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Executive Summary 

Changing operational paradigms, including increasing penetration of intermittent renewables, 

growing use of demand-side power management, and higher sophistication of distributed systems 

(e.g. increased reliance on distributed generation), are introducing uncertainty and variability in 

the operating point of the bulk power grid.  This variability and uncertainty in grid operations 

potentially makes the system susceptible to undesirable dynamics, including sustained or poorly-

damped natural oscillations, wide-area propagative responses to impulsive disturbances, forced 

oscillations, etc. These oscillations and propagative responses, if not properly managed, can incur 

cascading failures and cause outages at the regional or even continental scale.  Indeed, numerous 

instances of such wide-area dynamic responses have been recorded during the last few years, and 

some have led to significant outages.  Prevention and mitigation of such wide-area dynamic 

responses critically requires deployment, tuning, and coordination of appropriate control systems.  

New technologies, including new sensing modalities and power electronics, are enabling new 

controls which together with legacy systems can be used to manage oscillations and disturbances.  

However, the increased variability and uncertainty in grid operations is also making the design and 

coordination of control systems more challenging.   

 

Motivated by the need for and challenges inherent to the control of dynamic oscillations and 

disturbances, here we undertake a study of control channels and control system coordination for 

the bulk power grid’s swing dynamics.  Traditionally, the analysis of swing dynamics has been 

centered around characterizing the modal responses of the system.  In an earlier PSERC project, 

we pursued a study of input-output channels for the classical model of the swing dynamics.  Our 

initial effort established that input-output channels can exhibit properties such as nonminimum-

phase zeros which complicate control and alter disturbance responses, and also identified some 

structural properties of the power networks that can result in nonminimum-phase dynamics. 

 

Relative to our earlier study, the research undertaken in this project had three main aims.  First, a 

more comprehensive structural assessment of channel properties was undertaken for the swing-

dynamics model.  Second, we studied the influence of deployed controllers on the internal (modal) 

characteristics of the swing dynamics, as well as the input-output properties of a second remote 

control channel. in this effort, we focused primarily on understanding how HVDC modulation 

would impact properties of a remote control; this study was primarily motivated by the deployment 

of HVDC modulation on the France-Spain interchange, and the concern that this control may 

interact with other nearby generator controls in the European grid.  Third, we undertook a study of 

input-output properties in more sophisticated models of the swing dynamics, which more 

realistically represent the dynamics of intertial generators. In undertaking these studies, we also 

characterized control-channel properties and simulated channel behaviors in a small swing-

dynamics model deriving from a planning scenario for off-shore wind farms in the French power 

grid.  

 

The main findings of our study are as follows: 

1) The presence or absence of nonminimum-phase zeros for an input-output channel play a 

crucial role in determining the behavior of the system when a control is implemented on 

that channel, or a disturbance occurs.  The presence of nonminimum-phase zeros depends 

in a complicated way on the multi-path structure of the power network, as well as the 
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parameters of lines and generators in the network (including inertias, dampings, etc).  We 

have developed both qualitative and numerical characterizations of the zeros in terms of 

these parameters. 

2) HVDC modulation can alter input-output properties of remote channels, and hence may 

interact with other control systems in complicated ways.  We have modeled HVDC 

modulation within the classical swing-dynamics model, and characterized its impact on the 

zeros of both collocated and remote channels.  Importantly, HVDC modulation often 

improves the input-output characteristics of channels, but may in special cases introduce 

nonminimum-phase behaviors in remote channels. 

3) Channel properties have been studied for more sophisticated models of the swing 

dynamics, which more fully represent the states of inertial generators, using numerical 

examples.  These studies show that many channel properties established for the classical 

model carry through to the more detailed models, but these models may also exhibit 

unexpected non-minimum-phase behaviors arising due to the additional generator 

dynamics. 

4) The characterization of zero structure and channel interactions in models for the swing 

dynamics is a promising starting point for developing model-reduction algorithms which 

maintain input-output properties, and hence are predictive of control responses. 

 

As a whole, our study clarifies the complexity inherent to wide-area control of swing dynamics in 

today’s highly variable power grid, and the possibility for undesirable interactions among multiple 

control systems.  Our study also provides a set of guidelines for understanding the properties of 

control channels and interactions among controllers, which we hope will be a starting point toward 

effective algorithms for coordination of controls in the grid. 

 

The research developed in this project is partially described in the following publications and 

reports. 

 

Project Publications: 

[1] Koorehdavoudi, Kasra, Sandip Roy, Thibault Prevost, Florent Xavier, Patrick Panciatici, 

and Vaithianathan Mani Venkatasubramanian. "Input-output properties of the swing 

dynamics for power transmission networks with hvdc modulation." IFAC-

PapersOnLine 50, no. 1 (2017): 5442-5447. 

[2] M. Hatami, V. Venkatasubramanian, S. Roy, P. Panciatici, T. Prevost, F. Xavier, ``Study 

of Non-minimum Phase Zeros in Test Power Systems from Wide-Area Control Designs,” 

in 2017 IREP Symposium, Porto, Portugal, August 2017. 

[3] Koorehdavoudi, Kasra, Sandip Roy, Jackeline Abad Torres, and Mengran Xue. 

"Interactions among control channels in dynamical networks." In 2017 IEEE 56th Annual 

Conference on Decision and Control (CDC), pp. 1058-1063. IEEE, 2017. 

[4] Koorehdavoudi, Kasra, Sandip Roy, Jackeline Abad Torres, and Mengran Xue. "Impacts 

of high and low gain controllers on remote channels in dynamical networks." In 2018 IEEE 

Conference on Decision and Control (CDC), pp. 3680-3685. IEEE, 2018. 
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1. Introduction 

1.1 Background 

The growing stress on and variability of the bulk power grid are motivating the development of 

new control systems for damping wide-area oscillations.  At the same time, new technologies -- 

including synchrophasors, new power electronics, and pervasive communications – are enabling 

the deployment of heterogeneous new feedback controls.  In consequence, the bulk grid is evolving 

toward a ``controls-rich” system, which has a wide array of control systems capable of influencing 

the grid swing dynamics.  Wide-area control capabilities that are being deployed more frequently 

in the grid include HVDC modulation and various Flexible AC Transmission (FACTS) controllers, 

among others.   

1.2 Overview of the Problem 

New control capabilities being deployed in the power grid have the potential for improving its 

dynamics, by increasing efficiency while also reducing the frequency of disruptions.  However, 

appropriate design and operation of grid controls is challenging for several reasons.  First, as the 

penetration of intermittent renewables and distributed generation increases, the operating profile 

of the grid (including generation, load, congestion, and inertia patterns) is becoming increasingly 

variable.  In consequence, the impacts of new controls on the swing dynamics must be evaluated 

across the wide range of possible operating conditions, which may be computationally extremely 

taxing given the complexity of large-scale dynamic simulations.  This computational challenge is 

further amplified when controller design is required, since simulations must also be performed 

over the design space.  Second, the design and management of grid controls increasingly requires 

understanding and shaping interactions among multiple control system, as heterogeneous new 

controls are deployed; managing such control-system interactions is further complicated by the 

fact that different authorities may be responsible for the operation and tuning of the various control 

systems.  Third, the management of grid controls is challenging because of the difficulty in gaining 

real-time situational awareness of grid dynamics under ambient operational conditions. 

 

While there is an extensive literature regarding the swing dynamics of the bulk power grid [1], 

these studies do not directly address the challenges listed above, so as to enable systematic analysis 

and design of controls.  One main reason is that formal analysis has almost entirely focused on the 

modes of the linearized swing dynamics, which only give insight into the internal properties of the 

dynamics.  Control-system analysis and design require characterizing input-output properties of 

the dynamics, and so require a full input-output or transfer-function analysis rather than only a 

modal viewpoint.  Specifically, a transfer-function analysis is needed for evaluating the putative 

impacts of planned controls, and thus guiding their design.  

1.2.1 Main Issues 

Assessing new control systems deployed in the bulk grid to damp oscillations requires 

investigating the following main issues: 
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1)  Structural and topological characterization of input-output channels or transfer functions 

in the classical model for the swing dynamics. 

2) Analysis of control channel interactions in the classical model.  That is, the impact of one 

deployed control (e.g. HVDC modulation) on a second control channel needs to be 

characterized. 

3) Assessment of input-output channels, and channel interactions, for more sophisticated 

models for the swing dynamics. 

1.2.2 Secondary Issues 

To address the primary issues revolving around assessment of controls for swing dynamics in the 

bulk power grid, some secondary issues regarding modeling of grid dynamics and controls also 

need to be addressed.  One particular need is to appropriately represent emerging grid controls 

within the scope of network models for the swing dynamics.  In this study, we focused particularly 

on representing HVDC modulation within models for the swing dynamics.  While HVDC lines 

have been extensively deployed, modulation has only been used in very limited circumstances, 

and hence their impacts on the swing dynamics have not been fully modeled.  In the scope of our 

effort, we propose such models.  We also tangentially discuss models for other power-electronics-

enabled controls, but do not develop such models in detail.  

1.3 Report Organization  

The report is organized in two sections.  The analysis of control channels and control interactions 

in the classical model for the swing dynamics is presented in Section 2.  Simulation-based analyses 

of control channels for more sophisticated models of the swing dynamics are described in Section 

3. 



3 

2. Assessing HVDC Modulation Impacts on Remote Grid Channels 

2.1 Scope and Motivation 

The bulk power transmission network is being subject to increasing stress and uncertainty due to 

renewables integration, changing regulatory paradigms, and use of new devices and technologies 

(e.g., power electronics, syncrophasors), among other reasons [2-5]. This increased stress and 

variability is complicating the analysis and control of transients/oscillations in the grid, and 

necessitating network-theoretic analysis of disruptions as well as wide-area control strategies. 

Analyzing disruptions and designing wide-area controls, at its essence, requires understanding 

input-output properties of the power network’s swing dynamics. There is a particular interest in 

developing structural and graph-theoretic insights into the input-output dynamics, as a stepping 

stone toward practical analysis and control design. In previous work, we developed structural and 

graph-theoretic results into the zeros of input-output channels for the classical swing dynamics 

model [6], so in this article we expand this analysis framework to encompass networks with 

controlled high-voltage direct-current (HVDC) lines. 

 

The analysis of input-output dynamics developed here informs, particularly, the deployment and 

design of controllers for HVDC lines. While the bulk power transmission network primarily uses 

alternating current (AC), HVDC lines are appealing for transmission of large amounts of power 

over long distances. Because they can alter operating points significantly, HVDC lines can have 

large impact on the stability and transient characteristics of power networks. Also, the integration 

of solid-state power electronics and synchrophasors is enabling sophisticated fast control of HVDC 

lines (known in the literature as HVDC  modulation). However, experience shows that HVDC 

modulation needs to be undertaken with care, since these controls can introduce oscillations or 

leave the network susceptible to disruptions (see [9,10]). The analysis of control channels pursued 

here directly informs the design and analysis of HVDC modulation. 

 

The research described here contributes to a recent research thrust on characterizing the zeros of 

canonical linear network models from a graph-theory perspective [11-15]. The initial studies in 

this direction were focused on models with scalar subsystem dynamics, and were subsequently 

extended to include models with homogeneous vector subsystems. Recently, we extended these 

studies to obtain algebraic and preliminary graph-theoretic results for the classical swing-dynamics 

model [6]. Here, we study the impact of in-built control schemes (specifically, HVDC controls) 

on input-output channel characteristics. Our research also builds on a wide literature which 

approach power-system small-signal and transient analysis from a graph-theory perspective (see 

e.g. [16-19]). 

 

The rest of the article is organized as follows. In Section 2, the input-output swing-dynamics model 

is reviewed and enhanced to represent HVDC modulation. In Section 3, several graph-theoretic 

results on the zeros are given. An example is then presented to illustrate the results, and give an 

indication of parameter thresholds that distinguish minimum-phase and non-minimum-phase 

behaviors (Section 4).  
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2.2 Modeling 

Input-output properties of the classical linearized swing dynamics model for the power 

transmission network are considered. The classical linearized swing dynamics model uses two 

state variables (the electrical angle and frequency relative to a reference) at the buses with inertial 

generators. A single input-output channel is imposed on the model, where the input is abstractly 

modeled as a power injection/extraction at a single bus, and the output is a frequency or angle 

measurement at a single (possibly different) bus. Formally, the following model is considered:   

 [𝛿̇
𝜔̇

] = [
0 𝐼
−𝐻−1𝐿(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 (1) 

 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] 

where 𝛿(𝑡) = [𝛿1 ⋯ 𝛿𝑛]𝑇 represents the differential electrical angles at the 𝑛 buses at time 𝑡 

(relative to a nominal trajectory), 𝜔(𝑡) = [𝜔1 ⋯ 𝜔𝑛]𝑇 represents the differential electrical 

frequencies at the buses, the notation 𝑒𝑞 represents a 0-1 indicator vector with 𝑞th entry equal to 

1, the scalar input 𝑢(𝑡) is a power-injection signal at bus 𝑖, and the scalar output 𝑦(𝑡) is the 

frequency at bus 𝑗. The model is defined by the following parameters: the positive diagonal matrix 

𝐻 represents the inertias of the generators at the buses, the positive diagonal matrix 𝐷 captures the 

dampings of the generators, and the matrix 𝐿(Γ) is a symmetric positive-definite or positive semi-

definite matrix that entirely specifies the interactions among the buses. Importantly, the zero 

pattern and nonzero entries in the matrix 𝐿(Γ) are commensurate with the topology of the power 

transmission network (equivalently, electrical connectivity among the buses), as specified by the 

graph Γ. Specifically, Γ is defined to be an undirected weighted graph whose vertices represent the 

buses. The edge weights are the susceptances of the lines connecting the buses, provided that the 

linearization is around a unloaded operating condition; when the linearization is around a non-zero 

operating point, the edge weights are instead the susceptances scaled by the cosine of the nominal 

electrical-angle difference between the vertices ([20]); these “effective susceptances" capture the 

changed stiffnesses in the swing dynamics. Each off-diagonal entry of the matrix 𝐿(Γ) equals the 

negative of the edge weight between the corresponding vertices if there is an edge, and equals zero 

otherwise. The diagonal entries of 𝐿(Γ) are positive, and at least as large as the absolute sum of 

the off-diagonal entries on the corresponding row or column. We assume throughout the article 

that Γ is connected. 

 

For convenience, we use the notation 𝐴 for the state matrix of the system, i.e. 𝐴 =

[
0 𝐼
−𝐻−1𝐿(Γ) −𝐻−1𝐷

]. We also find it convenient to define the state vector of the swing-

dynamics model as  𝑥 = [
𝛿
𝜔

]  . It can easily be checked that the matrix 𝐴 is stable, in these sense 

that all eigenvalues are in the closed left half plane with no defective eigenvalues on the 𝑗𝜔-axis. 

In fact, it can be checked that all eigenvalues of 𝐴 are in the open-left half plane (OLHP), except 

that there is one eigenvalue at the origin in the special case that 𝐿(Γ) is a true Laplacian matrix (all 

row sums are zero). The graph Γ is referred to as the  network graph. Also, the nodes in the 

network where the input is applied and the output is measured (𝑖 and 𝑗, respectively) are referred 

to as the input and output nodes, and the corresponding vertices in the graph are referred to the the 

input and output vertices. The simplified model for the swing dynamics considered here is widely 

used in the power-engineering community, and constitutes a linearization of nonlinear Kuramoto 

oscillator-type model for the swing dynamics ([16-21]). 
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The formulation assumes that all buses have inertial generation associated with them, or in other 

words that the loads-only buses have been reduced via solution of the algebraic equations in the 

swing dynamics (which requires a Kron reduction). The graph Γ represents the interconnectivity 

of this reduced model, not the original topology including the load buses. We focus on this case 

with the aim of understanding input-output dynamics among the major swinging components of 

the wide-area network. Developing analyses of zeros in terms of the original rather than reduced 

network model is left to future work. 

 

Here, the classical swing-dynamics model is extended to capture the fast dynamics of high-voltage 

direct-current (HVDC) lines in the network. The effects of HVDC line controllers on small-signal 

behaviors are more intricate, and require modifying the classical swing-dynamics modeling 

framework. Since controllers across HVDC lines have been shown to influence small-signal 

properties, a major focus of this work will be to model and evaluate possible HVDC line 

controllers. Broadly, the fast controlled HVDC line included network is different from classical 

swing-dynamics model by having 1) new state and/or 2) new dependencies between states (new 

nonzero entries in the state matrix). Small signal models for fast controlled HVDC have been 

described in ([26-28]). Here, four control schemes of increasing sophistication are modeled. We 

focus particularly on the case that the transfer function between the two ends of the HVDC line is 

of interest, i.e. the HVDC line is integrated between the input and output. This case is of particular 

interest because it shows whether or not inclusion of a HVDC line can improve small-signal 

characteristics across a channel of interest (typically one that is highly congested), and allow 

analysis of disruptions associated with the HVDC line. Here are the models: 

 

1) A HVDC line with fixed power (no feedback regulation of power) does not alter the small-

signal model, beyond changing graph edge weights (stiffnesses) due to the altered power flow. 

 

2) a HVDC line with a general linear controller is considered. In this case, the power input is 

regulated using a linear feedback of the electrical phase angle difference across the DC line (in 

Laplace form 𝑃𝑞,𝑟(𝑠) = 𝑘𝐻(𝑠)(𝛿𝑞(𝑠) − 𝛿𝑟(𝑠)), where 𝑃𝑞,𝑟 is the differential power injection to 

bus 𝑟 and extraction from bus 𝑞). Representing linear controllers in the swing-dynamics state-

space model requires some new state variable, and new connections among state variables. The 

following is the linear swing-dynamics model with linear controller included. The full swing 

model can be expressed by enhancing the original model to include an additional dynamic 

feedback as [
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
−𝐻−1𝑒𝑞,𝑟

] 𝑃𝑞,𝑟 + [
0
𝑒𝑖

] 𝑢 and the feedback in 

Laplace domain 𝑃𝑞,𝑟(𝑠) = 𝑘𝐻(𝑠)(𝛿𝑞(𝑠) − 𝛿𝑟(𝑠)) where the notation 𝑒𝑞,𝑟 represents a 0-1 

indicator vector (with length 𝑛) with 𝑗th entry equal to 1, 𝑖th entry equal to −1, and the others 

equal to 0. In addition, the notation 𝑒𝑞 represents a 0-1 indicator vector (with length 𝑛) with 𝑞th 

entry equal to 1 and the others equal to 0. 

 

For example, a proportional-derivative controller may be used for HVDC modulation. In this case, 

the power input is regulated using a proportional-derivative (PD) feedback of the electrical phase 

angle difference across the DC line (in Laplace domain, 𝑃𝑞𝑟(𝑠) = (𝑘𝑝 + 𝑘𝑑𝑠)(𝛿𝑟(𝑠) − 𝛿𝑞(𝑠)), 

where 𝑃𝑞𝑟 is the differential power injection to bus 𝑞 and extraction from bus 𝑟). A HVDC line 

with PD controller can be captured in the swing-dynamics model, by introducing new non-zero 

entries in the 𝐿 matrix, and changing the 𝐷 matrix. Specifically, if a PD-controlled HVDC line is 



6 

included between buses 𝑞 and 𝑟, the linear swing dynamic model is modified by: 1) adding 𝑘𝑝 to 

the entries 𝐿𝑞,𝑞 and 𝐿𝑟,𝑟 of 𝐿; 2) adding −𝑘𝑝 to the entries 𝐿𝑞,𝑟 and 𝐿𝑟,𝑞 of 𝐿; 3) adding 𝑘𝑑 to the 

entries 𝐷𝑞,𝑞 and 𝐷𝑟,𝑟 of 𝐷; 4) adding −𝑘𝑑 to entries 𝐷𝑞,𝑟 and 𝐷𝑟,𝑞 of 𝐷. We call the updated 𝐿 and 

𝐷 matrices as 𝐿𝐷𝐶 and 𝐷𝐷𝐶, respectively. Hence, the linear model for this system is:  [
𝛿
𝜔

] =

[
0 𝐼
−𝐻−1𝐿𝐷𝐶(Γ) −𝐻−1𝐷𝐷𝐶

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 and 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] . 

 

In practice, measurement delay may arise in HVDC line compensators, since they use remote 

measurements to govern the line power flow. In order to study the impact of the delay on the 

presence or absence of non-minimum-phase dynamics, the existing dynamic model is updated to 

represent the delay. For this initial effort, non-minimum phase transfer function approximations 

like (1,0)-Pade (1,1)-Pade approximations for the delay are used in the transfer-function analysis. 

2.3 Results 

Structural and graph-theoretic characterizations of the input-output swing-dynamics models 

enhanced with HVDC line controllers are obtained. The single-input single-output models 

considered here are fully characterized by their transfer functions. The transfer-function poles are 

internal properties of the state dynamics. These modal dynamics have been very extensively 

characterized in the power literature, including from a graph-theoretic perspective, and provide 

basic insight into the power network’s small-signal dynamics. However, control design and 

disturbance analysis for dynamical systems crucially depend on the (finite) zeros of the transfer 

function, which are functions of the input-output channel in addition to the state dynamics. The 

importance of the zeros to control design and analysis stems from the fact that they are invariant 

to feedback, and hence their locations place fundamental limits on control performance. 

Particularly, control performance is distinguished by the presence and absence of right half plane 

(nonminimum phase) zeros. Thus, as wide-area control of the power transmission networks 

becomes increasingly feasible, and the networks are subject to increasing variability and 

disruption, characterizing the zeros of the swing-dynamics model is increasingly important. 

Numerical computation of the zeros for the classical model has been addressed by N. Martins and 

co-workers (see [8]) but few structural results are available, and the influences of dynamical 

components (e.g., HVDC line controllers, VSCs, etc) on the zeros are not well understood. 

 

The main purpose of this section is to develop structural and graph-theoretic insights into the zeros 

of the swing-dynamics models enhanced models with HVAC controllers. The goal is to see how a 

modulated HVDC line will affect the zeros of the input-output model. A particular focus is on 

developing graph-theoretic sufficient conditions for the dynamics to be minimum phase (all finite 

zeros in the open left-half-plane) or non-minimum phase. The graph-theoretic analyses of zeros 

developed here are based on an algebraic transformation of linear systems known as the  special 

coordinate basis. The special coordinate basis involves input, state, and output transformations of 

a linear system, which exposes its finite- and infinite- zero structures (see [22]). Specifically, the 

special coordinate basis separates a linear dynamics into integrator chains from inputs to outputs 

(which specify the infinite-zero structure), and a  zero dynamics connected in feedback which 

captures the finite zero structure. Importantly, the transformation thus enables computation of the 

zeros as the eigenvalues of a  zeros state matrix. This zeros state matrix turns out to equal a sparse 
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perturbation of a submatrix of the system’s state matrix, where the nonzero entry locations in the 

perturbation are tied to the network’s graph. This eigenvalue formulation for the zeros has been 

used to obtain several preliminary graph-theoretic results for the nominal swing-dynamics model 

in ([24]). The process requires extending the application of the special-coordinate-basis to 

encompass the models with HVDC controls. 

 

For improved readability, proofs are placed after the presentation of results, in Section 2.6.  

2.3.1 Analysis of Networks with Controlled HVDC Lines 

Graph-theoretic results on the zeros of the swing-dynamics model are developed, for the case 

where controlled HVDC lines are present in the transmission network. Modern power transmission 

networks commonly include HVDC lines for stability and cost purposes. It is important to 

understand whether the integration of HVDC lines, and particularly the controls used on these 

lines, influence input-output behaviors in a power transmission network. In general, addition of an 

HVDC line may alter input-output channel properties throughout the network. As a first step, we 

study how the control on the HVDC line impacts the transfer function across the line (i.e., the 

transfer function when the input is the power injection on one end of the line, and the output is the 

frequency at the other end). This case is of particular interest because it gives insight into whether 

or not addition of an HVDC line between two buses improves the transfer characteristics for this 

channel, and also indicates the susceptibility of the HVDC control to disruption. In the following 

three theorems, we discuss the effect of HVDC line on zeros for different controllers applied across 

the line, focusing on specifying conditions that guarantee minimum-phase dynamics. 

 

Theorem 1  Consider the input-output swing dynamics model, in the case that there is a 

proportional-controlled HVDC line between the input and the output buses. If a sufficiently large 

proportional gain 𝑘 is used on the HVDC line, the zeros of the system are in the OLHP except one 

zero at 𝑠 = 0.  

 

Theorem 2  Consider the input-output swing-dynamics model, with PD-controlled HVDC line 

between the input and the output vertices. If either the derivative gain 𝑘𝑑 or the proportional gain 

𝑘𝑝 is large enough, the zeros of the model are in the OLHP except one zero at 𝑠 = 0. 

 

Theorem 3  Consider the input-output swing dynamics model, with a lead-compensated HVDC 

line between the input and output (specifically, a compensator of the form 𝑃𝑖,𝑗 = 𝑘
1+𝑇1𝑠

1+𝑇2𝑠
(𝛿𝑖 − 𝛿𝑗)). 

If the product 𝑘𝑇1 is sufficiently large (i.e. either 𝑘 or 𝑇1 is sufficiently large) and 𝑇2 is sufficiently 

small, the zeros of the system are in the OLHP except one zero at 𝑠 = 0. 

 

The impact of an HVDC line with strong control on other channels in the networks, where the 

input and output are not the ends of the HVDC, is also of significant interest. Since the HVDC line 

in this case can make alternative long paths from the input to the output strong, there is a possibility 

that the HVDC modulation may cause other channels to become non-minimum phase. The 

following theorems investigate the effect of an HVDC line on other channels in the networks, 

where the input and output might not be the ends of the HVDC. The following two theorems 
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discuss the cases where proportional-controlled HVDC line does not change the minimum phase 

behavior of the input-output swing dynamics channel. 

 

Theorem 4  Consider the input-output swing-dynamics model (1) for an arbitrary graph 𝛤. 

Assume that there is a proportional-controlled HVDC line between the two vertices 𝑟 and 𝑞 (i.e. 

𝑃𝑞,𝑟 = 𝑘(𝛿𝑞 − 𝛿𝑟)). Suppose that in graph 𝛤, there is a single path between the input and output 

vertices. The input-output swing-dynamics model (1) with described HVDC modulation has all 

zeros in the OLHP except one zero at 𝑠 = 0 if in graph 𝛤𝐷𝐶 there is a single path between the input 

and output vertices, i.e. adding an edge between vertices 𝑟 and 𝑞 in 𝛤 does not add a second path 

between the input and output vertices.  

 

Next theorems require some further graph-theoretic notation for the network input-output model 

(1). In particular, let us a set of three vertices 𝑉𝑑 = {𝑖, 𝑗, 𝑛} in the network graph. The vertex 𝑟 is 

said to be a  disjointing vertex of the set 𝑉𝑑 if following paths pass through or reach the vertex 𝑟: 

1) all paths from vertex 𝑖 to vertex 𝑗, 2) all paths from vertex 𝑖 to vertex 𝑛, 3) all paths from vertex 

𝑗 to vertex 𝑛. We note that the disjointing vertex may be one of the vertices in the set 𝑉𝑑. The 

concept of a disjointing vertex is illustrated in Fig. 1. In this example, vertex 1 is a disjointing 

vertex for the set 𝑉𝑑 = {1,3,15}, vertex 2 is a disjointing vertex for both sets 𝑉𝑑1
= {1,2,15} and 

𝑉𝑑2
= {1,5,15}. 

 

   

 

Figure 1: Graph Γ with several disjointing vertices, for example, vertex 1 is a disjointing vertex 

for the set 𝑉𝑑 = {1,3,15}.    

Theorem 5  Consider the input-output swing-dynamics model (1) for an arbitrary graph 𝛤. 

Assume that there is a proportional-controlled HVDC line between the two vertices 𝑟 and 𝑞 (i.e. 

𝑃𝑞,𝑟 = 𝑘(𝛿𝑞 − 𝛿𝑟)). Suppose that in associated graph 𝛤, there is a disjointing vertex for both sets 

𝑉𝑑1
= {𝑖, 𝑗, 𝑞} and 𝑉𝑑2

= {𝑖, 𝑗, 𝑟}. The input-output swing-dynamics model (1) with described 

HVDC modulation has zeros in ORHP similar to the input-output swing-dynamics model (1) 

without HVDC modulation.  

 

Now we discuss the case where HVDC lines with low-gain proportional controllers maintain the 

phase property. We note that an HVDC line with low-gain proportional controller necessarily only 

move system eigenvalues, and hence poles of any defined channel, by a small amount. In contrast, 
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they can introduce/remove zeros or cause zeros to jump in general. The graph-theoretic condition 

in the following Theorem is sufficient to guarantee that this does not happen, and hence that the 

phase property is maintained. 

 

Theorem 6  Consider the input-output swing-dynamics model (1) for an arbitrary graph 𝛤. 

Assume that there is a proportional-controlled HVDC line between the two vertices 𝑟 and 𝑞 (i.e. 

𝑃𝑞,𝑟 = 𝑘(𝛿𝑞 − 𝛿𝑟)). Suppose that the distance from the input to output vertex in both associated 

graphs 𝛤 and 𝛤𝐷𝐶 is the same, i.e. adding an edge between vertices 𝑟 and 𝑞 in 𝛤 does not change 

the distance between input and output vertices. For all sufficiently small gains 𝑘, the input-output 

swing-dynamics model (1) with described HVDC modulation has zeros in the ORHP if the input-

output swing-dynamics model (1) without HVDC modulation has zeros in the ORHP.  

 

The next two Theorems discuss the cases where a modulated HVDC line with low or high gain 

controller will cause ORHP zeros. First, a general condition is given such an HVDC line with low-

gain dynamic controller change the phase property of the system to nonminimum phase by 

introducing ORHP zeros. The result shows that the ORHP zeros will be introduced when the 

location of the modulated HVDC line and the relative degree of the controller satisfy some 

conditions: 

 

Theorem 7  Consider the input-output swing-dynamics model (1), also assume a controlled HVDC 

line between the vertex 𝑞 and 𝑟, i.e. 𝑃𝑞,𝑟 = 𝑘𝐻(𝑠)(𝛿𝑞 − 𝛿𝑟) where the transfer function 𝐻(𝑠) has 

the relative degree equal to 𝑛𝑐. Suppose in graph 𝛤, we have 𝑑𝑖𝑞 < 𝑑𝑖𝑟 and 𝑑𝑟𝑗 < 𝑑𝑞𝑗. The input-

output swing-dynamics model (1) with HVDC modulation has zeros in the ORHP:   

    • for sufficiently small positive controller gain 𝑘, if (𝑑𝑖𝑞 + 𝑑𝑟𝑗 < 𝑑𝑖𝑗), (2𝑑𝑖𝑞 + 2𝑑𝑟𝑗 + 𝑛𝑐 +

5 ≤ 2𝑑𝑖𝑗), and (𝑛𝑐 ≥ −4).  

    • for sufficiently small negative controller gain 𝑘, if (𝑑𝑖𝑞 + 𝑑𝑟𝑗 < 𝑑𝑖𝑗), (2𝑑𝑖𝑞 + 2𝑑𝑟𝑗 + 𝑛𝑐 +

3 ≤ 2𝑑𝑖𝑗), and (𝑛𝑐 ≥ −2).  

  

Next, a simple result is given which shows that a modulated HVDC line with high-gain 

nonminimum-phase controller or a low-gain unstable controller necessarily makes all remote 

channels nonminimum phase by introducing ORHP zeros. While it is not typical to use 

nonminimum-phase or unstable controllers, there is some motivation for studying these cases. 

First, the presence of delays and other unmodeled dynamics in the controller implementation may 

introduce nonminimum-phase characteristics in the feedback block, whose impacts across the 

network are of interest. Also, in some special cases, unstable or nonminimum-phase controllers 

are indeed needed. The analyses for these special cases are also a starting point for characterization 

of more commonly used controllers, developed subsequently. 

 

Theorem 8  Consider the input-output swing-dynamics model (1), also assume a controlled HVDC 

line between the vertex 𝑞 and 𝑟, i.e. 𝑃𝑞,𝑟 = 𝑘𝐻(𝑠)(𝛿𝑞 − 𝛿𝑟). The input-output swing-dynamics 

model (1) with HVDC modulation has zeros in the ORHP:   

    • for sufficiently large gain 𝑘, if the transfer function 𝐻(𝑠) is non-minimum-phase.  

    • for sufficiently small gain 𝑘, if the transfer function 𝐻(𝑠) is unstable.  
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The main concept underlying the result is that the zeros of remote channels approach the HVDC 

line controller’s zeros when a high-gain feedback is used. Also, the zeros of remote channels 

approach the HVDC line controller’s poles when a low-gain feedback is used. For the cases 

discussed in the previous theorem, we note that a high-gain control also can make the system 

unstable (i.e. poles are driven into the right half plane), however, nonminimum-phase behaviors 

may appear before instability occurs in these circumstances. 

 

In practice, HVDC line controllers may be subject to measurement delay, since they use remote 

measurements to govern the line power flow. In the next theorems, we study the impact of the 

delay on the presence or absence of non-minimum-phase dynamics, using (1,0) and (1,1) Pade 

approximations for the delay in the transfer-function analysis. The main outcome of this analysis 

is show that proportional and lag compensation schemes with sufficient gain yield non-minimum-

phase transfer functions, if measurement delays are present. 

 

Theorem 9  Consider the input-output swing-dynamics model (1), also assume a controlled HVDC 

line between the vertex 𝑞 and 𝑟, i.e. 𝑃𝑞,𝑟 = 𝑘𝐻(𝑠)(𝛿𝑞 − 𝛿𝑟). For sufficiently large control gain 𝑘, 

input-output swing-dynamics model (1) with HVDC modulation is non-minimum-phase if 

controller is subject to measurement delay and it can be approximated by a non-minimum-phase 

transfer function 𝐻(𝑠).  

 

Theorem 10  Consider the input-output swing-dynamics model with proportional-controlled 

HVDC line between input and output, where the controller is subject to a measurement delay 𝑇1. 

The compensator with delay can be approximated as 𝑃𝑖,𝑗 = 𝑘(1 − 𝑇1𝑠)(𝛿𝑖 − 𝛿𝑗), where a (1,0) 

Pade approximation has been used for the delay. If the proportional gain 𝑘 of the HVDC line is 

sufficiently large, one of the zeros of the system will be in the ORHP, i.e. the system will be non-

minimum-phase.  

 

Theorem 11  Consider the input-output swing-dynamics model with proportional-controlled 

HVDC line between input and output, where the controller is subject to a measurement delay 𝑇𝑑. 

The compensator with delay can be approximated as 𝑃𝑖,𝑗 = 𝑘
(1−0.5𝑇𝑑𝑠)

(1+0.5𝑇𝑑𝑠)
(𝛿𝑖 − 𝛿𝑗), where a (1,1)-

Pade approximation has been used for the delay. If the proportional gain 𝑘 of the HVDC line is 

sufficiently large and delay 𝑇𝑑 is sufficiently small, one of the zeros of the system will be in the 

ORHP, i.e. the system will be non-minimum-phase.  

 

Theorem 12  Consider the input-output swing dynamics model with lag-controlled HVDC line 

between input and output, where the controller is subject to a measurement delay 𝑇𝑑. The 

compensator with delay can be approximated as 𝑃𝑖,𝑗 = 𝑘
1−𝑇𝑑𝑠

1+𝑇2𝑠
(𝛿𝑖 − 𝛿𝑗), where the (1,0) Pade 

approximation has been used for the delay. If 𝑘𝑇𝑑 is sufficiently large (i.e. either 𝑘 or 𝑇𝑑 are 

sufficiently large), and 𝑇2 is sufficiently small, one of zeros of the system will be in the ORHP, so 

the system is non-minimum-phase.  

 

While the analyses here are based on the Pade approximation, we hypothesize that the results carry 

through to an exact model of the delay. We expect to pursue this analysis in further work. 
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2.4 Example 

A small-scale example with six buses is used to illustrate the results on transmission networks with 

HVDC modulation (Figure 2). The channel of interest comprises an input at bus 1 and output at 

bus 3. The generator at each bus has inertia ℎ = 1 and damping 𝑑 = 0.2, and the edge weights 

(effective line susceptances) are shown in the figure. Let us assume that there is a HVDC line 

between bus 1 and 3. Out goal is to study the effect of the HVDC controller’s parameters on the 

zero location. In addition, we study how the threshold on the control parameters for minimum-

phase behavior depends on other characteristics of the network (e.g., damping, susceptances). To 

examine these dependencies, in each subplot in Fig. 3 and Fig. 4, we plot the largest real part 

among the zeros as a function of a control parameter, for different values of the network’s 

parameters. In Fig. 3, the plots in different colors represent different effective susceptances 𝛽. In 

Fig. 4, the plots in different colors represent different damping levels (𝑑), which are uniform for 

all generators in the network. For convenience, as discussed before, the zeros of system are 

computed for the case that the output is 𝛿3 instead of 𝜔3 (since the frequency output will simply 

introduce one further zero at the origin).  

 

 

Figure 2: A 6-bus example network 

 

Second, a lead-compensated HVDC line is considered. First, two controller parameters are fixed 

at 𝑘 = 0.2 and 𝑇2 = 0.2, and the effect of 𝑇1 on the zero location is investigated, see Figure 3(c) 

and Figure 4(c). As expected, the system is minimum phase for large 𝑇1. Alternately, two 

parameters are fixed at 𝑘 = 0.2 and 𝑇1 = 20, and the effect of the remaining parameter 𝑇2 is 

investigated. As expected, the system is minimum phase for small 𝑇2, see Figure 3(d) and Figure 

4(d).  
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Figure 3: The dependences of the dominant zero’s location on the controller parameters are 

shown, for three different values of the effective line susceptance. 
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2.5 Discussion 

Input-output properties (specifically, zero locations) of the bulk power system’s swing dynamics 

have been examined from a graph-theory standpoint. The impacts of HVDC modulation on the 

zeros has also been studied. The analyses show that the zero locations, and particular the presence 

or absence of non-minimum-phase zeros, is strongly connected to the network’s topology and 

structural parameters. Strong HVDC controllers (specifically, proportional and proportional-

derivative controllers) make collocated input-output channels minimum-phase, which indicates 

the benefit of such modulation for control of fast dynamics. However, measurement delays on 

these strong HVDC controllers are shown to yield non-minimum-phase dynamics, which confirms 

Figure 4: The dependences of the dominant zero’s location on the controller’s 

parameters are shown, for three different damping levels. 
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that HVDC modulation must be undertaken with care. An important direction of future work is 

to understand how HVDC integration influences other control channels in the transmission 

network. 

2.6 Proofs of Formal Results 

Proof of Theorem 1: The swing dynamics upon addition of a proportional-controlled HVDC line 

is governed by:   
[
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿𝐷𝐶(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 (2) 

𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

], 

  where 𝐿𝐷𝐶 is defined in Section 2. We notice that the model with the proportional-controlled 

HVDC line has the same form as the model without the HVDC line, but with an additional effective 

susceptance 𝑘 included in the model between 𝑖 and 𝑗 (the input and output, which are also the ends 

of the HVDC line). In particular, we notice that 𝐿𝐷𝐶 maintains the grounded Laplacian structure 

of 𝐿, but with an additional HVDC line included. Thus, if the gain 𝑘 is large enough, it follows 

directly from Theorem 5 in [4] that the dynamics is minimum phase. ◼  

Proof of Theorem 4: The described HVDC line with proportional control can be captured in the 

input-output swing-dynamics model (1) by including additional non-zero entries in 𝐿 matrix, 

identically to a newly added AC line. Precisely, when a proportional-controlled HVDC line with 

gain 𝑘 is included between buses 𝑞 and 𝑟, the nominal linear swing dynamic models is modified 

by adding 𝑘 to 𝐿𝑞,𝑞 and 𝐿𝑟,𝑟 and adding −𝑘 to 𝐿𝑞,𝑟 and 𝐿𝑟,𝑞. In this case, the linearized model of 

the HVDC line is identical to that of an AC line. Using the notation 𝐿𝐷𝐶 for the modification of 

the 𝐿 matrix, the swing-dynamics model becomes:  [
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿𝐷𝐶(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 

and 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] . 

The associated graph Γ𝐷𝐶 for this system can be developed by adding an edge between vertices 𝑞 

and 𝑟 in graph Γ. Based on the result from earlier theorems, the input-output swing-dynamics when 

there is a single path between input and output vertices in graph Γ𝐷𝐶, then the input-output swing-

dynamics model has all zeros in the OLHP, except one zero at 𝑠 = 0. ◼  

Proof of Theorem 5: The described HVDC line with proportional control can be captured in the 

input-output swing-dynamics model (1) by including additional non-zero entries in 𝐿 matrix, 

identically to a newly added AC line. Precisely, when a proportional-controlled HVDC line with 

gain 𝑘 is included between buses 𝑞 and 𝑟, the nominal linear swing dynamic models is modified 

by adding 𝑘 to 𝐿𝑞,𝑞 and 𝐿𝑟,𝑟 and adding −𝑘 to 𝐿𝑞,𝑟 and 𝐿𝑟,𝑞. In this case, the linearized model of 

the HVDC line is identical to that of an AC line. Using the notation 𝐿𝐷𝐶 for the modification of 

the 𝐿 matrix, the swing-dynamics model becomes:  [
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿𝐷𝐶(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 

and 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] . In addition, the associated graph Γ𝐷𝐶 for this system can be developed by 

adding an edge between vertices 𝑞 and 𝑟 in graph Γ. In following we discuss matrices 𝐴𝑛𝑎
, 𝐴𝑞,

and 𝐴𝑎𝑎 for state matrix 𝐴 with 𝐿𝐷𝐶. 
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Considering the assumption about existing a disjointing vertex for both sets 𝑉𝑑1
= {𝑖, 𝑗, 𝑞} and 

𝑉𝑑2
= {𝑖, 𝑗, 𝑟}, we can say that in graph Γ𝐷𝐶, there is a vertex on special input-output path called 𝑡 

that is a disjointing vertex for both sets 𝑉𝑑1
 and 𝑉𝑑2

. 

 

To prove the result, we show that the matrix 𝐴𝑎𝑎 is a strictly block upper-triangular matrix that 

has two block submatrices. Only one of the block submatrix might have ORHP eigenvalues which 

the HVDC gain has no effect on this block submatrix. Hence, changing the HVDC gain 𝑘, does 

not move the ORHP zeros of the input-output model. 

 

Let us call vertices included in special input-output path as special vertices, and call the other 

vertices as non-special vertices. In addition, let us call edges in special input-output path as special 

edges and the others as non-special edges. We partition the non-special vertices into two disjoint 

subsets. First subset 𝑉1 contains the non-special vertices that vertex 𝑡 is the special vertex for the 

set of each one of those vertices, vertex 𝑖, and vertex 𝑗. In other word, in graph Γ, each path from 

the vertices in first subset to vertex 𝑖 or 𝑗 will pass through vertex 𝑡. The second subset 𝑉2 contains 

the remaining non-special vertices that are not in the first subset. Without loss of generality, we 

assume that the non-special vertices are ordered according to the subsets (i.e., the vertices in 𝑣1
(1)

 

are first, then those in 𝑣1
(2)

. Assuming this ordering, we notice that 𝐴𝑛𝑎
 is block diagonal matrix, 

with the diagonal blocks 𝐴𝑛𝑎
=

𝐴𝑛𝑎
(𝑉1) 0

0 𝐴𝑛𝑎
(𝑉2)

 corresponding to each subset 𝑣1 and 𝑉2. Let 

us now consider the perturbation 𝐴𝑞. Based on the results from Theorems 3 and 4 in [4], one can 

easily show that the perturbation matrix 𝐴𝑞 has non-zero entries only the the rows corresponding 

to vertices 𝑉2, i.e. 𝐴𝑞 =
𝐴𝑞(𝑉1) 𝐴𝑞(𝑉1,2)

0 0
. Hence the matrix 𝐴𝑎𝑎 can be written as 𝐴𝑎𝑎 =

𝐴𝑛𝑎
(𝑉1) + 𝐴𝑞(𝑉1) 𝐴𝑞(𝑉1,2)

0 𝐴𝑛𝑎
(𝑉2)

. One can easily show that the HVDC gain 𝑘 only affect the 

submatrix 𝐴𝑛𝑎
(𝑉2). In addition, we know that matrix 𝐴𝑛𝑎

 has all eigenvalues in OLHP except one 

in 𝑠 = 0, so submatrix 𝐴𝑛𝑎
(𝑉2) also has all eigenvalues in OLHP and at most one eigenvalue at 

𝑠 = 0. On the other hand, the matrix 𝐴𝑛𝑎
(𝑉1) + 𝐴𝑞(𝑉1) might have eigenvalues in ORHP. Hence, 

by changing the HVDC gain 𝑘, the OLHP zeros of the input-output swing-dynamics model with 

HVDC modulation does not move to the OLHP. ◼  

 

Proof of Theorem 6: Similar to the proof for theorem 4, the proportional controller 𝑃 = 𝑘𝑒𝑞(𝑥𝑗 −

𝑥𝑞) can be captured in the input-output model without controller as:  [
𝛿
𝜔

] =

[
0 𝐼
−𝐻−1𝐿𝐷𝐶(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 and 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

]  

 

From Theorem 1, the zeros of the input-output swing-dynamics model (1) are the eigenvalues of 

the matrix 𝐴𝑎𝑎 = 𝐴𝑛𝑎
+ 𝐴𝑞, where 𝐴𝑛𝑎

 is the principal submatrix of state matrix 𝐴 corresponding 

to the nodes that are not on the special input-output path, and 𝐴𝑞 is a perturbation matrix. Likewise, 

considering 𝐴̃ as the modified state matrix with 𝐿𝐷𝐶, the zeros of the system with HVDC 

modulation are the eigenvalues of the matrix 𝐴̃𝑎𝑎 = 𝐴̃𝑛𝑎
+ 𝐴̃𝑞, where 𝐴̃𝑛𝑎

 is the principal 

submatrix of 𝐴̃ corresponding to the nodes that are not on the special input-output path, and 𝐴̃𝑞 is 
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a perturbation matrix. From the assumption that the distance between the input and output is 

unchanged in the modified graph Γ𝐷𝐶 as compared to the original graph Γ, it follows that both 

models have the same special input-output path. Hence, 𝐴𝑛𝑎
 and 𝐴̃𝑛𝑎

 are corresponding principal 

submatrices of the matrix 𝐴 and 𝐴̃. Thus, as the gain 𝑘 is made small, the entries in 𝐴𝑛𝑎
 and 𝐴̃𝑛𝑎

 

become arbitrarily close to each other. Using the fact that the special input-output path is 

maintained, it can similarly be argued that corresponding expressions can be used to find the 

perturbations 𝐴𝑞 and 𝐴̃𝑞, and in turn that these perturbations are close for small 𝑘 (the details of 

the algebra are omitted to simplify the presentation). It thus follows that the controlled system has 

the same number of zeros as the uncontrolled one, and further the zeros become arbitrarily close 

as the gain 𝑘 is decreased, from continuity of eigenvalues to matrix entries. Thus, the phase 

property is maintained for all sufficiently small gain 𝑘 ( i.e. for all |𝑘| < 𝑓 for some threshold 𝑓 <
∞). ◼  

 

Proof of Theorem 2: To prove this theorem, we develop the special coordinate basis for the 

network with a PD-controlled HVDC line between input and output vertices. For this purpose, first 

we discuss the swing-dynamics model for this case. In case of HVDC modulation with a 

proportional-derivative controller, the power input is regulated using a proportional-derivative 

(PD) feedback of the electrical phase angle difference across the DC line (in Laplace domain, 

𝑃𝑖𝑛(𝑠) = (𝑘𝑝 + 𝑘𝑑𝑠)(𝛿𝑗(𝑠) − 𝛿𝑖(𝑠)), where 𝑃𝑖𝑛 is the differential power injection to bus 𝑖 and 

extraction from bus 𝑗). A HVDC line with PD controller can be captured in the swing-dynamics 

model, by introducing new non-zero entries in the 𝐿 matrix, and changing the 𝐷 matrix. 

Specifically, if a PD-controlled HVDC line is included between buses 𝑖 and 𝑗, the linear swing 

dynamic model is modified by: 1) adding 𝑘𝑝 to the entries 𝐿𝑖,𝑖 and 𝐿𝑗,𝑗 of 𝐿; 2) adding −𝑘𝑝 to the 

entries 𝐿𝑖,𝑗 and 𝐿𝑗,𝑖 of 𝐿; 3) adding 𝑘𝑑 to the entries 𝐷𝑖,𝑖 and 𝐷𝑗,𝑗 of 𝐷; 4) adding −𝑘𝑑 to entries 𝐷𝑖,𝑗 

and 𝐷𝑗,𝑖 of 𝐷. We call the updated 𝐿 and 𝐷 matrices as 𝐿𝐷𝐶 and 𝐷𝐷𝐶, respectively. Hence, the linear 

model for this system is:   

 [
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿𝐷𝐶(Γ) −𝐻−1𝐷𝐷𝐶

] [
𝛿
𝜔

] + [
0
𝑒𝑖

] 𝑢 (3) 

 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] 

  

Now let us develop the special coordinate basis for the network with a PD-controlled HVDC line 

between input and output vertices. In this network, the relative degree of system is equal to 𝑛𝑑 =
2, and therefore 𝑛𝑎 = 2𝑛 − 𝑛𝑑 = 2𝑛 − 2. In using the special coordinate basis, we find it 

convenient to make the following assumptions: 1) For the network with 𝑛 nodes, we assume output 

node is labeled 𝑛 − 1 and the input node which is also connected to the PD-controlled HVDC line 

is labeled 𝑛. 2) Let us assume the following particular ordering of the original state vector and the 

corresponding graph vertices.   

 𝑥 = [𝛿1 𝜔1 𝛿𝑛−2 𝜔𝑛−2 𝛿𝑛−1 𝛿𝑛 𝜔𝑛−1 𝜔𝑛]𝑇 (4) 

  

We can easily find the matrix 𝐴𝑛𝑎
 and the perturbation matrix 𝐴𝑞. In matrix 𝐴𝑛𝑎

, the two last rows 

(rows corresponding to 𝛿𝑛−1 and 𝛿𝑛) are equal to zero for all entries. In the matrix 𝐴𝑞, all the rows 

except the last row are equal to zero. On the other hand, in the last row of 𝐴𝑞, all the entries are 

proportional to 𝑘𝑑
−1. In addition, only the entries of the last two columns in the last row of 𝐴𝑞 are 
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related to 𝑘𝑝. To make it more clear, let us assume that node 𝑛 − 1 is only connected to node 𝑛 −

2 and try to express the dependence of matrix 𝐴𝑞 on 𝑘𝑝 and 𝑘𝑑 as:   

𝐴𝑞 =

[

0 0 0 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0

0 0
𝐿4,5

𝑘𝑑
0

−𝐿4,5+𝑘𝑝

𝑘𝑑

−𝑘𝑝

𝑘𝑑 ]

(5) 

where 𝐿4,5 is the entry of matrix 𝐿 and is negative value. By 𝐴𝑎𝑎 = 𝐴𝑛𝑎
+ 𝐴𝑞, if either the gain

𝑘𝑑 or the gain 𝑘𝑝 is large enough, the 𝐴𝑎𝑎 matrix will become close to a block upper-triangular 

matrix with two diagonal blocks. The size of the first block is (2𝑛 − 4) × (2𝑛 − 4) ,and the size 

of the second block is 2 × 2. In addition, the entries of first block are corresponding entries of 𝐴𝑛𝑎

without any perturbation, so its eigenvalues are all in the OLHP. On the other hand, the second 

block is in the form of [
0 0
−𝐿4,5+𝑘𝑝

𝑘𝑑

−𝑘𝑝

𝑘𝑑

], so its eigenvalues are one at zero 𝑠 = 0 and the other one 

𝑠 =
−𝑘𝑝

𝑘𝑑
 which is in OLHP. In summary, if either the gain 𝑘𝑑 or the gain 𝑘𝑝 is large enough, the 

zeros of the system will be in the OLHP except one zero at 𝑠 = 0. ◼ 

Proof of Theorem 3: To prove this theorem, we develop the special coordinate basis for the 

network with a HVDC line with a lead-lag compensator between input and output vertices. For 

this purpose, first we discuss the swing-dynamics model for this case. In this case, the power input 

is regulated using a lead-lag compensated feedback of the electrical phase angle difference across 

the DC line (in Laplace form 𝑃𝑖𝑛(𝑠) = 𝑘
1+𝑇1𝑠

1+𝑇2𝑠
(𝛿𝑗(𝑠) − 𝛿𝑖(𝑠)), where 𝑃𝑖𝑛 is the differential power 

injection to bus 𝑖 and extraction from bus 𝑗). Representing lead-lag controllers in the swing-

dynamics state-space model requires a new state variable, and new connections among state 

variables. The following is the linear swing-dynamics model with lead compensator included. The 

full swing model can be expressed by enhancing the original model to include an additional 

dynamic feedback:   

[
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
−𝐻−1𝑒𝑗,𝑖

] 𝑃 + [
0
𝑒𝑖

] 𝑢 (6)

𝑇2𝑃̇ = −𝑃 + 𝑘[𝑒𝑗,𝑖
𝑇 𝑇1𝑒𝑗,𝑖

𝑇 ] [
𝛿
𝜔

] , 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] 

where the notation 𝑒𝑗,𝑖 represents a 0-1 indicator vector (with length 𝑛) with 𝑗th entry equal to 1, 

𝑖th entry equal to −1, and the others equal to 0. In addition, the notation 𝑒𝑞 represents a 0-1 

indicator vector (with length 𝑛) with 𝑞th entry equal to 1 and the others equal to 0. 

We simplify the described model as a new state space model with 2𝑛 + 1 states, including all 𝛿𝑖, 

𝜔𝑖, and a new state 𝑃. Now, let us apply the transformation to the special coordinate basis. For 

described network, the relative degree of system is equal to 𝑛𝑑 = 3, so 𝑛𝑎 = 2𝑛 − 2. Let us 

assume the following particular ordering of the original state vector and the corresponding graph 

vertices.   

𝑥 = [𝛿1 𝜔1 𝛿𝑛−2 𝜔𝑛−2 𝛿𝑛−1 𝛿𝑛 𝜔𝑛−1 𝑃 𝜔𝑛]𝑇 (7) 
By using the previous theorems, we can easily find the matrix 𝐴𝑛𝑎

 and perturbation matrix 𝐴𝑞. In 
the matrix 𝐴𝑛𝑎 , the entries of two last rows (rows corresponding to 𝛿𝑛−1 and 𝛿𝑛) are equal to zero.
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In the matrix 𝐴𝑞, all the rows except the last one are equal to zero. In addition, the dependence of 

matrix 𝐴𝑞 on 𝑇1, 𝑇2, and 𝑘 can be shown as:   

 𝐴𝑞 =

[
 
 
 
 
0 0 0 0 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0

𝑎(2𝑛−3) + 𝑏(2𝑛−3) 𝑎(2𝑛−4) 𝑎3 + 𝑏3 𝑎2
−1

𝑇1
+ 𝑎1 + 𝑏1

−1

𝑇1 ]
 
 
 
 

 

  where 𝑎𝑟 = 𝛾𝑟 ∗
𝑇2

𝑘𝑇1
 and 𝑏𝑟 = 𝛽𝑟 ∗

1

𝑘𝑇1
 with 𝛾𝑟 and 𝛽𝑟 independent of 𝑇1, 𝑇2, and 𝑘. By 

considering 𝐴𝑎𝑎 = 𝐴𝑛𝑎
+ 𝐴𝑞, for sufficiently large 𝑘𝑇1 (i.e. either 𝑘 or 𝑇1 is sufficiently large), 

and sufficiently small 𝑇2 (precisely sufficiently small 
𝑇2

𝑘𝑇1
), the 𝐴𝑎𝑎 matrix will be close to a block 

upper-triangular matrix with two block diagonals. The size of the first block is (2𝑛 − 4) × (2𝑛 −
4) and the size of the second block is 2 × 2. In addition, the entries of first block are corresponding 

entries of 𝐴𝑛𝑎
 without any perturbation, so its eigenvalues are all in the OLHP. On the other hand, 

the second block is in the form of [
0 0
−1

𝑇1

−1

𝑇1

], so its eigenvalues are one at zero and the other one 

−1

𝑇1
. In summary, for sufficiently large 𝑘𝑇1 (i.e. either 𝑘 or 𝑇1 is sufficiently large), and sufficiently 

small 𝑇2 (precisely sufficiently small 
𝑇2

𝑘𝑇1
), the zeros of the system are in the OLHP except one zero 

at 𝑠 = 0. ◼  

 

Proof of Lemma 7: The proof depends on an appropriate block-diagram representation of the 

input-output swing-dynamics model (1) with HVDC modulation (see Fig. 5). Further, we consider 

the same subsystems and notation used in the proof for Theorem 8. The transfer functions 𝐻1, 𝐻2, 

𝐻3, and 𝐻4 have relative degrees 2𝑑𝑖𝑞 + 2, 2𝑑𝑟𝑗 + 1, 2𝑑𝑖𝑗 + 1, and 2𝑑𝑟𝑞 + 2 respectively, and all 

of them have positive gain. From the proof of Theorem 8, the zeros of 𝐻(𝑠) are the roots of 

equation 𝑏1𝑏2𝑎3𝑏4𝑏𝑢 + 𝑘𝑎𝑢(𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4) = 0. 

 

If (𝑑𝑖𝑞 + 𝑑𝑟𝑗 < 𝑑𝑖𝑗), it is easy to show that deg(𝑎1𝑎2𝑏3𝑏4) > deg(𝑏1𝑏2𝑎3𝑎4) so deg(𝑎1𝑎2𝑏3𝑏4 −

𝑏1𝑏2𝑎3𝑎4) = deg(𝑎1𝑎2𝑏3𝑏4). On the other hand, based on the fact that (2𝑑𝑖𝑞 + 2𝑑𝑟𝑗 + 𝒏𝒄 + 5 ≤

2𝑑𝑖𝑗), we have deg(𝑏1𝑏2𝑎3𝑏4𝑏𝑢) + 3 ≤ deg(𝑎𝑢(𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4)). Therefore, the root-

locus has at least one diverging branch at the RHP. Consequently, for a sufficiently small positive 

HVDC gain 𝑘, the roots of equation 𝑏1𝑏2𝑎3𝑏4𝑏𝑢 + 𝑘𝑎𝑢(𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4) = 0 are very 

close to the roots of 𝑏1𝑏2𝑎3𝑏4𝑏𝑢 = 0 and at least one zero at right half plane. Following a similar 

analysis, one can prove that the condition (𝒏𝒄 ≥ −4) is required to guarantee that 𝐻(𝑠) is stable 

for a sufficiently small positive HVDC gain 𝑘 if transfer function 𝐻𝑢(𝑠) is stable. 

 

For small negative gain, similar to previous part, based on the fact that (2𝑑𝑖𝑞 + 2𝑑𝑟𝑗 + 𝒏𝒄 + 3 ≤

2𝑑𝑖𝑗), we have deg(𝑏1𝑏2𝑎3𝑏4𝑏𝑢) + 1 ≤ deg(𝑎𝑢(𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4)). Therefore, the 

(negative) root-locus has at least one diverging branch at the RHP. Consequently, for a sufficiently 

small negative HVDC gain 𝑘, the roots of equation 𝑏1𝑏2𝑎3𝑏4𝑏𝑢 + 𝑘𝑎𝑢(𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4) =
0 are very close to the roots of 𝑏1𝑏2𝑎3𝑏4𝑏𝑢 = 0 and at least one zero at right half plane. Following 

a similar analysis, one can prove that the condition (𝒏𝒄 ≥ −2) is required to guarantee that 𝐻(𝑠) 

is stable for a sufficiently small negative HVDC gain 𝑘 if transfer function 𝐻𝑢(𝑠) is stable. ◼  
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Proof of Theorem 8: The proof depends on an appropriate block-diagram representation of the 

transfer function from 𝑢 to 𝑦 in the network input-output swing-dynamics model (1) with HVDC 

modulation. For this theorem, a controller that measures 𝛿𝑞 − 𝛿𝑟 and actuates both nodes 𝑞 and 𝑟 

is considered. The network input-output swing-dynamics model (1) with HVDC modulation can 

be expressed in terms of the following two interconnected subsystem models: 

 

Subsystem 𝑆1, which has two inputs (i.e. 𝑢 and 𝑃) and two output (i.e. 𝑦 and 𝑧), is governed by: 

[
𝛿
𝜔

] = [
0 𝐼
−𝐻−1𝐿(Γ) −𝐻−1𝐷

] [
𝛿
𝜔

] + [
0
−𝐻−1(𝑒𝑞 − 𝑒𝑟)

]𝑃 + [
0
𝑒𝑖

] 𝑢 and 𝑦 = [0 𝑒𝑗
𝑇] [

𝛿
𝜔

] and 𝑧 =

𝛿𝑞 − 𝛿𝑟. 

 

Subsystem 𝑆2, which has one input (i.e. 𝑧) and one output (i.e. 𝑃) with transfer function 𝑃(𝑠) =
𝑘𝐻(𝑠)𝑍(𝑠). 

 

In this case, it is convenient to decompose the transfer function from 𝑢 to 𝑦 as shown in the block 

diagram in Fig. 5. 

 

 

 
  

Figure  5: Block-diagram representation for the system presented in the proof of Theorem 8. 

  

 

In the block diagram (Fig. 5), 𝐻3(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
 and 𝐻1(𝑠) =

𝑍(𝑠)

𝑈(𝑠)
=

𝛿𝑞(𝑠)−𝛿𝑟(𝑠)

𝑈(𝑠)
 are the transfer 

functions defined for subsystem 𝑆1, and 𝐻𝑐(𝑠) = 𝑘𝐻𝑢(𝑠) is the subsystem 𝑆2 or controller transfer 

function (as assumed in the theorem statement). Further, the diagram explicitly denotes the output 

of the controller as 𝑃 which drives the generator 𝑞 and 𝑟. Also in subsystem 𝑆1, 𝐻2(𝑠) represents 

the transfer function from a putative input 𝑃 at vertices 𝑞 and 𝑟 (e.g., the actuation given by the 

built controller) to the output 𝑦 which is the state at vertex 𝑗 (i.e., 𝜔𝑗) while 𝐻4(𝑠) is the transfer 

function from the putative input 𝑃 at vertices 𝑞 and 𝑟 to the state of the vertex 𝑗 (i.e. 𝜔𝑗). 

Equivalence with the closed-loop network input-output model is immediate from linearity. 
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From the block diagram, the transfer function for the closed-loop system is: 

  

 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)

= 𝐻3(𝑠) +
𝐻1(𝑠)𝐻𝑐(𝑠)𝐻2(𝑠)

1−𝐻𝑐(𝑠)𝐻4(𝑠)

=
𝐻3(𝑠)+𝐻𝑐(𝑠)[𝐻1(𝑠)𝐻2(𝑠)−𝐻3(𝑠)𝐻4(𝑠)]

1−𝐻𝑐(𝑠)𝐻4(𝑠)

=
𝐻3(𝑠)+𝑘𝐻𝑢(𝑠)[𝐻1(𝑠)𝐻2(𝑠)−𝐻3(𝑠)𝐻4(𝑠)]

1−𝑘𝐻𝑢(𝑠)𝐻4(𝑠)

 (8) 

  

Consider 𝐻𝑖(𝑠) =
𝑎𝑖(𝑠)

𝑏𝑖(𝑠)
 for 𝑖 ∈ {1,2,3,4, 𝑢}, where 𝑎𝑖(𝑠) and 𝑏𝑖(𝑠) are the polynomials in 

nominator and denominator of 𝐻𝑖(𝑠) and we drop the Laplace-transform variable 𝑠 to make the 

presentation clearer. In this notation, the closed-loop transfer function 𝐻 can be written as:   

 
𝐻 =

𝐻3+𝑘𝐻𝑢(𝐻1𝐻2−𝐻3𝐻4)

1−𝑘𝐻𝑢𝐻4

=
𝑏1𝑏2𝑎3𝑏4𝑏𝑢+𝑘𝑎𝑢(𝑎1𝑎2𝑏3𝑏4−𝑏1𝑏2𝑎3𝑎4)

𝑏1𝑏2𝑏3𝑏4𝑏𝑢−𝑘𝑎𝑢𝑏1𝑏2𝑏3𝑎4

 (9) 

   

Hence, the poles of transfer function 𝐻(𝑠) are the roots of the following equation:  

 𝑏1𝑏2𝑏3(𝑏4𝑏𝑢 − 𝑘𝑎𝑢𝑎4) = 0 (10) 

 

 and the zeros of transfer function 𝐻(𝑠) are the roots of:  

 𝑏1𝑏2𝑎3𝑏4𝑏𝑢 + 𝑘𝑎𝑢(𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4) = 0 (11) 

 

From a root-locus analysis, for sufficiently large gain 𝑘, some of the poles and zeros of 𝐻(𝑠) are 

very close to the roots of 𝑎𝑢(𝑠) = 0. Hence, for sufficiently large gain 𝑘, the input-output model 

is nonminimum phase as well as unstable if 𝐻𝑢(𝑠) is assumed to be nonminimum phase. Note that 

maybe by increasing gain 𝑘, first nonminimum-phase behavior appears and then instability occurs. 

In a similar way, via a root-locus analysis, it can be shown that 𝐻(𝑠) has poles and zeros that are 

arbitrarily close to the roots of 𝑏𝑢(𝑠) = 0, when a small positive gain 𝑘 is used. Thus, for 

sufficiently small gain 𝑘, the network input-output model is nonminimum phase as well as unstable 

if 𝐻𝑢(𝑠) is assumed to be unstable. 

 

We note that results of the theorem may not apply in the very special case that (𝐻1𝐻2 − 𝐻3𝐻4) =
0 or equivalently (𝑎1𝑎2𝑏3𝑏4 − 𝑏1𝑏2𝑎3𝑎4) = 0. The distance-based condition 𝑑𝑖𝑗 + 𝑑𝑞𝑛 ≠ 𝑑𝑖𝑛 +

𝑑𝑞𝑗 enforces that the relative degree of 𝐻1𝐻2 and 𝐻3𝐻4 are not equal, hence (𝐻1𝐻2 − 𝐻3𝐻4) ≠ 0 

and the theorem result holds. ◼ 

 

Proof of Theorem 9: The proof is the immediate result of the previous theorem. ◼  

 

Proof of Theorem 10: The model of this system is equivalent to the model of the network with 

PD-controlled HVDC line between input and output vertices, and equivalent parameters 𝑘𝑝 = 𝑘 

and 𝑘𝑑 = −𝑘𝑇1. In this case, 𝑘𝑝 is positive and 𝑘𝑑 is negative. From our analysis in theorem 2, we 

know that for either sufficiently large gain 𝑘𝑑 or the gain 𝑘𝑝 (equivalently sufficiently large 𝑘), 
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the zeros of the system are in OLHP except two of them, one at 𝑠 = 0 and the other at 𝑠 =
1

𝑇1
 which 

is in ORHP. ◼  

 

Proof of Theorem 11: The model of this system is equivalent to the model of the network with 

HVDC line, governing by lead compensator, between input and output vertices with equivalent 

parameters 𝑇1 = −0.5𝑇𝑑, 𝑇2 = 0.5𝑇𝑑, and 𝑘 = 𝑘. In addition, 𝑇2 is positive and 𝑇1 is negative. 

From our analysis in theorem 3, we know that for either sufficiently large 𝑘𝑇𝑑 (i.e. either 𝑘 or 𝑇𝑑 

is sufficiently large), and sufficiently small 𝑇𝑑, the zeros of the system are in OLHP except two of 

them, one at 𝑠 = 0 and the other at 𝑠 =
1

𝑇1
=

−1

0.5𝑇𝑑
 which is in ORHP. More precisely, the condition 

sufficiently small 𝑇𝑑 is not necessary, because based on the proof of the theorem 3, 
𝑇𝑑

𝑘𝑇𝑑
= 𝑘−1 

should be sufficiently small which means 𝑘 should be sufficiently large. ◼  

 

Proof of Theorem 12: The model of this system is equivalent to the model of the network with 

HVDC line, governing by lead compensator, between input and output vertices with equivalent 

parameters 𝑇1 = −𝑇𝑑, 𝑇2 = 𝑇2, and 𝑘 = 𝑘. In addition, 𝑇2 is positive and 𝑇1 is negative. From our 

analysis in theorem 3, we know that for either sufficiently large 𝑘𝑇𝑑 (i.e. either 𝑘 or 𝑇𝑑 is 

sufficiently large), and 𝑇2 is sufficiently small (precisely sufficiently small 
𝑇2

𝑘𝑇𝑑
), the zeros of the 

system are in OLHP except two of them, one at 𝑠 = 0 and the other at 𝑠 =
1

𝑇1
=

−1

𝑇𝑑
 which is in 

ORHP. ◼  
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3. Zeros Analysis for Detailed Power-System Models 

3.1 Motivation and Scope 

Recent advances in wide-area monitoring technology using synchrophasors have led to renewed 
interest in the design of wide-area controls for the bulk power transmission network, to shape small-
signal and transient characteristics of the swing dynamics. Evaluation and design of such wide-area 
controls require analysis of the input-to-output characteristics of control channels. In particular, 
control designs for small-signal stability enhancement are often based on pole-zero characteristics 
of a linearized input-output model, see e.g. [29]. The poles (modes) of the swing dynamics, which 
are internal properties of the network (unrelated to the specific control channel considered), have 
been extensively characterized [30-31]. In contrast, there has been relatively little work on the zeros 
of the swing dynamics models. 
 
The zeros of a linear model, or more explicitly its finite- and infinite- zero structure, are invariants 
to feedback and hence play a crucial role in analysis and design of controls. In particular, the zeros 
guide the structure of control designs, and place essential limits on control performance as well as 
the effort required for control. The reader is referred to the articles [32-33] for an overview of 
computation of linear system zeros, and the importance of zeros to control analysis and design.  
Precisely, the infinite-zero structure of the network decides the required dynamic complexity of the 
controller. Meanwhile, the presence of finite zeros in the right half plane (RHP), also known as non-
minimum phase zeros, places essential limits on control performance and effort. For instance, as 
mentioned in [34], RHP zeros limit the maximum achievable bandwidth of HVDC controllers. 
 
Other characteristics of the finite zeros, such as near pole-zero cancellations and poorly-damped 
left-half-plane (LHP) zeros, also influence control design and performance. Given this tight link 
between the zeros and control design, there is significant motivation to characterize the finite- and 
infinite- zero structure of linearized swing-dynamics models. 
 
A few previous works have considered the computation and analysis of the zeros of the power 
system swing dynamics. The pioneering work by Martins et al. in [35] proposed methods for 
studying transfer function zeros in large-scale power system models. Authors of [36] have 
suggested creating an inverse system for the original system, whose poles are the zeros of the 
original system. Moreover, two methods for calculating a few dominant zeros which are close to a 
pre-specified point in the s-plane is suggested in the paper [36].  
 
Same as the system poles, the system zeros change by changing the system operating point, since 
the system is non-linear. As reported in [37], a pair of complex conjugate RHP zeros can appear 
suddenly in real-time implementations, even though it may be absent in a set of input-output data 
at the present time. Moreover, the occasional presence of a zero close to a system mode can cause 
intermittent oscillation of the mode [37]. In summary, since the closed loop performance of the 
controllers highly depends on the presence of RHP zeros, the zeros should be monitored along with 
the estimation of system modes. 
 
Authors of [38-39] have proposed four indicators for selecting the most appropriate remote 
feedback signals for designing auxiliary inter-area damping controllers on FACTS devices. It is 
mentioned that outputs which produce non-minimum phase zeros are undesirable, since by 
increasing the feedback gain, they may lead to gain instability. Therefore, as one indicator, remote 
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output signals with RHP zeros in the range of 0.1Hz to 2Hz are discarded from the candidate signals, 
even if they have higher controllability and observability indices comparing to the minimum-phase 
channels.  
 
Analytical conditions were proposed in [40] for when RHP zeros can appear in general power 
system dynamics represented by classical angle stability models using swing equations. The work 
is extended in [41] where the effect of one control channel (especially HVDC line) on the finite 
zeros of the other input-output channels is characterized. 
 
In this paper, we study the finite- and infinite- zero structures of detailed models of test power 
systems, focusing especially on the presence and impact of RHP transfer function zeros. 
Linearization of detailed swing-dynamics models are first undertaken using the commercial 
program Small-Signal Analysis Tool (SSAT) [42]. Then zeros are characterized for control 
channels of interest, for both the cases where the input and output are collocated (at the same bus) 
and where they are from different buses. Simulations include the study of zeros in two cases; PSS 
design and SVC damping controller design. The exciter control voltage reference and the SVC 
voltage control reference are the input locations, respectively. The outputs of interest are generator 
speed deviations, bus voltage magnitudes, bus voltage angles, bus angle differences, line current 
magnitudes, and line active power-flows. The studies show that in the case of traditional PSS design 
with local feedback, there is no RHP zero in the transfer function; however, the choice of remote 
output signals leads to non-minimum phase dynamics for most signals. Some numerical issues 
related to the zero computation are also highlighted. For example, it is shown that RHP zeros can 
be incorrectly calculated as LHP zeros or vice versa by using inaccurate power-flow solutions.  
 
The rest of the paper is organized as follows. Section II describes the modeling and the algorithm 
used for calculating power system transfer function zeros. Case studies as well as observations are 
discussed in Section III. Section IV contains a brief conclusion and suggested future work. 

3.2 Calculation of Transfer-Function Zeros: Fundamentals 

A. Power system small signal modeling 

Power system dynamics can be represented by Differential-Algebraic Equations (DAE) as follows.  

 ( , )

0 ( , )

x f x y

g x y

=

=

&

 (1) 

Here x and y are n- and 2m-dimensional vectors denoting the dynamic states and the network states, 

respectively.  
 
For small signal analysis, the above non-linear equations can be linearized around an equilibrium 
point. Due to special structure of power systems, one may separately linearize the equations of each 
dynamic device and then aggregate all of them to obtain the overall system linearized DAE 
equations [15]. Each individual device can be modeled by the set of equations (2). 
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i i

ii

i i

i

d d

d di

x A x B v

i C x D v

= + 

 = − 

&

 
(2) 

in which ix  is the state vector of the thi  device, ii  is the injected current into the network from the 

device, v  is the vector of the network bus voltages.  

 

The network states y  in (2) contain the bus voltage information. They can be presented either in 

polar form (i.e., the bus voltage magnitudes and bus voltage angles) or in Cartesian form (i.e., 

voltage phasor real and imaginary parts). In this work, the latter Cartesian form which is employed 

in DSATools [42] is used.  

 

Aggregating all equations of individual devices to obtain the overall system equations results in 

(3), 

 
D D

D D

x A x B v

i C x D v

= + 

 = + 

&

 
(3) 

Here x  is the state vector of the overall system which is made by stacking up all the ix  device 

state vectors together. , , ,  and D D DA B C  DD are block diagonal matrices built by assembling 

, , ,  and i i i iA B C D  associated with the individual devices. 

 

The transmission system connects the dynamic devices together and is modeled by the algebraic 

equations in the form of (4). 

 
Ni Y v =   (4) 

In above equations, , , , ,  and D D D D NA B C D Y matrices are all real-valued and have dimensions n n , 

2n m , 2m n , 2 2m m , and 2 2m m , respectively, where n and m  are the total number of states and 
number of system buses. 
 
The overall state matrix of the system can be calculated by substituting (4) into (3) as follows [43]. 

 1( )D N D DDA A B Y D C−= + −
 

(5) 

This equation will be later used for simplifying the computation of transfer function zeros. 
 
B. Transfer function zeros calculation 

Let us consider the state equations of a general DAE system, i.e. a control channel or input-to-

output map, as given in (6). A single-input single-output study of power system is of interest of 

this study. 
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 ( ) ( ) ( )

( ) ( ) ( )

c c

c c

Ex t A x t B u t

y t C x t D u t

= +

= +

&

 (6) 

In order to distinguish matrices with the same symbol, the index (subscript) C is used for control-
channel (input-to-output system) matrices (i.e., input, output, and feedthrough matrices) and the 
index D for matrices derived from linearizing the DAE equations. 
 
The zeros of the DAE system are defined as   values in (7) such that the rank of the following 

matrix drops below its normal rank [44]. 

 
c c

c c

A E B

C D

− 
 
 

 (7) 

In the power systems model, the descriptor matrix E  is the identity matrix of dimension of the 

system state matrix. Thus, for the rest of this work, the general descriptor matrix E  will be 

substituted by the identity matrix .I  

 

By substituting CA from (5) into (7), we get that the zeros are    values such that the following 

matrix (8) loses rank: 

 1( )D N D DD c

c c

A B Y D C I B

C D

− + − −
 
 

 (8) 

From a computational point of view, it would be preferable to avoid taking the inverse ( )N DY D− , 

since inverting such a large matrix is time consuming.  

 

Based on the definition in (7), system zeros make the determinant of (8) equal to zero. Considering 

1 2 1
4 1 2 4 3

3 4

det( ) det( )det( )
A A

A A A A A
A A

− 
= − 

 
, the determinant of (8) can be written as (9): 

 1

1

det( )det(( ( ) )

                            ) 0

c D

c c

D D

c

N DD A B Y D C E

B D C

−

−

+ − −

− =
 (9) 

Provided that det( ) 0cD  , we have: 

 
1 1det(( ( ) ) ) 0D ND c c cD DA B Y D C E B D C− −+ − − − =  (10) 

Multiplying both sides of (10) by det( )N DY D−  and rearranging results in (11). 

 

{ {

1

 

1

2  matrix 2  matrix2 2  matrix

det( )det(( )

                  ( ) ( ) ) 0

N D

D N D

D c c c

n n matrix

n m m nm m

D

Y D A B D C E

B Y D C

−



−

 

− − − −

− − =

1 4 4 4 2 4 4 4 3

1 4 2 4 3

 (11) 
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The left side of (11) is the determinant of the matrix represented in (12). 

 1

D

D N

D

D

c c cA B D C E B

C Y D

− − − −
 

− 
 (12) 

Finding transfer function zeros using (12) instead of (8) has the advantage of not requiring 

inversion of the matrix ( )N DY D− . For SISO systems, the D matrix is1 1 , and hence easy to invert. 

However, for most power systems’ input-output pairs, the feedthrough matrix is zero. Thus, (8) 

needs to be refined to a more general form. This can be done as follows.  

 

For each   value in (8), the vector  1 2

T
v w w=  can be found such that (13) holds.  

 1
1

2

( )
0D C

C

D D

C

N D
wA B Y D C E B

wC D

− + − −  
=   

  
 (13) 

To eliminate 1( )N DY D −−  in the expression, the vector 
3w  can be defined as (14). 

 1

1 3( )N D DY D C w w−− =  (14) 

By substituting 1

1( )D N D DB Y D C w−−  with 
3DB w  and including 

1 3( ) 0D N DC w w Y D− − = into the sets of 

equations, the more efficient form (15) can be obtained. 

 
1

2

3

0 0

0 ( )

D

D N D

D C

C C

A E B B w

C D w

C Y D w

−   
   

=
   
   − −   

 (15) 

Equation (15) is a generalized eigenvalue problem. For large-scale power systems, when only a few 
of zeros are of interest, the problem can be solved by means of efficient algorithms.  We notice that 
the zeros analysis described here closely follows the development in [36]. 
 
By using (15) instead of (7), the number of calculated zeros increases by 2m . The spurious additional 
zeros are found at infinity, i.e. the set of finite zeros remains the same. 

3.3 Case Studies 

The two-area test system described in [43] which is well known for displaying inter-area oscillations 
is considered for this study. The single line diagram of this system is depicted in Figure 6. Under 
high power transfers, it can be shown that the system has a poorly damped inter-area mode [15]. 
Traditional power system stabilizer (PSS) designs using local generator signals are discussed in 
detail in [17]-[19] for improving the damping of this inter-area mode.  



27 

 

Figure 6. Two-area Kundur test system [28] 

The study includes two parts. In the first part, the zeros for traditional PSS design as well as a design 
based on remote signals such as line current magnitude and active power are studied. The second 
part studies the presence of RHP zeros for SVC auxiliary damping control design for both local and 
remote channels.  

A.  PSS design 

We are interested in the design of PSSs using both local and remote output signals. Suppose we 
consider the PSS design for Generator 1, then, the exciter control voltage reference 

1refV is set to be 

the input. It is worth mentioning that the PSS of the generator at input location is disabled, whereas 
other generators are equipped with PSSs. The output is assumed to be taken from six choices of 
signals; generator speed deviation, bus voltage magnitude, bus voltage angle, bus angle difference, 
line current magnitude, and line active power 

1) Generator speed signals 

 
Table 1 shows the transfer function finite zeros when 

1refV is the input and generator speed signals 

are outputs. In addition, the transfer function is found to have three infinite zeros (relative degree 
3) for each output. The RHP zeros are bold in the table. Only for this case, all the finite zeros are 
shown. For other cases, for the sake of brevity, only RHP zeros and LHP zeros whose real value is 
greater than 10−  are shown. It is interesting that there is no RHP zero for the traditional PSS design 
(i.e., while using generator 1 speed as the output). The same result is analytically shown in [40] 
where all the zeros of a local transfer function are in LHP for the classical generator model.  

Table 1. System Zeros When Outputs are Generator Speed Signals 

Output signal 

1  2  3  4  

0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 

-0.5070+0.0000i -0.4956+0.0000i -0.5000+0.0000i -0.5000+0.0000i 

-0.5096+0.0000i -0.5000+0.0000i -0.5101+0.0000i -0.5089+0.0000i 

-0.5695+0.0000i -0.5094+0.0000i -0.5155+0.0000i -0.5155+0.0000i 

-0.7955+1.4030i -1.3007+0.0000i -1.6967+0.0000i -1.6832+0.0000i 

-0.7955-1.4030i -2.3812+0.0000i -2.5944+0.0878i -2.2203+0.0000i 
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-2.3980+0.0000i -3.3562+0.0000i -2.5944-0.0878i -3.0159+0.0000i 

-3.1848+0.0000i -3.4950+0.0000i -3.4056+0.0000i -3.4103+0.0000i 

-4.3250+0.0698i 0.1449+3.9114i -6.1043+0.0000i -6.3516+0.0000i 

-4.3250-0.0698i 0.1449-3.9114i -0.8262+7.9503i -0.6508+6.6966i 

-0.6170+5.0710i 3.9574+0.0000i -0.8262-7.9503i -0.6508-6.6966i 

-0.6170-5.0710i -7.0017+0.0000i -8.5763+0.3809i 7.0961+0.0000i 

-0.7872+7.4944i -0.7869+7.4923i -8.5763-0.3809i -0.9231+8.0755i 

-0.7872-7.4944i -0.7869-7.4923i -1.0543+8.6834i -0.9231-8.0755i 

-8.7575+0.0000i -8.7201+0.0000i -1.0543-8.6834i -8.2046+0.0000i 

-10.301+0.0000i -15.5660+7.3467i 9.1771+0.0000i -10.7185+0.0000i 

-14.378+8.8779i -15.5660-7.3467i -22.878+3.9125i -21.429+4.4108i 

-14.3786-8.8779i -20.4752+0.0000i -22.8787-3.9125i -21.4296-4.4108i 

-20.8717+0.0000i -13.5504+17.4012i -23.1703+4.7750i -22.9932+4.2642i 

-20.5606+4.2459i -13.5504-17.4012i -23.1703-4.7750i -22.9932-4.2642i 

-20.5606-4.2459i -22.4630+4.4329i -25.0000+0.0000i -25.0000+0.0000i 

-22.4635+4.4318i -22.4630-4.4329i -25.0000+0.0000i -25.0000+0.0000i 

-22.4635-4.4318i -25.0000+0.0000i -28.7828+0.0000i -9.0491+23.3955i 

-28.7530+0.0000i -25.0000+0.0000i -1.6847+28.8457i -9.0491-23.3955i 

-29.3360+0.0000i -28.7519+0.0000i -1.6847-28.8457i -28.7658+0.0000i 

-31.5719+0.0000i -30.8339+0.0000i -30.2531+0.0000i -30.4904+0.0000i 

-32.7039+0.0000i -32.9218+0.2756i -32.4729+0.0000i -32.8641+0.0000i 

-33.3012+0.0000i -32.9218-0.2756i -33.5373+0.0000i -33.8350+0.0000i 

-35.4668+0.0000i -34.5527+0.0000i -38.7999+0.2745i -35.8535+0.0000i 

-37.2776+0.0000i -37.2689+0.0000i -38.7999-0.2745i -38.7657+0.0000i 

-51.8299+0.0000i -51.8306+0.0000i -51.4542+0.2405i -51.3925+0.0000i 

-52.3609+0.0000i -52.7310+0.0000i -51.4542-0.2405i -52.1878+0.0000i 

-52.8413+0.0000i -53.5758+0.0000i -54.2328+0.0000i -53.9522+0.0000i 

-66.6666+0.0000i -66.6667+0.0000i -66.6667+0.0000i -66.6667+0.0000i 

 

If any other generator speed is used as the output for the transfer function (which would then be the 
input for the generator 1 PSS design), the transfer function has RHP zeros some real and some 
complex conjugate. It is interesting that this is different from the results in [40], where there is no 
RHP zero if there is only one path between the input and the output nodes.  
 
It is noted that similar results are obtained when other generators are examined; showing no RHP 
zero for local output and having real and complex conjugate zeros for remote speed signals.  
 
It should be mentioned that for all generator speed signals, one zero at origin is found. This is 
because of the fact that the generator speed signal is basically the time-derivative of the respective 
generator rotor angle. This corresponds to an s in Laplace domain (i.e., a zero at origin).  

2) Bus voltage magnitude signals 
 

Table 2 shows the zeros of the input 
1refV paired with bus voltage magnitudes as outputs. In this case, 

the transfer function has exactly two RHP zeros for each choice of voltage magnitude signals 1V  

through 11V .   
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Table 2. System Zeros When Outputs are Bus Voltage Magnitude Signals 

Output signal 

1V  
2V  

3V  
4V  

0.0002+0.0083i 0.0120+0.0000i 0.0130+0.0000i 0.0128+0.0000i 

0.0002-0.0083i 0.2649+0.0000i -2.1034+0.3804i 1.9520+0.0000i 

-3.4633+0.2021i -3.4095+0.0958i -2.1034-0.3804i -0.2845+5.0235i 

-3.4633-0.2021i -3.4095-0.0958i 2.8555+0.0000i -0.2845-5.0235i 

-0.1359+4.4406i -0.1567+4.7821i -0.2699+5.1795i -0.8143+7.7220i 

-0.1359-4.4406i -0.1567-4.7821i -0.2699-5.1795i -0.8143-7.7220i 

-0.9314+7.3892i -0.8063+7.4952i -0.8851+7.7263i -0.4255+7.9074i 

-0.9314-7.3892i -0.8063-7.4952i -0.8851-7.7263i -0.4255-7.9074i 

-0.7833+7.5091i -0.3336+7.8854i -8.0251+0.4586i - 

-0.7833-7.5091i -0.3336-7.8854i -8.0251-0.4586i - 

- - -0.4176+8.0459i - 

- - -0.4176-8.0459i - 

 

5V  
6V  

7V  
8V  

0.0002+0.0088i 0.0002+0.0105i 0.0002+0.0096i 0.0001+0.0107i 

0.0002-0.0088i 0.0002-0.0105i 0.0002-0.0096i 0.0001-0.0107i 

-3.4302+0.1647i -3.4043+0.1118i -3.3965+0.1089i -3.3686+0.1019i 

-3.4302-0.1647i -3.4043-0.1118i -3.3965-0.1089i -3.3686-0.1019i 

-0.1556+4.5615i -0.1498+4.8921i -0.1285+5.0348i -0.0712+5.3521i 

-0.1556-4.5615i -0.1498-4.8921i -0.1285-5.0348i -0.0712-5.3521i 

-0.8125+7.5039i -0.8087+7.5046i -0.8149+7.5120i -0.8370+7.5371i 

-0.8125-7.5039i -0.8087-7.5046i -0.8149-7.5120i -0.8370-7.5371i 

-0.8036+7.6524i -0.5157+7.9446i -0.4973+7.9255i -0.4463+7.8745i 

-0.8036-7.6524i -0.5157-7.9446i -0.4973-7.9255i -0.4463-7.8745i 

 

9V  
10V  

11V  

0.0084+0.0485i 0.0223+0.0000i 0.0513+0.0000i 

0.0084-0.0485i 0.6170+0.0000i 1.7543+0.0000i 

-0.1797+5.0358i -0.4656+4.7449i -2.2109+0.2490i 

-0.1797-5.0358i -0.4656-4.7449i -2.2109-0.2490i 

-0.8678+7.6559i -0.8519+7.6841i -0.7248+4.8127i 

-0.8678-7.6559i -0.8519-7.6841i -0.7248-4.8127i 

-0.4095+7.9179i -0.4239+7.9716i -0.8621+7.7287i 

-0.4095-7.9179i -0.4239-7.9716i -0.8621-7.7287i 

- - -0.3925+8.0357i 

- - -0.3925-8.0357i 

- - -8.3553+0.3835i 

- - -8.3553-0.3835i 
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As can be seen from Table 2, for some outputs such as 
1V , there is a pair of conjugate zeros which 

are very small in magnitude. Now, naturally, a question arises as to whether these zeros are caused 
by numerical issues or they are genuine. Because of not using the relative rotor angles in small 
signal modeling, an eigenvalue at origin is expected. Depending on the power flow solution 
mismatch, this eigenvalue will be calculated somewhere around the origin. For instance, in the two-
area system used in this study, this eigenvalue is calculated as = 0.082 +  and = -0.000031  0.00902i 

when power flow mismatch is chosen as 1MW  and 0.001MW,  respectively.  

 
This suggests that the zeros close to origin might be inaccurate. The root locus analysis proposes 
that by increasing the feedback gain, the poles of the closed-loop system approaches to the system 
zeros. Thus, in order for validating the zeros calculation, one may perform the root locus analysis 
either by manipulating the effect of feedback in the system state matrix or by adding the appropriate 
feedback into the model. Although investigation on this example shows that the poles of closed-
loop system approaches to the (very small) zeros, this is not a valid approach, since both of the 
open-loop and closed-loop systems are derived with the same level of power flow accuracy. 
 
A closer scrutiny reveals that the accuracy of power flow solution highly effects the zeros 
calculation, especially those which are close to the origin. Table 3 shows the calculated zeros for 
some cases with trivial zeros. Two values for power flow mismatch are considered.  

Table 3. Effect of Power Flow Accuracy on Calculated Zeros 

Power flow mismatch (MW) 
Output signals  

1V  
2V  

3V  
51 −  

1 (default value) 0.0830 0.3173 -0.0086 0.0942i  
0.0758 
-0.0708 

0.001 0.0002 0.0083i  0.0120 0.0130 0.0002 0.0294i−   

 

It can be observed from Table 3 that by increasing the power flow solution accuracy, some RHP 
zeros move into LHP, and vice versa. Moreover, some real-valued zeros have disappeared and two 
new oscillatory zeros emerge, and vice versa. Since the power mismatch 0.001MW is the smallest 
value feasible in the software used, further investigation on the role of power flow solution accuracy 
is left as an open question. 

3) Bus voltage angle signals 
 

Table 4 shows the system zeros when bus voltage angles are set as outputs (even for the local bus 

voltage 1). . It can be seen that a real-valued RHP zero is present when the output is any of the bus 
voltage angles. For some buses, complex conjugate zeros are observed as well. 

4) Bus voltage angle difference signals 
 
The system zeros when the input 

1refV is paired with some bus voltage angle differences is shown in 

Table 5. The choices include connected buses such as Buses 1 and 5, and also buses which are 
across the system such as Buses 6 and 10. Same as for the choice of bus voltage phase angles, real-
valued RHP zeros can be observed for all choices.  
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It is notable that similar to the case where bus voltage magnitude signals were chosen as output, 
very small zeros are observed in this case. 

Table 4. System Zeros When Outputs are Bus Voltage Angle Signals 

Output signal 

1  
2  

3  
4  

-0.6113+3.0970i -0.3153+3.5868i -0.9696+7.8666i -0.4158+6.9725i 

-0.6113-3.0970i -0.3153-3.5868i -0.9696-7.8666i -0.4158-6.9725i 

5.5692+0.0000i 7.1682+0.0000i -0.6218+8.1561i -0.8402+7.9783i 

-1.0439+6.1866i -0.7892+7.4895i -0.6218-8.1561i -0.8402-7.9783i 

-1.0439-6.1866i -0.7892-7.4895i -8.5869+2.3532i -9.5782+2.0608i 

-0.7868+7.4974i 0.2248+10.0517i -8.5869-2.3532i -9.5782-2.0608i 

-0.7868-7.4974i 0.2248-10.0517i 5.3558+8.1234i 3.1768+9.6458i 

- - 5.3558-8.1234i 3.1768-9.6458i 

- - 19.7192+0.0000i 11.3941+0.0000i 

 

5  
6  

7  
8  

-0.5241+3.3261i -0.3840+3.6335i -0.3812+3.7340i -0.3661+4.0696i 

-0.5241-3.3261i -0.3840-3.6335i -0.3812-3.7340i -0.3661-4.0696i 

5.5325+0.0000i 5.9555+0.0000i 5.9278+0.0000i 5.9447+0.0000i 

-1.1214+6.7158i -0.7962+7.4878i -0.7974+7.4902i -0.8023+7.5003i 

-1.1214-6.7158i -0.7962-7.4878i -0.7974-7.4902i -0.8023-7.5003i 

-0.7866+7.5005i -0.8373+8.2490i -0.8313+8.2495i -0.8146+8.2563i 

-0.7866-7.5005i -0.8373-8.2490i -0.8313-8.2495i -0.8146-8.2563i 

 

9  
10  

11  

0.0270+6.2705i -0.0804+7.0988i -0.9341+7.7698i 

0.0270-6.2705i -0.0804-7.0988i -0.9341-7.7698i 

7.5913+0.0000i -0.7919+7.8317i -0.5208+8.0270i 

-0.8120+7.6956i -0.7919-7.8317i -0.5208-8.0270i 

-0.8120-7.6956i 0.4936+8.6195i -8.9372+2.6837i 

-0.4680+8.4895i 0.4936-8.6195i -8.9372-2.6837i 

-0.4680-8.4895i 8.8036+0.0000i 2.9845+8.8676i 

- - 2.9845-8.8676i 

- - 11.6352+0.0000i 
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Table 5. System Zeros When Outputs are Bus Voltage Angle Difference Signals 

Output signal 

51 −  
5 6 −  

6 7 −  
7 8 −  

-0.0002+0.0294i 0.0414+0.0000i -0.0021+0.0721i 0.0480+0.0000i 

-0.0002-0.0294i 4.2376+0.0000i -0.0021-0.0721i 5.7816+0.0000i 

-0.3191+4.9056i -0.3763+4.9756i 6.8704+0.0000i -0.7719+7.4487i 

-0.3191-4.9056i -0.3763-4.9756i -0.7722+7.4491i -0.7719-7.4487i 

5.8482+0.0000i -0.7880+7.4944i -0.7722-7.4491i -0.8952+8.2094i 

-0.7878+7.4942i -0.7880-7.4944i -0.9378+8.2228i -0.8952-8.2094i 

-0.7878-7.4942i - -0.9378-8.2228i - 

 

8 9 −  
9 10 −  

110 1 −  
4 10 −  

-0.0003+0.0357i -0.0008+0.0481i 0.0671+0.0000i 0.0708+0.0000i 

-0.0003-0.0357i -0.0008-0.0481i 5.1461+0.0000i 4.6575+0.0000i 

4.3942+0.0000i 4.0368+0.0000i -0.8440+7.9072i -0.7786+6.7901i 

-0.7714+7.4483i -0.7713+7.4481i -0.8440-7.9072i -0.7786-6.7901i 

-0.7714-7.4483i -0.7713-7.4481i -8.6054+0.5018i -0.8937+8.1125i 

-0.8394+8.1864i -0.8256+8.1796i -8.6054-0.5018i -0.8937-8.1125i 

-0.8394-8.1864i -0.8256-8.1796i -0.5664+8.6617i - 

-8.7935+0.1514i - -0.5664-8.6617i - 

-8.7935-0.1514i - - - 

 

5) Line currents signals 
 

Table 6 shows the system zeros when the magnitude of line current signals are of interest. For each 

choice of line, at least there is one RHP zero. Moreover, all RHP zeros are real-valued. 

6) Line active power signals 
 

The line active power signal is another good candidate to examine, since inter-area oscillations are 

clearly seen in line flows. Table 7 shows transfer function zeros when line active power signals 

are of interest. Similar to line current and bus angle difference cases, at least one RHP zero is 

observed for each choice. 

Table 6. System Zeros when Outputs are Line Currents Signals 

Output signal 

1 5I −
 

5 6I −
 

6 7I −
 

7 8I −
 

-0.0024+0.0634i 0.0833+0.0000i -0.0230+0.1509i 0.0553+0.0000i 

-0.0024-0.0634i -1.1529+0.1324i -0.0230-0.1509i 3.9888+0.0000i 

-1.1626+0.0749i -1.1529-0.1324i 1.0954+0.0000i -0.7754+7.4566i 

-1.1626-0.0749i 1.4836+0.0000i -1.3865+0.9526i -0.7754-7.4566i 

1.5280+0.0000i -0.4991+5.0492i -1.3865-0.9526i -0.8167+8.1857i 
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-0.4973+5.0475i -0.4991-5.0492i -2.1861+0.2355i -0.8167-8.1857i 

-0.4973-5.0475i -0.7876+7.4945i -2.1861-0.2355i -8.6656+0.3392i 

-0.7876+7.4945i -0.7876-7.4945i -3.3390+0.3354i -8.6656-0.3392i 

-0.7876-7.4945i - -3.3390-0.3354i - 
- - -0.7826+7.4708i - 

- - -0.7826-7.4708i - 

- - -0.7129+8.1309i - 

- - -0.7129-8.1309i - 

 

8 9I −
 

9 10I −
 

10 11I −
 

4 10I −
 

-0.0004+0.0381i -0.0005+0.0515i 0.0701+0.0000i 0.0853+0.0000i 

-0.0004-0.0381i -0.0005-0.0515i 5.9969+0.0000i 4.7032+0.0000i 

3.5574+0.0000i 5.3437+0.0000i -0.8411+7.9246i -0.7259+6.7899i 

-0.7752+7.4560i -0.7531+7.4160i -0.8411-7.9246i -0.7259-6.7899i 

-0.7752-7.4560i -0.7531-7.4160i -8.5000+0.4944i -0.8968+8.0969i 

-0.8006+8.1760i -0.8921+8.1627i -8.5000-0.4944i -0.8968-8.0969i 

-0.8006-8.1760i -0.8921-8.1627i -0.7306+8.7083i - 

-8.5502+0.1820i - -0.7306-8.7083i - 

-8.5502-0.1820i - - - 
 

7) Summary 

 

Traditional PSS design uses local machine speed signal or local machine accelerating power signal 

as feedback input signals. However, if non-traditional signals such as active power-flow on tie-

lines are used, Tables I to VII show that the use of non-traditional signals can introduce right half 

plane zeros in almost all the cases. Potential numerical issues in the case of analyzing remote bus 

voltage magnitudes in Table II require further scrutiny. The results in this section emphasize 

abundant caution in the use of remote as well as local non-traditional signals for feedback control 

designs in PSS units. 

Table 7. System Zeros when Outputs are Line Active Power Signals 

Output signal 

1 5P−
 

5 6P−
 

6 7P −
 

7 8P −
 

0.0790+0.0000i 0.0752+0.0000i 0.0990+0.0000i 0.0623+0.0000i 

-0.7961+1.4114i 1.3026+0.0000i -0.4879+3.1158i 3.1117+0.0000i 

-0.7961-1.4114i -0.4876+4.9638i -0.4879-3.1158i -3.9824+0.6324i 

-4.3219+0.0962i -0.4876-4.9638i -3.3707+0.1893i -3.9824-0.6324i 

-4.3219-0.0962i -0.7870+7.4941i -3.3707-0.1893i -0.7791+7.4643i 

-0.6177+5.0712i -0.7870-7.4941i -0.7898+7.4833i -0.7791-7.4643i 

-0.6177-5.0712i -8.4346+0.2011i -0.7898-7.4833i -0.7766+8.1711i 

-0.7872+7.4944i -8.4346-0.2011i -0.6420+8.0768i -0.7766-8.1711i 

-0.7872-7.4944i - -0.6420-8.0768i -8.4316+0.1998i 

- - - -8.4316-0.1998i 
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8 9P−
 

9 10P −
 

10 11P −
 

4 10P −
 

-0.0005+0.0381i -0.0002+0.0497i 0.0738+0.0000i 0.0845+0.0000i 

-0.0005-0.0381i -0.0002-0.0497i -0.8118+7.9545i -0.6505+6.6962i 

3.1856+0.0000i -0.7266+7.3788i -0.8118-7.9545i -0.6505-6.6962i 

-4.0275+0.5929i -0.7266-7.3788i -1.2341+8.6904i 7.1103+0.0000i 

-4.0275-0.5929i -0.9875+8.1146i -1.2341-8.6904i -0.9232+8.0754i 

-0.7789+7.4638i -0.9875-8.1146i 19.9993+0.0000i -0.9232-8.0754i 

-0.7789-7.4638i 10.7859+0.0000i 28.3275+22.9337i -9.0190+23.4422i 

-0.7796+8.1725i -1.8377+29.9188i 28.3275-22.9337i -9.0190-23.4422i 

-0.7796-8.1725i -1.8377-29.9188i - - 

-8.4456+0.2236i - - - 

-8.4456-0.2236i - - - 
 

B.   SVC auxilary control design 

 
SVCs are mainly used for dynamic voltage regulation of key buses in the power system. In this 
section, we study the design of supplementary small-signal stability control that introduces an 
additional stabilization loop in SVC by using a remote input signal. By employing remote signals, 
the inter-area oscillations can be mitigated as shown in many papers (e.g. [38]). In [48], it is 
analytically shown that depending on the system load level, the use of remote generator speed 
signals for SVC control can improve the damping of inter-area and or local modes in a simple power 
system. 
 
In this section, an SVC with the capacity of 200MVAR , installed at Bus 8, is considered. Here the 

design of SVC auxiliary control is of interest, and the SVC voltage reference (i.e., refV  of SVC) is 

set as the input. Note that the SVC voltage controller is not disabled and local bus voltage regulation 
is the primary control objective of the SVC. Three sets of outputs are considered; generator speeds, 
bus voltage magnitudes, and bus voltage angle difference signals for supplementary stability 
control.  

1) Generator speed signals 
 
Table 8 shows the system zeros when generator speed signals are selected as remote output signals. 
The zeros at origin are also observed in this case. It is interesting that except for generator 2, other 
generator speed signals do not show non-minimum phase behavior, and can be considered as 
potential choices for SVC damping control.  

Table 8. System Zeros when Outputs are Generator Speed Signals 

Output signal 

1  2  3  4  

0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 0.0000+0.0000i 

-2.2693+0.4115i 0.1545+4.1356i -2.9257+0.3957i -3.1247+0.2760i 

-2.2693-0.4115i 0.1545-4.1356i -2.9257-0.3957i -3.1247-0.2760i 

-0.0375+4.0367i -0.0577+6.6158i -0.4141+5.2752i -0.6537+5.0079i 

-0.0375-4.0367i -0.0577-6.6158i -0.4141-5.2752i -0.6537-5.0079i 
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-0.7794+7.5147i -0.7814+7.5152i -0.7895+7.4504i -0.0656+7.1225i 

-0.7794-7.5147i -0.7814-7.5152i -0.7895-7.4504i -0.0656-7.1225i 

-1.5731+8.0532i - -1.7624+8.0436i -0.7723+7.4363i 

-1.5731-8.0532i - -1.7624-8.0436i -0.7723-7.4363i 

-8.8017+1.0061i - -9.7884+2.2522i - 

-8.8017-1.0061i - -9.7884-2.2522i - 

 

2) Bus voltage magnitude signals 
 

Although the voltage magnitude signal of Bus 8 is already used as feedback signal in SVC voltage 
control loop, looking at bus voltage magnitude signals reveals a problem that might occur for 
calculation of infinite zeros.   
 
Although (15) is the extended version of (7), sometimes, some of the calculated zeros by these 
equations are different. For example, let us consider a case when the output is considered as voltage 
magnitude of Bus 9 (see Table 9). Then, using (15), two zeros at 9 9-1.2545 10  and 1.2545 10   are 

obtained, whereas using (7), two zeros at 7 735.90 i 3.96 10  and 35.90- i 3.96 10+   are obtained. All other 

zeros are exactly same.  
 
By investigating the transfer function relative degree, it is observed that the matrix multiplications 

0c cC B =  and 0c c cC A B   hold. Thus, the transfer function relative degree is 2 [49]. It means that there 

are two infinite zeros. Further investigation shows that this is true when other bus voltage magnitude 
signals are considered as output signal. In other words, the two zeros calculated as large real or 
imaginary numbers are infinite zeros and due to numerical issues these are calculated as large finite 
values.  
 
It can be seen from Table 9 that except for the buses close to generators, other bus voltage magnitude 
signals (those which are close to SVC as well) have very small zeros, and the Bus 9 has no RHP 
zeros at all. As mentioned earlier, these small zeros are very sensitive to power flow solution and 
might be at LHP or at origin. Further investigation of the effect of equilibrium point accuracy should 
be performed for this case as well. 

 

Table 9. System Zeros when Outputs are Bus Voltage Magnitude Signals as Outputs 

Output signal 

1V  
2V  

3V  
4V  

0.0061+0.0000i 0.0008+0.0029i 0.0054+0.0000i 0.0100+0.0000i 

1.5312+0.0000i 0.0008-0.0029i -1.9674+0.4413i 1.6208+0.0000i 

-1.7178+0.3297i 0.7243+0.0000i -1.9674-0.4413i -0.1951+4.4786i 

-1.7178-0.3297i -0.1787+4.5440i 3.0291+0.0000i -0.1951-4.4786i 

-0.1519+4.5177i -0.1787-4.5440i -0.2343+4.5199i -0.6671+7.2737i 

-0.1519-4.5177i -0.6837+7.2404i -0.2343-4.5199i -0.6671-7.2737i 
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-0.6206+7.3003i -0.6837-7.2404i -0.6242+7.2964i -0.7715+7.4918i 

-0.6206-7.3003i -0.7783+7.5115i -0.6242-7.2964i -0.7715-7.4918i 

-7.3130+0.5429i -0.7783-7.5115i -7.3262+0.7709i 74.9839 10  

-7.3130-0.5429i ( ) 70.0 4.9365 10i+   -7.3262-0.7709i 74.9839 10−   

-0.7793+7.5107i ( ) 70.0 4.9365 10i−   -0.7621+7.4870i - 

-0.7793-7.5107i - -0.7621-7.4870i - 

73.7437 10  - 70.0+2.6407i( ) 10  - 
73.7437 10−   - 70.0-2.6407i( ) 10  - 

 

5V  
6V  

7V  
8V  

0.0322+0.0000i 0.0045+0.0000i 0.0023+0.0000i 0.0002+0.0024i 

0.0872+0.0000i -0.1981+4.5668i -0.1961+4.5502i 0.0002-0.0024i 

-1.9618+0.2319i -0.1981-4.5668i -0.1961-4.5502i -0.1724+4.5117i 

-1.9618-0.2319i -0.6803+7.2695i -0.7027+7.2861i -0.1724-4.5117i 

-0.1763+4.5876i -0.6803-7.2695i -0.7027-7.2861i -0.7363+7.3006i 

-0.1763-4.5876i -0.7784+7.5108i -0.7782+7.5106i -0.7363-7.3006i 

-0.6279+7.2451i -0.7784-7.5108i -0.7782-7.5106i -0.7782+7.5104i 

-0.6279-7.2451i ( ) 7  0.0 4.5940 10i +  77.4334 10  -0.7782-7.5104i 

-0.7789+7.5111i ( ) 7  0.0 4.5940 10i −  77.4334 10−   153.2375 10  

-0.7789-7.5111i - - - 

-8.1137+0.6596i - - - 

-8.1137-0.6596i - - - 
74.9944 10  - - - 
74.9944 10−  - - - 

 

9V  
10V  

11V  

-0.0002+0.0032i 0.0452+0.0218i 0.0076+0.0000i 

-0.0002-0.0032i 0.0452-0.0218i 1.2008+0.0000i 

-0.1644+4.4778i -0.1628+4.4195i -2.1421+0.2752i 

-0.1644-4.4778i -0.1628-4.4195i -2.1421-0.2752i 

-0.6972+7.2996i -0.6696+7.2856i -0.2239+4.3826i 

-0.6972-7.2996i -0.6696-7.2856i -0.2239-4.3826i 

-0.7687+7.5017i -0.7682+7.4953i -0.6287+7.2639i 

-0.7687-7.5017i -0.7682-7.4953i -0.6287-7.2639i 

-8.4335+0.0998i 79.2895 10+   -0.7674+7.4868i 

-8.4335-0.0998i 79.2895 10−   -0.7674-7.4868i 
91.2545 10  - -8.2053+0.8321i 
91.2545 10−   - -8.2053-0.8321i 

- - ( ) 70.0 4.9938 10i+   

- - ( ) 70.0-4.99 8 03 1i   
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3) Bus voltage angle difference signals 
 
System zeros when the output choice is bus voltage angle difference is presented in Table 10. As 
can be seen from Table 10, the problem of very small zeros appears in SVC case as well. In fact, 
angle difference signals which are across the system such as 

6 10 −  and 
7 9 −  show no non-minimum 

phase behavior, and can be considered as suitable candidates for SVC inter-area damping control 
signals. 

Table 10. System Zeros when Outputs are Bus Voltage Angle Difference Signals 

Output signal 

6 7 −  
7 8 −  

8 9 −  
9 10 −  

0.0763+0.0000i 0.0219+0.0000i 0.0002+0.0124i 0.0114+0.0000i 

1.6566+1.7819i -4.2226+1.7100i 0.0002-0.0124i -3.3482+4.5436i 

1.6566-1.7819i -4.2226-1.7100i -2.4619+5.2970i -3.3482-4.5436i 

-2.4933+0.0735i -0.6553+7.0296i -2.4619-5.2970i -0.7609+6.9463i 

-2.4933-0.0735i -0.6553-7.0296i -0.8869+6.9515i -0.7609-6.9463i 

-0.6443+7.2152i -0.7916+7.5341i -0.8869-6.9515i -0.7867+7.5372i 

-0.6443-7.2152i -0.7916-7.5341i -0.7823+7.5376i -0.7867-7.5372i 

-0.7963+7.5229i -7.6780+1.0180i -0.7823-7.5376i 82.2404 10  

-0.7963-7.5229i -7.6780-1.0180i - - 

-8.7449+0.1508i - - - 

-8.7449-0.1508i - - - 
8(-0.0-3.0288i) 10  - - - 
8(-0.0-3.0288i) 10  - - - 

 

6 10 −  
7 9 −  

110 1 −  
4 10 −  

0.0002+0.0110i 0.0003+0.0082i 0.0134+0.0000i 0.0250+0.0000i 

0.0002-0.0110i 0.0003-0.0082i -0.5649+5.7940i -1.1930+4.7734i 

-3.5206+4.8233i -3.0331+5.1608i -0.5649-5.7940i -1.1930-4.7734i 

-3.5206-4.8233i -3.0331-5.1608i -4.4238+5.2157i -0.7735+7.4248i 

-0.7662+6.9473i -0.8172+6.9399i -4.4238-5.2157i -0.7735-7.4248i 

-0.7662-6.9473i -0.8172-6.9399i -0.7862+7.4568i 0.4709+7.6466i 

-0.7864+7.5371i -0.7846+7.5374i -0.7862-7.4568i 0.4709-7.6466i 

-0.7864-7.5371i -0.7846-7.5374i 8(-0.0+3.4376i) 10  -8.4812+0.1474i 

- - 8(-0.0-3.4376i) 10  -8.4812-0.1474i 

- - - 8(-0.0+3.4003i) 10  

- - - 8(-0.0-3.4003i) 10  
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3.4. Discussion 

The paper studies the presence of non-minimum phase dynamics in the design of wide-area 
damping controllers. Two different case-studies are considered. In the first one, the zeros for PSS 
design based on both local and remote signals are examined. The second case studies the non-
minimum phase zeros for SVC damping control design. For some input-output channels, numerical 
issues are observed. The effect of power-flow accuracy on the calculation of zeros which are very 
close to the origin requires further investigation. Moreover, it was shown that in some cases, infinite 
zeros appear as large finite RHP zeros which lead to misinterpretation of RHP zeros. For the SVC 
case, appropriate output signal candidates are suggested from the absence of RHP zeros.  
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4. Conclusions 

This project has characterized the input-output properties of the swing dynamics of the bulk power 

grid, with the aim of supporting modeling, analysis, and control design of today’s renewables rich 

and power-electronics-enabled grid.  Two main studies have been undertaken: first, the 

dependence of control channels in the grid on the tuning of remote control systems has been 

explored for the classical model for the swing dynamics, with numerous graph-theoretic results 

obtained.  Second, the analysis of control channels has been undertaken for detailed models of the 

swing dynamics, via simulations.  Both studies show that transfer-function properties (e.g., zeros) 

depend on the structure of the grid in a sophisticated way.  Understanding this dependence can 

facilitate modeling and design of the bulk grid, for the purpose of controller design.  

 

 

  

 

 

 

 

 

 

 



40 

References 

[1] Anderson, Paul M., and Aziz A. Fouad.  Power System Control and Stability. John Wiley 

and Sons, 2008. 

[2] Korba, Petr, et al. “Combining forces to provide stability."  ABB Review 3 (2007): 34-38. 

[3] Ulbig, Andreas, Theodor S. Borsche, and Goran Andersson. "Analyzing Rotational Inertia, 

Grid Topology and their Role for Power System Stability."  IFAC-PapersOnLine 48.30 

(2015): 541-547. 

[4] Bose, Anjan. "Smart transmission grid applications and their supporting infrastructure."  

Smart Grid, IEEE Transactions on 1.1 (2010): 11-19. 

[5] Chakrabortty, Aranya, and Pramod P. Khargonekar. "Introduction to wide-area control of 

power systems." American Control Conference (ACC), 2013. IEEE, 2013. 

[6] K. Koorehdavoudi et al, “Input-output characteristics of the power transmission network’s 

swing dynamics,” to appear in Decision and Control (CDC), 2016 IEEE 55th Annual 

Conference on. IEEE, 2016 (also an extended version is available at 

www.eecs.wsu.edu/∼kkoorehd). 

[7] Schrader, Cheryl B., and Michael K. Sain. “Research on system zeros: a survey."  

International Journal of Control, 50.4 (1989): 1407-1433. 

[8] N. Martins, H. J. C. P. Pinto, and L. T. G. Lima, “Efficient methods for finding transfer 

function zeros of power systems,"  IEEE Transactions on Power Systems, vol. 7, no. 3, 

Aug. 1992. 

[9] C. W. Taylor, S. Lefebvre, "HVDC controls for system dynamic performance", IEEE Trans 

on Power System, vol. 6, no. 2, pp. 743-752, May 1991. 

[10] Huang Ying, Xu Zheng, "HVDC supplementary controller based on synchronized phasor 

measurement units", Proceedings of CSEE, vol. 24, no. 9, pp. 7-12, September 2004. 

[11] Briegel, Benjamin, et al. “On the zeros of consensus networks." Decision and Control and 

European Control Conference (CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011. 

[12] Herman, Ivo, Dan Martinec, and Michael Sebek. “Zeros of transfer functions in networked 

control with higher-order dynamics."  Proceedings of the 19th IFAC World Congress. 

2014. 

[13] Abad Torres, Jackeline, and Sandip Roy. “Graph-theoretic characterisations of zeros for 

the inputâ€“output dynamics of complex network processes."  International Journal of 

Control 87.5 (2014): 940-950. 

[14] Abad Torres, Jackeline, and Sandip Roy. “Graph-theoretic analysis of network 

inputâ€“output processes: Zero structure and its implications on remote feedback control."  

Automatica 61 (2015): 73-79. 

[15] Abad Torres, Jackeline, and Sandip Roy. “A two-layer transformation for characterizing 

the zeros of a network input-output dynamics." Decision and Control (CDC), 2015 IEEE 

54th Annual Conference on. IEEE, 2015. 

[16] Sanchez-Gasca, Juan J., and Joe H. Chow. “Power system reduction to simplify the design 

of damping controllers for interarea oscillations."  Power Systems, IEEE Transactions on 

11.3 (1996): 1342-1349. 

[17] Nabavi, Sheida, and Aranya Chakrabortty. “Topology identification for dynamic 

equivalent models of large power system networks." American Control Conference (ACC), 

2013. IEEE, 2013. 



41 

[18] Valdez, Justin, et al. “Fast fault location in power transmission networks using transient 

signatures from sparsely-placed synchrophasors." North American Power Symposium 

(NAPS), 2014. IEEE, 2014. 

[19] Chow, Joe H., et al. “Inertial and slow coherency aggregation algorithms for power system 

dynamic model reduction."  Power Systems, IEEE Transactions on 10.2 (1995): 680-685. 

[20] Sanchez-Gasca, Juan J., and Joe H. Chow. “Power system reduction to simplify the design 

of damping controllers for interarea oscillations."  Power Systems, IEEE Transactions on 

11.3 (1996): 1342-1349. 

[21] Dorfler, Florian, Michael Chertkov, and Francesco Bullo. “Synchronization in complex 

oscillator networks and smart grids."  Proceedings of the National Academy of Sciences 

110.6 (2013): 2005-2010. 

[22] Sannuti, Peddapullaiah, and Ali Saberi. “Special coordinate basis for multivariable linear 

systems-finite and infinite zero structure, squaring down and decoupling."  International 

Journal of Control 45.5 (1987): 1655-1704. 

[23] Ishizaki, Takayuki, et al. “Model reduction of multi-input dynamical networks based on 

clusterwise controllability." American Control Conference (ACC), 2012. IEEE, 2012. 

[24] K. Koorehdavoudi et al, “Input-Output Properties of the Swing Dynamics for Power 

Transmission Networks with HVDC Modulation (extended version with proofs),” 

available at www.eecs.wsu.edu/∼kkoorehd 

[25] Chen,B.M., Lin, Z., Shamash,Y. “Linear systems theory: A structural decomposition 

approach." Boston: BirkhÂ¨auser, 2004. 

[26] P. Kundur, “Power System Stability and Control." McGraw-Hill, Inc., New York, 1994. 

[27] Guoping Liu, Quintero, J.. “Oscillation monitoring system based on wide area 

synchrophasors in power systems." 2007 iREP Symposium Aug. 2007, pp:1- 13. 

[28] C. Osauskas and A. Wood, “Small-signal dynamic modeling of HVDC systems,â€• IEEE 

Trans. Power Del., vol. 18, no. 1, pp. 220â€“225, Jan. 2003. 

[29] D. Roberson and J. F. O’Brien, "Loop Shaping of a Wide-Area Damping Controller Using 

HVDC," in IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2354-2361, May 

2017. 

[30] J. Ma, Z. Y. Dong and P. Zhang, "Comparison of BR and QR Eigenvalue Algorithms for 

Power System Small Signal Stability Analysis," in IEEE Transactions on Power Systems, 

vol. 21, no. 4, pp. 1848-1855, Nov. 2006. 

[31] Z. Du, W. Liu and W. Fang, "Calculation of rightmost eigenvalues in power systems using 

the Jacobi-Davidson method," in IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 

234-239, Feb. 2006. 

[32] Schrader, Cheryl B., and Michael K. Sain. "Research on system zeros: a survey." 

International Journal of control 50, no. 4 (1989): 1407-1433. 

[33] Hoagg, Jesse B., and Dennis S. Bernstein. "Nonminimum-phase zeros-much to do about 

nothing-classical control-revisited part II." IEEE control Systems 27, no. 3 (2007): 45-57. 

[34] L. Zhang, H. P. Nee and L. Harnefors, "Analysis of Stability Limitations of a VSC-HVDC 

Link Using Power-Synchronization Control," in IEEE Transactions on Power Systems, 

vol. 26, no. 3, pp. 1326-1337, Aug. 2011. 

[35] N. Martins, H. J. C. P. Pinto and L. T. G. Lima, "Efficient methods for finding transfer 

function zeros of power systems," in IEEE Transactions on Power Systems, vol. 7, no. 3, 

pp. 1350-1361, Aug 1992. 



42 

[36] N. Martins, P. C. Pellanda and J. Rommes, "Computation of Transfer Function Dominant 

Zeros With Applications to Oscillation Damping Control of Large Power Systems," 

in IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1657-1664, Nov. 2007. 

[37] J. F. Hauer, "Robust damping controls for large power systems," in IEEE Control Systems 

Magazine, vol. 9, no. 1, pp. 12-18, Jan. 1989. 

[38] M. M. Farsangi, Y. H. Song and K. Y. Lee, "Choice of FACTS device control inputs for 

damping interarea oscillations," in IEEE Transactions on Power Systems, vol. 19, no. 2, 

pp. 1135-1143, May 2004. 

[39] M. M. Farsangi, H. Nezamabadi-pour, Y. H. Song and K. Y. Lee, "Placement of SVCs and 

Selection of Stabilizing Signals in Power Systems," in IEEE Transactions on Power 

Systems, vol. 22, no. 3, pp. 1061-1071, Aug. 2007. 

[40] K. Koorehdavoudi et al., "Input-output characteristics of the power transmission network's 

swing dynamics," 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, 

NV, 2016, pp. 1846-1852. 

[41] K. Koorehdavoudi et al., "Input-output properties of the swing dynamics for power 

transmission networks with HVDC modulation," to appear in Proceedings of the 20th 

IFAC World Congress, 2017. 

[42] Small Signal Analysis Tool (SSAT), User’s Manual, Powertech Labs Inc., Surrey, BC, 

Canada, 2002. 

[43] P. Kundur, Power System Stability and Control, McGraw-Hill, 1994. 

[44] Misra, Pradeep, Paul Van Dooren, and Andras Varga. “Computation of structural 

invariants of generalized state-space systems.” Automatica 30.12 (1994): 1921-1936. 

[45] E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part I: General 

Concepts," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, no. 6, 

pp. 3017-3024, June 1981. 

[46] E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part II: Performance 

Objectives and Tuning Concepts," in IEEE Transactions on Power Apparatus and Systems, 

vol. PAS-100, no. 6, pp. 3025-3033, June 1981. 

[47] E. V. Larsen and D. A. Swann, "Applying Power System Stabilizers Part III: Practical 

Considerations," in IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, 

no. 6, pp. 3034-3046, June 1981. 

[48] N. Noroozian and G. Andersson, "Damping of inter-area and local modes by use of 

controllable components," in IEEE Transactions on Power Delivery, vol. 10, no. 4, pp. 

2007-2012, Oct 1995. 

[49] J. P. Corriou, Process Control: Theory and Applications, Springer, 2004. 

 

 

 

 

 


	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables

	1. Introduction
	1.1 Background
	1.2 Overview of the Problem
	1.2.1 Main Issues
	1.2.2 Secondary Issues

	1.3 Report Organization

	2. Assessing HVDC Modulation Impacts on Remote Grid Channels
	2.1 Scope and Motivation
	2.2 Modeling
	2.3 Results
	2.3.1 Analysis of Networks with Controlled HVDC Lines

	2.4 Example
	2.5 Discussion
	2.6 Proofs of Formal Results

	3. Zeros Analysis for Detailed Power-System Models
	3.1 Motivations and Scope
	3.2 Calculation of Tansfer-Function Zeros: Fundamentals
	A. Power system small signal modeling
	B. Transfer function zeros calculation

	3.3 Case Studies
	A. PSS design
	B. SVC auxilary control design


	4. Conclusions
	References



