model which 
is made up of a set of algebraic equations to estimate if the motor stalls or not depending on the 
voltage at its terminals. Therefore, a user-defined custom built ‘Motorc’ [12] model is used to 
represent the SPIMs in PSLF. It should be noted that unlike, the type ‘D’ motor model in 
composite load model ‘Cmpldw’, the ‘Motorc’ is a differential equations-based model which 
is equivalent to a set of balanced number of SPIMs in all three phases.

The comparison of active power plots and reactive power plots at the head of the feeder 
when positive sequence voltages generated for Case 1 are played-in to ‘Motor1’ and 
‘Motorc’ loads separately, with their corresponding measured values are presented in Fig. 4.5, 
Fig. 4.6. Similarly, the corresponding plots for Case 2 are presented in Fig. 4.7 and Fig. 4.8 
respectively.

Figure 4.5: Active Power Comparison for Case 1

From Fig. 4.5 and Fig. 4.6, it can be seen that both ‘Motorc’ and ‘Motor1’ load models 
seems to produce a good match between the transient response in the simulated P (active 
power) and simulated Q (reactive power) and their corresponding measured responses. 
However, in the post-fault steady state, both measured P and measured Q values are much 
higher compared to their corresponding simulated values. Additionally, the post-fault P and Q 
simulated values are same as their corresponding pre-fault simulated values. This clearly 
indicates that even at 100% motor load penetration in the feeder model, the motors (both SPIMs 
and three-phase motors) in PSLF do not stall for this FIDVR type event. This phenomenon can 
be clearly seen in Fig. 4.9 where the motors do not stall and re-accelerate to their nominal speed 
after the fault is cleared at 1.2 secs. At this 100% penetration level of motors, the parameters 
of the motors for both ‘Motor1’ and ‘Motorc’ are manually tuned to check if they would stall 
for Case 1 played-in voltages. However, in all the scenarios it was observed that the motors 
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Figure 4.6: Reactive Power Comparison for Case 1

Figure 4.7: Active Power Comparison for Case 2
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Figure 4.8: Reactive Power Comparison for Case 2

would not stall. This is to be expected as the PSLF does not capture the unidirectional 
component of the SPIM current that occurs at the time of the fault. This unidirectional 
component of the current is dependent on the point on the voltage wave (at the terminals of 
the motor) at which the fault is initiated. However, the POW phenomenon is not captured in 
PSLF. Therefore, it is important to develop an approach to predict motor (SPIM) stalling in 
PSLF for FIDVR type events.

Similarly, from Fig. 4.7 and Fig. 4.8 it can be seen that both ‘Motorc’ and ‘Motor1’ load 
models seems to produce a good match between the transient response in the simulated P 
(active power) and simulated Q (reactive power) and their corresponding measured responses 
during the fault and after the fault is cleared (during post-fault steady state condition). This is to 
be expected because as mentioned in Chapter 2, Case 2 is a less severe fault event (compared to 
Case 1) and no SPIM stalling was observed for this case in PSCAD. This phenomenon is also 
captured in Fig. 4.10 where both the motors (‘Motor1’ and ‘Motorc’) do not stall.

4.3 Regression Model to Predict SPIM Stalling in PSLF

As discussed in the previous section, positive sequence software packages such as PSLF do not 
capture the point on wave effects which is essential to capture the SPIM stalling phenomenon in a 
FIDVR type event such as Case 1. Therefore, a multi-variable linear regression model has been 
developed to predict SPIM stalling and has been presented in detail in this section. The following 
steps are used to develop this regression model:
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Figure 4.9: Motor Speeds Comparison for Case 1

Figure 4.10: Motor Speeds Comparison for Case 2
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4.3.1 Step 1: Generate Random Test Cases in PSCAD

The test cases (SLG phase A faults) to train and test the regression model has been generated in 
PSCAD. As mentioned earlier in this report, PSCAD captures the POW effects accurately 
and hence the SPIM stalling phenomenon, for severe SLG fault events such as FIDVR, would 
also be captured accurately. The schematic of the circuit used to generate these test cases are 
presented in Fig. 4.11.

Figure 4.11: Circuit Schematic in PSCAD to Generate the Test Cases

It should be noted that the standard feeder model used in Fig. 4.11 is represented by the 
residential feeder and load model that is obtained, from Chapter 3 (for Case 1), after applying the 
optimization procedure to estimate the load composition and the load parameters.

The test cases in this work are generated by using a random sequence of following critical 
parameters of a SLG fault:

• Fault Resistance (R): This parameter directly impacts the voltage nadir at the location of
the fault. For example, a high fault resistance would lead to a low voltage nadir and
hence the system would be less impacted.

• Fault Duration (α): This parameter represents the duration in which the system is affected
due to the fault.

• Point of initiation on the Sine wave (β): This parameter is useful to represent the impact of
placing the fault on different points on a sine wave. For example: A fault placed at a voltage
zero on the sine wave is a much more severe event than when it is placed on any other point
on the sine wave.

In total, two different case sets have been generated depending on the location of the SLG fault as 
shown below:

• Case Set 1: Sub-transmission Faults (120 test cases)

• Case Set 2: Transmission Faults (120 test cases)
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The primary difference between Case set 1 and Case set 2 is that the time required to clear the 
fault (α) is much faster in the latter case set.

It is also important to choose appropriate bounds on the critical parameters mentioned above 
to generate these test cases. The bounds chosen for these parameters have been presented in 
Table 4.1.

Table 4.1: Critical Parameters Bounds

Critical Parameter Lower Bound Upper Bound
β (point of fault initiation) 0 (voltage zero crossing) 0.00416 (Quarter cycle repre-

senting the voltage peak)
α1 (duration of sub-
transmission faults)

4 cycles 6 cycles

α2 (duration of transmission
faults)

2.5 cycles 5 cycles

R1 (fault resistance for sub-
transmission faults)

0 0.7

R2 (fault resistance for trans-
mission faults)

0 0.4

From Table 4.1, it should be noted that the bounds considered for the parameter β is appropriate 
because the sine wave is symmetric. Additionally, the reasoning behind choosing these bounds for 
the fault resistance for the two case sets has been presented below:

• R1 (fault resistance for sub-transmission faults)

– Lower Bound (0 ohm) - At 4 cycle fault duration, the fault resistance is 
manually decreased until all three segment SPIMs are stalling.

– Upper Bound (0.7 ohm) - At 6 cycle fault duration, the fault resistance is 
manually increased until all no segments of SPIMs are stalling.

• R2 (fault resistance for transmission faults)

– Lower Bound (0 ohm) - At 2.5 cycle fault duration, the fault resistance is 
manually decreased until all three segment SPIMs are stalling.

– Upper Bound (0.4 ohm) - At 5 cycle fault duration, the fault resistance is 
manually increased until all no segments of SPIMs are stalling.

4.3.2 Step 2: Data extraction from PSCAD

The following information has been extracted in this step:

• The three-phase voltages observed at the head of the feeder.
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• Parameter ‘Y’ for each test case. Where Y = 0 (if none of the SPIMs are stalling), Y =1
(if SPIMs on first segment are stalling), Y = 2 (if SPIMs on first two segments are stalling)
and Y =3 (if SPIMs on all three segments are stalling).

• Fault duration (α) in each test case.

4.3.3 Step 3: Positive sequence voltage generation in ‘Matlab’

The three-phase voltages obtained from Step 2 are transformed into their respective positive 
se-quence voltages by calculating the d-q voltage components in ‘Matlab’. As mentioned 
earlier in this Chapter, a first order low pass filter has been used to remove the 120 Hz component 
in the final obtained positive sequence voltage outputs.

4.3.4 Step 4: Data Generation in PSLF

The final obtained positive sequence voltages are played-in to the aggregated feeder and 
load model, in PSLF, comprising of ‘Motorc’, ‘Motor1’ and ‘Blwscc’ models to represent the 
SPIMs, three-phase motor load and the resistive load respectively. The composition of this feeder 
model is shown below (to represent a residential feeder similar to the feeder and load model used 
in PSCAD to generate the test cases):

• ‘Motorc’ (72%)

• ‘Motor1’ (18%)

• ‘Blwscc’ (10%)

The circuit schematic used in PSLF is shown below in Fig. 4.12.

As expected for all the 240 cases (two case sets), the SPIMs in the feeder and load model in 
PSLF did not stall. Therefore, after playing-in all the test cases into this feeder model, the 
following information is extracted:

1. The nadir value of the played-in positive seq voltage per nominal voltage (λ) for each case.

2. The nadir value (Sp1) of the SPIM speed (the first segment).

3. The steady-state voltage of the played-in positive seq voltage per nominal voltage (ρ) for
each case.
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Figure 4.12: Circuit Schematic in PSLF
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4.3.5 Step 5: Training the Regression Model

The first 60 test cases (in each case set) has been used to train the two regression models 
for sub-transmission fault cases and transmission fault cases respectively. The multi-variable 
linear regression model generated for each case is presented below (4.1):

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 (4.1)

Where,

• b0, b1, b2, b3 and b4 are the coefficient estimates of the model.

• Y - represents number of SPIM segments in which SPIMs are stalling in PSCAD

• X1 - represents α (fault duration)

• X2 - represents λ (Played-in Pos Seq Voltage Nadir per nominal voltage)

• X3 - represents ρ (post-fault steady-state voltage per nominal voltage obtained from PSLF)

• X4 - represents Sp1 (Speed nadir of ‘Motorc’ model in PSLF per nominal speed in 
Segment1)

4.3.6 Step 6: Regression Model Output Interpretation

• It should be noted that the output obtained from the testing of the regression model will not
be a perfect integer indicating the number of stalled SPIM segments. Therefore, the
following bounds are used to define the regions in which different number of SPIM
segments stall:

• If −0.5 < Yestimated < 0.5 (no SPIMs are stalled)

• If 0.5 < Yestimated < 1.5 (one segment of SPIMs stalled)

• If 1.5 < Yestimated < 2.5 (two segments of SPIMs stalled)

• If 2.5 < Yestimated < 3.5 (all three segments of SPIMs stalled)

4.3.7 Step 7: Testing results of the regression model

As mentioned in Step 5, the first 60 test cases from both the case sets are used to train the 
two regression models. Therefore, the next 60 test cases from both the case sets are used to test 
the two regression models respectively.

The final coefficients obtained from the two regression models are provided in Table 4.2.

The accuracy of the regression models obtained from the testing results are presented below 
in Table 4.3.
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Table 4.2: Final Coefficients obtained for the Regression Models

Coefficient Obtained Value (Case Set 1) Obtained Value (Case Set 2)
b0 0.051 0.056
b1 0.004 0.004
b2 -0.018 -0.035
b3 -0.041 -0.027
b4 -0.044 -0.056

Table 4.3: Effectiveness of the Regression Models in the Testing

Number of
Test Cases

Accuracy R2 Fit (statistically
goodness fit)

Case Set1 (Sub-
transmission Faults)

60 93% 87%

Case Set2 (Transmission
Faults)

60 97% 91%

From Table 4.3, it can be clearly seen that the obtained regression models are able to 
predict accurately the SPIM stalling in PSLF ‘Motorc’ model by more than 93% accuracy in both 
the case sets. Additionally, the R2 value, which measures the goodness of the fit [14] of the linear 
regression model to the data statistically, is almost 90% which indicates the linear regression 
model used in this work is sufficient to fit the data accurately.
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5. Conclusions and future work

5.1 Conclusions

Two approaches have been successfully implemented to obtain reasonably accurate feeder and 
load models in this work using PSCAD software. The load compositions and the load parameters 
for these models are modeled for two types of areas (residential and industrial/commercial) and in 
different conditions (summer and winter). This set of parameters and load compositions 
were modeled by studying the effects of events such as FIDVR and feeder pickup events. 
Finally, a multi-variable regression model has been developed to predict the motor stalling 
phenomenon accurately in PSLF.

The following conclusions can be made from the work presented in Chapter 2, Chapter 3, 
Chapter 4:

Conclusion1: Using a simple manual tuning approach, two standard feeder and load models   
(for a residential area – at substation A and for an industrial/commercial area - at substation

B) comprising of single-phase motor load, three-phase motor load, impedance load is
able to capture a good approximation of the measured current transient characteristics.
This is validated by playing-in three-phase measured voltages (representing a fault at 69
kV level and a feeder pick-up event) into the models respectively. It is also observed that
these feeder and load models gives good approximate current responses for both
summer and winter conditions (for residential feeder and load model). This model
represents a load composition of single-phase motor load (72%), three-phase motor load
(18%), impedance load (10%) at residential loading conditions. Whereas, the model
obtained for industrial/commercial areas represents a load composition of single-phase
motor load (25%), three-phase motor load (65%) and impedance load (10%). It was
also observed that the parameters of the motors has been obtained using the fault type
event measurements whereas the parameters of the distribution transformers in the feeder
and load model are obtained using a feeder pick-up event. This phenomenon is observed
due to the transformer saturation that occurs during the feeder pick-up in which the load
characteristics does not play a major role in the current transient seen at the head of the
feeder. However, for a fault type event, the distribution transformers are already
magnetized and hence the load characteristics (both composition and parameters) play a
significant role in determining the transient response of the feeder and load model.

has served as a good starting point to implement the analytical approach (non-linear 
least squares Gauss-Newton optimization procedure) to estimate their motor load 
parameters and the load composition more accurately. This approach is applied for 
three cases – Case 1, Case2 (residential feeder and load model) and Case 4 (industrial 
feeder and load model). It was observed that this approach seems to have the most impact 
on the Case 4 feeder and load model (this was demonstrated both quantitively and 
qualitatively). This is to be expected as the residential feeder and load model has 
already undergone through manual tuning and hence the improvement gained from using 
a new analytical approach was significantly smaller
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a new analytical approach was significantly smaller(especially in the non-faulted phases). 
It is also observed that this approach seems to work well for cases in both types of 
loading conditions (Summer and Winter).

Conclusion3: Both ‘Motor1’ and ‘Motorc’ models seems to give a good match with the simulated P
(active power) and Q (reactive power) responses with their corresponding measured 
responses at the head of the feeder for Case 1 and Case 2. However, it was also observed 
that, in Case 1 analysis, the post-fault simulation P, Q values do not match well with their 
corresponding measured values. This was because the motor stalling phenomenon is not 
captured accurately in PSLF as it doesn’t deal with the POW phenomenon during the 
transient. Two multi-variable linear regression models (based on the type of SLG faults – 
Sub-transmission faults and transmission faults) have been developed to overcome this 
issue. It was observed that these regression models predict the motor stalling in PSLF with 
more than 93% accuracy for 120 tested cases.

5.2 Future Work

The three-phase feeder and load models developed in this work does not deal with motor 
protection which plays a crucial role in determining the system response in a FIDVR type event. 
Therefore, it is important to develop a realistic contactor model [15] in EMTP environment such 
as PSCAD to study its impact on the feeder and load model response using the test cases utilized 
in this work.

The regression model obtained to predict motor stalling in PSLF is only useful if the 
voltage measurements are available from which the voltage nadir and the post-fault stead state 
voltage are known. Therefore, this type of regression model is useful to study (predict/
estimate) the motor stalling phenomenon in the grid when the event has already occurred. 
However, this is not as much useful for planning studies where the measured voltages from 
an event are not available yet. Therefore, a more robust regression model needs to be 
developed to predict motor stalling in PSLF without the need for utilizing the information such 
as post-fault steady state voltage (whose information is available only if an event has already 
occurred).
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1. Robust Look-ahead Three-phase Balancing of Uncertain Distribution
Loads

Increasing penetration of highly variable components such as solar generation and electric vehicle 
charging loads pose significant challenges to keeping three-phase loads balanced in modern distri-
bution systems. Failure to maintain balance across three phases would lead to asset deterioration 
and increasing delivery losses. Motivated by the real-world needs to automate and optimize the 
three-phase balancing decision making, this paper introduces a robust look-ahead optimization 
framework that pursues balanced phases in the presence of demand-side uncertainties. We show 
that look-ahead moving window optimization can reduce imbalances among phases at the cost 
of a limited number of phase swapping operations. Case studies quantify the improvements of 
the proposed methods compared with conventional deterministic phase balancing. Discussions on 
possible benefits of the proposed methods and extensions are presented.

1.1 Introduction

Increasing levels of distributed energy resources, together with more active participation of de-
mand side programs, have introduced higher levels of uncertainties to distribution grid operations. 
One fundamental task for distribution system operators (DSOs) is to keep three phases as bal-
anced as possible over a long period of time. However, the increasing variability coming from 
end users requires DSOs to revisit this old problem with modern techniques. Imbalanced three 
phases could lead to higher risks of equipment failures [1], increased delivery losses [2], potential 
relay malfunctioning [3], additional asset reinforcement costs [4], and issues related with voltage 
imbalances [5–8]. In particular, there is increasing need to develop solutions that can keep three 
phases balanced in the presence of high uncertainties from end users over a period of time (e.g. 
over the course of a day). In this paper, we provide a novel and scalable solution for addressing 
this problem.

From a DSO’s perspective, there are three levels of decisions that can be made to ensure reliable 
and efficient delivery of electricity to end-users during normal conditions. At the highest level, 
it can engage with transmission-level voltage/reactive power optimization routine to regulate its 
voltage level at the point of interconnection with the backbone grid [9, 10]. At the medium level, 
modern distribution operator could control various sectionalizers and tie switches in order to 
optimize the topology of a distribution system [11, 12]. At the lowest level, DSOs need to 
optimize the assignment of each load (or each cluster of loads) to appropriate phases in order to 
keep the three phase balanced during a wide range of operating conditions. This paper addresses 
the issue at the lowest level.

There is a large body of literature that addresses the issue of keeping three phases balanced in 
distribution systems. The phase balancing problem has been traditionally formulated as a mixed 
integer linear program (MILP) [1]. Due to the computational intractability of mixed integer 
programs, many optimization techniques and heuristics have been applied to phase balancing: 
simulated annealing [13], expert systems [14], particle swarm optimization [15], immune algorithm 
[3,16] and dynamic programming [17]. These works [1,3,14–17] typically consider either a single
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snapshot or use average loads over a long period of time. In [18, 19], the authors demonstrate 
the benefits of extending the phase balancing problem to multiple snapshots and utilizing daily 
load patterns. It is worth mentioning that [1,3,14–19] solve the deterministic phase balancing 
problem. Uncertainties as well as inter-temporal variabilities have not been taken into account in 
the problem of phase balancing. This is the key gap we attempt to bridge in this work.

The reminder of this paper is organized as follows: Section 1.2 introduces robust 
optimization; Section 1.3 first reviews the deterministic phase balancing problem, which is 
enhanced to a robust optimization problem in Section 1.3.3. The proposed robust look-ahead 
phase balancing problem is in Section 1.3.4. Case studies and discussions are presented in 
Section 1.4 and 1.5. Conclusions and future works are in Section 1.6.

1.2 Robust Optimization: Preliminaries

Broadly speaking, there are two approaches for decision making in uncertain environments: 
stochastic optimization (SO) and robust optimization (RO). SO relies on probabilistic models 
to explain the uncertainties in data and often results in solutions that are sensitive to these 
assumptions1. On the other hand, RO incorporates a set-based deterministic model of the 
uncertainty such that the optimal solution protects against all realizations in the uncertainty set. 
Compared with SO, one significant advantage of RO is the computational tractability, which is 
important for the phase balancing problem to be applicable in real-world scenarios. Moreover, 
it has been observed that robust solutions are competitive with the deterministic solutions in 
terms of cost, while being more robust to unplanned uncertainties in the data. Robust 
optimization also does not need to assume any probabilistic information about the uncertain 
quantities [21].

We consider the following row-uncertain robust linear optimization problem, where the row
vectors αi are uncertain in each constraint:

minimize
x γᵀ x (1.1a)

subject to α
ᵀ
i x ≤ βi, ∀αi ∈ Ui, (1.1b)

i = 1, 2, · · · , m.

Formulation (1.1) seeks an optimal solution x ∈ Rn that is feasible to m linear uncertain constraints
α
ᵀ
i x ≤ βi, in which the uncertain vector of parameters αi can take any values from the uncertainty

set Ui. A common choice is the polyhedral uncertainty set defined as

Ui := {αi : Hiαi ≤ hi}, i = 1,2, · · · ,m, (1.2)

where Hi ∈ Rk×n and hi ∈ Rk depict k inequalities that define a polyhedron. Such uncertainty sets 
have been successful in capturing insights from probability theory to obtain more realistic models. 
For instance, if the data is generated independently from a probability distribution then the well-
known central limit theorem states that the appropriately normalized average of variables tends to 
a normal distribution. The central limit theorem can be written as a polyhedral uncertainty

1We refer an interested reader to [20] for a survey on stochastic modeling and techniques.
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set that protects against all realizations of data that satisfy the central limit theorem [22]. Its 
parameters can be set such that if the data was generated via a given probability distribution, then 
the uncertainty set captures provably 95% − 99% of possible scenarios. This provides a clean way 
to incorporate probabilistic information. We refer the reader to [23] for a more detailed survey on 
robust optimization techniques.

In the definition of a polyhedral uncertainty set U = {α ∈ Rn |Hα ≤ h} where H ∈ Rk×n, the 
constraint αᵀ x ≤ β ∀α ∈ U is equivalent to

b ≥ maximize
α

xᵀα (1.3a)

(1.3b)
k
+

subject to Hα ≤ h.

Let p ∈ R   be the dual variable for (1.3b). Then the dual linear program of (1.3) is:

minimize
p

hᵀp (1.4a)

subject to Hᵀp = x, (1.4b)
p ≥ 0. (1.4c)

By weak duality, any feasible solution p of (1.4) for a given x provides a lower bound to (1.3), i.e. 
hᵀ p ≤(∗) maxα∈U αᵀ x ≤ b, and the inequality (*) is tight for the optimal solution of the dual 
formulation in (1.4), by strong duality.

x ≤ βi ∀αi ∈ Ui are equivalent to the following deterministicTherefore the uncertain constraints αᵀ
i

constraints:
hᵀi pi ≤ βi, Hᵀi pi = x, pi ≥ 0,

k
+where each pi ∈ R   is a vector of auxiliary variables corresponding to the ith constraint in (1.1). 

The robust formulation (1.1) with polyhedral uncertainty sets Ui is then equivalent to the 
following linear program [24]:

minimize
x

γᵀx (1.5a)

subject to hᵀi pi ≤ βi, (1.5b)
Hᵀi pi = x, (1.5c)
pi ∈ R

k
+, i = 1,2, · · ·m. (1.5d)

One major advantage of using a polyhedral uncertainty set is its computational tractability. 
The reformulation of the robust linear program (1.1) as the deterministic linear program (1.5) 
involves a few more variables and this does not increase the overall computational complexity 
[24].

1.3 Formulations of Phase Balancing Problems

1.3.1 Nomenclature

Time dependent variables are represented with ·[t], e.g. d[t] is the demand at time t. Matrices 
are represented using capital letters and uncertainty sets are in calligraphic font. | · | is the 
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absolute value function and ᵀ denotes transpose of matrices or vectors. By 1, we mean the vector 
of all ones in the appropriate dimension (typically n in this paper, e.g. in (1.6b) 1 ∈ Rn).

1.3.2 Deterministic Phase Balancing

We briefly review the conventional formulation of phase balancing in this subsection. 
Formulation (1.6) presented below is a slight variation of the original one in [1].

minimize
a,b,c,ua,ub,uc

max{ua,ub,uc} (1.6a)

subject to ua = |dᵀ(a −
1
3
)|, (1.6b)

ub = |dᵀ(b −
1
3
)|, (1.6c)

uc = |dᵀ(c −
1
3
)|, (1.6d)

a + b + c = 1, (1.6e)
a, b, c ∈ {0,1}n, (1.6f)
ua,ub,uc ∈ R+. (1.6g)

Phase balancing aims at finding the most balanced assignment of n loads d ∈ Rn to three phases 
(A,B,C). Phase balancing commonly relies on phase swapping (or re-phasing) actions to reduce 
imbalances. Phase swapping typically happens at the feeder level, during maintenance or 
restoration periods [1]. Phase swapping actions are depicted by decision variables a, b and c, all 
of which are binary vectors with dimension equal to the number of loads, where ai = 1 (similarly, 
bi, ci = 1) denotes load di is assigned to phase A (similarly, to phase B, C), and 0 indicates di is not 
assigned to that phase. Constraint (1.6e) ensures that each load must be assigned to exactly one 
phase2. Variables ua, ub, uc represent single-phase imbalances, namely the difference of load on 
phase A (B,C) from the uniformly balanced case dᵀ1/3. The objective (1.6a) is to minimize the 
largest imbalance amongst the three phases. The original formulation in [1] minimizes the largest 
differences between any two phases, i.e.

minimize
a,b,c∈{0,1}n

max{|dᵀ(b − a)|, |dᵀ(b − c)|, |dᵀ(a − c)|}. (1.7)

These two formulations are closely related in the following sense. Let the total loads assigned to 
phases A, B and C be x, y and z respectively, and let the total overall load be x + y + z = dᵀ1. 
Without loss of generality, let x ≤ y ≤ z which implies x ≤ dᵀ1/3 ≤ z. So, the objective value of 
(1.7) will be z − x whereas the objective value of (1.6) for such an assignment will be max{dᵀ1/3 
− x, z − dᵀ1/3}, but note that z − x ≤ 2 max{1/3 − x, z − dᵀ1/3}. Therefore, the optimal solution 
of (1.7) will be at most twice the optimal solution of (1.6) (and similarly, optimal solution of (1.7) 
is at least the optimal solution of (1.6)). Further, we believe that our formulation in (1.6) meets the 
intuitive notion of phase balancing better than (1.7). To see this, consider a total given demand of 
21 kW. Formulation (1.7) does not differentiate between the assignments 2,9,10

2For simplicity, we only consider single-phase loads in this paper. Extensions to multi-phase loads are in Section      1.5.3.
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kW and 3,7,11 kW on each phase. For either assignment, the maximum difference between 
the assigned loads is 8 kW. However, our formulation (1.6) would prefer 3,7,11 as a solution since 
it minimizes the maximum deviation from the average. The absolute value constraints (1.6b), 
(1.6c) and (1.6d) can be reformulated to obtain an equivalent mixed integer linear program [25]:

minimize
a,b,c,u

u (1.8a)

subject to − u ≤ dᵀ(a −
1
3
) ≤ u, (1.8b)

− u ≤ dᵀ(b −
1
3
) ≤ u, (1.8c)

− u ≤ dᵀ(c −
1
3
) ≤ u, (1.8d)

a + b + c = 1, (1.8e)
a, b, c ∈ {0,1}n,u ∈ R+. (1.8f)

1.3.3 Robust Phase Balancing

In deterministic phase balancing problem (1.6), load vector d represents the average load 
level during a long period, without any uncertainties. Motivated by the rapid growth of highly 
variable resources in distribution systems, we connect conventional phase balancing with robust 
optimization and formulate the following robust phase balancing problem:

minimize
u,a,b,c

u (1.9a)

subject to − u ≤ dᵀ(a −
1
3
) ≤ u,∀d ∈ D, (1.9b)

− u ≤ dᵀ(b −
1
3
) ≤ u,∀d ∈ D, (1.9c)

− u ≤ dᵀ(c −
1
3
) ≤ u,∀d ∈ D, (1.9d)

a + b + c = 1, (1.9e)
a, b, c ∈ {0,1}n,u ∈ R+. (1.9f)

The major difference between robust phase balancing (1.9) and the deterministic version (1.8) 
is that: instead of seeking solutions (a, b, c) that are feasible for the average or expected load 
vector d, (1.9) seeks solutions robust to all realizations of d in an uncertainty set D. The 
uncertainty set D can be constructed using historical data or approximated with prior knowledge.

Similar to Section 1.2, formulation (1.9) with polyhedral uncertainty set D = {d : Hd ≤ h} can
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be rewritten as an MILP (1.10).

minimize
p,q,a,b,c,u

u (1.10a)

subject to hᵀpa ≤ u, Hᵀpa = a −
1
3
, (1.10b)

hᵀqa ≤ u, Hᵀqa =
1
3
− a, (1.10c)

hᵀpb ≤ u, Hᵀpb = b −
1
3
, (1.10d)

hᵀqb ≤ u, Hᵀqb =
1
3
− b, (1.10e)

hᵀpc ≤ u, Hᵀpc = c −
1
3
, (1.10f)

hᵀqc ≤ u, Hᵀqc =
1
3
− c, (1.10g)

a + b + c = 1, (1.10h)
a, b, c ∈ {0,1}n,u ∈ R+, (1.10i)

k
+ (1.10j)pa, pb, pc, qa, qb, qc ∈ R .

where pa, pb, pc and qa, qb, qc are auxiliary variables.

1.3.4 Robust Look-ahead Phase Balancing

The problem formulated in Section 1.3.3 considers only a single snapshot (e.g. one hour) 
decision making for robust phase balancing. However, one key component of costs comes 
from frequent phase swapping actions of loads. Therefore, it is important to consider the phase 
balancing problem in a multi-time-horizon setting. We formulate it as a robust look-ahead phase 
balancing problem, much like the usual practices in [26, 27].

In the following formulation (1.11), we consider a two-period moving horizon phase 
balancing decision making. For example, each snapshot (i.e., t) could signify two hours in the 
day, a period 1, . . . ,T1 (i.e. a day) consists of 12 snapshots, and the moving horizon might 
consist of two days. The objective function (i.e., phase imbalances) is defined over the two 
periods combined. However, the decisions are only implemented for the first period. The reason 
for doing so is justified by the engineering insight that information gets more accurate as we 
get closer to real-time operations. Therefore, the decision made for period two is only advisory 
but not implemented.

An illustrative example with 4 loads over 10 intervals is provided in Figure 1.1. A robust look-
ahead phase balancing problem is solved for intervals 1 to 10 given initial load assignments at 
interval 0. Two phase swaps are implemented in the illustrated solution (top of Figure 1.1: load 2 
is swapped to phase B at the beginning of interval 2, load 3 is swapped to phase C at the 
beginning of interval 4. At the end of interval 5, uncertainty sets for interval 6 to 15 are 
constructed using updated load forecast and another robust look-ahead phase balancing problem is 
solved for intervals 6 to 10. The solution implemented performs three phase swaps in intervals 6 
to 10, as shown at the bottom of Figure 1.1.
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Figure 1.1: Illustration of the Look-ahead Operation Framework (every block represents the 
phase assignment of a load at each snapshot)
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We next provide a mixed integer formulation to solve the two-period moving horizon phase 
balancing problem.

minimize u + λv (1.11a)

subject to − u ≤ (d[t])ᵀ(a[t] −
1
3
) ≤ u,∀d[t] ∈ Dt, (1.11b)

− u ≤ (d[t])ᵀ(b[t] −
1
3
) ≤ u,∀d[t] ∈ Dt, (1.11c)

− u ≤ (d[t])ᵀ(c[t] −
1
3
) ≤ u,∀d[t] ∈ Dt, (1.11d)

t = 1,2, · · · ,T1

− v ≤ (d[t])ᵀ(a[T1] −
1
3
) ≤ v,∀d[t] ∈ Dt, (1.11e)

− v ≤ (d[t])ᵀ(b[T1] −
1
3
) ≤ v,∀d[t] ∈ Dt, (1.11f)

− v ≤ (d[t])ᵀ(c[T1] −
1
3
) ≤ v,∀d[t] ∈ Dt, (1.11g)

t = T1 + 1,T1 + 2, · · · ,T2
T1∑
t=1

(
1ᵀ |a[t] − a[t − 1]| + 1ᵀ |b[t] − b[t − 1]|

+ 1ᵀ |c[t] − c[t − 1]|
)
≤ 2s, (1.11h)

a[t] + b[t] + c[t] = 1, (1.11i)
a[t], b[t], c[t] ∈ {0,1}n,u, v ∈ R+, (1.11j)

t = 1,2, · · · ,T1.

In the above formulation (1.11), the first period consists of T1 snapshots (t = 1, 2, · · · ,T1). It 
determines the phase swapping actions to be implemented. Similar to previous formulations, ai[t] 
= 1 indicates load di[t] is assigned to phase A at time t (t = 1, 2, · · · ,T1). (1.11b)-(1.11d) are 
robust constraints for period 1. It is worth noting that each snapshot has its own uncertainty set 
d[t] ∈ Dt . This allows (1.11) to take advantage of the temporal patterns of uncertain loads. As 
illustrated in Figure 1.1, no phase swapping actions are considered for period 2. Formulation 
(1.11) seeks fixed load assignments with small phase imbalances for period 2. The decision 
variables of the second period are a[T1], b[T1] and c[T1]. Constraints (1.11e)-(1.11g) relate to 
decisions in period 2.

We do not allow phase swapping actions in the second period of (1.11) for two important 
reasons:(a) uncertainties for the second period could be significantly larger than in the first 
one, over-optimization with large uncertainties might lead to conservative solutions; (b) the 
problem size will be twice larger if we consider phase swapping in both periods thus hurting 
performance. Recall that phase balancing is an MILP, the computational burden could be 
prohibitive3

3We actually tested the case in which phase swapping is considered in both periods. Gurobi [28] took 12 hours to
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Variables u and v denote the largest single-phase imbalance that occurs in the two periods, re-
spectively. Choosing a proper value of parameter λ ∈ R+ could achieve a balance between the 
optimality in short term and long term.

Given current industrial practice, swapping loads from one phase to another typically requires 
manual operations, which incurs extra costs on human resources, maintenance expenses and 
planned outage duration [1]. Constraint (1.11h) limits the maximum number of phase swapping 
actions in the first period. Parameter s denotes the budget of swapping actions. Without constraint 
(1.11h), a large amount of phase swapping actions could be recommended, which is not 
affordable for utility companies [1].

For each snapshot t = 1, 2, · · · ,T2, the polyhedral uncertainty set is defined as

Dt = {d[t] : Ht d[t] ≤ ht} (1.12)

By introducing auxiliary variables, (1.11) is equivalent to an MILP (1.15).

It is worth mentioning that a recent paper [29] proposes a related but different approach 
with stochastic optimization. It minimizes the expected loss function over a time horizon with 
respect to uncertainties from loads and electricity prices. While its decision variables denote the 
charging and discharging rates of energy storages, load assignments remain unchanged and 
no phase swapping actions are considered.

1.4 Case Study

1.4.1 Load Data

The load profiles are from dataset “R1-12.47-4” of [30]. It models a heavily populated 
suburban area composed mainly of single family homes and heavy commercial loads [31]. 
The dataset “R1-12.47-4” is populated with hourly averaged load data from a utility company in 
the West Coast of the United States [30]. The original dataset is publicly available on 
catalog.data.gov. The dataset contains 74 hourly load profiles of 365 days. We use the first 30 
days and scale them randomly to avoid identical load profiles.

Figure 1.2 visualizes the modified dataset.

1.4.2 Construct Uncertainty Set

In order to demonstrate the benefits of robustification, we use the following polyhedral 
uncertainty sets for the robust Phase Balancing (r-PB) and robust Look-ahead Phase 
Balancing (r-LAPB) problems:

D = {d ∈ Rn : d̂ ≤ d − d ≤ d̂} (1.13)

converge and the solution was comparable to the current formulation in (1.11).
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Dt = {d[t] ∈ Rn : (1 − ρt)d[t] ≤ d[t] ≤ (1 + ρt)d[t]} (1.14)

where d ∈ Rn or d[t] ∈ Rn represent the average load or forecast value, and d̂  ∈ Rn denotes the 
largest deviation of load d. Problem r-PB (1.9) with d̂  = 0 is equivalent with deterministic Phase 
Balancing (d-PB) (1.6). Values of d, d[t] and d̂  are estimated from the modified “R1-1247-4” 
dataset. These uncertainty sets can be viewed as simple relaxations of the central limit theorem 
based sets (which can risk the solution being too conservative), but they already show a 
significant improvement in our experiments compared to deterministic solutions.

For r-LAPB, the level of robustness ρt depends on the forecast accuracy or confidence. Larger ρt 
indicates lower forecast accuracy. Definition of Dt in (1.13)-(1.14) assumes that the load forecast 
is unbiased and bounded by ρt . For r-LAPB, ρt in the first period (i.e. 24 hours) is set to be 10%(t 
= 1, 2, · · · , 24) and ρt = 30% for the second period (t = 25, 26, · · · , 48).

For d-PB (1.6), load vector d is the average hourly load of 30 days. There is no 
uncertainty associated.

1.4.3 Simulation Results

Simulations are performed on a desktop with Intel i7-2600 8-core CPU@3.40GHz and 
16GB memory. The phase balancing problems are solved using YALMIP [32, 33] and Gurobi 
[28]. The optimality gap of every solution is smaller than 0.1%. Key results are presented in 
Figure 1.3 and Table 1.2.

The performance of three formulations are evaluated using three metrics: between-phase kW 
difference , single-phase kW difference ν a nd single-phase percentage difference υ, which are 
defined below:

ω := max{|dᵀ(a − b)|, |dᵀ(a − c)|, |dᵀ(b − c)|},

ν := max{|dᵀ(a − 1/3)|, |dᵀ(b − 1/3)|, |dᵀ(c − 1/3)|},

υ := max{|1 −
3dᵀa
dᵀ1
|, |1 −

3dᵀb
dᵀ1
|, |1 −

3dᵀc
dᵀ1
|}.
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(a) average daily load profiles with standard deviations (each color represents one
load)

(b) profiles of load 16 (different colors represent different days)

Figure 1.2: Modified Load Dataset “R1-1247-4”

11



Figure 1.3: Sorted between-phase kW differences
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Compared with d-PB, robust phase balancing (r-PB) reduces both between-phase and single-
phase imbalances by around 11%, the standard deviations of imbalances are reduced by more than 
20%. It is also worth mentioning that the time to solve r-PB is significantly reduced due to more 
restricted search space since the robust solutions must be feasible for all demand realizations.

Table 1.2 shows that the imbalances could be significantly reduced by incorporating look-
ahead operations. For example, r-LAPB with 3 swapping actions per day reduces both 
between-phase and single-phase kW differences by 30% on average.

Figure 1.3 and Table 1.2 also demonstrate the trade-off between performance and 
computation complexity. In general, more frequent phase swapping operations lead to less 
imbalances among phases, while the time of solving r-LAPB grows exponentially4. Figure 
1.3 clearly shows the major improvement of performance happens at the stage of applying r-
PB and r-LAPB with one swapping per day. Improvements of allowing more swapping actions 
are marginal at the cost of higher computational burden and possible extra cost on human 
resources and maintenance.

We also examine the optimal solution of r-PB and r-LAPB (Figure 1.4). When allowing 
one swapping per day, all 28 switchings in 30 days happen on 18 out of 74 loads (Figure 1.4b). 
Many loads remain unchanged and some loads have more frequent phase swapping operations 
than others. Figure 1.5 demonstrates the case where two swapping actions are allowed per day, 
fives loads are swapped much more frequently than the others (17.3% of 299 actions in 150 
days, whereas the remaining 69 loads are switched only 3-4 times in 150 days on average.). 
Automatic phase swapping devices could be installed at these locations for more efficient 
and frequent responses.

(a) r-PB (b) r-LAPB (s = 1)

(c) r-LAPB (s = 2) (d) r-LAPB (s = 3)

Figure 1.4: Display of Optimal Solutions (ABC phases are color-coded, red:phase A, blue:phase 
B, green:phase C)

4The r-LAPB with s = 4 typically requires around 10 ∼ 12 hours to solve one instance.
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Figure 1.5: Phase Swapping Actions of Each Load (results of r-LAPB (s = 2) running for 150 
days)

1.5 Discussions

1.5.1 Uncertainty Sets

In this paper, the uncertainty sets (1.13)-(1.14) we use are a special case of polyhedral uncertainty 
sets. We do not capture yet potential correlations among different loads, as shown in Figure 
1.2a. Other choices of uncertainty sets might outperform current ones and reduce 
conservativeness, e.g. central limit theorem based polyhedral sets [22], ellipsoidal uncertainty 
sets [34], cardinality constrained uncertainty sets [35], and constructing polyhedral uncertainty 
sets from data [36].

1.5.2 Approximation Algorithms

All our formulations of phase balancing problems are mixed integer programs, which are 
in general computationally intractable. One of the classical problems in combinatorial 
optimization is minimum makespan scheduling that attempts to run a given set of jobs on a 
fixed number of parallel machines such that total time, i.e. the makespan, to complete jobs 
on any machine is minimized [37]. Minimizing the maximum total load on any phase can 
then be viewed as makespan scheduling where the given set of jobs is simply the various loads, 
and the three parallel identical machines are the three phase lines. It is an open question to adapt 
known approximation algorithms for the minimum makespan scheduling problem (or to 
develop new methods) to the robust framework while incorporating switching costs. 
Deterministic phase balancing (d-PB) can also be seen as the optimization version of the k-
partition problem [38], that attempts to divide n integers into k subsets such that the total sum of 
each subset is close to each other. This problem is a generalization of the three phase balancing 
problem, and might provide useful insights as well.
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1.5.3 Multi-phase Loads

It is easy to extend current phase balancing problems for the consideration of multi-phase 
loads. For deterministic phase balancing (1.6), we could define variable a(1), b(1) and c(1) for 
single phase loads, a(2), b(2) and c(2) for two-phase loads, a(3), b(3) and c(3) for loads 
connecting to all three phases. Instead of constraint (1.6e), we have the following constraints:

a(1) + b(1) + c(1) = 1,
a(2) + b(2) + c(2) = 2 · 1, and
a(3) + b(3) + c(3) = 3 · 1.

1.6 Concluding Remarks

In this paper, we advance the conventional phase balancing problem to a robust look-ahead opti-
mization framework that pursuits balanced phases in the presence of uncertainties. It is shown that 
imbalances among phases could be significantly reduced at the cost of a limit number of phase 
swapping operations. Many interesting directions are open for future research. For example, 
choos-ing different uncertainty sets for r-LAPB could take advantage of strong correlation 
among some loads. Future works also include designing approximation algorithms with 
optimality guarantees and exploring the benefits of controlling distributed generations [39–41], 
electric vehicles [42–44], energy storage [29, 45–47] and demand response [48–51].
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1.7 Appendix: Equivalent Formulation of Robust Look-ahead Phase Balancing

Formulation (1.11) is equivalent with the following:

minimize u + λv (1.15a)

subject to hᵀt pa[t] ≤ u, Hᵀt pa[t] = a[t] −
1
3
, (1.15b)

hᵀt qa[t] ≤ u, Hᵀt qa[t] =
1
3
− a[t], (1.15c)

hᵀt pb[t] ≤ u, Hᵀt pb[t] = b[t] −
1
3
, (1.15d)

hᵀt qb[t] ≤ u, Hᵀt qb[t] =
1
3
− b[t], (1.15e)

16



hᵀt pc[t] ≤ u, Hᵀt pc[t] = c[t] −
1
3
, (1.15f)

hᵀt qc[t] ≤ u, Hᵀt qc[t] =
1
3
− c[t], (1.15g)

t = 1,2, · · · ,T1,

hᵀt pa[t] ≤ v, Hᵀt pa[t] = a[T1] −
1
3
, (1.15h)

hᵀt qa[t] ≤ v, Hᵀt qa[t] =
1
3
− a[T1], (1.15i)

hᵀt pb[t] ≤ v, Hᵀt pb[t] = b[T1] −
1
3
, (1.15j)

hᵀt qb[t] ≤ v, Hᵀt qb[t] =
1
3
− b[T1], (1.15k)

hᵀt pc[t] ≤ v, Hᵀt pc[t] = c[T1] −
1
3
, (1.15l)

hᵀt qc[t] ≤ v, Hᵀt qc[t] =
1
3
− c[T1], (1.15m)

t = T1 + 1,T1 + 2, · · · ,T2,

− wa[t] ≤ a[t] − a[t − 1] ≤ wa[t], (1.15n)
− wb[t] ≤ b[t] − b[t − 1] ≤ wb[t], (1.15o)
− wc[t] ≤ c[t] − c[t − 1] ≤ wc[t], (1.15p)
T1∑
t=1

(
1ᵀwa[t] + 1ᵀwb[t] + 1ᵀwc[t]

)
≤ 2s, (1.15q)

a[t] + b[t] + c[t] = 1, (1.15r)
a[t], b[t], c[t] ∈ {0,1}n,u, v ∈ R+, (1.15s)
wa[t],wb[t],wc[t] ∈ Rn+ (1.15t)

t = 1,2, · · · ,T1,

pa[t], pb[t], pc[t],qa[t],qb[t],qc[t] ∈ Rk+, (1.15u)
t = 1,2, · · · ,T2.
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2. Chance-Constrained Optimal Reactive Power Dispatch

The uncertainties from deepening penetration of renewable energy resources have already shown 
to impact not only the market operations, but also the physical operations in large power systems. 
It is demonstrated that deterministic modeling of wind would lead to voltage insecurity in the 
reality where wind fluctuates. This could render deterministic control of reactive power 
ineffective. As an alternative, we propose a chance-constrained formulation of optimal reactive 
power dispatch which considers the uncertainties from both renewables and contingencies. This 
formulation of a chance constrained optimal reactive power dispatch (cc-ORPD) offers 
system operators an effective tool to schedule voltage support devices such that the system 
voltage security can be ensured with quantifiable level of risk. The cc-ORPD problem is a Mixed-
Integer Non-Linear Programming (MINLP) problem with a joint chance constraint and is 
extremely challenging to solve. Using the Big-M approach and linearized power flow equations, 
the original cc-ORPD problem is approximated as a Mixed-Integer Linear Programming 
(MILP) problem, which is efficiently solvable. Case studies are conducted on a modified 
IEEE 24-bus system to investigate the optimal operating schedule under uncertainties and the 
out-of-sample violation probability.

2.1 Introduction

2.1.1 Background

The high variability and limited predictability of renewables impose new challenges on the 
secure and reliable operation of power systems. There has been a substantial amount of 
literatures showing that deep penetration of renewables could jeopardize the security and 
reliability of power systems [52–54]. For example, the rapid increase and stochastic nature of 
renewables might lead to voltage issues, which could be severe when a stressed system is lack of 
reactive support. An Optimal Reactive Power Dispatch (ORPD) problem is often formulated for 
better voltage profiles [52–54]. The ORPD problem aims at finding optimal settings of current 
installed Reactive Power Support Devices (RPSDs) such as SVCs and Capacitor Banks to 
ensure system voltage constraints [55]. Although numerous papers have studied the ORPD 
problem, most of them adopt a deterministic formulation and uncertainties from wind are 
ignored.

In this paper, we propose a framework for optimal reactive power dispatch considering joint 
uncer-tainties from wind and contingencies. The proposed framework is built upon chance-
constrained programming, which is a natural and efficient tool for decision making in an uncertain 
environment.
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2.1.2 Chance Constrained Programming

Problem (2.1) is the typical form of a single-stage chance-constrained program (CCP):

min
x

cᵀx (2.1a)

s.t. Ax ≥ b (2.1b)

Pω

(
G(ω)x ≤ h(ω)

)
≥ 1 − ε (2.1c)

x ∈ Rn

Problem (2.1) aims at finding a cost-minimizing strategy while satisfying a set of deterministic 
and probabilistic constraints. Without loss of generality [56], we assume the objective takes linear 
form cᵀ x. Decision variables are denoted by x, and Eqn. (2.1b) is the deterministic constraint on x. 
Uncertainties appear as variable ω ∈ Rm, and the chance constraint Eqn. (2.1c) requires the inner 
constraint G(ω)x ≤ h(ω) to be satisfied with probability at least 1 − ε .

CCPs are often challenging to solve for the following two reasons: (1) the feasible region of a CCP 
is usually non-convex [25]; and (2) it is NP-hard to accurately calculate the probability in the 
chance-constraint [57]. There are four typical methods to get approximately optimal solutions to 
CCPs: (1) deriving a deterministic equivalent optimization problem [58, 59]; (2) convex 
approximation [25];(3) scenario approach [56]; and (4) Big-M approach [60–62]. Because the 
cc-ORPD problem is a MINLP problem, the Big-M approach, which is a favorable choice to
handle integer variables in CCPs, is selected to solve cc-ORPD in this paper. More details on the
Big-M approach is provided in Section 2.3.

2.1.3 Chance-constrained Programs in Power Systems

There are many applications of CCPs on power system problems: chance-constrained 
DCOPF (cc-DCOPF) [51, 63–66], chance-constrained Unit Commitment (cc-UC) [67, 68], 
using chance-constrained programming to handle contingencies in power systems [69, 70]. In 
this paper, we formulate a chance-constrained Optimal Reactive Power Dispatch (cc-ORPD) 
problem to address the voltage security issue induced by the deep penetration of renewables and 
potential contingencies. The cc-ORPD problem is unique in the following three aspects: (1) It is 
built upon a more accurate model of power system (i.e. AC power flow) rather than the simplified 
DC power flow model, which appears in most of literatures [63, 64, 67–69]. (2) The cc-ORPD 
problem considers the optimal operation of both continuous and discrete state voltage support 
devices. While in [71], only continuous-state devices (e.g. SVCs) are being considered. (3) 
The cc-ORPD problem ensures voltage security with respect to the joint distribution of 
contingencies and wind uncertainties. Whereas most literatures handling contingencies via 
CCPs [68–70] are based on DC power flow model. As a result, they are fundamentally 
incapable of addressing voltage-related issues.

The remainder of this paper is organized as follows: Section 2.2 discusses the impacts of 
wind uncertainties on voltage security. Section 2.3 introduces the Big-M approach to solve 
CCPs. Motivated by the discussion in Section 2.2, we formulate a cc-ORPD problem in 
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Section 2.4. Section 2.4 also elaborates how to derive a computationally tractable form of the 
cc-ORPD problemvia the Big-M approach. Case studies and concluding remarks are presented
in Section 2.5 and Section 2.6, respectively.

2.2 Impacts of Wind Uncertainties on Voltage Security

2.2.1 Wind Farm Modeling

The wind farm is often modeled as a negative real load or pure real power generator in most 
literatures. While at most Independent System Operators (ISOs) in the US, wind farms are required 
to provide some reactive support to reduce voltage issues. In this paper, the wind farm is modeled 
as a negative load with constant power factor 0.95. Let PW ∈ R|W| and QW ∈ R|W| denote the 
forecast value of a set of wind farms W. And ξ ∈ R|W | represents the forecast errors of wind farms, 
ξ ∈ Ξ is a random variable with underlying distribution Ξ. The actual output of wind farm w is 
(PW,w + jQW,w)(1 + ξw),∀w ∈ W and also random. In this paper, we assume the underlying 
distribution Ξ is unknown but fixed. We also assume that the power factor is maintained at 0.95 for 
any wind fluctuations.

2.2.2 A Linear Approximation

Reference [9] shows that the voltage magnitudes of PQ buses become uncertain with wind 
fluctuations ξ. Fig. 2.1 presents the voltage magnitudes with respect to wind uncertainties in a 
modified IEEE 24-bus system [9]. The blue curve in Fig. 2.1 is obtained by solving a series of 
power flow

Figure 2.1: Impacts of Wind Uncertainties on Voltage Magnitudes.
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equations, which is computationally expensive. Reference [9] proposes an approximation method 
using power flow Jacobian matrix to estimate the voltage magnitude changes to wind fluctuations. 
The red curve in Fig. 2.1 is calculated using the approximation method in [9]. Although the 
relationship between voltage magnitudes and wind fluctuation is fundamentally non-linear, Fig. 
2.1 shows that we can get satisfying approximation using linearized power flow equations.

2.3 Big-M Approach to Solve CCPs

Given a two-stage chance-constrained program:
min
x,y(ω)

cᵀx + F[y(ω)] (2.2a)

s.t. Ax ≥ b (2.2b)

Pω

(
G(ω)x + L(ω)y(ω) ≤ h(ω)

)
≥ 1 − ε (2.2c)

x ∈ Rn1
+ × Z

n2
+ , y(ω) ∈ R

n3
+

The first stage variable x c ould take both continuous and integer values. Notice that the second 
stage variable y d epends on the realization of variable ω, thus it is denoted by y(ω).

With the well-known “Big-M” approach [60–62], Problem (2.2) could be reformulated as a deter-
ministic Big-M Mixed 0 − 1 Integer Program:

min
x,yk,zk

cᵀx + F[yk] (2.3a)

s.t. Ax ≥ b (2.3b)
G(ωk)x + L(ωk)yk − Mzk ≤ hk (2.3c)

N∑
k=1

πk zk ≤ ε (2.3d)

x ∈ Rn1
+ × Z

n2
+ , y(ω

k) ∈ Rn3
+ , z

k ∈ {0,1}

M is a sufficiently large coefficient and N scenarios are drawn from Ω: ω1, ω2, · · · , ωN ∈ Ω. The 
key idea of the Big-M approach is quite simple: for scenario ωk , if zk = 0, then Eqn. (2.3c) 
becomes G(ωk )x + L(ωk )yk ≤ hk ; if zk = 1, then Eqn. (2.3c) becomes −M ≤ hk , which is always 
true if M is large enough. In essence, zk = 0 indicates the constraint is retained and zk = 1 indicates 
violations are allowed for scenario ωk . The chance constraint Pω(. . . ) ≥ 1 − ε is approximated by 
Eqn. (2.3d).

2.4 Chance-constrained Optimal Reactive Power Dispatch

2.4.1 Deterministic Optimal Reactive Power Dispatch

Our previous work [9] solved a look-ahead (deterministic) optimal reactive power dispatch 
(LA-det-ORPD) problem with voltage security constraints. Problem (2.4) is a simplified version 
(only one snapshot) of the LA-det-ORPD problem in [9].
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min hB(QB) + hC(QC) + λ

nc∑
c=0

γcPc
L (2.4a)

s.t. Pc = Ac
G(PG + η

cPc
δ ) + AW PW − ADPD,∀c (2.4b)

Qc = Ac
GQc

G + ACQC + ABQB − ADQD,∀c (2.4c)
Pc
δ = 1ᵀ(ADPD − Ac

GPG − AW PW ),∀c (2.4d)

Pc
i =

nb∑
j=1
|Vc

i | |V
c
j | |Yi j | cos(θci − θ

c
j − φi j),∀c, i (2.4e)

Qc
i =

nb∑
j=1
|Vc

i | |V
c
j | |Yi j | sin(θci − θ

c
j − φi j),∀c, i (2.4f)

Pc
L =

nl∑
l=1,l:i∼j

gl
(
|Vi |

2 + |Vj |
2 − 2|Vi | |Vj | cos(θi − θ j)

)
,∀c (2.4g)

|Vc |− ≤ |Vc | ≤ |Vc |+ (2.4h)
QB ∈ {0,Q+B}, Q−C ≤ QC ≤ Q+C (2.4i)
Q−G ≤ Qc

G ≤ Q+G (2.4j)
i, j = 1,2, · · · ,nb, c = 0,1,2, · · · ,nc

The objective of Problem (2.4) is to minimize the operation costs of RPSDs and transmission 
losses while ensuring voltage security in nc contingency scenarios. All variables with superscript c

belong to contingency scenario c1. In this paper, we focus on the N − 1 contingency of losing 
Ggenerators2, which are modeled by the adjacency matrix of generators Ac . Let A0

G be the adjacency 
G 0

G

matrix in the normal operating condition (i.e. no contingency), Ac is obtained by  setting the cth 
column of AG to zeros.

The decision variables in Problem (2.4) include the operating states of discrete RPSDs QB
(e.g. shunt capacitors), those of continuous RPSDs QC (e.g. SVCs) and the voltage set-
points of generators (i.e voltage magnitudes |V c | of PV buses). Eqn. (2.4e) and Eqn. (2.4f) 
are the nodal power balance constraints, Pc (Qc) is the nodal real (reactive) power injection into 
the network.

AB ∈ Rnb×nB , AC ∈ Rnb×nC , AD ∈ Rnb×nD , Ac
 ∈ R

nb×ng and AW ∈ Rnb×nW are adjacency matrices 
of related components. If component k is connected with bus i, then A·(i, k) = 1, otherwise A·(i, k) 
= 0. Alternating Current (AC) power flow equations are depicted in Eqn. (2.4e) and Eqn.(2.4f). Yi

j ∠φi j ∈ C is associated with line (i, j) (from bus i to bus j) in the admittance matrix Y .
Losing generators causes significant real power imbalance Pδ

c, we adopt the affine  control [63] 
scheme to proportionally allocate Pδ

c to each generator (i.e. PG + ηcPδ
c). This guarantees the balance 

of real power after contingency [9, 63].

1For simplicity, the normal operating condition is denoted by c = 0.
2Since transmission line failures change the system topology thus the Y matrix in Eqn. (2.4e) and Eqn. (2.4f), we 
could simply modify the Y matrix to be Y c to model the cases of losing transmission lines. For simplicity, we only 
focus on generator contingencies in this paper.
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Eqn. (2.4g) calculates the real power losses and Eqn. (2.4h) is the voltage security 
constraints, which typically require the voltage magnitudes within desired ranges under a set 
of plausible contingency scenarios [72]. In this paper, we use [0.95, 1.05] for normal operation 
analysis (c = 0) and [0.9, 1.1] for contingency analysis (c = 1, 2, · · · , nc). Eqn. (2.4i) and 
Eqn. (2.4j) are the capacity constraints for RPSDs and generators.

2.4.2 Chance-constrained Optimal Reactive Power Dispatch

Motivated by the discussion in Section 2.2, we formulate a chance-constrained Optimal Reactive 
Power Dispatch (cc-ORPD) problem to ensure the voltage security of the system with respect to 
wind uncertainties ξ ∈ Ξ a nd contingencies A ∈ C. The cc-ORPD problem (Problem (2.5)) 
enhances the det-ORPD problem by adding a joint chance constraint Eqn. (2.5e). The violation 
probability  i n Eqn. (2.5e) explicitly quantifies the potential risk of voltage insecurity given the 
joint distribution of wind and contingencies C × Ξ.

min hB(QB) + hC(QC) + λEC×Ξ
[
PL(c, ξ)

]
(2.5a)

s.t. P = AG(c)PG − AG(c)η(c)Pc
δ − ADPD

+ AWdiag(PW )(1 + ξ) (2.5b)
Q = AG(c)QG + ACQC + ABQB − ADQD

+ AWdiag(QW )(1 + ξ) (2.5c)
Power Flow Equations: Eqn.(2.4e), (2.4f), (2.4g) (2.5d)

PC×Ξ

(
|V(c)|− ≤ |V(c, ξ)| ≤ |V(c)|+ for PQ buses

and Q−G ≤ QG(c, ξ) ≤ Q+G
)
≥ 1 − ε (2.5e)

|V(c)|− ≤ |V | ≤ |V(c)|+ for PV buses (2.5f)
QB ∈ {0,Q+B}, Q−C ≤ QC ≤ Q+C (2.5g)

i, j = 1, 2, · · · , nb, c = 0, 1, 2, · · · , nc

The cc-ORPD problem is a two-stage chance-constrained programming problem. The first-stage 
variables are the operating states of RPSDs (QB a nd AC) a nd the voltage set points of generators 
(i.e. voltage magnitudes of PV buses). The second-stage variables include the nodal injection (P 
and A), power imbalance Pδ, total line losses PL , r eactive generation AG, as well as the voltage 
magnitudes and angles of PQ buses (|V |  a nd ). S ince the parameters Ac

G a nd c d epend on the 
contingency c, we change the notation to AG(c) a nd (c) for better understanding. Please notice 
that Eqn. (2.5b)-(2.5d) are equality constraints associated with random variable c a nd , therefore 
the second-stage variables (e.g. P and PL) also become random variables3.

The cc-ORPD problem is very challenging to solve for the following three reasons: 
(1) some decision variables are binary, thus the feasible region of cc-ORPD is naturally non-
convex;

3More rigorous notations should denote the second-state variables are functions of c and ξ (e.g. P(c, ξ) and PL(c, ξ)). To avoid verbose notations, we only emphasize this in the chance constraint Eqn. (2.5e).
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(2) the power flow equations are non-linear equations, which further increase the difficulty of 
solving cc-ORPD; and (3) the chance constraint Eqn. (2.5e) induces computationally intractable 
issues as discussed in Section 2.1.2.

The third difficulty could be handled via the Big-M approach introduced in Section 2.3. Given a 
set of scenarios s1, s2, · · · , s|S|, where S = C × Ξ and each scenario si = (c, ξ)i ∈ S. We introduce 
binary variables zi ∈ {0, 1} for each scenario si = (c, ξ)i. The chance-constraint in cc-ORPD could 
be re-written as a set of deterministic inequality constraints with binary variables zi. Because we 
want to ensure the voltage security for all contingency scenarios C, instead of drawing scenarios 
(c, ξ)i from C × Ξ, we draw samples ξ1, ξ2, · · · only from Ξ, and combine them with nc 
contingency scenarios utilizing the fact that the generator contingency c and wind uncertainties ξ 
are independent. More specifically, let πc denote the probability that contingency c happens, and 
ξk (k = 1, 2, · · · , N) are the wind scenarios. The cc-ORPD problem is reformulated as Problem 
(2.6), where variables with superscripts c,k are associated with contingency c and wind scenario 
ξk .

min hB(QB) + hC(QC) + λ

nc∑
c=0

γc,k
1
N

N∑
s=1

Pc,k
L (P

s
W ) (2.6a)

s.t. Pc,k = Ac
GPG − Ac

Gη
cPc,k

δ − ADPD

+ AWdiag(PW )(1 + ξk),∀c, k (2.6b)

Qc,k = Ac
GQc,k

G
+ ACQC + ABQB − ADQD

+ AWdiag(QW )(1 + ξk),∀c, k (2.6c)

Pc,k
δ = 1ᵀAc

GPG − 1ᵀPG + PᵀW ξ
k,∀c, k (2.6d)

Pc,k
i =

nb∑
j=1
|Vc,k

i | |V
c,k
j | |Yi j | cos(θc,ki − θ

c,k
j − φi j),∀c, s, i (2.6e)

Qc,k
i =

nb∑
j=1
|Vc,k

i | |V
c,k
j | |Yi j | sin(θc,ki − θ

c,k
j − φi j),∀c, s, i (2.6f)

Pc,k
L =

nl∑
l=1

gl
(
|Vc,k

i |
2 + |Vc,k

j |
2

− 2|Vc,k
i | |V

c,k
j | cos(θc,ki − θ

c,k
j )

)
,∀c, k (2.6g)

|Vc,k | − Mzc,k ≤ |Vc,k |+,∀c, k (2.6h)
|Vc,k | + Mzc,k ≥ |Vc,k |−,∀c, k (2.6i)

Qc,k
G
− Mzc,k ≤ Q+G,∀c, k (2.6j)

Qc,k
G
+ Mzc,k ≥ Q−G,∀c, k (2.6k)

QB ∈ {0,Q+B}, Q−C ≤ QC ≤ Q+C (2.6l)
N∑
k=1

1
N

nc∑
c=0

πczc,k ≤ ε (2.6m)

i, j = 1,2, · · · ,nb, c = 0,1,2, · · · ,nc, k = 1,2, · · · ,N

24



2.4.3 Linearized cc-ORPD

Problem (2.6) is a Mixed Integer Non-Linear Programming (MINLP) problem, which is 
still computationally intractable. But the major difficulty here comes from the non-linear 
power flow equations. As shown in Section 2.2.2, we could obtain satisfying 
approximations via linearized power flow equations. Thus Eqn. (2.6e) and (2.6f) are 
linearized with respect to a known operating point (e.g. power flow solutions of a previous 
snapshot). Our future works include exploring other possible approaches to handle non-
linearity of power flow equations (e.g. convex relaxation). Problem (2.9) is obtained by 
replacing Eqn. (2.6e)-(2.6f) with Eqn. (2.7). It is a Mixed Integer Linear Programming 
problem and is reliably solvable with commercial solvers.[

P − P̄
Q − Q̄

]
≈

[
∂P
∂θ

∂P
∂ |V |

∂Q
∂θ

∂Q
∂ |V |

]
P̄,Q̄, ¯|V |,θ̄

×

[
θ − θ̄

|V | − ¯|V |

]
(2.7)

PL − P̄L ≈

[
∂PL

∂θ
∂PL

∂ |V |

]
P̄,Q̄, ¯|V |,θ̄

×

[
θ − θ̄

|V | − ¯|V |

]
(2.8)

min hB(QB) + hC(QC) + λ

nc∑
c=0

γc,k
N∑
s=1

Pc,k
L (P

s
W ) (2.9a)

s.t. Eqn. (2.6b), (2.6c), (2.6d) (2.9b)
Eqn. (2.7), (2.8) (2.9c)
Eqn. (2.6h), (2.6i), (2.6 j), (2.6k), (2.6l), (2.6m)

∆|V |− ≤ |Vc,k | − |V | ≤ ∆|V |+ (2.9d)

∆|θ |− ≤ |θc,k | − |θ | ≤ ∆|θ |+ (2.9e)
i, j = 1,2, · · · ,nb, c = 0,1,2, · · · ,nc

2.5 Case Study

2.5.1 Settings

Case studies are conducted on a modified IEEE 24-bus system [9]. There are 38 contingencies 
considered in the case study, each one represents the scenario of losing one generator at a PV 
bus4. We assume the probability of the normal operating condition is π0 = 90%, and each 
contingency happens with equal probability, i.e. πc = 10%/38 = 0.26%. By tuning the probabilities 
πcs and ε , we could achieve a balance between a more economic system and a more secure 
system. The wind uncertainty ξ is assumed to be Gaussian ξ ∼ N(0, 5%), from which 100 
scenarios ξk are drawn and plugged in Problem (2.9). It is worth mentioning that solving Problem 
(2.9) solely relies on the scenarios ξk , it does not require any prior knowledge on the underlying 
distribution.

4If there is only one generator at the PV bus, losing the generator will make it to a PQ bus. For simplicity, we 
replace it with two generators with half capacities.
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2.5.2 Simulation Results

Problem (2.9) was solved via Matlab2016b and Gurobi 7.5 on a Desktop with Intel i7-2600 8-
core CPU@3.40GHz and 16GB RAM memory. Gurobi found the optimal solution with 0.0% 
gap in 330 seconds. The optimal objective value is $1668.13. Fig. 2.2 demonstrates the optimal 
voltage set points of generators and the voltage magnitudes of PQ buses in the normal operating 
condition. The voltage magnitudes of bus 4 and bus 14 are fluctuating due to wind uncertainties, 
while some buses (e.g. bus 17, 19 and 20) remain almost the same voltage magnitudes.

Figure 2.2: Voltage Magnitudes in the Normal Operating Condition.

in
Nprobability ε̂ . Let ε̄  denote the expected violation probability: ε̄  := 

k=1

Besides the optimal solution to the cc-ORPD problem, we are also ∑interes 
1

ted the actual violation
N

∑nc
c =0 πcz∗c,k , where z∗c,k

is from the optimal solution to Problem (2.9). It is obvious that ε̄  ≤ ε . Let ε̂  denote the actual “out-
of-sample” violation probability:

ε̂ :=
N̂∑

k=1

1
N̂

nc∑
c=0

πc1Qc,k
G
<[Q−

G
,Q+

G
] or |Vc,k |<[|Vc |−,|Vc |+]

(2.10)

where 1conditions is the indicator function. We generate an independent set of N̂ scenarios and 
calculate the voltage magnitudes and reactive power generations using linearized power flow 
equa-tions [9] or solving the power flow equations.
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Figure 2.3: Violation Probabilities.

The blue curve in Fig. 2.3 is the expected violation probability ε̄  from the optimal solution z∗. And 
the red line ε̂  is calculated on N̂ = 100 scenarios using linearized power flow equations [9]. The 
out-of-sample violation probability ε̂  is very close to ε̄ . With a larger number of scenarios 
embedded in Problem (2.9), the expected ε̄  and actual ε̂  will be closed to the violation probability
ε in the chance constraint.

We also compare the results of cc-ORPD (Problem (2.9)) with det-ORPD (Problem (2.4)). With a 
little sacrifice on the total cost, the cc-ORPD could ensures voltage security with probability 
98.8%. While the results of det-ORPD lead to voltage magnitudes lower than the desired lower 
bound |V c |−. In the results of det-ORPD, we even observe undesirable low voltage magnitudes in 
the normal operating condition, which results in the large violation probability in Table 2.1.

Table 2.1: det-ORPD vs cc-ORPD

det-ORPD cc-ORPD (ε = 0.01)
Objective 1610.2 1668.1
ε̂ 52.1% 1.2%

2.6 Concluding Remarks

In this paper, we propose a chance-constrained formulation of optimal power reactive dispatch to 
schedule RPSDs considering uncertainties from wind and contingencies. The cc-ORPD problem 
is reformulated as a computationally solvable form using the Big-M approach and linearized 
power flow equations. Case studies demonstrate the effectiveness of the proposed cc- 
ORPD framework. Future works include investigating convex relaxations of power flow equations 
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and utilizing improved versions of the Big-M approach [61, 62].
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3. Electricity as a Service: Cost Causation-based Utility Rate Model for the
Future Distribution Grid

Distribution grids across the world are undergoing profound changes due to advances in energy 
technologies. Electrification of the transportation sector and the integration of Distributed Energy 
Resources (DERs) such as photo-voltaic panels and energy storage devices has gained substantial 
momentum, especially at the edge of the grid. However, the massive transformation in the tech-
nological aspects of the grid could directly conflict with existing utility business models and tariff 
structures applied to retail customers. This paper proposes a restructured business model where 
the implementation of these grid-edge technologies is aligned with the interest of all stakeholders 
involved in the electricity ecosystem. This envisions a shift from treating electricity as a 
commodity where the users are charged based on their volumetric consumption, to treating it as a 
service provided to the end-user by the utility company based on the principle of cost-causation. 
The proposed rate structure considers the impact of individual customers on the distribution grid 
by calculating metrics that contribute directly to the costs incurred by the transmission and 
distribution utilities (TDUs), namely magnitude and variability of the demand.

3.1 Introduction

Distributed energy resources (DERs) have been integrated to the electric grid edge at an 
accelerated pace over the past decade. The levelized costs of photo-voltaic (PV) panels and 
energy storage have dropped significantly and are projected to continue this trend [73]. Behind-
The-Meter (BTM) technologies are estimated to make up over 50% of the US energy storage 
market by 2021, with the deployed energy storage expected to reach 2 GW by then [74].

Despite the fact that end-use demand is projected to increase in the next few decades both in 
the residential and commercial sectors, there is a significant projected reduction in energy intensity 
[75]. Further, projections indicate that the growth rate of electricity sales will be diminished due 
to the significant increase in generation from rooftop PV systems, from both residential and 
commercial buildings [76]. The adoption of Electric Vehicles (EVs) is also on the rise, with the 
number of EVs on the road in the US reaching 1.1 million by the end of 2018 [77]. With 
increased installation of these technologies many consumers are turning into prosumers, thus 
eroding the revenue stream of the utilities [78].

The rise in DER penetration in markets around the globe makes the following question 
extremely relevant - are the existing utility business models poised to handle the accelerated 
pace of DER deployment at the grid edge? This paper addresses customer rate models of 
Transmission and Distribution Utilities (TDUs) i.e. how they recover their costs from 
customers. TDUs need to be compensated for their investments and the grid maintenance costs 
they incur to ensure reliable power supply to all customers. Their compensation is akin to a toll 
fee for using the TDU’s grid infrastructure. This paper focuses on the proper determination and 
allocation of grid access costs to retail customers, and does not deal with the variable 
production costs for delivered power (the 'Energy Charge').
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Existing TDU charges are a combination of a small portion of fixed charge, coupled with a larger 
volumetric g/kWh charge - the dotted line in Fig. 3.1 represents the cost curve to consumers of this 
rate structure [79]. The revenue earned by TDUs is directly proportional to the volume of 
electricity in kWh that is consumed by the end-users. This rate structure incentivizes TDUs to 
maximize sales and makes them dependent on the volumetric charge for the bulk of their revenue 
[80]. With increasing deployment of grid-edge DERs the current rate design could be insufficient 
since it does not fully account for the rising fixed costs faced by the TDUs [81]. Grid-edge DERs 
pose a threat to the revenue stream of utility companies in a few different ways. Firstly, the increase 
in solar PV penetration directly results in reduction of kWh demand from the grid. This reduces 
the customer’s utility bill, even though the utility offers the service of access to the grid at all times, 
which the PV customer will require when the sun goes down. Secondly, the expansion of 
participation in net metering has resulted in utilities providing financial compensation for 
electricity injections from PV to the grid [82]. Costello [83] argues that there are a number of 
issues with net metering, including that it is inefficient and an unfair cross-subsidy.

The proliferation of Advanced Metering Infrastructure (AMI) technologies provides an enabling 
platform for retail rate innovations that could improve upon the current volumetric rate structure.

There has been a number of case studies devoted to examining the impact of high DER penetration 
on regulatory, technological and economic aspects in the distribution grid. The resulting need for 
utilities to update their business models, and a rebalancing of costs on the electricity value chain 
from the grid side to behind the meter has been discussed in [84] and [85] respectively. Baak [86] 
and Pelegry [87] explore the regulatory framework in different parts of the world, and 
the restructuring that may be required to enable an accelerated transformation towards 
grid modernization, while Gellings [88] argues that the existing regulatory measures may be 
adequate to accommodate even a transformed future. Laws et al. [89] indicates that 
residential PV penetration could reach a substantial number over the next decade. But, they 
argue that utilities have ample time to change their business model in order to avoid the death 
spiral. Darghouth et al. [90] shows how various rate design choices can impact the long term 
cumulative distributed PV deployment.

Burger and Luke [91] provides a comprehensive review of the various business models that exist 
for various categories of DER technologies. Bird et al. [92] provides an analysis of how different 
rate structures, namely fixed charges, minimum bills and higher demand rates impact the bills of 
residential customers in a number of states across the US. Baatz [93] provides a summary of a 
number of recent studies on various rate structures such as Time-of-Use (TOU), Critical Peak 
Pricing (CPP) etc. Schwartz [94] presents the pros and cons of various rate designs. Namely, 
raising fixed charges for all customers may disproportionately impact low-income customers. 
Minimum bills do not necessarily fix the utility revenue problem. Demand charges are usually 
applied to the customer’s peak demand regardless of whether it is coincident with distribution 
system demand. Revesz and Unel [95] reviews the net-metering related tariff changes in a number 
of jurisdictions in the US. They also argue for an approach that values clean distributed energy for 
its social impacts such as environmental benefits and reduced losses. Faruqui et al. [80] suggests 
transitioning residential customers to three-part rates, comprising of a monthly fixed charge, a 
volumetric charge, and a demand charge. In [96] an analysis of BTM storage adoption under a 
storage-friendly rate is presented.
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In [97], a Distribution Network Use-of-System (DNUoS) charge has been proposed, which 
aids in accurate recovery of distribution utility costs, by capturing the contribution of each user 
on the network to the system’s costs. This paper applies a similar line of thought, by billing the 
customers based on their individual contributions to system costs.

In view of the above, the key contributions of this paper are as follows:

• A methodology to quantify the impact of individual customers on the grid based on demand 
magnitude and variability metrics has been proposed

• A novel utility rate mechanism has been formulated, which calculates TDU charges for 
individual customers based on the cost causation principle

• Numerical case studies have been developed using data from real residential customers with 
a high penetration of EVs and Solar PVs, to simulate the effect of the proposed rate 
mechanism

• The deployment of battery storage has been simulated to assess its effect on the grid impact 
of customers

The rest of the paper is organized as follows: Section 3.2 highlights the deficiencies in the 
existing utility business model, and describes the design details and mathematical 
formulation of the proposed billing mechanism. Section 3.3 is a critical comparison of the 
existing and proposed new utility business models, supported by a case study using real 
residential customer data. Section 3.4 summarizes the key learnings and the most significant 
policy implications of the proposed utility business model.

3.2 Methodology and Data

3.2.1 Proposed Utility Business Model

The proposed TDU charge features the introduction of a single grid-access fee, replacing 
the existing distribution utility charges, which are typically structured as a small fixed charge 
combined with a large volumetric ($/kWh) charge. 1 The uniqueness of this idea lies in how these 
grid-access fees would be customer-specific; calculated for each customer by taking into 
account some key parameters that define the impact of said customer to the grid. This impact is 
quantified through a combination of weighting factors called Grid Impact Factors.

This concept is analogous to an insurance rate model or a credit score, where each 
customer’s rate/credit limit is considered to accurately reflect the risk level taken up by the 
insurance company / bank by entering into business with said customer. An example of providing 
appropriate incentives in electricity wholesale markets is FERC Order 755 [98]. Prior to this 
Order, most ISO markets in the US had a single capacity payment for regulation. Regulation 
payments were not tied to resource performance. As a result of this rule a two-part payment was 

1Here we consider a deregulated utility in which the variable production costs (Energy Charges) are passed through to 
the customer, and these are separate from the proposed grid-access fee.
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Figure 3.1: Current vs. Proposed TDU Charges: Consumer Cost Curve
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enacted, which added a mileage based component that accounts for the performance of the 
resource, in addition to the capacity based payment.

As is evident from Fig. 3.1, TDU does not have revenue assurance i.e. they have to hope 
that consumers use more kWh, thus driving up their revenue. However, under the proposed 
approach the TDU has a steady and assured income from each consumer via the fixed Grid 
Access Fees. In the figure, Customer 2 has a lower grid impact than Customer 1, and thus is 
charged a lower Grid Access Fee.

3.2.2 Metrics causing Distribution Grid Investments

In the context of a distribution grid, the installed capacity of the system is a key parameter - 
it determines how much load can be served. Depending on changing load patterns this limit 
also dictates the need for capital investment. System capacity requirements are directly 
dependent on the system Peak Demand to be supplied to the customers. Thus, the "Peak 
Demand Time Slots" are a critical time for the system. To account for this, a Demand 
Magnitude Impact Factor W is introduced, that measures the demand impact factor of each 
home during the peak demand time slots.

Demand Impact Factor of Home i (Wi)

= Total Demand of Home i during Peak Slots
(3.1)

Another key concern for the distribution grid is the health of the existing infrastructure. 
This directly impacts the capital investment and maintenance costs that the TDU incurs. The 
health of grid infrastructure is correlated to its loading conditions and the fluctuations in 
demand. These fluctuations are measured using the Demand Variability Impact Factor V , which 
is the normalized correlation between the variability of individual customers and the 
variability of total system demand.

Variability Impact Factor of Home i (Vi)

= Normalized Correlation between
Variability of Home i and Total System Variability

(3.2)

3.2.3 Peak Demand Indicator Function

With the objective of making the rate structure as flexible and general as possible, a Peak 
Indicator Function for Demand has been introduced. This takes as input the present system 
conditions, the peak threshold for the system conditions, and a strictness parameter k, to deliver 
an indication of whether the system condition at that time t is considered to be a peak slot or 
not. When k is very small, the Peak is considered based on a very strict cut-off, whereas if 
k is larger, the function also begins to consider those time slots where System Demand (St ) is 
almost equal to the peak threshold, thus reducing the importance and emphasis placed on an 
inherently arbitrary definition of peak threshold.
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Figure 3.2: Peak Demand Indicator Function µ

Distribution grids have diverse load profiles, even between different feeders within the same TDU 
service territory. The proposed mechanism provides the TDU the option to use their engineering 
judgment to select peak thresholds and k values that are best suited for their system conditions.

The Peak Indicator Function has been defined for Peak Demand Magnitude as µ. This is 
described below.

Peak Demand Indicator Function µ

This function is designed similar to a logistic function, and is centered around the System Peak 
Threshold value SPeakTh. SPeakTh is calculated based on a percentile value that is set by the TDU. If 
the peak threshold percentage is set as 15%, then SPeakTh = 85th percentile of System load curve. 
This means that a given time slot t is defined as a peak demand time slot when St ≥ SPeakTh. In 
essence, this function returns 1 if it is a peak slot, and 0 if not (Fig 3.2). For a given time t, µ is 
described as follows:

µt =
1

1 + e
−(St−SPeakTh)

k

3.2.4 Calculating the Grid Impact Factors W and V

Let Xi
t = Demand of user i at time t

dXi
t = Change in Demand (Variability) of user i between time t and t − 1

i.e. dX t
i = X t

i − X t−1
i

34



Demand Magnitude Impact Factor W

Demand Magnitude Impact Factor for Customer i (Wi) is the total demand of Customer i 
during peak demand time slots (defined in Section 3.2.3). The Peak Indicator Function µ is 
used to determine whether time-step t is a peak or not.

Element-Wise Multiplication
W t

i = X t
i · µ

tWi =
∑

t

W t
i (3.3)

Matrix Multiplication

WN×1 = XN×T · µT×1N homes,T timesteps (3.4)

Demand Variability Impact Factor V

The Demand Variability Impact Factor for customer i (Vi) is the normalized correlation between 
the variability of customer i (dXi) and the variability of total system demand β.

Vi =

∑
t(dX t

i − dXi)(β
t − β)√∑

t (dX t
i − dXi)

∑
t (β

t − β)
(3.5)

Relative Factor (% Allocation) for each Customer i

Wshare i =
Wi∑N

j=1 W j
Vshare i =

Vi∑N
j=1 Vj

(3.6)

3.2.5 Calculating the Final Bills 

Let B
i
old
total → Total TDU Charge of home i calculated in the current method, and Bi

ne
tot
w
al → Total

TDU Charge of home i calculated in the proposed method.

To calculate TDU Charges for each home under the current mechanism, we consider a 
standard volumetric rate formula for TDU Charges defined below (5 gper kWh) (Xi

t > 0):
Bt old

i = $0.05 × X t
i (3.7)

In case a home generates more than it consumes at any point in time, i.e. Xi
t < 0, the 

excess electricity is sold back to the grid at a discounted rate of 2 gper kWh (Net Metering).
Bt old

i = −$0.02 × X t
i (3.8)
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So, the total TDU Charges in the current mechanism for the full 2 year period is calculated as 
follows.

Bold
i total =

∑
t

(Bt old
i ) (3.9)

In the proposed rate calculation mechanism, customers are charged a fixed monthly charge 
based on their Grid Impact Factors. This fixed charge is calculated by starting from the total target 
revenue for the TDU. This is the reverse approach of the existing mechanism, thus a stark 
difference from the procedure followed in the current scheme, where the individual customer’s 
rate is based on a fixed formula, and an aggregation of all customers’ payments gives the total 
revenue for the TDU.

It is assumed that the $/kWh rate is derived from the total target revenue of the system, which is 
obtained as a result of the current rate case process. This rate case is determined by a joint 
effort between the TDU and regulator, to ensure accuracy and fairness to TDU and customer alike.

For simplicity, the work in this paper operates under the assumption that the total target revenue 
is calculated for the full period of assessment - in the case study described in the paper, this period 
of assessment is 2 years. Further, to make a fair and direct comparison of the current and 
proposed mechanisms, this total target revenue for the TDU has been fixed as the Bold

i total value, i.e.,
N∑

i=1
Bold

i total =
N∑

i=1
Bnew

i total (3.10)

This essentially results in a redistribution of the same final cost among the customers. This is a 
fair assumption to make because the total target revenue for the current mechanism is calculated 
through the rate case process, which is assumed to be an accurate reflection of system costs.

Since the new mechanism has to account for two contributing grid impact factors W and V , the 
importance of these respective weighting factors are determined by the allocation percentage 
parameters ΠV and ΠW (also determined by the TDU and regulator), defined as follows:

ΠW = % Allocation of Total Target Revenue for W
ΠV = % Allocation of Total Target Revenue for V

And so, finally, the total TDU Charges for each home i as per the new scheme is calculated 
as a linear combination of the weighting factors scaled with their respective allocation 
percentage parameters, as follows:

Bnew
i total = Wshare i × ΠW + Vshare i × ΠV (3.11)

3.2.6 Data and Case Study System Description

The data used for the results discussed in Section 3.3 is the instantaneous kW demand for 
200 residential customers, measured at a resolution of 1-minute. The dataset spanning a period 
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Figure 3.3: System Demand Curve and Comparison of Demand between two homes over 1 
week during Peak Time Slots

of two years (from 01-01-2016 to 12-31-2017) was obtained from Pecan Street Dataport [99].

3.3 Results and Discussion

To thoroughly examine the effects of the new billing mechanism, we calculate the TDU 
Charges for each home in a system of 200 residential demand profiles, with 25% penetration of 
EVs and PVs each, i.e. 50 EV homes and 50 PV homes among the 200 total homes.

For the purpose of this example, we set the SPeakTh at the 75th percentile of total system demand. 
Also, the % Allocations of Total Target Revenue ΠW and ΠV are set as 75% and 25% respectively.

3.3.1 Comparing the Performance of Two Homes in the Proposed Mechanism

To illustrate the effects of the proposed scheme, we examine two homes which have a similar 
TDU Charge in the existing scheme but a significant difference in TDU Charges in the 
proposed scheme.

In Fig. 3.3 (top), the system demand curve has been plotted along with the Peak Threshold 
line (red), indicating which intervals are considered to be peak time slots. Fig. 3.3 (bottom) 
depicts the individual demand of the higher impact and lower impact homes during the system 
peak time slots, and is assumed to be zero for non-peak time slots.
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Figure 3.4: Comparison of Proposed and Existing Billing Mechanism for Homes

Despite having a few spikes of demand, the demand of Home 1 during the peak time slots is, 
for the most part, less than that of Home 2. Furthermore, Home 2 has a negative demand for 
several time periods each day i.e. it is generating more power than it consumes, indicating that it is 
a solar PV home. The fact that this home is a higher impact home can be explained by the 
benefit given to solar PV homes in the current scheme due to net metering. In the proposed 
scheme, such demand variability is penalized through the V parameter.

3.3.2 Comparing the Current and Proposed Billing Mechanisms

Fig. 3.4 describes the effect of the proposed billing mechanism for each subset of homes. This 
effect is quantified by evaluating the percentage change between the proposed bill and the current
bill, i.e. Bi

new
total − B 

i
old
total for each home. The distribution of this range has been plotted, categorized

based on the type of home: EV Homes, PV Homes, and non-DER Homes.

In the case of EV homes, most homes have a negative % change of Bi
new
total − B    oldto talThis means that 

almost all homes have a lower TDU Charge in the proposed mechanism than they do in the current 
mechanism. As a result, it seems that the proposed billing mechanism is favorable for EVs. This 
follows intuition, because in the current billing mechanism, all that matters for billing is how much 
kWh volume is consumed by the home. Whereas in the proposed billing algorithm, the impact of 
the user is calculated during the peak time slots of demand, where the distribution system is under 
the most stress. Thus, under the proposed billing mechanism, there is great potential for smart 
scheduling of EV charging during the non-peak periods, which could lead to significant savings 
for those homes. As a result, the interests of both the TDU and the user are aligned.

When we observe the trend for PV homes, most homes have a positive % change of  − , which 
means that almost all PV homes have a significant increase in their TDU Charge when evaluated 
under the proposed mechanism. While this observation seems to suggest that the proposed 
mechanism is unfavorable to PV homes, it can be argued that the proposed mechanism is 
capturing the true costs of PV that were previously (unfairly) being borne by non-PV homes. 
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Figure 3.5: % Change in TDU Charges before and after 25% DER Penetration (Calculated 
under the Proposed Mechanism)

Despite the fact that the kWh volume of consumption for PV homes is less, the sudden 
ramping of PV during thelate evening causes significant strain on the distribution grid. This 
aspect is captured in the new billing scheme through the Variability impact factor V .

Let us now consider the case of non-DER homes. Most homes have a negative percentage change
value f or B new

  i total − Bi
old
total. More specifically, of the 100 non-DER homes, over 80 have a negative

Bi total,iBnew
total −    

old,       with almost 70 homes having a slightly negative change (0-20% reduction in bill).
This indicates that most non-DER homes are being benefited by the proposed billing 
mechanism. This addresses one of the key drawbacks of the existing billing scheme, where in 
many cases, costs incurred by the TDUs in their PV-incentive programs such as net metering or 
other subsidies would be recovered from the non-PV customers via increase in the fixed 
charges. With the proposed mechanism, the trend of penalizing non-PV customers is 
reversed, bringing the distribution of TDU Charges back to balance.

3.3.3 The Effect of DER Penetration on TDU Charges Calculated under the Proposed 
Mechanism

Fig. 3.5 describes the effect of penetration of individual DERs (EV and PV) on each subset of 
homes. In the default system, there is a DER penetration of 25% EV and 25% PV (50 homes 
each). In the system without EV, the DER penetration is 0% EV (0 homes) and 25% PV (50 
homes). Similarly in the system without PV, the DER penetration is 25% EV (50 EV homes) and 
0% PV (0 PV Homes). In the system without DERs, the DER penetration is 0%, i.e. 0% EV and 
0% PV. The left figure compares the TDU Charges of the EV Homes calculated in the default 
system vs the system without EVs. The middle figure compares TDU Charges of PV homes 
calculated in the default system vs the system without PV generation. The right figure shows the 
effect on TDU Charges of non-DER homes due to DER penetration in the system, by comparing 
the TDU Charges calculated in the default system vs the system with 0% DER penetration.

When considering the effect of EV penetration on EV homes, it is observed that most homes have a 
positive % change between with and without EV cases, thus following the expected trend of 
having higher electricity bills due to the presence of an EV.
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Figure 3.6: % Change in TDU Charges (New Mechanism) after introducing Battery Storage in 25 
PV Homes

With PV however, the story is different. Some PV homes seem to benefit with the introduction of 
PV (around 30 homes), but the rest have a higher TDU Charge with the introduction of PV. One 
factor could be explained by the variability index V accounting for 25% of the total revenue, and 
that the PV homes have the highest variability impact factors. Another issue could be that PVs are 
pulling down the system conditions below peak threshold when the sun is shining, and shifting 
peak slots to different times. This leads to a very interesting thought: the application of solar 
+ storage technology combined with smart scheduling for maximizing usage during system 
non-peak conditions could be the optimal strategy in the proposed billing scheme. This has 
been explored in the case study discussed in Section 3.3.4.

Looking at the effect of DER penetration on non-DER homes, it is noted that every single 
non-DER home has seen a reduction in their TDU Charges due to the penetration of DER. While 
this seems like the proposed mechanism rewards customers for not investing in DER, it is 
more accurate to view this as evidence that a fair cost recovery from DER homes is happening 
because of DER homes having an increase in their grid impact, due to the penetration of DERs.

3.3.4 Effect of Battery Storage on TDU Charges calculated under the Proposed Mechanism

Fig. 3.6 shows the effect of penetration of battery storage in the system on the TDU 
Charges calculated under the proposed rate mechanism. In this case study, half of the PV homes 
(25 out of 50) are given a battery storage unit, that operates under a brute force algorithm, 
charging during non-peak hours (1AM - 3AM), and discharging during typical peak hours (5PM 
- 7PM), with a rate of 2 kW for both charge and discharge cycles. Essentially, this is meant to 
reduce impact on grid by discharging during peak time slots, and charging during non-peak time 
slots.
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Figure 3.7: Case Study: Aggregating a low-Vi EV customer and a high-Vi PV customer

Fig. 3.6 (top-right) shows that every single 'PV+battery' home has experienced a reduction in 
TDU Charge due to the introduction of battery storage. This reduction has been observed 
despite the fact that a brute force charging-discharging schedule was implemented. This 
result could be further improved if the battery storage devices are operated under a smart-
scheduling algorithm, that not only reduces impact during peak time slots, but also counteracts 
spikes in variability of the system, thus earning rewards for positive contributions to grid 
conditions.

The other 3 sub-figures in Fig. 3.6 show the effects of the introduction of battery systems in 25 PV 
homes on the other categories of homes. Homes in all of these categories see minor increases in 
their bills, so it could be argued that the proposed mechanism provides the most rewards for 
customers having PV + battery storage, who are more likely to be richer customers, at the expense 
of non-DER customers, who may be less affluent and cannot afford PVs and battery storage. 
However, when comparing the TDU Charges of these non-DER customers under the proposed and 
current schemes, it is clear that these homes will still be better off than they are under the 
current scheme.

3.3.5 Effect of Customer Aggregation on TDU Charges calculated under the Proposed 
Mechanism

Consider the case of customer aggregation, where a group of customers come together to form an 
aggregated customer group, which is essentially treated as a singular customer entity by the 
TDU. It is desirable for customers within this group to complement each other’s variability Vi

t 

such that there is a reduction in the net variability impact of the aggregated customer group. If net 
variability impact of a group reduces, the total impact on the system reduces. Such 
aggregated customer groups could potentially be governed by an internal smart control 
algorithm such that the group minimizes their net impact on the system. A good billing 
mechanism should reflect rewards for such desirable reduction in system impact.

In the existing billing mechanism, there would be no change in the total TDU Charge of 
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these aggregated customers, since the total kWh consumption remains the same. However, the 
proposed mechanism considers variability of power demand as a key parameter for evaluating 
the impact of customers. Thus, such aggregated customer groups will have a net reduction in 
aggregate customer bill, compared to the sum of TDU Charges of the same customers treated as 
individuals.

Fig 3.7 is a case study performed with two customers to illustrate the effect of aggregation 
on TDU Charges calculated in the proposed mechanism. Here, a low-Vi EV customer 
is aggregated with a high-Vi PV customer. No smart control algorithm has been implemented 
to change the behavior of either customer; this case study is conducted to illustrate the potential 
of customer aggregation for TDU Charge reduction. Fig 3.7 shows the demand of the System, 
EV customer, and PV customer over one week. Clearly, these homes oppose each 
other’s variability quite regularly, especially when the the EV customer’s EV is charging and 
the PV customer’s solar panel is generating power.(note the multiple 6.6 kW spikes seen in 
the EV customer’s demand curve, and the intermittent spiking of the PV customer’s demand 
curve). We expect a net reduction in variability impact when these customers are aggregated, thus 
resulting in a lower TDU Charge for the aggregated customer group compared to the sum 
of the two individual bills. The results of this case study are shown in Table 3.1.

It is clearly observed that customer aggregation can have the desirable effect of 
further incentivizing variability impact reductions, which can be harnessed by smart control 
algorithms governing the behavior of customers within such aggregated customer groups.
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3.3.6 Pros and Cons of the Proposed Mechanism

Pros

Revenue Decoupling The mechanism introduced in this work effectively decouples utility 
revenue and customer bills from volumetric consumption. This is important to the long-term 
stability of utility revenues, since due to the growing penetration of DERs, volumetric 
charge based revenue could decline in the future.

Recovers Utility Costs Accurately and Effectively The proposed mechanism is more 
representative of the true costs inflicted upon the distribution grid by the customers, due to the 
usage of kW rather than kWh as a defining metric. The major driver for investment costs in 
equipment is the consumer demand during peak periods. Thus, the proposed approach 
provides better alignment between the revenue and costs as compared to the 
volumetric charge. The introduction of 'Variability' is also a novel approach. The variable 
nature of renewable resources adversely impacts the efficient operation of the grid and as such 
should be accounted for in the cost recovery mechanism.

Utility Revenue Targets are Assured to Be Met There is a key and prominent distinction 
between the proposed mechanism and the current model - rather than expecting a total revenue 
for the TDU depending on several variables, the proposed mechanism offers the TDU the 
opportunity to ensure a stable and assured revenue. This is because the total target revenue is 
first set, and then the proposed mechanism allocates the costs to all customers appropriately. 
Another advantage is that this form of rate-making could require less frequent rate cases, which is 
a time-consuming and expensive process.

Reduces Unfair Cross-Subsidy Both the current volumetric charge and the net-metering 
policies result in TDUs over-recovering costs from non-PV customers while under-recovering 
them from PV customers. Further, there is a high likelihood that non-PV customers fall in the 
low-income category, while PV customer fall in the high-income category. Thus the 
proposed mechanism mitigates against the existing unfair and regressive cross-subsidy. Further, 
the proposed approach is consistent for all types of DERs. This is important to incentivize 
technologies such as energy storage.

Retains Efficiency Incentive Under the current volumetric mechanism increasing 
efficiency reduces electricity sales and therefore profits [100]. The proposed billing 
mechanism retains the incentive for the TDU to be efficient. Since the total revenue target is 
controlled under this structure, the TDU is incentivized to take action to improve system 
efficiency so as to get higher profits. Regulators could also include explicit performance 
bonuses for TDUs improving their efficiency.
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Rewards Smart Customer Aggregation As illustrated in Section 3.3.5 and Fig 3.7, 
aggregation could potentially lower TDU Charges for those customers who form sub-groups 
that have lower aggregate variability. Apart from potentially, this also opens up a whole 
new market for the Electricity Service of Customer Aggregation. Providers of Customer 
Aggregation could run local energy markets, create Demand Response based incentive programs, 
and perform smart automatic control of their customer groups to minimize group impact, thus 
resulting in a reduced TDU Charge for that sub-group compared to the sum of their TDU Charges 
if they remained discrete customers.

Cons

Peak Threshold Calculation Unfair to Solar PV? As mentioned earlier, the introduction of PV 
could cause the total system demand to go below the peak threshold in some time slots, thus 
converting those time slots from peak slots to non-peak slots. However, this also shifts the peak 
slots to a different time, because of the fact that peak slots are defined on a percentile basis, rather 
than absolute. There will always be a top x% set of values; it does not matter whether that range is 
small or large. As a result, the new system peak time slots would be those times when perhaps the 
sun does not shine. The appliance usage of a PV home is not offset when the sun is not 
shining, therefore these new shifted peak slots could be when the PV homes stop generating, and 
demand power from the grid, thus contributing to increase in the system demand. These slots are 
now the peak slots, and PV homes along with all other homes contribute to their W and V 
impact factors significantly during this time. Thus, it could lead to the situation where non-
PV homes get away with 'bad' usage patterns when the sun is shining, because PV homes are 
generating enough power to reduce the stress on the system below the system peak threshold. 
Essentially, some non-PV homes escape penalization due to their behavior being covered or 
compensated for by the PV homes.

This problem could be easily dealt with when rolling out the proposed mechanism in 
practice: peak thresholds could potentially be selected by TDUs based on distribution feeder 
capacity, for the feeders on which this algorithm is being implemented. This would make the 
thresholds absolute, rather than relative.

Solar PV ancillary benefits It could be argued that Solar PV is not being rewarded for the 
various benefits it brings to the grid or indeed its societal benefit in terms of reducing pollution. 
Distributed PV systems likely provide ancillary benefits such as reducing distribution system 
losses by generating close to the point of consumption, and in the future also might offer 
frequency and voltage support services through the use of smart inverters [101].

Rate simplicity Clarity and simplicity is a consideration for rate design. In this respect the 
volumetric rate has an advantage since customers have become accustomed to it. On the other 
hand it could be argued that customers are also familiar with the concept of credit scores, and 
being subject to different interest rates relative to other customers, based on their individual risk 
to the lender.
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3.3.7 Policy Implications

The current volumetric rate structure has some clear drawbacks, the first being that the TDU is 
not assured of sufficient revenues, and the second that there is effectively an unfair cross-
subsidy from non-PV customers to PV customers. Since with declining revenues the TDU 
would be forced to raise the rates for everyone. The proposed approach provides long-term 
stability to the TDU. PV customers could face higher bills, but this could be considered 
appropriate given that the energy they contribute may not be coincident with peak demand, 
which is a large driver of distribution system costs. Moreover, if such customers also had 
optimally operating storage, their TDU Charges could be reduced.

With the introduction of metrics such as peak thresholds and % Allocation, the TDU has far 
greater flexibility to modify the billing mechanism based on the true costs they incur, customized 
for their system conditions.

Regulators should be careful not to favor a particular technology and rate designs should be 
based on the true value of energy provided by DER assets.
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4. Concluding Remarks

With the increasing penetration of DER technologies, utilities are likely to face challenges 

associated with the current volumetric rate design. Regulators should consider alternative rate 

designs that are better aligned with the cost-causation principle. 

This paper introduces an algorithm to calculate a fixed, customer-specific grid access fee, based 

on metrics that contribute directly to the true costs incurred by the TDU in providing electric power 

to their customers. As a result, the volumetric throughput incentive is eliminated, thus aligning the 

interests of both the TDU as well as the end-users towards a future distribution grid with higher 

DER penetration. This has been accomplished through a shift in philosophy, from treating 

electricity as a commodity to Electricity as a Service. 

Future work will investigate some key questions: further insight needs to be gained on how to 

calculate the actual Total Target Revenue, such that it recovers the costs incurred by utilities under 

different system conditions. The effect of smart-scheduling algorithms that respond to real-time 

signals of system performance needs to be tested. Applying this on the aggregation of solar and 

storage could be transformative, and thus needs to be explored. Further, the proposed rate structure 

incentivizes customer aggregation, where groups of customers form such that these customers’ 

consumption patterns are negatively correlated with each other. This could reduce the group 

impact on the grid, thus reducing their TDU Charge as part of a group, compared to their TDU 

Charge when considered as individual customers. Smart scheduling and real-time adaptive 

consumption patterns could be leveraged in such aggregation mechanisms to negate the spikes of 

other customers in the group. 
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