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Executive Summary 

Determining reliable actionable limits for phase angles measured by Phasor Measurement Units 

can help trigger remedial control actions in a timely fashion to avoid system blackouts. Traditional 

ways for calculating the steady- state stability limits always require manually selected interfaces 

and a pre-defined methodology for system stressing. However, there is no systematic way or 

NERC Standards for neither one. This project proposes and validates a novel analytical tool for 

fast assessment of power system steady-state angular stability limit, which provides a new 

perspective to understand and determine the steady-state angular stability leveraging the nonlinear 

information within the underlying power system dynamic model. This new tool can determine the 

angle limits for all lines, i.e. naturally covering all interfaces, without calculating the nonlinear 

power flow equations. This study would provide guideline for phase angle based system stability 

monitoring and control. Next steps to move the research toward applications include developing 

dedicated algorithms without symbolic derivations to further reduce the computation, conducting 

N-1 contingency analysis and design of remedial control actions. 
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1. Introduction 

1.1 Background 

The principal cause of the Northeast Blackout in 2003 was a lack of situational awareness due to 

inadequate reliability tools [1]. The interconnection-wide phase angles are monitored in real-time 

by massive Phasor Measurement Units (PMUs) that have been deployed in the last two decades. 

However, these phase angles currently are only interpreted as an indicator of the stress level 

associated with the amount of power transfer through transmission lines or among control areas, 

while no operating guidelines or procedures have been developed to establish reliable actionable 

limits [2]. A lack of reliable actionable limits makes it difficult for the system operator to determine 

when to take remedial control actions, such that generators may lose synchronism and blackouts 

may happen if the system is increasingly stressed over time, such as a monitored phase angle in 

2003 Northeast blackout in Figure 1.1 [3]. In North American power grids, no NERC Standards 

have been established that specifically require electric utilities or operators to monitor phase angles 

[4]. The reason for such missing standards largely stems from the fact that the actionable angle 

limits are not constant and are difficult to determine, which highly depend on the system topology, 

loading condition, generation schedule and, most importantly, the way to stress the system to 

approach its steady state stability limit. 

 

Figure 1.1 Divergence of phase angle between Cleveland and Michigan during 2003 Northeast 

blackout [3] 
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The comprehensive and accurate assessment of reliability, i.e. dynamic security assessment 

(DSA), requires solving computational-extensive numerical integrations which make DSA viable 

only for offline planning or long-cycle online applications [5]. In practical power system planning 

and operations, there are usually several thousand contingencies and tens or hundreds of interface 

limits to be calculated. In addition, considering more diverse power flow patterns brought by a 

high penetration of intermittent energy resources, future DSA is expected to be executed more 

frequently with a shorter cycle or even approaching real-time. These trends motivate the research 

needs for fast stability assessment tools to increase the situational awareness and lower the risk of 

large-scale blackouts. 

 

A promising way to address such a challenge is the steady-state stability analysis, which only 

focuses on the steady-state condition of power systems such that the stability assessment can be 

significantly simplified. The static stability of the base case (without any contingencies) is a 

necessary condition of system stability and it has been proved practically useful [5][6], including 

estimating the stability margin as well as other purposes such as the forward reserve procurement. 

The basic idea is to identify the steady-state voltage stability limit (SSVSL) in a very speedy 

fashion by solving static power flow equations such that SSVSL can be calculated and monitored 

online. The online implementation of this type of approaches will guarantee the system operator's 

awareness of the situation where a margin becomes dangerously low, allowing preparation and 

execution of necessary control actions. Such an application seems to be more needed in future 

grids with a high penetration of intermittent renewable energy where system conditions may 

change more frequently and significantly. 

 

However, there are three major challenges with existing methods for assessing SSVSL when 

dealing with future power grid with massive renewables: (i) selection of interfaces and scenarios, 

i.e. which interface is of concern and how to select the sink and the source [7][8]; (ii) need for 

solving a series of power flows for each interface and for each scenario; and (iii) SSVSL is an 

optimistic stability analysis since small-signal instabilities may still occur without violating 

SSVSL (to be shown in case study section of this paper). Even regardless of the computational 

burden involved in (ii), the selections in (i) are always conducted manually, where people’s 

experiences and understanding about historic behaviors of the power grid play an important role. 

Such manual selections can be either difficult or unreliable, especially when considering the power 

flow pattern and critical interfaces may change more significantly and more frequently with 

loading and operating conditions for future power grids with a high penetration of intermittent 

distributed energy resources. To this end, an automated, fast and less-optimistic method is 

proposed in this paper to estimate the steady-state angle stability limit (SSASL), which captures 

the Saddle-node bifurcation points along certain stressing directions defined by the associated 

linearized dynamic system. Although these stressing directions may be unrealistic, it is found by 

extensive numerical studies that the stability margin defined by the proposed approach along any 

realistic stressing direction would always become low when approaching the stability boundary. 

1.2 A brief review of selected stability problems 

This section briefly reviews a few selected power system stability problems, i.e. TSA, SSA and 

static voltage stability analysis (VSA), to point out the scope of this work. The review is neither 
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exhaustive nor comprehensive, and we refer interested readers to reference [9] for a comprehensive 

review of power system stability problems. 

 

TSA of nonlinear dynamical power systems is usually considered to be the most realistic dynamic 

performance analysis, which is used for benchmarking other simplified stability analyses, e.g. 

small-signal and voltage stability analyses, and evaluating new control schemes, e.g. damping 

controls. TSA is often defined upon a set of nonlinear differential-algebraic equations (DAEs), 

whose accurate assessment by a numerical integration can be very computationally-expensive 

[10]. Thus, in practical applications, numerical integration based TSA is used for most utilities, 

while for some utilities it is used as the final check of very few scenarios screened out by fast but 

not very accurate analyses, e.g. a direct method [11]. With today's analytical and computing 

capability, it is still extremely difficult, if not impossible, to implement online TSA for analyzing 

all contingencies and all potential changes in loading and generation conditions. 

 

SSA is a common simplification of the stability analysis of nonlinear dynamical systems, which is 

only valid in a small neighborhood of the equilibrium point, i.e. the steady-state condition, since 

all nonlinearities with power system DAEs are ignored. To evaluate the small-signal stability of 

power systems under other steady-state conditions or when subject to possible changes of loading 

and generations, SSA needs to be re-executed, which is also considered to be computational-

expensive for the computing resources in today's control room. 

 

Static voltage stability analysis (VSA) is a further simplification which ignores all dynamics, while 

only retaining Kirchhoff's current and voltage laws in the power network, resulting in a set of 

nonlinear algebraic equations known as power flow equations. Static VSA may imply SSA under 

some extreme and unrealistic assumptions, while in general there is no such an implication 

[12][13] and voltage stability is usually an optimistic estimate of small-signal stability as shown 

in Figure 1.2. Most production-level solutions of power flow equations are iterative in nature, e.g. 

Newton-Raphson and fast decouple methods, although computationally demanding, which are 

computationally much cheaper than SSA and TSA. 

 

Figure 1.2 Boundaries of voltage stability, small-signal stability and aperiodic stability in 

parameter space 
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1.3 Scope of work  

There are two mechanisms for small-signal instability over slow changes of system conditions or 

parameters [13], i.e. self-oscillation instability and aperiodic instability, which respectively 

correspond to Hopf-bifurcation and Saddle-node bifurcation in the field of nonlinear dynamics. 

This work only focuses on the aperiodic instability, i.e. Saddle-node bifurcation induced 

instability. The red curve in Figure 1.3 represents a typical self-oscillation instability, where the 

real parts of two conjugate eigenvalues change from negative to positive at points 𝐶so heading for 

an instability without meeting each other. The self-oscillation instability is mostly caused by 

improper designs of automatic control [13], and it is highly related to the damping of oscillatory 

modes. Therefore, the damping ratio of poorly-damped modes deserve dedicated monitoring 

programs in operations and planning [14] to avoid self-oscillation instability. The aperiodic 

instability refers to the mechanism that two conjugate eigenvalues first collide on the real axis at 

point 𝑃co, split into two real eigenvalues and one of them becomes positive at point 𝐶ap leading to 

an aperiodic instability, as illustrated by black curves in Figure 1.3. Note that the aperiodic 

instability represents a loss of synchronism among generators, i.e. steady-state angle instability 

[13]. 

 

This work aims at a novel online steady-state angle stability monitoring application, where the 

nonlinearity of system dynamics are retained and utilized to directly infer the steady-state angle 

stability limit (SSASL). The proposed stability analysis is expected to be more accurate, i.e. less 

optimistic, than static VSA, while being slightly optimistic only when self-oscillation instability 

occurs before an aperiodic instability, as shown in Figure 1.2. 

 

Figure 1.3 Aperiodic instability and self-oscillation instability 

1.4 Report Organization  

The rest of the report is organized as follows. Section 2 will present the proposed methodology, 

including the introductions (i) of the nonlinear differential equations (DEs) of a classic multi-

machine power system and derives its representation in the modal space, and (ii) the estimation 

of SSASL using the nonlinear dynamic model in the modal space. Section 3 shows studied cases 
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on the IEEE 9-bus and 39-bus power systems to validate the proposed approach. Section 4 draws 

conclusions and envisions future works. 
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2. Power System Nonlinear Dynamic Model in Modal Space 

Consider a classic 𝑁-machine power system 

{
�̇�𝑖 = 𝜔s𝜔𝑖

�̇�𝑖 =
1

2𝐻𝑖
(𝑃m𝑖 − 𝑃e𝑖 −𝐷𝑖𝜔𝑖)

  (1) 

𝑃e𝑖 = 𝐸𝑖
2𝐺𝑖 − ∑

𝑁
𝑗=1,𝑗≠𝑖 (𝐶𝑖𝑗sin(𝛿𝑖 − 𝛿𝑗 − 𝛿s𝑖𝑗) + 𝐷𝑖𝑗cos(𝛿𝑖 − 𝛿𝑗 − 𝛿s𝑖𝑗)) (2) 

where 𝛿s𝑖𝑗 is the steady-state angle difference between generators 𝑖 and 𝑗, 𝜔s, 𝑃m𝑖, 𝐷𝑖, 𝐻𝑖, 𝐸𝑖, 𝐺𝑖, 

𝐶𝑖𝑗 and 𝐷𝑖𝑗 are constant, where all loads are represented by constant impedance and included in 

parameters 𝐶𝑖𝑗 and 𝐷𝑖𝑗. 

 

For simplicity, (1) can be re-written as (3) 

�̇� = 𝐟(𝐱)  (3) 

where 𝐱 = {𝛿1 𝜔1, ⋯, 𝛿𝑁, 𝜔𝑁} is the state vector with the equilibrium at the origin and 𝐟(𝐱) =
{𝑓1(𝐱), 𝑓2(𝐱), ⋯, 𝑓2𝑁(𝐱)} is a smooth vector field. 

 

The models in (1) or (3) are called the nonlinear dynamic model in angle-speed space in this paper, 

while the one to be derived in the following is called the nonlinear dynamic model in modal space. 

Eigen-analysis based on the linearized model of (3) is briefly reviewed below, which will be 

adopted in deriving the nonlinear dynamic model in modal space. It is worth mentioning that 

although a linear change of coordinate is adopted, the nonlinearity of system dynamical model is 

fully retained without any approximation. 

 

• Step 1: Linearize (3) at the origin and obtain (4), where 𝐴 is the Jacobian of 𝐟 at the origin. 

• Step 2: Calculate the eigenvalues and eigenvectors of 𝐴 and define the transformation in 

(5), where 𝑃 is the matrix consisting of the right eigenvectors of matrix 𝐴, and 𝐲 is the state 

vector in modal space, i.e. 𝐲 = {𝑦1, 𝑦2, ⋯ , 𝑦2𝑁}. 
• Step 3: Substitute (5) into (4) such that (4) becomes (6), where Λ is the matrix consisting 

the eigenvalues of 𝐴 , i.e. Λ = diag{𝜆1, 𝜆2, ⋯ , 𝜆2𝑁}  and it satisfies Λ = 𝑃−1𝐴𝑃  by 

definition. 

�̇� = 𝐴𝐱  (4) 

𝐱 = 𝑃𝐲  (5) 

�̇� = Λ𝐲  (6) 

In a classic 𝑁-machine power system, the dynamic Jacobian contains (𝑁 − 1) pairs of conjugate 

eigenvalues and two real eigenvalues [15]. Without loss of generality, let 𝜆2𝑖−1  and 𝜆2𝑖  be a 

conjugate pair defining the oscillatory mode 𝑖 for 𝑖 = 1,2,⋯ ,𝑁 − 1, while 𝜆2𝑁−1 and 𝜆2𝑁 be real. 

In the eigen-analysis, the linear approximation in (4) is utilized to study the dynamic behaviors of 

(3) subject to small disturbances. As a comparison, the idea to be proposed below will fully 
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maintain all nonlinearities with the original DEs in (3). With the linear change of coordinates in 

(5), the nonlinear DEs in (3) is transformed to the system in (7), called the dynamic model in modal 

space. Note that the system in (7) is mathematically equivalent to (3) if the matrix 𝑃 in (5) is 

invertible. All subsequent analyses are performed on the nonlinear DEs in (7). 

�̇� = 𝑃−1𝐟(𝑃𝐲) ≜ 𝐠(𝐲)  (7) 

Remarks: 

Corresponding to the concept of the mode in the linear analysis (4)-(6), the two nonlinear DEs 

corresponding to a conjugate pair of eigenvalues and their dominated nonlinear dynamic behaviors 

are referred to as a nonlinear mode in this paper. Unlike linear analysis where any two modes and 

their dynamics are independent, two nonlinear modes are only linearly independent but still 

coupled nonlinearly, which is termed the nonlinear modal interaction in normal form analysis [16], 

i.e. dynamics initiated in one nonlinear mode may propagate to and affect the dynamics of another 

nonlinear mode through nonlinear modal interactions. 

 

It has been proved in [17] that for any classic 𝑁-machine power system with a uniform damping, 

the nonlinear dynamics associated with the two real modes do not affect the nonlinear dynamics 

associated with complex modes. Therefore, the angle stability of systems in (7) are dominated by 

its first (2𝑁 − 2) nonlinear DEs of (7). Expanding (7), we can obtain (8) whose first (2𝑁 − 2) 
nonlinear DEs in 𝑦1, 𝑦2, ⋯ , 𝑦2𝑁−2  are completely decoupled from 𝑦2𝑁−1  or 𝑦2𝑁 , i.e. the states 

corresponding to the two real modes. 

{
 
 
 
 

 
 
 
 
�̇�1 = 𝑔1(𝑦1, 𝑦2, . . . , 𝑦2𝑁−3, 𝑦2𝑁−2)

�̇�2 = 𝑔2(𝑦1, 𝑦2, . . . , 𝑦2𝑁−3, 𝑦2𝑁−2)

⋮
�̇�2𝑁−3 = 𝑔2𝑁−3(𝑦1, 𝑦2, . . . , 𝑦2𝑁−3, 𝑦2𝑁−2)

�̇�2𝑁−2 = 𝑔2𝑁−2(𝑦1, 𝑦2, . . . , 𝑦2𝑁−3, 𝑦2𝑁−2)

�̇�2𝑁−1 = 𝑔2𝑁−1(𝑦1, 𝑦2, . . . , 𝑦2𝑁−1, 𝑦2𝑁)

�̇�2𝑁 = 𝑔2𝑁(𝑦1, 𝑦2, . . . , 𝑦2𝑁−1, 𝑦2𝑁)

 (8) 
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3. A Modal-Space Method to Estimate SSASL 

In this section, we propose the modal space method to estimate the SSASL of a general classic 𝑁-

machine power system using its nonlinear dynamic model in modal space, as shown in (8). Three 

versions of the proposed method are developed with different requirements on the system steady-

state condition at limit points. The following starts with the introduction of the proposed MS 

method, continues with a discussion on their differences, and ends up with an introduction of an 

online stability monitoring application. 

3.1 Simplifying nonlinear dynamic model in modal space 

This subsection presents a simplification of (8) into a number of single-degree-of-freedom (SDOF) 

nonlinear dynamical systems by using the steady-state condition. Note that the first (2𝑁 − 2) 
nonlinear DEs of (8) are still coupled together through nonlinear modal interactions, which place 

a difficulty for further theoretical analysis of system dynamics when subject to large disturbances. 

Fortunately, since this work focuses on the steady-state behavior of the system, i.e. how the 

equilibrium changes nonlinearly with loading condition/generation dispatch, instead of dynamic 

behaviors [18][19], then it is reasonable and helpful to make the following simplification such that 

(8) becomes (9): the steady-state condition of the system in (8) implies that when analyzing any 

nonlinear oscillatory mode 𝑖 ∈ {1,2, . . . , 𝑁 − 1}, the impact from dynamics of all other modes can 

be ignored, i.e. 𝑦2𝑗−1 = 𝑦2𝑗 = 0 for all 𝑗 ≠ 𝑖. 

{
�̇�2𝑖−1 = 𝑔2𝑖−1(0, . . . ,0, 𝑦2𝑖−1, 𝑦2𝑖, 0, . . . ,0)

�̇�2𝑖 = 𝑔2𝑖(0, . . . ,0, 𝑦2𝑖−1, 𝑦2𝑖, 0, . . . ,0)  (9) 

3.2 Constructing real-valued DEs for each nonlinear mode 

This subsection applies a linear change of coordinates to (9) and constructs a real-valued nonlinear 

SDOF dynamical system for each nonlinear oscillatory mode. The linear change of coordinates is 

intentionally designed to make the resulting real-valued system similar to a single-machine system, 

but with a differential characteristic of nonlinearities. 

 

Note that the two state variables and the two nonlinear DEs w.r.t. the nonlinear mode 𝑖 in (9) are 

complex-valued. More specifically, 𝑦2𝑗−1  and 𝑦2𝑗  and the two DEs in (9) are respectively 

conjugate to each other, which is true if the two eigenvectors corresponding to a conjugate pair of 

eigenvalues of matrix 𝑃 in (5) are conjugate to each other. The following adopts the linear change 

of coordinates [18] as shown in (10) to transform (9) to a new set of coordinates, such that the two 

new state variables turn out to be real-valued and possess similar meanings to angle and speed. 

(
𝑦2𝑖−1
𝑦2𝑖

) =
2

𝜆2𝑖−1−𝜆2𝑖
(
1 −𝜆2𝑖
−1 𝜆2𝑖−1

) (
𝜔e𝑖
𝛿e𝑖

)  (10) 

The determination of the transformation in (10) is intuitively generalized from the investigation of 

a general single-machine-infinite-bus (SMIB) power system [20][21] as shown in (11), where the 

system has an equilibrium at origin and 𝛽 = 𝑃max𝜔s/2𝐻 for simplicity (note that 𝑃m = 𝑃maxsin𝛿s 
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and 𝑃e = 𝑃maxsin(𝛿 + 𝛿s)). The linearization of (11) at the origin is obtained as (12). By eigen-

analysis, eigenvalues of (11)’s Jacobian are 𝜆1 = 𝑗√𝛽cos𝛿s and 𝜆1 = −𝑗√𝛽cos𝛿s, and their right 

eigenvectors are shown in (13). The linear change of coordinates in (14) can transform (12) to its 

modal space as shown in (15), which corresponds to the linearization of (9). Thus, the 

transformation in (10) is chosen according to the inverse of matrix 𝑃, as shown in (16), which can 

transform (15) back to (12). 

{
�̇� =

𝜔x

2𝐻
(𝑃m − 𝑃e) = 𝛽(sin𝛿s − sin(𝛿 + 𝛿s))

�̇� = 𝜔
 (11) 

(
�̇�
�̇�
) = (

0 −𝛽cos𝛿s
1 0

) (
𝜔
𝛿
)  (12) 

𝑃 =
1

2
(
𝜆1 𝜆2
1 1

)  (13) 

(
𝜔
𝛿
) = 𝑃 (

𝑦1
𝑦2
)  (14) 

(
�̇�1
�̇�2
) = (

𝜆1 0
0 𝜆2

) (
𝑦1
𝑦2
)  (15) 

𝑃−1 =
2

𝜆1−𝜆2
(
1 −𝜆2
−1 𝜆1

)  (16) 

Adopt notations in (17) by separating the real and imaginary parts of (9) and its eigenvalues, where 

𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑑𝑖 are real-valued numbers or functions, then substitute (10) into (9) and obtain (18), 

which is real-valued. Note that the realness of (18) only relies on the conjugate relationships 

between the two DEs in (9) and between 𝜆2𝑖−1 and 𝜆2𝑖, as shown in (17). 

{
 

 
𝜆2𝑖−1 = 𝑎𝑖 + 𝑗𝑏𝑖
𝜆2𝑖 = 𝑎𝑖 − 𝑗𝑏𝑖
𝑔2𝑖−1(𝑦2𝑖−1, 𝑦2𝑖) = 𝑐𝑖 + 𝑗𝑑𝑖
𝑔2𝑖(𝑦2𝑖−1, 𝑦2𝑖) = 𝑐𝑖 − 𝑗𝑑𝑖

  (17) 

{
�̇�g𝑖 = 𝑎𝑖𝑐𝑖 − 𝑏𝑖𝑑𝑖

�̇�g𝑖 = 𝑐𝑖
  (18) 

3.3 Identifying generalized “power-angle curve” for each nonlinear mode 

It has been found by extensive studies on different system models and under different operating 

conditions that the equations in (18) always follow a special form as shown in (19), i.e. the 

derivative of the “generalized speed” is a single-variate function of the “generalized angle” and 

the derivative of the “generalized angle” is exactly the “generalized speed”. This paper assumes 

such a relationship without proof. We further define the “generalized power" of the SMIB-like 
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system in (19) by (20) for the nonlinear mode 𝑖. Note that the desired information about SSASL is 

completely maintained in (20), which will be explored in the next subsection. 

{
�̇�g𝑖 = ℎ1𝑖(𝛿g𝑖)

�̇�g𝑖 = 𝜔g𝑖
  (19) 

𝑃𝑖 = ℎ1𝑖(𝛿g𝑖)  (20) 

3.4 Estimating SSASL for each nonlinear mode 

In an SMIB system, the SSASL is determined by the two closest extreme points around the stable 

equilibrium point as shown in Figure 3.1, which are corresponding to the largest power transfer 

from (to) the machine to (from) the infinite bus. Similarly, the SSASL of each nonlinear mode can 

be estimated by identifying the two closest extreme points around the origin. Since the generalized 

power-angle curve of each nonlinear mode is a univariate function in generalized angle as shown 

in (20), a bisection based numerical search for these two extreme points, say 𝛿g𝑖,1 and 𝛿g𝑖,2, is not 

computational expensive at all and is therefore adopted in this paper. An approximate analytical 

solution may be possible and deserves further investigations. 

 

It can be seen that two SSASL points can be obtained for each nonlinear mode. Thus, for the 

system in (8) having (𝑁 − 1) nonlinear modes, we have (2𝑁 − 2) SSASL points in total. 

 

Figure 3.1 Aperiodic instability and self-oscillation instability 

3.5 Determining system steady state at each limit point 

An SSASL actually represents a system steady state where the system is about to lose stability. 

This subsection introduces procedures to determine such a system steady state, i.e. all bus voltage 

magnitudes and angles, from the estimated SSASL for each nonlinear mode. 

1

Angle limit

Angle 

limit

Pm

Pe

Angle

Power
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Note that the generalized angle and speed, i.e. coordinates of the system in (19), are transformed 

from original angle and speed derivations, i.e. coordinates of the system in (1), over two linear 

changes of coordinates in (5) and (10). Therefore, each estimated SSASL represented by the 

generalized angle and speed can be directly transformed back to original angle and speed space 

over the inverse of these two linear transformations, then all other states can be determined 

accordingly. Denote the two limit points w.r.t. nonlinear mode 𝑖 as 𝛿g𝑖,𝑘 with 𝑘 = 1 or 2. Detailed 

procedures are summarized below. 

• Step 1: Substitute (𝜔g𝑖, 𝛿g𝑖) = (0, 𝛿g𝑖,𝑘) into (10) and calculate 𝑦2𝑖−1 and 𝑦2𝑖. 

• Step 2: Formulate the modal-space state vector as 𝐲 = {0, ⋯, 0, 𝑦2𝑖−1,𝑦2𝑖, 0, ⋯,0}. 
• Step 3: Substitute 𝐲 into (5) and obtain 𝐱. 

• Step 4: Extract all angles from 𝐱, obtain 𝛿1, 𝛿2, …, 𝛿𝑁, and then formulate machine internal 

voltage vector 𝐄 = {𝐸1𝑒
𝑗𝛿1, 𝐸2𝑒

𝑗𝛿2, …, 𝐸𝑁𝑒
𝑗𝛿𝑁}, where voltage magnitudes are constant 

introduced under (2). 

• Step 5: Calculate the terminal current vector 𝐈t at generator buses by 𝐈t = 𝑌𝑟𝐄, where 𝑌𝑟 is 

the reduced admittance matrix including generator source impedance and all load 

impedance. 

• Step 6: Calculate the terminal voltage vector 𝐕t  at generator by (21), where 𝑍s =
diag{𝑍s1, 𝑍s2, … , 𝑍s𝑁} is the source impedance matrix. 

• Step 7: Solve for non-generator bus voltages by (22)-(23). 

• Step 8: By now, voltage phasors at all buses have been obtained, as shown in (21) and 

(23). Other states, including generator power output, load power consumption can be 

calculated respectively by (24)-(26), while line currents and line flows can be calculated 

accordingly by Ohm’s law (omitted here). 

𝐕t = 𝐄 − 𝑍s𝐈t  (21) 

(
𝑌11 𝑌12
𝑌21 𝑌22

) (
𝐕t
𝐕non−G

) = (
𝐈t
0
)  (22) 

𝐕non−G = −𝑌22
−1𝑌21𝐕t  (23) 

𝐒t = 𝐕t𝐈t
∗  (24) 

𝐼L𝑖 = 𝑉𝐿𝑖/𝑍L𝑖  (25) 

𝑆L𝑖 = 𝑉𝐿𝑖𝐼L𝑖
∗ = 𝑉𝐿𝑖(𝑉𝐿𝑖/𝑍L𝑖)

∗  (26) 

We name the above derivation of the system steady state at an estimated limit point as the first 

version of the MS method, or MS1, to be distinguished from two more versions named MS2 and 

MS3 to be introduced below. Note that MS implicitly assumes that when the system goes from the 

current steady state to the steady state at the limit point, (i) generator internal bus voltage 

magnitude is maintained unchanged and (ii) load impedance is maintained unchanged. These two 

implicit assumptions are not very realistic since (i) generators always have automatic voltage 

regulations to maintain the terminal voltage magnitude to be around a given reference, and (ii) 

load power consumption is more often used to measure the system stress level, instead of load 
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impedance. Therefore, it would be more reasonable to maintain generator terminal voltage 

magnitude and load power unchanged. The following will briefly introduce MS2, which 

guarantees generator terminal voltage magnitude unchanged, and MS3, which guarantees both 

generator terminal voltage magnitude and load power unchanged. 

 

MS2 starts with steps 1-6 of MS1. Then, the magnitude of each entry of the obtained vector 𝐕t is 

overwritten by the corresponding generator terminal bus voltage magnitude under the base-case 

condition, while all angles of 𝐕t  are intact. The updated generator terminal voltage vector is 

denoted as 𝐕t
(update)

. The terminal current is updated by (27) and non-generator bus voltage is 

updated similarly to (23) but with 𝐕t
(update)

. Finally, other states can be updated accordingly. 

𝐈t
update

= (𝑌11 − 𝑌12𝑌22
−1𝑌21)𝐕t

update
  (27) 

MS3 also starts with steps 1-6 of MS1, continues with all additional steps of MS2, then updates 

the load impedance using the solved bus voltage and the base-case load power consumption (such 

an operation alters the admittance matrix in (22), the non-generator bus voltage in (23) and 

generator terminal current), and finally iterates the updates of generator terminal voltage and 

current and load impedance until a convergence is reached. 

3.6 Remarks on MS method 

The proposed MS method approach exploits the nonlinearities within the power system nonlinear 

dynamic model and directly determines SSASL without repetitively solving the nonlinear power 

flow problem and the linear eigen-analysis. All system states, i.e. a solved power flow condition, 

at each SSASL point can be determined such that the stability limit can be reflected in all system 

states, including all transmission line flows and all bus voltages. Therefore, this new method 

eliminates the need for manually selecting interfaces, since all lines, i.e. potential interfaces, have 

been considered. In addition, this new approach also eliminates the need for manually selecting 

scenarios for stressing the system, since each estimated SSASL point represents the largest 

stressing condition of a nonlinear mode and such stressing directions are uniquely and 

automatically determined in the proposed method as implied by the generalized power-angle curve 

(20). A few more important remarks are summarized below. 

 

• Number: Two SSASL points can be obtained for each nonlinear oscillatory mode. 

Therefore, for a classical 𝑁-machine power system having (𝑁 − 1) oscillatory modes, 

there are (2𝑁 − 2) SSASL points.  

• Physical meaning: Each SSASL point represents the largest steady-state angle separations 

without causing steady-state instability when stressing the system about that nonlinear 

mode, i.e. increasing the power transfer by generation re-dispatch between two groups of 

generators determined by the mode shape of that mode.  

• Limitation in handling load change: As discussed in 2), the proposed approach assumes 

a constant load model (constant impedance in MS1 and MS2, while constant power in 

MS3) and then estimates the generation dispatchability limit. However, when the stability 

limit against load changes is of concern, the proposed approach seems currently not 
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applicable in that regard. One would have to resort to other approaches, e.g. Thevenin's 

equivalent approach for static voltage stability.  

• Conservativeness: It is worth mentioning that the estimated SSASL corresponds to the 

point 𝑃co  in Figure 1.3, instead of 𝐶ap . Therefore, along any stressing direction, 𝑃co  is 

always reached before 𝐶ap, which makes our proposed method conservative. Numerical 

studies will show that the MW distance between 𝑃co and 𝐶ap is almost ignorable. Thus, the 

conservativeness of the proposed method is usually small.  

• Comparison of MS1, MS2 and MS3: From MS1 to MS3, the computational complexity 

increases while the accuracy is expected to improve. A brief summary is shown in Table 

3.1. 

Table 3.1  Comparison of MS1, MS2 and MS3 

 Generator modeling Load modeling Iterative? 

MS1 Fixed internal 𝐸𝑖 Fixed 𝑍L𝑖 No 

MS2 Fixed terminal 𝑉t𝑖 Fixed 𝑍L𝑖 No 

MS3 Fixed terminal 𝑉t𝑖 Fixed 𝑃L𝑖 and 𝑄L𝑖 Yes 

3.7 Applying MS method to online stability monitoring 

This subsection presents a way to apply the proposed MS method to the online steady-state angle 

stability monitoring. For any given operating condition of a classic 𝑁-machine power system, the 

proposed MS method can give (2𝑁 − 2) steady-state conditions respectively representing (2𝑁 −
2)  limit points on the aperiodic stability boundary. Therefore, distances between the current 

operating condition to those steady-state conditions at limit points can be used as stability margins 

for the monitoring purpose. Although any states can be used to define the distance, the MW power 

is usually a practical meaningful state and is adopted to define the stability margin, as shown in 

(28). 

𝑃margin,𝑘 = ||𝐏 − 𝐏SSASL,𝑘||  (28) 

where 𝐏 = {𝑃e1, 𝑃e2, … , 𝑃e𝑁} is the generator active power vector at current operating condition, 

𝐏SSASL,𝑘 represents the generator active power vector at the condition w.r.t. the 𝑘-th SSASL point, 

𝑘 ∈ {1,2, … ,2𝑁 − 2}, || ∗ || is the norm operation (𝐿2-norm is used in this paper). 

 

Thus, the proposed MS method defines (2𝑁 − 2) MW margins for a given operating condition. If 

monitoring these MW margins when the system is increasingly stressed, we will have (2𝑁 − 2) 
MW margin curves. An instability may occur when any of those curves approach zero. 
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4. Case Studies 

4.1 Tests on IEEE 9-bus power system 

The IEEE 9-bus power system, whose one-line diagram can be found in [22] and is omitted here, 

is selected mainly because it is the smallest multi-machine power system whose steady-state angle 

stability boundary can be visualized in a 2-D plot, say 𝑃e2-𝑃e3 space or 𝛿21-𝛿31 space. There are 

three machines, therefore, defining two electromechanical modes. Based on the power flow data 

from [22], dynamic data from [23] and using classic generator model, the two electromechanical 

modes are found to be 1.38Hz and 2.13Hz, where the 1.38Hz mode represents the oscillation 

between generator 1 and generators 2 and 3, denoted as mode 1, while the 2.13Hz mode is between 

generator 3 and generators 1 and 2, denoted as mode 2. 

 

The first test is to illustrate the accuracy of limit points identified by the proposed MS method by 

comparing to reference stability boundaries numerically identified by VSA and SSA. These 

reference results are obtained by a ray-scanning scheme, whose steps are summarized below for 

identifying the static voltage stability boundary, while steps for identifying aperiodic (or small-

signal) stability boundaries only has a different step 2 where aperiodic (or small-signal) stability 

is also checked in addition to power flow convergence. 

 

• Step 1: Given an operating condition with a generation dispatch as 𝐏 = {𝑃e1, 𝑃e2, 𝑃e3}, 
select a direction in the 2-D 𝑃e2-𝑃e3 space, say 𝐧 = (Δ𝑃e2, Δ𝑃e3) and ||𝐧|| = Δ, where Δ 

represents the step size and Δ = 10 MW is used in this paper to initialize the step size for 

each ray. 

• Step 2: Solve power flow with modified generations 𝑃e2 = 𝑃e2 + Δ𝑃e2 and 𝑃e3 = 𝑃e3 +
Δ𝑃e3. 

• Step 3: If power flow in step 2 converges, then repeat step 2 to check a farther point along 

the ray in the 2-D space. Otherwise, go to step 4. 

• Step 4: If Δ > 𝜖1, then recover the last converged condition by 𝑃e2 = 𝑃e2 − Δ𝑃e2  and 

𝑃e3 = 𝑃e3 − Δ𝑃e3, and reduce step size by Δ = Δ/2. Otherwise, go to step 5. 

• Step 5: Recover generations to the last converged power flow by 𝑃e2 = 𝑃e2 − Δ𝑃e2 and 

𝑃e3 = 𝑃e3 − Δ𝑃e3, and then record (𝑃e2, 𝑃e3) as an estimate of the stability boundary. 

• Step 6: Go back to step 1 to start over with another direction until all desired directions are 

searched. 

 

 
1 𝜖 represents the stopping criterion which takes 0.1MW in this paper. 
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                                                      [𝑃e2-𝑃e3 space] 

 

                                                       [𝛿21-𝛿31 space]  

Figure 4.1 Numerically identified stability boundaries and SSASL points estimated by MS1, MS2 

and MS3 in the 9-bus system. (VS, AS and SSS respectively represent voltage, aperiodic and 

small-signal stabilities. Red stars, triangles and circles respectively represent the estimated SSASL 

points by MS1, MS2 and MS 3. The green circle is the given operating condition.) 
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Numerically identified reference stability boundaries and the SSASL points estimated by MS1, 

MS2 and MS3 are shown in Figure 4.1. Several observations can be obtained: (i) VS boundary is 

optimistic in general compared to SSS boundary; (ii) AS boundary mostly coincides with SSS 

boundary while is slightly optimistic when self-oscillation instability occurs before an aperiodic 

instability; (iii) In 𝛿21-𝛿31 space, SSASL points estimated by MS1, MS2 and MS3 are fairly close 

to each other on the AS boundary, showing that all three versions are able to give accurate angle 

limit; and (iv) In 𝑃e2 -𝑃e3  space, SSASL points by MS2 and MS3 are fairly close to the AS 

boundary while those by MS1 are not quite accurate, though being conservative. 

 

The first test shows how accurate the estimated SSASL points are for a given operating condition 

by comparing to reference stability boundaries. In fact, if the actual stressing direction does not 

point to any SSASL points, the system will not exit the stability region through one of these SSASL 

points estimated at the base-case condition. This is not a problem, since we can always update 

these SSASL points by continuously applying the proposed MS method to the most recent system 

steady state. To show an online stability monitoring application based on the proposed MS method, 

in the second test, the system operating condition is intentionally stressed in a specific direction. 

A number of steady states, to be checked by the proposed MS method, are selected between the 

base case and the stability limit. 
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Figure 4.2 Estimated SSASL points over stressing. 

Figure 4.2 shows the estimated SSASL points over the stressing process where 𝑃e3 increases from 

85MW to 414MW (all loads and 𝑃e2  are maintained unchanged) to cause an instability. Five 

steady states, from the base case to the limit, are checked by the proposed MS method and the 

resulting SSASL points change from red to yellow. Figure 4.2 shows that one of the four SSASL 

points, i.e. the one in the first quadrant, arrests the system when it tries to exit the stability region. 

It is also observed that when the system gets close to the stability boundary, other SSASL points, 

than the one to arrest the system on the boundary, may not be very accurate. This is fine as long 

as there is always an SSASL point that accurately arrests the system when it tries to exit the 

stability region. This has been found true by exhausting all stressing directions in 𝑃e2-𝑃e3 space 

with a small resolution of 2 degrees. 

 

The above visualizes the accuracy of the proposed method and its application in online steady-

state angle stability monitoring. However, such a visualization might not be possible for large 

power systems. To this end, the MW margin defined in (28) can help measure and visualize the 

distances from an operating condition to SSASL points on the AS boundary.  Figure 4.3 shows 

these MW margins when applying the proposed approach to multiple steady states over the 

stressing process, where the MW margins corresponding to the SSASL point for which the system 

is heading are decreasing to zero, while MW margins of other SSASL points are relatively 

sufficient, either increasing or staying at 200MW or above. 
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Figure 4.3 MW margins v.s. change of 𝑃e3. 

4.2 Tests on New England 39-bus power system 

This subsection applies the proposed MS method to a large 39-bus power system [24], and two 

scenarios are tested. In the first scenario, 𝑃e37  increases and 𝑃e30  decreases by the same MW, 

resulting in a stress in the local power transfer and causing a small-signal instability when the 

change of 𝑃e37 (or 𝑃e30) reaches 2143.04MW. Along such a stressing direction, the system loses 

AS and VS respectively when the change of 𝑃e37 reaches 2142.95MW and 2422.42MW. The 

MW margins over stressing are monitored by the proposed method and shown in Figure 4.4,  where 

MW margins of most SSASL points are above 1000MW even close to the instability while only 

two or three SSASL points may encounter low MW margins over stressing. Note that the smallest 

MW margin may switch from/to among these two/three SSASL points, as pinpointed in the black 

circles, over the stressing process, which calls for the need for monitoring all these critical SSASL 

points to not to miss any potential risk. It is also worth mentioning that (i) aperiodic instability and 

small-signal instability are extremely close to each other, i.e. less than 0.1MW in the MW change 

of the stress, and (ii) right before the system loses it aperiodic stability, the MW margin by (28) 

using the voltage stability limit is as huge as 482.68MW, while the MW margins by the proposed 

MS method are 54.5MW, 39.79MW and 13.70MW respectively for MS1, MS2 and MS3. Similar 

phenomena can also be observed in scenario 2, where 𝑃e33, 𝑃e34, 𝑃e35, 𝑃e36 and 𝑃e38 increase and 

𝑃e30, 𝑃e31, 𝑃e32 and 𝑃e37 decrease, stressing the interface between two distantly located generator 

groups. 

 

The current implementation of the proposed approach is not efficient, since all derivations are 

implemented by Symbolic Math Toolbox in Matlab. In addition, estimating SSASL points 

involves the calculation of all eigenvalues and eigenvectors of the linearized system. For a single 

operating condition of the 39-bus system, it takes up to 30s. A more efficient implementation 

without symbolic derivations, the selection of critical modes for a partial eigen-analysis are our 

future work. 
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Figure 4.4 MW margins in Scenario 1 



20 

 

 

Figure 4.5 MW margins in Scenario 2 
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5. Conclusions 

This paper proposes a modal-space (MS) method for estimating the steady-state angle stability 

limit (SSASL) using the power system nonlinear dynamic model in modal space. The MS method 

can estimate the SSASL for all system steady states in a single run. A steady-state angle stability 

online monitoring application is developed based on the MS method and tested on the IEEE 9-bus 

system and New England 39-bus system. Numerical results show that the proposed MS method is 

always able to arrest the system when it tries to exit the aperiodic stability region. 

 

To further show the potential in online environment, dedicated algorithms without symbolic 

derivations will be developed to reduce the computation. Future work will also consider N-1 

contingency analysis and remedial control actions. 
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