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Executive Summary 

Parts of an interconnected power system are often managed by different independent system 

operators (ISOs). Each ISO operates wholesale electricity markets within its footprint (henceforth 

called an area). This project focuses on coordination mechanisms to increase the benefits of 

interchange among the players in wholesale markets of multiple areas that are connected via tie 

lines. Specifically, this final report analyzes the existing coordination mechanisms, offers 

algorithmic innovations to enable such mechanisms, and suggests systematic modifications to 

improve these mechanisms. 

Why is coordination among areas important? Tie lines that interconnect different areas often have 

adequate transfer capabilities to cover a significant portion of the electricity demand in each area. 

However, tie lines are often underutilized or not used in an economically efficient manner. Power 

flows scheduled over tie lines often occur from an area with higher prices to an area with lower 

prices. Also, tie line schedules often fail to eliminate price differences between border buses of 

interconnected areas. Such schedules lead to large economic losses. For example, losses due to 

lack of coordination between ISO-NE and NYISO have been estimated to be $784 million from 

2006 to 2010, according to White and Pike in their 2011 report. Effective coordination among 

ISOs may lead to significant cost savings. Indeed, the final report of this project provides 

significant tools to allow ISOs to meet such goals. 

Clearly, these inefficiencies in tie-line scheduling can be largely eliminated by the integration of 

market operations in different areas. However, such a fusion remains untenable in the near future, 

given the significant regulatory and legal structures of the wholesale markets that have separately 

developed in the different areas over more than two decades. Absent the possibility of an integrated 

market, the burden falls on coordination mechanisms to remove, or at least, minimize economic 

inefficiencies in scheduling power flows over tie lines. This project proposes schemes to improve 

coordination based on the insights obtained from the economic analysis of the main causes of 

inefficiencies and prescribes methods to efficiently overcome these limitations. 

 

ISOs and market monitors have long recognized the need for comprehensive restructuring of tie-

line scheduling processes. Early research efforts sought algorithmic frameworks that allow ISOs 

of interconnected neighboring areas to compute a tie-line schedule that forms a part of a jointly 

optimal dispatch in a distributed fashion. The distributed nature of the algorithm seeks to obtain 

convergence to a jointly optimal dispatch in an iterative fashion without necessarily sharing all 

information from one area with the other. These efforts under the title of “Tie Optimization” (TO), 

however, were never realized in practice. Such a mechanism was perceived as one ISO taking a 

financial position in the other’s markets, running counter to the financial neutrality of the ISOs. 

Such a mechanism also defined too far a departure from the earlier market-based, albeit inefficient, 

mechanism to determine tie-line flows. Multiple pairs of ISOs ultimately adopted a different 

market-based mechanism called “Coordinated Transaction Scheduling” (CTS) that even received 

approval by FERC. This project analyzes the main sources of inefficiencies in CTS, suggests both 

market innovations and algorithmic tools to tackle these inefficiencies. Specifically, the research 

identifies inefficiencies due to limited trading locations for CTS, market liquidity and strategic 

interaction of market participants, as well as those emanating from the sources of uncertainty in 

demand and supply conditions at the time of scheduling. 
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This report includes the results of efforts in three distinct thrusts: 

A. Game-theoretic analysis of CTS markets—equilibrium and learning. The CTS mechanism 

involves market participants that compete to transport power from one area to the other. The 

obligation on the bidders is purely financial in that they are not responsible for the physical delivery 

of power, even though their bids define the tie-line schedule and they are paid based on the realized 

price spread between the proxy buses of neighboring areas. Naturally, the efficiency of the CTS 

market critically depends on the strategic interaction among the market participants. This work 

analyzes how the strategic incentives of market participants may be aligned with market efficiency. 

The analysis reveals several important insights. First, lack of liquidity has a strong impact on CTS 

market efficiency. Second, ISOs’ forecasts of realized price spread play a key role in the CTS 

market outcomes. CTS bidders have some ability to correct systematic forecast errors by ISOs, but 

the quality of the forecasts largely dictates the outcomes. Third, transaction fees negatively impact 

CTS market outcome and can further hamper liquidity of the CTS market over the long run. The 

results from the game theoretic analysis are corroborated by simulation results obtained under the 

condition that bidders learn to bid in a realistic market environment.  

 

B. Algorithms for tie-line scheduling under uncertainty. Tie-line schedules are always determined 

with a lead-time to power delivery, leading to uncertainty in demand and supply conditions during 

the scheduling process. This work develops a distributed solution architecture for robust tie-line 

scheduling. The technique draws on multi-parametric linear programming and defines an 

algorithmic framework to solve large distributed linear programs applicable to tie-line scheduling. 

The algorithm converges to an optimal tie-line schedule within a few iterations and does not 

require ISOs to reveal their sensitive information on the dispatch cost structures, the network 

constraints or the nature of their uncertainty sets to arrive at the optimal solution.  

 

C. Generalized CTS market design to tackle limited trading locations. The CTS mechanism in 

practice allows bidders to trade power only between two “proxy” bus locations within neighboring 

areas. As a result, this mechanism does not accurately reflect the physics of the power flows over 

multiple tie-lines that may exist between two areas. A similar problem arises when three areas are 

interconnected via tie-lines. To overcome this so-called “loop flow” phenomenon in tie-line 

scheduling, an easy-to-implement modification of the CTS mechanism is proposed that allows 

CTS market participants to offer the delivery of power from any border bus in one area to any 

border bus in a neighboring interconnected area. When the CTS market has a sufficiently large 

number of bidders, the proposed mechanism is shown to completely correct the loop flow issue.  
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1. Introduction

The final report for the PSERC project M-38 collects our work on coordination mechanisms

that exist among system operators (SOs) to schedule power flows over tie-lines. These tie-lines

interconnect parts of the grids controlled by different SOs. We call the footprint of each SO an

area in the sequel. The motivation behind this project lies in the gross inefficiencies that plagued

coordination mechanisms for tie-line scheduling. The three following chapters tackle analysis of

the current mechanism for tie-line scheduling, suggested modifications to how these markets are

run, and novel algorithmic frameworks to compute tie-line schedules. The chapter descriptions are

given below.

• Chapter 2 provides a game-theoretic analysis of Coordinated Transaction Scheduling (CTS)

markets. The CTS mechanism involves profit-motivated market participants. In this work,

we analyze if the strategic incentives of the CTS market participants are correctly aligned

towards reducing the price spread between border buses in the two areas. We show that lack

of liquidity, SOs’ forecasts of realized price spread and transaction fees have a strong impact

on the CTS market outcome and hence, its efficiency. The results from the game theoretic

analysis coincide with simulations where bidders learn to bid in such a market environment.

• Chapter 3 develops novel algorithms for tie-line scheduling under uncertainty. The technique

is inspired by interesting insights from multi-parametric linear programming and defines

an algorithmic framework that is able to efficiently solve large distributed linear programs

with applications to tie-line scheduling. The algorithm is shown to converge quite fast to

an optimal tie-line schedule and does not require SOs to reveal critical information such as

dispatch cost structures, network constraints, or natures of uncertainty sets to arrive at the

optimal solution.

• Chapter 4 suggests a generalization to CTS market design to tackle an important limitation

of the CTS mechanism–the bidders can only trade power between two “proxy” bus locations

within neighboring areas, resulting in mismatch between scheduled power flows and the

physics of power flows. A similar problem arises when three areas are interconnected via

tie-lines. Our easy-to-implement modification is shown to circumvent this limitation when

the number of traders in the CTS market is large enough.
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2. Coordinated Transaction Scheduling: Equilibrium and Learning

2.1 Introduction

Conceptually, power flows over tie-lines should be determined through a joint economic dispatch

problem geared towards maximizing the efficiency of the interconnected power grid as a whole.

However, historical and legal reasons render such an aggregation of market information from

different areas at a central location untenable. Naturally, a considerable effort has been made

to solve the joint dispatch problem in a distributed fashion, focusing on primal [2, 3] and dual

decomposition methods [4, 5]. In such methods, SOs exchange information among themselves to

compute the optimal tie-line schedule. This theoretical coordination mechanism, referred to as

Tie Optimization (TO) in [6], proved challenging to implement in practice. It was perceived as

requiring the SOs to trade directly with each other, violating their financial neutrality, in lieu of

the earlier market-based, albeit inefficient, process for scheduling tie-line flows. Instead, many

SOs adopted variants of Coordinated Transaction Scheduling (CTS), e.g., see [7, 8], that sought to

blend the earlier market-based tie-line scheduling with the theoretically optimal TO, after receiving

approval from the Federal Energy Regulatory Commission (FERC). CTS is a market mechanism in

which external market participants submit bids and offers to import or export from one area to the

other. The schedule is computed using both participants’ offers as well as the SOs’ forecasts about

price differences. CTS market design is predicated on the simple premise that arbitrage opportunity

will attract more participants, whose profit motivation will ultimately shrink that opportunity,

pushing the schedule closer to the theoretically optimum. CTS has certainly improved tie-line

scheduling as per [9, 10], but significant inefficiencies remain. Motivated by these inefficiencies,

we analyze the impacts of strategic interactions among CTS market participants on the performance

of these markets through a game theoretic study. We provide palpable insights on the consequences

of an illiquid market, errors in SOs’ price forecasts and transaction fees on market efficiency.

We remark that the use of proxy buses as trading locations results in the so-called ‘loop flow’

problem (see [11]) that negatively impacts CTS market performance. We refer the reader to [12] for

mechanisms to tackle this problem, and instead focus on the repercussions of strategic interaction

among market participants in this chapter.

We introduce CTS in Section 2.2. Then, we model CTS as a game among arbitrage bidders who

compete through scalar-parameterized transport offers in Section 2.3. Our game formulation is

inspired by supply function competition models considered in [13, 14]. We establish the existence

of Nash equilibria for this game under mild assumptions and study the impact of various factors

on the nature of said equilibria in Sections 2.4-2.6 to offer insights into the CTS market. First,

we show that when transaction costs (levied on a per-megawatt hour basis on bidders) are absent,

then a highly liquid CTS market is efficient. Market efficiency degrades with liquidity shortfall,

exhibiting bounded efficiency loss for intermediate liquidity and unbounded losses in low liquidity

regimes. Second, with transaction costs, CTS fails to eradicate the price spread between adjacent
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markets even with a liquid market, implying that such costs undercut the vision behind the market

design. Third, we show that SOs’ estimate of the price spread plays a central role in the efficiency

of CTS markets in that bidders have limited ability to correct the effects of SOs’ forecast errors.

Fourth, portfolios of financial transmission rights (FTR) held by CTS bidders can impact CTS

market outcomes, revealing the dependency of the efficiency of these inter-area markets on other

energy derivatives. Our equilibrium analysis reveals how the strategic incentives in CTS markets

are oriented but does not illustrate if bidders can learn equilibrium behavior through repeated

participation in these markets. We simulate repeated play using historical data from the NYISO–

ISO-NE market and demonstrate that our conclusions from equilibrium analysis continue to hold

in a statistical sense in our numerical experiments. Proofs are omitted for brevity and can be found

in [15].

2.2 The CTS mechanism

CTS is a market-based mechanism for tie-line scheduling that replaced an earlier market-based

structure in an effort to streamline the bidding and scheduling process. Among the important

changes, CTS unified the bid submission and clearing process among the neighboring SOs, reduced

the tie-line schedule duration from one hour to 15-minute intervals, and decreased time delays

among bidding, scheduling, and power delivery. To illustrate the economic rationale of the CTS

mechanism we consider throughout a stylized two-area power system in Figure 2.1 connected via a

single tie-line with the inter-area power flow denoted by Q. Each SO computes their supply stacks

by solving an area-wise parametric economic dispatch by varying the amount of power Q flowing

on the tie-line. An example of supply stack is shown in Figure 2.1. The stack of area a represents

the incremental dispatch cost of delivering power at its side of the interface. Similarly, the stack

of area b represents the decremental dispatch cost of reduced supply, shown in descending order.

Since scheduling happens prior to power delivery, these stacks are based on SOs’ forecasts. In this

example, the optimal direction for the power flow is from area a to b since for zero scheduled flow,

area b operates at higher dispatch costs than area a. At the level where dispatch costs at the border

become equal or where the supply stacks intersect, is the TO schedule, denoted by QTO. This

tie-line schedule minimizes the aggregate dispatch costs across the two areas and it serves as our

theoretical benchmark to compare CTS performance. However, TO requires SOs to trade directly

with each other on behalf of the market participants in their respective areas, which may be viewed

as the SOs becoming active participants of trade rather than financially neutral market operators.

Instead, the current practice of CTS relies on virtual traders whose offers/bids are utilized together

with the supply stacks to arrive at the tie-line schedule.

CTS market participants in practice submit ‘interface’ bids that consist of three elements: the

minimum price difference between the proxy buses in the two areas the bidder is willing to accept,

the maximum quantity to be transacted and the direction of the trade, i.e., the source and the sink.

A CTS market participant is a virtual bidder in that she can offer to transport power across areas

without physically consuming or producing it. They only participate in the scheduling process,

bearing no obligation for physical power delivery; the transaction is purely financial.

3



QTOQCTS

~~
Q

Q

Figure 2.1: Illustration of the TO and CTS scheduling mechanisms.

Under CTS, one of the SOs pools the virtual bids at the proxy buses and the supply stacks from

both operators to assemble the aggregate interface supply stack, shown in Figure 2.1. All the bids

indicating the optimal direction are stacked from lowest to highest price to create their own “supply

curve”. The price spread curve is derived by subtracting the supply stack of area a from that of area

b. The CTS schedule, denoted by QCTS, is set at the intersection of the interface supply stack and

the price spread. An interface bid is accepted if its offer price is less than the price spread at the

tie-line schedule. Therefore, all interface bids to the left of the CTS schedule are accepted; all bids

to the right are not. All cleared interface bids are settled at the real-time proxy bus LMPs and there

are not uplift credits or debits associated with tie-line schedules. In the next section, we extract

a theoretical model for CTS and characterize its outcome under strategic interactions of interface

bidders against the outcome of TO.

2.3 Modeling the CTS market as a game

We model the CTS market as a game among the virtual bidders who compete to transport power

over a tie-line against an elastic inter-area price spread that varies with the power flow over the

tie-line.1 Recall that LMPs at the proxy bus in each area comes from the solution to an area-wise

economic dispatch problem, parameterized by the tie-line power flow Q. For areas a and b, denote

these LMPs by Pa(Q) and Pb(Q), respectively. Without loss of generality, let area a export and

1 The study presented in [6] indicates that the primary interface between NYISO–ISO-NE typically operates at far less

than its total transmission capacity (TTC). Specifically, the tie-line is congested 0.3% of the hours eastbound and 1.2%

of the hours westbound in 2009. Hence, to avoid uneccessary complication of the analysis and facilitate exposition,

we ignore the TTC of the tie-line in modeling the CTS game.
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area b import power, and define

P(Q) := Pb(Q)−Pa(Q) (2.1)

as the price spread between the areas. Assume without loss of generality that P is strictly

decreasing, concave and differentiable in Q ≥ 0 with P(0) > 0. Note that P acts as the

inverse demand function in a supply competition model with virtual bidders. Our framework

adopts standard assumptions on the demand function that are employed in several supply function

competition models to study electricity markets [16–19].

Consider N virtual bidders in the CTS market. Let the i-th bidder provide two parameters θi,Bi to

the SOs with the understanding that she is willing to transport up to

xi(p) := Bi − θi

p
, θi ≥ 0 (2.2)

amount of power from area a to b at a price spread of p. Our transport offer is inspired by supply

function competition models studied in [13, 14, 20]. Figure 2.2 reveals how the parameters θi,Bi
affect the shape of the transport offer. Bidder i is willing to transport a maximum quantity of Bi,

but at a minimum price spread of θi/Bi. The required price difference increases with the power

transport and grows unbounded as the latter approaches Bi. In effect, transporting power above Bi
requires an infinite price difference. The parameterized “hockey-stick” shaped transport offer in

(2.2) is a smooth approximation to the one in practice where a player is willing to transport up to

Bi at a specified price difference. The realized price spread is uncertain and a higher Bi exposes the

player to a higher potential loss. Therefore, bidder i expresses her total budget for potential losses

or her liquidity in Bi. Notice that since Bi’s express budget constraints for the bidders, we assume

Bi does not vary strategically in day-to-day transactions.

p ∞

θi
Bi Bi

xi

Figure 2.2: Parameterized interface bid of CTS market participant.

The family of transport offers in (2.2) allows market participants to have one-dimensional action

spaces and has been shown to posses a number of attractive properties including bounded

price of anarchy and price markup at the Nash equilibrium [13, 14]. Moreover, they prohibit

situations when market participants can bid above their means by explicitly incorporating maximum
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budget/capacity in the offer structure, which is not straightforward to do with e.g. linear supply

functions [17]. Other families of supply offers such as the (degenerate) pure price (Bertrand) or

quantity (Cournot) competition are not suitable representations of the CTS interface bid. Although

variations of the Bertrand model with capacity constraints may seem an attractive approach,

however, in such settings pure Nash equilibria may not exist [21].

Given the liquidities B1, . . . ,BN , the choice of bids θ1, . . . ,θN from the CTS bidders describe their

willingness to transport power across the interface according to (2.2). Collect the liquidities and

bids in θ and B, respectively. The SOs allocate the aggregate tie-line schedule among N virtual

bidders, given θ,B as follows. They calculate x∗ := (x∗1, . . . ,x
∗
N) as the allocations of the tie-line

flow to the participants by solving

x∗(θ,B) :=argmax
x∈RN

∫ 1
ᵀ
x

0
P(z)dz−

N

∑
i=1

∫ xi

0

θi

Bi − s
ds, (2.3a)

subject to 0 ≤ xi ≤ Bi, i = 1, . . . ,N, (2.3b)

where, R denotes the set of real numbers and 1 is a vector of all ones. The above problem seeks a

tie-line schedule where the offer stack for inter-area power transport from CTS market participants

intersects the SOs’ estimated price spread function. The tie-line schedule is then given by

QCTS(θ,B) := 1
ᵀ
x∗(θ,B).

The transport offer in (2.2) enters the SOs’ problem through its implied cost of transport. This

induced cost is calculated by equating the implied marginal cost curve to the transport offer. With

this interpretation, the SOs’ flow allocation problem in (2.3) seeks to maximize the social welfare

of an economy that is composed of the wholesale markets in areas a and b together with the CTS

bidders (see [12] for a similar interpretation of the CTS market objective). CTS identifies a single

clearing price p(θ,B) for its market as

p(θ,B) = P(QCTS(θ,B)). (2.4)

The market price as well as the CTS flow allocation to each participant depends on the liquidity of

the market and how it compares to the maximum inter-area demand. When 1
ᵀB < P−1(0), the

CTS flow allocation to bidder i and the resulting CTS tie-line schedule are respectively given by

x∗i (θ,B) = Bi − θi

p(θ,B)
, QCTS(θ,B) = 1

ᵀ
B− 1

ᵀθ
p(θ,B)

. (2.5)

On the other hand, when 1
ᵀB ≥ P−1(0), we have p(θ,B) > 0 when 1

ᵀθ > 0 and p(θ,B) = 0

for 1
ᵀθ = 0. To avoid difficulties due to a zero price, we adopt the convention

xi(0,B) = Bi, for p(θ,B) = 0.

In this case, liquidities of the players allow a tie-line schedule higher than P−1(0). Current

practice, however, rules out such a possibility. Hence, when 1
ᵀθ = 0 we define the proportionate

flow allocation to bidder i
x∗i (θ,B) =

Bi

1ᵀB
P−1(0). (2.6)

6



This derivation allows a quick insight into when we expect CTS to emulate the SO-driven TO.

Within our notational framework, TO determines the tie-line schedule as

QTO = argmax
Q≥0

W (Q) :=
∫ Q

0
P(z)dz, (2.7)

that seeks to maximize W , a measure of welfare for the wholesale markets in areas a and b. QTO

is given by the schedule determined by the no-arbitrage condition, i.e., where the price spread

vanishes. Notice that W equals the CTS market objective in (2.3) with θ = 0. Thus, we expect

CTS to emulate TO only when all bidders bid zero θ ’s. We now proceed to formally define the

CTS game and characterize its Nash equilibrium to understand what bidding behavior we expect,

given the bidders’ strategic incentives.

While virtual bidders do not incur any costs to physically transport power, many pairs of SOs

levy transaction fees on a per-MWh basis, e.g., in CTS between NYISO and PJM, NYISO charges

physical exports to PJM at a rate ranging from $4-$8 per MWh, while PJM charges physical imports

and exports rates that average less than $3 per MWh. See [10] for details. For a willingness

to transport xi MW of power from area a to b, assume that transaction cost equals c · xi, where

c is measured in $/MWh. Then, each bidder’s payoff equals the total revenue garnered less the

transaction costs, formally given in

πi(θi,θ−i) = P (QCTS(θ,B))x∗i (θ,B)− cx∗i (θ,B). (2.8)

Formally, define G (B,c) as the CTS game among N virtual bidders—henceforth referred to as

players—who bid θ ≥ 0, given B, and receive a payoff described by (2.8). Bidders selfishly

seek to maximize their own payoffs, given their liquidities. A bid profile θNE constitutes a Nash
equilibrium of G (B,c), if

πi

(
θNE

i ,θNE−i

)
≥ πi

(
θi,θ

NE
−i

)
for all θi ≥ 0. That is, no player has an incentive for a unilateral deviation from the equilibrium

offer. We establish the existence of such an equilibrium profile in our first result.

Theorem 1 (Existence of Nash Equilibrium). The CTS game G (B,c) admits a Nash equilibrium
if P satisfies

∂ 2P(Q)

∂Q2
(1

ᵀ
B−Q)≥ 2

∂P(Q)

∂Q
(2.9)

for 0 ≤ Q ≤ 1 BT.

The proof relies on Rosen’s result in [22]. Uniqueness of the equilibrium remains challenging

to prove. However, in the next sections, we establish uniqueness of the Nash equilibrium under

specific price spread functions.

To explicitly characterize the Nash equilibrium we restrict our attention to affine price spread

P(Q) := α −βQ (2.10)

7



with α,β > 0 to compute the equilibria and study its properties. It is straightforward to verify

that P as defined above satisfies (2.9) and hence, an equilibrium always exists for G (B,c,α,β ),
according to Theorem 1. Indeed, the price spread can be shown to be affine in Q, when each area is

represented as a copperplate power system, having a generator with quadratic generation cost and a

fixed demand. This follows from properties of multiparametric quadratic programs in [23, Theorem

7.6]. To further justify our modeling choice, we perform a linear regression of New England’s LMP

at the proxy bus (Roseton) as PNE = w1PNY +w2Q+w3, and obtain w1 ≈ 1.0 with an adjusted

R2 coefficient of 0.91, revealing an affine dependency of PNY −PNE in Q. Encouraged by this

data analysis, we now proceed to analyze the CTS market with strategic participants for the affine

price spread model.

2.4 Impact of liquidity in CTS markets

Our first goal is to investigate the impacts of liquidity on the CTS scheduling efficiency. To isolate

the effects of liquidity, neglect transaction fees and set c ≈ 0. We define the efficiency of CTS as

the ratio

ηCTS(B) :=
W
(
QCTS(θ

NE,B)
)

W (QTO)
,

where recall that W measures the aggregate welfare of the wholesale markets in the two areas

attained at a particular tie-line schedule. TO seeks to maximize this welfare with QTO = α/β ,

while the outcome of CTS arises from the strategic interaction of the market participants. Our

next result characterizes the equilibrium and provides key insights into the behavior of ηCTS ≤ 1 in

different liquidity regimes.

Proposition 1. Consider the CTS game G (B,0,α,β ), where Bm is the unique maximal liquidity
in {B1, . . . ,BN}. Then, G (B,0,α,β ) admits a unique Nash equilibrium θNE given by

θNE
m =

⎧⎨
⎩

1

4β
(
β 2Bm −P2(1ᵀB)

)
, if |1ᵀB−α/β |< Bm,

0, otherwise,
(2.11)

and θNE
i = 0 for i �= m. Furthermore, we have

ηCTS(B)

⎧⎪⎪⎨
⎪⎪⎩
= 1, if 1ᵀB−α/β ≥ Bm,

≥ 3

4
, if |1ᵀB−α/β |< Bm,

= 2x− x2, otherwise

, (2.12)

where x := β1ᵀB/α .

Existence of the equilibrium follows from Theorem 1. The rest follows from analysis of the first-

order equilibrium conditions. The result highlights that allocation and the efficiency vary widely

with liquidity and the player with the maximal liquidity plays a rather central role in determining the

outcome of the CTS market. To offer more insights, distinguish three different liquidity regimes.
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Identify the liquidity as high when 1 BT−α/β ≥ Bm, where the aggregate liquidity of all players

but m is sufficient to cover the efficient schedule QTO = α/β . The intermediate liquidity occurs

where the aggregate liquidity is different from QTO by at most the liquidity of player m, i.e.,

|1ᵀB−α/β | < Bm. Finally, the low liquidity regime is where 1
ᵀB+Bm < QTO. The outcome

and the efficiency differ substantially across these regimes. Using the equilibrium profile, it is easy

to see that the flow allocation is given by

x∗m(θ
NE,B) =

{
1
2(α/β −1

ᵀB−m), if |1ᵀB−α/β |< Bm,

Bm, otherwise,
,

x∗i (θ
NE,B) = Bi, i �= m,

where B−m denotes the vector of liquidities of all players, except m. Thus, all but player m offer

their maximum liquidity at equilibrium. These players benefit from being inframarginal, exploiting

the bid of the marginal player m. This behavior is reminiscent of the so-called ‘free-rider problem’

(see [24]). When the liquidity is too high or too low, player m does not have enough market

power and does not benefit from bidding nonzero θm, implying that she does not withhold from

her maximal budget Bm in her transport offer. In the intermediate liquidity case, player m enjoys

market power and her flow allocation can be shown to be the Cournot best response to this residual

price spread P(Q−1
ᵀB−m). See [25, 26] for details on Cournot competition.

The tie-line schedule at the equilibrium of G (B,0,α,β ) is given by

QCTS =

⎧⎪⎨
⎪⎩

QTO, if 1
ᵀB−Bm ≥ α/β ,

1
2 (QTO+1

ᵀB−m) , if |1ᵀB−α/β |< Bm,

1
ᵀB, otherwise.

When liquidity is high, QCTS coincides with QTO, implying that CTS yields the SOs’ intended

outcome. In other words, perfect competition arises as a result of strategic incentives. In the

intermediate liquidity regime, CTS suffers welfare loss due to strategic interaction. The loss,

however, is bounded; strategic behavior cannot cripple the welfare under perfect competition by

more than 25%. When the liquidity is low, the lower bound on ηCTS can be small. However, in

this case lack of efficiency is not due to strategic interactions but rather due to the very low market

liquidity.

2.4.1 Learning equilibria through repeated play

Nash equilibria characterize how the incentives of market participants are oriented. However,

the power of said equilibria to predict market outcomes may appear limited in that players are

endowed with intelligence over their opponents’ payoff and the system conditions to compute such

an equilibrium. In practice, players interact repeatedly in the market, facing a noisy reward. They

either learn to predict the inter-area price spread or learn their optimal strategy through repeated

interactions and exploration of the market environment. Motivated to investigate if players can learn

equilibria through repeated play, we study the game dynamics where bidders adopt action-value
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methods [27] to update their bids. More precisely, we implement an upper confidence bound (UCB)

algorithm for each bidder. In such a setting, each player is agnostic to the presence of other players

and the SOs’ clearing process, i.e., they endogenize these as part of the environment that yields

a random reward. UCB is a popular reinforcement learning algorithm that achieves logarithmic

regret [28, 29] in static environments and balances between exploration and exploitation. In each

round (an instance of a CTS market), each player selects the action that has the maximum observed

payoff thus far plus some exploration bonus.

The game proceeds as follows. At each round, each bidder chooses θ from a finite set of actions

Θ := {θ 1, . . . ,θ M}. Each bidder maintains a vector R ∈ R
M of average rewards from each action

and the number of times T ∈ N
M each action is chosen, where N denotes the set of naturals. Here,

the reward equals the revenue less the transaction cost from the CTS market. Bidders initialize R
by selecting every action (possible bid from Θ) at least once. Upon bidding θ k ∈ Θ at a certain

round, say she receives the reward rk from the CTS market. Then, the bidder updates T k and Rk as

T k ← T k +1, Rk ← Rk +
1

T k

(
rk −Rk

)
. (2.13)

Then, the bidder bids the action θ k, where

k = argmax
j∈{1,...,M}

{
R j +ρ

√
ln(1ᵀT )/T j

}
, (2.14)

The parameter ρ > 0 controls the degree of exploration. The larger the ρ , the player is eager to

explore actions that have not been tried often enough. The smaller the ρ , the player tends to choose

an action largely based on the average reward seen thus far.

We utilize historical CTS data from the NYISO and ISONE markets to compute the affine price

spread that yields QTO = 1493 MW. We consider repeated play of the CTS game with five

participants, first with B = (298,223,194,149,893) and then with B = (596,522,640,373,893).
The first example corresponds to an intermediate liquidity regime with θNE = (0,0,0,0,4882).
The second example belongs to the high liquidity category for which θNE = (0,0,0,0,0). In our

simulations, we use ρ = 2 following [27, Chapter 2]. Each CTS bidder chooses from ten θ ’s in

Θ = [0,6000] that includes the optimal actions. Figure 2.3 shows percentages of optimal actions

selected by bidders in a total of 3000 games for the high and intermediate liquidity regimes.

In the intermediate regime, the pivotal and inframarginal players act in a rather ’greedy’ fashion,

exploiting their optimal action north of 99% of the games. This implies that the observed reward

from playing the optimal action is large enough, even as the exploration bonus of other actions

increases. Bidder 5 loses her role as the marginal player when liquidity is high. In this regime,

players are slower to discover their optimal actions although selection percentages are north of

88% of the games. Our numerical experiments clearly demonstrate that even in a setting where

players know little to nothing about the game setting, they are able to discover and play equilibrium

actions (in majority of the games) through repeated play. This experiment lends credence to the
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(a) Intermediate liquidity (b) High liquidity

Figure 2.3: Plot of cumulative percentage of times the Nash action is chosen across 3000 games for bidders

1 (in blue) and 5 (in red). Bidder 5 is marginal for (a) and inframarginal for (b).

(a) Tie-line schedules (b) Price spread

Figure 2.4: Comparison of tie-line schedules and price spreads for CTS markets with high liquidity (in blue)

and intermediate liquidity (in red).

conclusions from our equilibrium analysis. Indeed, QCTS/QTO in Figure 2.4 remains close to unity

and price spreads are below $2/MWh in most games for a highly liquid CTS market. A liquidity

reduction of around 40% has palpable effects on market performance, although in aggregate, the

players have the capacity to meet QTO. In particular, the price spread for intermediate liquidity is

more than $6/MWh higher than the highly liquid case and QCTS/QTO remains well below 80%.

This experiment highlights how rise of pivotal players exercising market power exploiting the lack

of liquidity can impact market performance.

2.5 Interactions with financial transmission rights (FTRs)

CTS performance may be influenced by potential uneconomic bidding that aims to benefit financial

positions whose value is tied to CTS outcomes, such as FTRs. Price manipulation that involves

uneconomic virtual transactions has emerged as a central policy concern for FERC, as shown by

several high-profile enforcement cases that ended in multi-million dollar settlements [30]. Here,

we investigate the CTS performance when any subgroup of market participants hold FTR positions.

An FTR is a unidirectional financial instrument, defined in megawatts, from a source node to a sink
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node. One unit of an FTR entitles its holder a payment equal to the difference between the LMPs

at the sink and the source nodes [31, 32]. We focus on FTR positions that negatively impact CTS.

Denote by f k
i , the FTR megawatt position of CTS bidder i from an internal node k inside area b to

the CTS trading location. Let Pk
b denote the LMP at node k in area b. Recall that we have assumed

so far that Pb −Pa has an affine dependence on Q, the amount that flows from bus a to bus b. In

general, Pb −Pk
b will also depend on Q. Assume a similar affine dependence

Pb(Q)−Pk
b(Q) = αk

in −β k
inQ

for an internal node k. Albeit simplistic, this model is enough to reveal the impact of FTRs on CTS

markets. The payoff of bidder i from her FTR positions then becomes ∑k(αk
in − β k

inQ) f k
i , where

the sum is taken with k ranging over buses within area b. To illustrate the coupling between FTR

positions and CTS market, consider the joint payoff from them for bidder i in

π̃i(θi,θ−i) = (α −βQ)Bi −θi︸ ︷︷ ︸
from CTS

+∑
k
(αk

in −β k
inQ) f k

i︸ ︷︷ ︸
from FTR

, (2.15)

where Q depends on CTS market clearing with bids θ and liquidities B. Formally, call this

game GFTR (B,c,α,β ,f ,αin,βin) with payoffs in (2.15). Here, αin, βin, f collect the respective

variables across all internal buses. Our next result characterizes the market outcome with FTR

positions.

Proposition 2. The game GFTR (B,0,α,β ,f ,αin,βin) admits a unique Nash equilibrium if f is
elementwise nonnegative, for which the tie-line schedule at the equilibrium is

QCTS =

⎧⎪⎨
⎪⎩

QTO, if 1ᵀB− B̃m ≥ α/β ,
1
2

(
QTO+1

ᵀB− B̃m
)
, if |1ᵀB−α/β |< B̃m,

1
ᵀB, otherwise,

where B̃i = Bi +∑k(β k/β ) f k
i for i = 1, . . . ,N and m is the only player with maximal B̃m.

Our proof again appeals to Rosen’s result and the rest relies on analyzing the first-order conditions

for equilibrium. The result reveals that the bidder with maximum combined CTS and FTR position

emerges as the pivotal player in this market. Moreover, B̃m ≥ Bm dictates that less power is

scheduled to flow in the tie-line when bidders have such FTR positions. This results from the

incentives of the pivotal player who benefits from higher prices at the importing region b’s proxy

bus as that yields a higher FTR payoff. In fact, the difference in the tie-line schedules with and

without FTR grows with the difference between B̃m and Bm that is directly proportional to the FTR

positions. Opposite conclusions can be drawn if we consider players with FTR positions that source

at area b’s proxy bus.

The following example illustrates the shift in market power and scheduling efficiency when

participants hold FTRs. Consider the CTS market in Section 3.5 where the fifth bidder is pivotal
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in the intermediate liquidity regime. At the equilibrium, QCTS = 1176 MW. Assume that the first

bidder holds an FTR f1 = 800 MW to an internal bus for which αin = 35.7 and βin = 0.02, while

the rest of players do not have FTR portfolios. Then, B̃ = [1018,463,193,149,893]. Notice that

bidder one emerges as the new marginal bidder and has incentive to bid in a way that leads to less

power being scheduled to flow into area b. Indeed, the new tie-line schedule is QCTS = 1113 MW,

63 MW less than CTS without FTRs, falling even shorter of QTO = 1493 MW.

2.6 Impact of forecast errors and transaction costs

Our analysis of the CTS game so far has assumed that players and the SOs have perfect forecasts

into the price spread function. In practice, tie-line scheduling takes place with a lead time to power

delivery, meaning that there is an inherent uncertainty in the price spread when these markets are

convened. To model this uncertainty, assume that the SOs conjecture an affine price spread function

PSO(Q) = αSO−βSOQ

with αSO,βSO > 0. The SOs use this spread to clear the CTS market as in (2.3). Let the realized

price difference be

P�(Q) = α�−β�Q

with α�,β� > 0. Then, the TO schedule and the optimal tie-line schedule, respectively, are given

by

QTO = αSO/βSO and Q� = α�/β�.

Modeling the uncertainty explicitly at the time of scheduling reveals that QTO may not equal Q�,

the ex-post optimal tie-line schedule. Our interest lies in analyzing if strategic behavior of bidders

in the CTS market can correct the errors in SOs’ forecasts. Do bidders draw the outcome closer to

Q� than QTO or do they drive it further away as a result of their strategic interaction? We answer

this question through a game-theoretic study. We also derive insights into how non-zero transaction

fees (c > 0) affect these conclusions.

To isolate the impacts of uncertainty and transaction fees, we analyze the game under a simpler

setting where the bidders are homogenous, each with liquidity B > 0 and conjectured price spread

P(Q) = α − βQ with α,β > 0. Notice that bidders’ conjectured optimal schedule α/β may

be different from both QTO and Q�. We assume here that players share a common belief that

the market operates at an intermediate liquidity where the aggregate liquidity NB is close to her

conjectured optimal tie-line schedule α/β , i.e.,

NB = α/β +O(1/N). (2.16)

Under such an assumption, bidder i conjectures the market price from bidding θ with liquidities

B = B1 to be

p(θ,B1) =
1

2

(
P(NB)+

√
P2(NB)+4β1ᵀθ

)
=
√

β1ᵀθ+O(1/N),
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which yields the following perceived payoff for bidder i.

πi(θi,θ−i) = p(θ,B)B−θi − c
(

B− θi

p(θ,B1)

)
≈
√

β1ᵀθB−θi − c

(
B− θi√

β1ᵀθ

)
. (2.17)

Call the CTS game with conjectured price spreads Gconj(B,c,α,β ,αSO,βSO), where α,β satisfy

(2.16) and the payoffs are given by (2.17). Assuming that all players offer based on an equilibrium

profile for this game, the SOs then solve the CTS flow allocation problem in (2.3) with PSO

to ultimately compute the tie-line schedule. Our next result characterizes both a (symmetric)

equilibrium profile and the resulting tie-line schedule.

Proposition 3. The CTS game Gconj(B,c,α,β ,αSO,βSO) admits a unique symmetric Nash

equilibrium given by θNE
i = γ2

4Nβ for i = 1, . . . ,N, for which the tie-line schedule at equilibrium
is

QCTS =
1

2

⎡
⎣QTO+NB−

√
(QTO−NB)2 +

γ2

ββSO

⎤
⎦ ,

where γ := c(2−1/N)+βB.

Notice that players bid solely based on their own conjectures. The tie-line schedule, however,

depends on the conjectures of both the bidders and the SOs. This result allows us to study the

effect of price spread forecasts and transaction costs on the scheduling efficiency in the sequel.

The lack of knowledge of Q� by the SOs and market participants prompts us to investigate whether

CTS can yield a more efficient schedule than the pure SO-driven TO. Proposition 3 implies QCTS ≤
QTO, meaning that CTS cannot yield a more efficient schedule than TO if QTO < Q�. Hence, CTS

can only outperform TO when the SOs’ forecast overestimates QTO. In this regime, Figure 2.1

yields that QCTS is always closer to Q� when Q� ≤ QTO/2. Outside of this setting, the outcome of

CTS depends on the liquidity and conjectures of players. Specifically, if NB ∈ A1 ∪A2, defined in

Figure 2.5, QCTS is closer to Q� than QTO, if

γ2

ββSO
≤ 8(QTO−Q�)(QTO−2Q�+NB) . (2.18)

Such a premise appears to run counter to the intuition that TO is optimal. This situation can

only arise under uncertainty where SOs make serious forecast errors in the expected price spread.

Surprisingly, forecast errors are not that rare, according to [10], where the error in SOs’ point

forecast for the price spread between NYISO and ISO-NE averaged $2.42/MWh. Notice how,

in this liquidity regime, the presence of transaction fees makes it harder to satisfy (2.18). This

is intuitively correct since transaction fees drive the tie-line schedule toward smaller values, as

established in Proposition 3. When NB ∈A3∪A4, liquidity is sufficiently high and the presence of

costs might improve scheduling efficiency since players bid higher prices to counter costs. Overall,
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Figure 2.5: Ability of market participants to correct SO’s forecast error depends on liquidity and transactions

costs.

players ability to correct SOs’ forecast is somewhat limited and relies on many qualifications,

indicating that the SOs forecasts and systematic bias plays a vital role in scheduling efficiency.

Moving bid submittal and clearing timelines closer to power delivery should improve the efficiency

of CTS.

Figure 2.6: The trajectory of CTS schedules cleared against SO’s forecasted prices with 10% error with c= 0

and c = $8/MWh.

Proposition 3 suggests that incentives of CTS bidders are aligned in a way that allows them to

correct SOs’ forecast errors in some settings. Can players learn such equilibria through repeated

play. We employ the learning framework in Section 3.5, where players have their bids cleared

against (αSO,βSO) that are perturbed from (α�,β�) learned from historical data. That is, in every

round, bidders receive reward from the ex-post price spread described by P�. The trajectory of

tie-line schedules in Figure 2.6 with c = 0 reveals that bidding behavior of players results in CTS

schedules consistently closer to the ex-post optimal than TO. Despite the SO’s persistent forecast

error, bidders ‘correct’ the tie-line schedule to an extent by seeking actions that maximize their

observed reward.

The relation in (2.18) reveals that presence of nonzero transaction fees c make it more difficult

for CTS market to drive the outcome closer to the ex-post optimal as γ increases with c. Bidders

reacting to observed rewards with c = $8/MWh in Figure 2.6 yield a CTS schedule farther from

Q�, seeking actions that yield higher prices but smaller schedules. This result corroborates our

theoretical finding that transaction fees impede bidders’ ability to correct SOs’ forecast errors.
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(a) (b)

Figure 2.7: Plot (a) depicts the time series of spread between NYISO and PJM proxy buses in 2018 (absolute

mean = 8.92 $/MWh, std. deviation = 22.11 $/MWh). Plot (b) shows the same between NYISO and ISO-NE

for the same year (mean = 0.44, absolute mean = 5.59 $/MWh, std. dev. = 18.14 $/MWh).

Notice that equilibrium bid grows with c, per Proposition 3. With c > 0, bidders are reluctant to

offer their entire liquidity. A similar result can be shown under more general settings of Theorem

1. This may prevent the price spread from converging to zero, even if the market is liquid. And,

transaction fees make it less attractive for CTS bidders overall, hurting long-term liquidity of the

CTS market. Figure 2.7a indicates that the price spread in the CTS market between NYISO

and PJM exhibits longer excursions from zero and higher volatility compared to that between

NYISO and ISO-NE, depicted in Figure 2.7b. The average absolute spread between NYISO and

PJM is approximately $3.3/MWh higher than that between NYISO and ISO-NE. We surmise that

transaction fees between NYISO and PJM and the lack thereof between NYISO and ISO-NE are

largely responsible for this difference.
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3. Robust Tie-Line Scheduling Via Critical Region Exploration

3.1 Introduction

For historic and technical reasons, different parts of an interconnected power system and their

associated assets are dispatched by different system operators (SOs). We call the geographical

footprint within an SO’s jurisdiction an area, and transmission lines that interconnect two different

areas as tie-lines. Power flows over such tie-lines are generally scheduled 15 – 75 minutes prior

to power delivery. The report in [33] indicates that current scheduling techniques often lead

to suboptimal tie-line power flows. The economic loss due to inefficient tie-line scheduling is

estimated to the tune of $73 million between the areas controlled by MISO and PJM alone in 2010.

Tie-lines often have enough transfer capability to fulfill a significant portion of each area’s power

consumption [34]. Thus they form important assets of multi-area power systems.

SOs from multiple areas typically cannot aggregate their dispatch cost structures and detailed

network constraints to solve a joint optimal power flow problem. Therefore, distributed algorithms

have been proposed. Prominent examples include [1, 35, 36] that adopt the so-called dual
decomposition approach. These methods are iterative, wherein each SO optimizes the grid assets

within its area, given the Lagrange multipliers associated with inter-area constraints. Typically, a

coordinator mediates among the SOs and iteratively updates the multipliers. Alternative primal
decomposition approaches are also proposed in [37–39]. Therein, the primal variables of the

optimization problem are iteratively updated, sometimes requiring the SO of one area to reveal

part of its cost structure and constraints to the SO of another area or a coordinator.

Traditionally, solution techniques for the tie-line scheduling problem assume that the SOs and/or

the coordinator has perfect knowledge of the future demand and supply conditions at the time

of scheduling. Such assumptions are being increasingly challenged with the rapid adoption of

distributed energy resources in the distribution grid and variable renewable generation like wind

and solar energy in the bulk power systems. Said differently, one must explicitly account for the

uncertainty in demand and supply in the tie-line scheduling problem. To that end, [40, 41] propose

to minimize the expected aggregate dispatch cost and [42] propose to minimize the maximum of

that cost. In this chapter, we adopt the latter paradigm – the robust approach.

3.1.1 Our contribution

With the system model in Section 3.2, we first formulate the deterministic tie-line scheduling

problem in Section 3.3, where we propose an algorithm to solve this deterministic problem that

draws from the theory of multiparametric programming [43]. The key feature of our algorithm

is that a coordinator can produce the optimal tie-line schedule upon communicating only finitely

many times with the SO in each area. In contrast to [39], our method does not require SOs to
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reveal their cost structures nor their constraints to other SOs or to the coordinator. In Section

3.4, we formulate the robust counterpart of the tie-line scheduling problem. We then propose

a technique that alternately uses the algorithm for the deterministic variant and a mixed-integer

linear program to solve the robust problem. Again, our technique is proved to converge to the

optimal robust tie-line schedule that requires the coordinator to communicate finitely many times

with each SO. Also, SOs are not required to reveal the nature and range of the values the uncertain

demand and available supply can take. Our proposed framework thus circumvents the substantial

communication burden of the method proposed in [42] towards the same problem. We remark

that [42] adopts the column-and-constraint generation technique described in [44] that requires

SOs to reveal part of their network constraints, costs and ranges of demand and available renewable

supply to the coordinator. We empirically demonstrate the performance of our algorithm in Section

3.5 and conclude in Section 3.6.

3.2 System model

To formulate the tie-line scheduling problem, we begin by describing the model for multi-

area power systems. Throughout, we restrict ourselves to a two-area power system, pictorially

represented in Figure 4.5 for the ease of exposition. The model and the proposed methods can be

generalized for tie-line scheduling among more than two areas.

Figure 3.1: An illustration of a two-area power system.

For the power network in each area, we distinguish between two types of buses: the internal buses

and the boundary buses. The boundary ones in each area are connected to their counterparts in the

other area via tie-lines. Internal buses do not share a connection to other areas. Assume that each

internal bus has a dispatchable generator, a renewable generator, and a controllable load1. Boundary

buses do not have any asset that can inject or extract power. Such assumptions are not limiting in

that one can derive an equivalent power network in each area that adheres to these assumptions.

Let the power network in area i be comprised of ni internal buses and ni boundary buses for each

i = 1,2. We adopt a linear DC power flow model in this chapter.2 This approximate model sets

all voltage magnitudes to their nominal values, ignores transmission line resistances and shunt

1 While we assume that all loads are controllable, uncontrollable load at any node can be easily modeled by letting the

limits on the allowable power demand at that node to be equal.
2 See [45, 46], and the references therein for solution approaches for a multi-area ACOPF problem.
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reactances, and deems differences among the voltage phase angles across each transmission line to

be small. Consequently, the real power injections into the network is a linear map of voltage phase

angles (expressed in radians) across the network. To arrive at a mathematical description, denote

by gi ∈ R
ni , wi ∈ R

ni , and di ∈R
ni as the vectors of (real) power generations from dispatchable

generators, renewable generators, and controllable loads, respectively. Let θi ∈R
ni and θ i ∈R

ni be

the vectors of voltage phase angles at internal and boundary buses, respectively. Then, the power

flow equations are given by⎛
⎜⎜⎜⎝
B11 B11̄

B1̄1 B1̄1̄ B1̄2̄

B2̄1̄ B2̄2̄ B2̄2

B22̄ B22

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

θ1

θ 1

θ 2

θ2

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

g1 +w1 −d1

0

0

g2 +w2 −d2

⎞
⎟⎟⎟⎠ . (3.1)

Non-zero entries of the coefficient matrix depend on reciprocals of transmission line reactances,

the unspecified blocks in that matrix are zeros. Throughout, assume that one of the boundary buses

in area 1 is set as the slack bus for the two-area power system. That is, the voltage phase angle at

said bus is assumed zero.

Power injections from the supply and demand assets at the internal buses of area i are constrained

as

Gi ≤ gi ≤ Gi, 0 ≤ wi ≤W i, Di ≤ di ≤ Di. (3.2)

The inequalities are interpreted elementwise. The lower and upper limits on dispatchable

generation Gi,Gi are assumed to be known at the time when tie-line flows are being scheduled.

Our assumptions on the available renewable generation W i and the limits on the demands [Di,Di]
will vary in the subsequent sections. In Section 3.3, we assume that these limits are known and

provide a distributed algorithm to solve the deterministic tie-line scheduling problem. In Section

3.4, we formulate the robust counterpart, where these limits are deemed uncertain and vary over a

known set. We then describe a distributed algorithm to solve the robust counterpart.

The power transfer capabilities of transmission lines within area i are succinctly represented as

Hiθi +H iθ i ≤ fi (3.3)

for each i = 1,2. Here, Hi and H i define the branch-bus admittance matrices, and fi models the

respective transmission line capacities. Similarly, the transfer capabilities of tie-lines joining the

two areas assume the form

H12θ 1 +H21θ 2 ≤ f12. (3.4)

Again, H12, H21 denote the relevant branch-bus admittance matrices and f12 models the tie-line

capacities.
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Finally, we describe the cost model for our two-area power system. For respectively procuring gi
and wi from dispatchable and renewable generators, and meeting a demand of di from controllable

loads, let the dispatch cost in area i be given by[
Pg

i
]ᵀ

gi +[Pw
i ]
(T
W i −wi

)
+
[
Pd

i

] (T
Di −di

)
. (3.5)

We use the notation vᵀ to denote the transpose of any vector or matrix v. The linear cost structure

in the above equation is reminiscent of electricity market practices in many parts of the U.S. today.

The second summand models any spillage costs associated with renewable generators. The third

models the disutility of not satisfying all demands.

3.3 The deterministic tie-line scheduling problem

Tie-line flows are typically scheduled ahead of the time of power delivery. The lead time makes

the supply and demand conditions uncertain during the scheduling process. Within the framework

of our model, the available capacity in renewable supply and lower and upper bounds on power

demands, i.e., W i,Di,Di, can be uncertain. In this section, we ignore such uncertainty and formulate

the deterministic tie-line scheduling problem, wherein we assume perfect knowledge of W i, Di and

Di to decide the dispatch in each area and the tie-line flows. Our discussion of the deterministic

version will serve as a prelude to its robust counterpart in Section 3.4.

To simplify exposition, consider the following notation.

xi := (gi,wi,di,θi)
ᵀ
, ξi :=

(
W i,Di,Di

)ᵀ
, y :=

(
θ 1,θ 2

)ᵀ
for i = 1,2. The above notation allows us to succinctly represent the constraints (4.1) – (3.3) as

Ax
i xi +A

ξ
i ξi +Ay

i y ≤ bi

for each i = 1,2 and suitably defined matrices Ax
i ,A

ξ
i ,A

y
i and vector bi. Denote by mi the number

of inequality constraints in the above equation. Next, we describe transmission constraints on tie-

line power flows in (3.4) as

y ∈ Y ⊂ R
Y .

Without loss of generality, one can restrict Y to be a polytope3. Finally, the cost of dispatch in area

i, as described in (3.5), can be written as

ci(xi,ξi) := c0
i +[cx

i ]
ᵀxi +[cξ

i ]
ᵀξi

for scalar c0
i and vectors cx

i , cξ
i .

3 Assuming the power network to be connected, the modulus of the phase angle of any bus can be constrained to lie

within the sum of admittance-weighted transmission line capacities connecting that bus to the slack bus.
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Equipped with the above notation, we define the deterministic tie-line scheduling problem as

follows.
minimize

x1,x2,y
[c1 (x1,ξ1)+ c2 (x2,ξ2)] ,

subject to Ax
i xi +A

ξ
i ξi +Ay

i y ≤ bi, i = 1,2,

y ∈ Y .

(3.6)

3.3.1 Distributed solution via critical region exploration

The structure of the optimization problem in (3.6) lends itself to a distributed solution architecture

that we describe below. Our proposed technique is similar in spirit to the critical region projection

method described in [37].4 We assume that each area is managed by a system operator (SO), and

a coordinator mediates between the SOs. Assume that the SO of area i (call it SOi) knows the

dispatch cost ci and the linear constraint involving xi,ξi,y in (3.6) in area i, and that SOs and the

coordinator all know Y .

Our algorithm relies on the properties of (3.6) that we describe next. To that end, notice that (3.6)

can be written as

minimize
y∈Y

J∗ (y,ξ1,ξ2) := J∗1 (y,ξ1)+ J∗2 (y,ξ2), (3.7)

where
J∗i (y,ξi) :=minimum

xi
ci (xi,ξi) ,

subject to Ax
i xi +A

ξ
i ξi +Ay

i y ≤ bi.
(3.8)

Assume throughout that all optimization problems parameterized by y is feasible for each y ∈ Y .

Techniques from [42] can be leveraged to shrink Y appropriately, otherwise. The optimization

problem in (3.8) is a multi-parametric linear program, linearly parameterized in (y,ξi) on the right-

hand side5. Such optimization problems are well-studied in the literature. For example, see [43].

Relevant to our algorithm is the structure of the parametric optimal cost J∗i . Describing that

structure requires an additional notation. We say that a finite collection of polytopes {P1, . . . ,P�}
define a polyhedral partition of Y , if no two polytopes intersect except at their boundaries, and

their union equals Y . With this notation, we now record the properties of J∗i in the following

lemma.

Lemma 1. J∗i (y,ξi) is piecewise affine and convex in y ∈ Y . Sets over which J∗i (·,ξi) is affine
define a polyhedral partition of Y .

4 The cost structure in [37] is quadratic; the linear cost case does not directly follow from [37].
5 The problem in (3.8) reformulated using the so-called epigraph form yields a multi-parametric program that is

classically recognized as one linearly parameterized on the right-hand side.
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Figure 3.2: A pictorial representation of the critical regions induced by the areawise parametric optimal

costs J∗1 (·,ξ1),J∗2 (·,ξ2), and the aggregate cost J∗(·,ξ1,ξ2). The trapezoids represent Y . Differently shaded

polytopes indicate different critical regions.

The proof is immediate from [43, Theorem 7.5]. Details are omitted for brevity. We refer to the

polytopes in the polyhedral partition of Y induced by J∗i (·,ξi) as critical regions. Recall that the

feasible set of (3.8) is described by a collection of linear inequalities. Essentially, each critical

region corresponds to the subset of Y over which a specific set of these inequality constraints are

active – i.e., are met with equalities – at an optimal solution of (3.8).

A direct consequence of the above lemma is that the aggregate cost J∗(·,ξ1,ξ2) is also piecewise-

affine and convex. Sets over which this cost is affine define a polyhedral partition of Y . The

polytopes of that partition – the critical regions – are precisely the non-empty intersections between

the critical regions induced by J∗1(·,ξ1) and those by J∗2(·,ξ2). The relationship between the critical

regions induced by the various piecewise affine functions are illustrated in Figure 3.2.

In what follows, we develop an algorithm wherein the coordinator defines a sequence of points

in Y towards optimizing the aggregate cost. In each step, it relies on the SOs to identify their

respective critical regions and the affine descriptions of their optimal costs at these iterates. That is,

SOi can compute the critical region Py
i that contains y ∈ Y and the affine description

[
αy

i
]ᵀ

z+β y
i

of its optimal dispatch cost J∗i (z,ξi) over z ∈ Py
i by parameterizing the linear program described

in (3.8)6. The details of this step are omitted; see [47]. For any y ∈ Y , we assume in the sequel

that the coordinator can collect this information from the SOs to construct the critical region Py

induced by the aggregate cost containing y and its affine description [αy]
ᵀz+β y for z ∈ Py, where

Py := Py
1 ∩Py

2, αy := αy
1 +αy

2, β y := β y
1 +β y

2 . (3.9)

In presenting the algorithm, we assume that the coordinator can identify the lexicographically
smallest optimal solution of a linear program. A vector a is said to be lexicographically smaller than

b, if at the first index where they differ, the entry in a is less than that in b. See [48] for details on

6 The critical region containing y ∈ Y is unique, except when y lies at the boundary of critical regions. In that event,

assume that the SO returns one of the critical regions containing y.
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such linear programming solvers. When a linear program does not have a unique optimizer7, such

a choice provides a tie-breaking rule. The final piece required to state and analyze the algorithm

is an optimality condition that is both necessary and sufficient for a candidate minimizer of (3.7).

Stated geometrically, y∗ ∈ Y is a minimizer of (3.7) if and only if

0 ∈ ∂J∗(y∗,ξ1,ξ2)+NY (y∗). (3.10)

The first set on the right-hand side of (3.10) is the sub-differential set of the aggregate cost

J∗(·,ξ1,ξ2) evaluated at y∗ 8. And, the second set denotes the normal cone to Y at y∗. The addition

stands for a set-sum.

Algorithm 1 delineates the steps for the coordinator to solve the deterministic tie-line scheduling

problem. In our algorithm, ‖v∗‖2 denotes the Euclidean norm of v∗. If D := {α1, . . . ,α�D} and

NY (y∗) := {z | Kyz ≥ 0}, then computing the least-square solution v∗ amounts to solving the

following convex quadratic program.

minimize
1

2
‖v‖2

2 ,

subject to v =
�D

∑
j=1

η jα j +ζ , 1ᵀη = 1, η ≥ 0, Kyζ ≥ 0
(3.11)

over the variables v ∈ R
n1+n2 , η ∈ R

�D , and ζ ∈ R
�N , where 1 is a vector of all ones, and Ky ∈

R
(n1+n2)×�N .

3.3.2 Analysis of the algorithm

The following result characterizes the convergence of Algorithm 1.

Theorem 2. Algorithm 1 terminates after finitely many steps, and y∗ at termination optimally solves
(3.7).

The above result fundamentally relies on the fact that each time the variable y is updated, it belongs

to a critical region (induced by the aggregate cost) that the algorithm has not encountered so far.

And, there are only finitely many such critical regions. That ensures termination in finitely many

steps. Each time the algorithm ventures into a new critical region, we store the optimizer and the

optimal cost over that critical region in the variables yopt and Jopt. Forcing the linear program to

choose the lexicographically smallest optimizer always picks a unique vertex of the critical region

as yopt. Unless Jopt improves upon the cost at y∗, we ignore the new point yopt. However, the

exploration of the new critical region provides a possibly new sub-gradient of the aggregate cost at

7 A linear program has non-unique optimizers when it is dual degenerate. See [48] for details.
8 We use the sub-differential characterization as opposed to the familiar gradient condition for optimality since

J∗(·,ξ1,ξ2) is piecewise affine and may not be differentiable everywhere in Y .
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Algorithm 1 Solving the deterministic tie-line scheduling problem.

1: Initialize:
y ← any point in Y , J∗ ← ∞,

D ← empty set, ε ← small positive number.
2: do
3: Communicate with the SOs to obtain Py and αy,β y.

4: Minimize [αy]
ᵀz+[β y] over Py.

5: yopt ← lexicographically smallest minimizer in step 4.

6: Jopt ← optimal cost in step 4.

7: if Jopt < J∗, then
8: y∗ ← yopt, J∗ ← Jopt, D ←{αy}.

9: else
10: D ← D ∪{αy}.

11: end if
12: v∗ ← argminv∈conv(D)+NY (y∗) ‖v‖2

2.

13: y ← yopt − εv∗.

14: while v∗ �= 0.

y∗. The sub-differential set at y∗ is given by the convex hull of the sub-gradients of the aggregate

cost over all critical regions that y∗ is a part of. The set D we maintain is such that conv(D) is a

partial sub-differential set of the aggregate cost at y∗. Notice that

conv(D)⊆ ∂J∗(y∗,ξ1,ξ2)

throughout the algorithm. Therefore, any y∗ that meets the termination criterion of the algorithm

automatically satisfies (3.10). As a result, such a y∗ is an optimizer of (3.7).

The proposed technique is attractive in that each SO only needs to communicate finitely many

times with the coordinator for the latter to reach an optimal tie-line schedule. Further, each SOi
can compute its optimal dispatch x∗i by solving (3.8) with y∗. A closer look at the nature of the

communication between the SOs and the coordinator reveals that an SO will not have to disclose

the complete cost structure nor a complete description of the constraints within its area to the

coordinator.

Remark 1. Algorithm 1 allows the coordinator to minimize

F(y) := F1(y)+F2(y)

in a distributed manner, where Fi : Y → R satisfies two properties. First, it is piecewise affine and
convex. Second, given any y ∈ Y , SOi can compute an affine segment containing that y. While we
do not explicitly characterize how fast the algorithm converges to its optimum, one can expect the
number of steps to convergence to grow with the number of critical regions so induced. However,
we do not expect our algorithm to explore all such critical regions on its convergence path.
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3.3.3 A pictorial illustration of the algorithm

To gain more insights into the mechanics of Algorithm 1, consider the example portrayed in Figure

3.3. The coordinator begins with yA as the initial value of y. It communicates with SOi to obtain the

critical region induced by J∗i containing yA, and the affine description of J∗i over that critical region.

Using the relation in (3.9), it then computes the critical region PA induced by the aggregate cost

and the affine description of that cost
[
αA]ᵀz+β A over that region. For convenience, we use

PA := PyA
, αA := αyA

, β A := β yA
,

and extend the corresponding notation for yB, . . . ,yE .

Figure 3.3: An example to illustrate the iterative process of Algorithm 1.

The coordinator solves a linear program to minimize the affine aggregate cost
[
αA]ᵀz+ β A over

z ∈PA, and obtains the lexicographically smallest optimizer yopt. Such an optimizer yopt is always

a vertex of PA. Identify yB as that vertex in Figure 3.3. The optimal cost at yB is indeed lower

than the initial value of J∗ = ∞, and hence, the coordinator sets y∗ ← yB. It also updates J∗ to the

aggregate cost at yB, and the partial sub-differential set to D ←{αA}.

Next, the coordinator solves the least square problem described in (3.11) to compute v∗. In so

doing, it utilizes D = {αA}, and Ky = 0 that describes the normal cone to Y at yB.9 Suppose

v∗ �= 0. The coordinator updates the value of y to yC, obtained by moving a ‘small’ step of length

ε from yB along −v∗. Recall that yC /∈ PA. The coordinator again communicates with the SOs to

obtain the new critical region PC induced by the aggregate cost that contains yC. Again, it obtains

the affine description of that cost and optimizes it over PC to obtain the new yopt. In the figure, we

depict the case when yopt coincides with y∗ = yB.

Notice that the optimal cost Jopt at yopt is equal to J∗, and hence, the coordinator only updates the

partial sub-differential set D to {αA,αC}. With the updated set of D , the coordinator solves (3.11)

to obtain v∗. In this example, v∗ is again non-zero, and hence, the coordinator moves along a step

9 The normal cone to Y at yB is {0} because yB lies in the interior of Y .
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of length ε along −v∗ from yB to land at yD. Again, yD /∈ {PA,PC}. The coordinator repeats the

same steps to optimize the aggregate cost over PD to obtain yE as the new yopt. Two cases can

now arise, that we describe separately.

• If the optimal cost Jopt at yopt = yE does not improve upon the cost J∗ at yB, the coordinator

ignores yE and updates the set D to {αA,αC,αD}. It computes v∗ with the updated D . Again,

if v∗ �= 0, it traverses along −v∗ to venture into a yet-unexplored critical region. The process

continues till we get y∗ = yB as an optimizer (if v∗ = 0 at a future iterate), or we encounter the

case we describe next.

• If Jopt < J∗, then the coordinator sets yE as the new y∗. It retraces the same steps with this new

y∗. In this example, since yE is a vertex of Y , one can show that (3.11) will yield v∗ = 0, and

hence, y∗ = yE will optimize the aggregate cost over Y .

3.4 The robust counterpart

The deterministic tie-line scheduling problem was formulated in the last section on the premise that

available renewable supply and limits on power demands within each area are known at the time

when tie-line schedules are decided. We now alter that assumption and allow these parameters to

be uncertain. In particular, we let ξi =
(
W i,Di,Di

)
take values in a box, described by

Ξi := {ξi ∈ R
3ni | ξ L

i ≤ ξi ≤ ξU
i } (3.12)

for i = 1,2. The robust counterpart of the tie-line scheduling problem is then described by

minimize
y∈Y

(
max
ξ1∈Ξ1

J∗1 (y,ξ1)+ max
ξ2∈Ξ2

J∗2 (y,ξ2)

)
. (3.13)

We now develop an algorithm that solves (3.13) in a distributed fashion. Problem (3.13) has a

minimax structure. Therefore, we employ a strategy in Algorithm 2 to alternately minimize the

objective function over Y and maximize it over Ξ1 ×Ξ2. Thanks to the following lemma, the

maximization over Ξ1 ×Ξ2 can be reformulated into a mixed-integer linear program.

Lemma 2. Fix y ∈ Y . Then, there exists M > 0 for which maximizing J∗i (y,ξi) over ξi ∈ Ξi is
equivalent to the following mixed-integer linear program:

maximize
wi,ρ,λ

c0
i +[cξ

i ]
ᵀξ L

i +(A
ξ
i ξ L

i +Ay
i y−bi)

ᵀλ+1 ρT,

subject to cx
i +[Ax

i ] λT = 0,

ρ ≤Mwi,

ρ ≤M(1−wi)+Δ
ξ
i (c

ξ
i +[A

ξ
i ] λT ),

wi ∈ {0,1}ni ,ρ ∈ R
ni ,λ ∈ R

mi
+ .

(3.14)

We use the notation Δ
ξ
i to denote a diagonal matrix with ξU

i − ξ L
i as the diagonal. The lemma

builds on the fact that J∗i (y,ξi) is convex in ξi, and hence, reaches its maximum at a vertex of Ξi.
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The convexity is again a consequence of [43, Theorem 7.5]. Our proof in [47] leverages duality

theory of linear programming and the so-called big-M method adopted in [49, Chapter 2.11] to

reformulate the maximization of J∗i (y, ·) over the vertices of Ξi into a mixed-integer linear program.

An optimal ξ opt
i can be recovered from w∗

i that is optimal in (3.14) using

ξ opt
i := ξ L

i +Δ
ξ
i w∗

i .

Next, we present our algorithm for solving the robust counterpart. In the algorithm, the

SOs exclusively maintain and update certain variables; we distinguish these from the ones the

coordinator maintains.

Algorithm 2 Solving the robust counterpart.

1: Initialize:
SO1: V1 ←{a vertex of Ξ1},

SO2: V2 ←{a vertex of Ξ2}.
2: do
3: Coordinator uses Algorithm 1 to solve

minimize
y∈Y

(
max
ξ1∈V1

J∗1(y,ξ1)+ max
ξ2∈V2

J∗2(y,ξ2)

)
.

4: y∗ ← optimizer in step 3.

5: J∗ ← optimal cost in step 3.

6: For i = 1,2, SOi performs:

7: Maximize J∗i (y∗, ·) over Ξi using (3.14).

8: ξ opt
i ← optimizer in step 7.

9: Jopt
i ← optimal cost in step 7.

10: Vi ← Vi ∪{ξ opt
i }.

11: return Jopt
i to the coordinator.

12: while Jopt
1 + Jopt

2 > J∗.

We summarize the main property of the above algorithm in the following result. See [47] for the

proof, that is similar in spirit to [44, Preposition 2].

Theorem 3. Algorithm 2 terminates after finitely many steps, and y∗ at termination optimally solves
(3.13).

Our algorithm to solve the robust counterpart makes use of Algorithm 1 in step 3. The coordinator

performs this step with necessary communication with the SOs. However, it remains agnostic to

the uncertainty sets Ξ1 and Ξ2 throughout. Therefore, our algorithm is such that the SOs in general
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will not be required to reveal their cost structures, network constraints, nor their uncertainty sets

to the coordinator to optimally solve the robust tie-line scheduling problem. Further, Theorems 2

and 3 together guarantee that the coordinator can arrive at the required schedule by communicating

with the SOs only finitely many times. These define some of the advantages of the proposed

methodology. In the following, we discuss some limitations of our method.

The number of affine segments in the piecewise affine description of maxξi∈Vi J∗i (y,ξi) increases

with the size of the set Vi. The larger that number, the heavier can be the computational burden on

Algorithm 1 in step 3. To partially circumvent this problem, we initialize the sets Vi with that vertex

of Ξi that encodes the least available renewable supply and the highest nominal demand. Such a

choice captures the intuition that dispatch cost is likely the highest with the least free renewable

supply and the highest demand. Our empirical results in the next section corroborate that intuition.

We make use of mixed-integer linear programs in step 7 of the algorithm. This optimization class

encompasses well-known NP-hard problems. Solvers in practice, however, often demonstrate

good empirical performance. Popular techniques for mixed-integer linear programming include

branch-and-bound, cutting-plane methods, etc. See [49] for a survey. Providing polynomial-time

convergence guarantees for (3.14) remains challenging, but our empirical results in the next section

appear encouraging.

3.5 Numerical experiments

We report here the results of our implementation of Algorithm 2 on several power system examples.

All optimization problems were solved in IBM ILOG CPLEX Optimization Studio V12.5.0 [50]

on a PC with 2.0GHz Intel(R) Core(TM) i7-4510U microprocessor and 8GB RAM.

3.5.1 On a two-area 44-bus power system

Consider the two-area power system shown in Figure 3.4a, obtained by connecting the IEEE 14-

and 30-bus test systems [51]. The networks were augmented with wind generators at various

buses. Transmission capacities of all lines were set to 100MW. The available capacity of each wind

generator was varied between 15MW and 25MW. The lower limits on all power demands were set

to zero, while the upper limits were varied between 98% and 102% of their nominal values. Our

setup had 36 uncertain variables – 32 power demands and 4 available wind generation. Bus 5 in

area 1 was set as the slack bus.

From the data in Matpower [52], we chose the linear coefficient in the nominal quadratic cost

structure for each conventional generator to define Pg
i in (3.5). Further, we neglected wind spillage

costs by letting Pw
i = 0, and defined Pd

i by assuming a constant marginal cost of $100/MWh for not

meeting the highest demands.

To run Algorithm 2, we initialized Vi with the scenario that describes the highest power demands

and the least available wind generation across all buses. To invoke Algorithm 1 in step 3, we

initialized y with a vector of all zeros. When the algorithm encountered the same step in future
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Figure 3.4: The two-area 44-bus system is portrayed on the left. It shows where the wind generators are

added and the parameters for the tie-lines used in our experiments. The figure on the right plots the optimal

aggregate costs from P1, P2 over 3000 samples of uncertain variables, and that of Algorithm 2 on this system.

Iteration Step in Algorithm 2 Aggregate cost ($/h) Run-time (in ms)

1 Step 3 to compute y∗ 9897.7 113.6

1 Step 7 to compute ξ opt 9910.3 99.6

2 Step 3 to compute y∗ 9899.3 93.4

2 Step 7 to compute ξ opt 9899.3 121.5

Table 3.1: Evolution of aggregate cost of Algorithm 2 for the two-area power system in Figure 3.4a.

iterations, it was initialized with the optimal y∗ from the last iteration to provide a warm start.
Algorithm 2 converged in two iterations, i.e., it ended when the cardinality of V1 and V2 were both

two. The trajectory of the optimal cost and the run-times for each step are given in Table 3.1. In

the first iteration, Algorithm 1 in step 3 with ε = 10−5 converged in four iterations10 of its own and

explored five critical regions induced by the aggregate cost. A naive search over Y yielded that the

aggregate cost induced at least 126 critical regions. Our simulation indicates that Algorithm 1 only

explores a ‘small’ subset of all critical regions.

Step 7 of Algorithm 2 was then solved to obtain ξ opt
i . As Table 3.1 suggests, the aggregate cost

Jopt
1 +Jopt

2 exceeded J∗ obtained earlier in step 3. Thus, the scenario of demand and supply captured

in our initial sets V1 and V2 was not the one with maximum aggregate dispatch costs. To accomplish

this step, two separate mixed-integer linear programs were solved – one with 13 binary variables

(in area 1) and the other with 23 binary variables (in area 2). CPLEX returned the global optimal

solutions in 15ms and 77ms, respectively. In the next iteration, step 3 was performed with ξ opt
i

10 The termination condition v∗ = 0 is replaced by checking that the Euclidean norm of a suitably normalized v∗ is less

than a threshold.
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added to Vi, where Algorithm 1 converged in five iterations, exploring only four critical regions.

Finally, step 7 yielded Jopt
1 + Jopt

2 = J∗, implying that the obtained y∗ defines an optimal robust

tie-line schedule.

To further understand the efficacy of our solution technique, we uniformly sampled the set Ξ1×Ξ2

3000 times. With each sample (ξ1,ξ2), we solved two optimization problems:

• P1: a deterministic tie-line scheduling problem solved with Algorithm 1,

• P2: the optimal power flow problem in each area with the optimal y∗ obtained from Algorithm 2

for the robust counterpart.

The histograms of the optimal aggregate costs from P1 and P2 are plotted in Figure 3.4b. The same

figure also depicts the optimal cost of the robust tie-line scheduling problem, which naturally equals

the maximum among the costs from P2. And for each sample, the gap between the optimal costs

of P1 and P2 captures the cost due to lack of foresight. Figure 3.4b reveals that such costs can be

significant. The median run-time of P1 was 48.5ms over all samples. The run-time for the robust

problem was 458.2ms – roughly 10 times that median.

3.5.2 On a three-area 187-bus system test

For this case study, we interconnected the IEEE 30-, 39-, and 118-bus test systems as shown in

Figure 3.5. All transmission capacities were set to 100MW. Five wind generators were added to

the 118-bus system (at buses 17, 38, 66, 88, and 111), three in the 39-bus system (at buses 3, 19,

and 38), and two in the 30-bus system (at buses 11, and 23). Again, we adopted the same possible

set of available wind power generations and power demands, as well as the cost structures as in

Section 3.5.1. In total, our robust tie-line scheduling problem modeled 151 uncertain variables.

For this multi-area power system, Algorithm 2 converged in the first iteration. The mixed integer

programs in step 7 yielded the global optimal solution for each area, taking 62ms, 109ms, and

281ms, respectively. We again sampled the set Ξ1 ×Ξ2 ×Ξ3 3000 times, and solved P1. The run-

time of Algorithm 2 was 825.3ms, that is roughly 1.8 times the median run-time of P1, given by

450.8ms.

We studied how our algorithm scales with the number of boundary buses by adding more tie-lines

to the same system. The aggregate iteration count of Algorithm 1 is expected to grow with the

number of induced critical regions, that in turn should grow with the boundary bus count. On the

other hand, the iteration count of Algorithm 2 largely depends on the initial choice of the scenario

encoded in the sets V1,V2,V3, and thus, varies to a lesser extent on the same count. Figure 3.6

validates these intuitions.

3.5.3 Summary of results from other case-studies

We compared Algorithm 1 with a dual decomposition based approach proposed in [1]. That

algorithm converges asymptotically, while our method converges in finitely many iterations. Table
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Figure 3.6: How our algorithms perform with variation in the number of tie-lines in the three-area 187-bus

power system.

Items
Two-area

44-bus system

Three-area

187-bus system

# iterations in Algorithm 1 8 9

# iterations of [1] 23 78

Run-time of Algorithm 1 (ms) 458.2 825.3

Run-time of [1] (ms) 779.8 1227.5

Table 3.2: Comparison with the method in [1].
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#

areas

#

buses

#

uncertain

variables

#

boundary

buses

# iter. in

Algorithm 2

Run-time of

Algorithm 2

(ms)

Run-time of

joint problem

(ms)

2 87 91 4 1 719.6 310.0

2 175 179 4 1 871.1 340.5

2 236 240 4 1 1732.6 391.5

2 418 42 10 1 1020.7 455.7

2 418 422 10 4 6124.5 461.4

3 354 360 12 3 4127.4 655.8

3 536 54 12 1 2557.6 699.7

3 536 546 12 3 18359.8 701.2

Table 3.3: Performance of Algorithm 2 on various multi-area power system examples in Figure 3.7.

3.2 summarizes the comparison.11 Compared to that in [1], our algorithm clocked lesser number

of iterations and lower run-times in our experiments.

Apart from the two systems considered so far, we ran Algorithm 2 on a collection of other multi-

area power systems given in Figure 3.7. Tie-line capacities were set to 100MW and their reactances

were set to 0.25p.u. Capacity limits on the transmission lines within each area were set to their

respective nominal values in MATPOWER [52] wherever present, and to 100MW, otherwise. For

all two-area tests, two wind generators were installed in the two areas at buses 6 and 14 in area

1 and buses 11 and 23 in area 2. For the three-area tests, we replicated the placements described

in Section 3.5.2. Power demands and available wind generations were varied the same way as in

Sections 3.5.1 and 3.5.2.

The results on these power systems are summarized in Table 3.3. Our experiments reveal

that Algorithm 2 often converges within 1 – 4 iterations. The run-time of Algorithm 2 grows

significantly with the number of uncertain parameters. The 418-bus and the 536-bus systems with

422 and 546 uncertain variables, respectively, corroborate that conclusion. Such growth in run-time

is expected because the complexity of (3.14) grows with the number of binary decision variables

that equals the number of uncertain parameters. Run-time of a joint multi-area optimal power flow

problem with a sample scenario in the last column provides a reference to compare run-times for

the robust one.

11 We say the method in [1] converges when the power flow over each tie-line as calculated by the areas at its end

mismatches by < 0.01 p.u..
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Figure 3.7: Additional power system examples considered for numerical experiments.

3.6 Conclusion

This work presented an algorithmic framework to solve a tie-line scheduling problem in multi-area

power systems. Our method requires a coordinator to communicate with the system operators in

each area to arrive at an optimal tie-line schedule. In the deterministic setting, where the demand

and supply conditions are assumed known during the scheduling process, our method (Algorithm

1) was proven to converge in finitely many steps. In the case with uncertainty, we proposed a

method (Algorithm 2) to solve the robust variant of the tie-line scheduling problem. Again, our

method was shown to converge in finitely many steps. Our proposed algorithms do not require the

system operator to reveal the dispatch cost structure, network parameters or even the support set of

uncertain demand and supply within each area to the coordinator. We empirically demonstrated the

efficacy of our algorithms on various multi-area power system examples. Future directions include

extending our framework to a multi-period setting, considering unit commitment decisions [53],

reserve sharing decisions [54], and allowing for asynchronous updates from neighboring SOs [55].
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4. Generalized Coordinated Transaction Scheduling

We briefly review the state-of-the-art interchange mechanism CTS [34] in a deterministic setting.

For a stochastic version of CTS, see [56].

For ease of presentation, we consider throughout this chapter a two-area power system illustrated in

Figure 4.1(a). The proposed GCTS for more than two areas is straightforward and illustrated in the

Appendix. We define a boundary bus as one to which a tie-line connecting two areas is attached.

Other buses are called internal buses.

The system in Figure 4.1(a) is jointly operated by ISO 1 and ISO 2. In particular, each ISO controls

the interior of its operating region defined by internal buses, and the two operators control jointly

operating boundaries defined by boundary buses. The interchange problem is a two-stage process

in which the neighboring ISOs jointly set the boundary state in a look-ahead scheduling, and each

ISO optimizes internal states in real time subject to fixed interchange schedules.

In CTS, as shown in Figure 4.1(b), a “proxy bus” is selected among external boundary buses1 in

each area as a trading location of market participants who submit interface bids to the coordinator2.

Each interface bid is a pair of buying and selling bids at proxy buses. They represent market

participants’ interest to arbitrage in a certain direction, which changes with the anticipated price

gap. These bids are used to set the interchange defined as the net power transfer (rather than power

flows on tie-lines) across boundaries.

Each interface bid has three attributes: an anticipated price difference Δπ at proxy buses, a

maximal quantity smax, and an import/export direction. CTS bids are cleared 15-30 minutes prior

to individual real-time markets by the coordinator. The clearing process is based on the minimizing

of generation cost and the payoff to market participants. To this end, the coordinator collects

demand/supply curves from system operators that are used in conjunction of bids from market

participants to determine the interchange quantity. The demand/supply curve from each operator

is obtained by computing the expected LMP at the proxy bus for its neighboring area for each

interchange level3.

We use the graphical representation in Figure 4.2 from [34] to illustrate the clearing principle of

1 In case of internal buses of the neighboring area being placed as trading locations, we can preserve these trading buses

in the equivalent network on the boundary in Figure 4.5(b). Thereby, similar method can be derived. For simplicity,

we assume hereafter that all interface bids are at boundary buses
2 It is NYISO in the implementation between New York and New England
3 Injections and line capacities of the neighboring area are not used
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Figure 4.1: The model of the interconnected power system and the proxy-bus model in CTS

CTS without tie-line congestion. Therein, curve πi(q) represents the incremental cost of generation

for Area i, and Q is the interface capacity. In this example, the direction of interchange is from

Area 1 to Area 24, so π1(q) and π2(q) serve as supply and demand curves, respectively. The third

price curve π2(q)−Δπ(q) is the adjusted curve of π2(q) by subtracting the aggregated interface

bids Δπ(q). CTS interchange schedule qCT S is set at the intersection of π1(q) and π2(q)−Δπ(q).
All interface bids with prices lower than Δπ(qCT S) are cleared.

Interface bids are separately settled in individual real-time markets where the proxy bus injection

is set as qCT S. The net interchange between the two areas will match with the scheduled qCT S. The

real-time LMP at proxy buses πRT
1 and πRT

2 are used to settle cleared interface bids. We note that

there is a time latency between the clearing of interface bids and the physical power delivery. Such

randomness may cause price deviations from the expected LMP difference at the time of interface

bid clearing. Therefore, market participants with cleared bid offers are exposed to risks of losing

money.

If there are tie-line congestions, i.e., the intersection of π1(q) and π2(q)−Δπ(q) is greater than Q,

then the net interchange will be scheduled at qCT S = Q. There is π2(qCT S)−π1(qCT S)> Δπ(qCT S).
In CTS, such a price difference ρ is equally partitioned into congestion prices for the two areas.

Specifically, interface bids are paid at (πRT
1 − ρ

2 ) in Area 1 and charged at (πRT
2 + ρ

2 ) in Area

2, respectively. Note that ρ is calculated in the look-ahead clearing process, whereas πRT
i is

determined in the real-time dispatch.

4 This is because π1(0)< π2(0). If π1(0)> π2(0), the direction would be opposite.
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Figure 4.2: Illustration of CTS’s clearing without tie-line congestion
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Figure 4.3: Illustration of CTS’s clearing with tie-line congestion

We review the process of CTS and the role of interface bids via Figure 4.4. Clearing interface

bids will create imbalances of local supply and demand in each area. Physically, as in Figure

4.4(a), such local imbalances naturally compel power to flow across tie-lines in a interconnected

power system. Financially, as shown in Figure 4.4(b), there is no direct cash flow between the

two ISOs. The payment to excess power generations in Area 1 and the revenue from excess power

consumptions in Area 2 are balanced by external market participants who buy from Area 1 and sell

to Area 2. Note that, cleared interface bids are financial contracts and do not physically generate or

consume. They simply provide financial compensations that allow each regional market to dispatch

imbalanced generations and consumptions so that power can flow across their boundaries.

Although it is reported that the CTS approach has to some extent ameliorated the seams issue,

inefficient scheduling still persists [57]. In particular, modeling the net interchange as the injection

to the proxy bus may be highly inaccurate when there are multiple tie-lines. In what follows, we

present a generalization of CTS by removing the proxy bus approximation.
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Figure 4.4: Physical power system versus the financial trading procedure.

4.1 Introducing generalized CTS

4.1.1 Network model

Without loss of generality, we assume that no generator or load is on the boundary bus. This

assumption is made for convenience of presentation. A boundary bus that has a generator can

be split into a fictitious internal bus with a generator and a boundary bus without injection. We

also assume that each internal bus has one generator and one load. Let gi be the vector of power

generations and di the vector of load in Area i.

We adopt the DC power flow model in this work. Specifically, nodal phase angles are state variables

that are determined by active power injections. The state variables in Area i are partitioned into

internal phase angles θi and boundary phase angles θ̄i. We also use θ̄ = [θ̄1, θ̄2]
T to represent all

boundary phase angles.

The DC power flow equation for the two-area power system in Figure 4.1(a) is⎡
⎢⎢⎢⎣

Y11 Y11̄

Y1̄1 Y1̄1̄ Y1̄2̄

Y2̄1̄ Y2̄2̄ Y2̄2

Y22̄ Y22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

θ1

θ̄1

θ̄2

θ2

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

g1 −d1

0

0

g2 −d2

⎤
⎥⎥⎥⎦ , (4.1)

where Y11̄ is the nodal admittance sub-matrix5 associated with the internal and boundary buses in

5 The matrix Y is composed of reciprocals of branch reactance and differs from the bus admittance matrix used in AC
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Area 1, and Y1̄2̄ the sub-matrix associated with boundary buses in areas 1 and 2. Other terms in the

coefficient matrix in (4.1) are similarly defined.

Figure 4.5: Boundary equivalent network model in GCTS

An equivalent network that captures completely the electrical properties at the boundary of the two

networks can be derived as follows and is illustrated in Figure 4.5. Here boundary buses of Area

i have equivalent self-admittance Ỹīī, mutual-admittance Yī j̄, and generation g̃ī. The power flow

equation for the equivalent network for the interface is

[
Ỹ1̄1̄ Y1̄2̄

Y2̄1̄ Ỹ2̄2̄

][
θ̄1

θ̄2

]
=

[
g̃1̄

g̃2̄

]
, (4.2)

where

Ỹīī = Yīī −YīiY
−1
ii Yiī, g̃ī =−YīiY

−1
ii (gi −di). (4.3)

The coefficient matrix in (4.2) does not change with nodal power injections. Throughout this

chapter, we assume that the two-area system is on the same island, so the coefficient matrix in (4.2)

is full rank after removing the reference bus. The equivalent power injection g̃ī succinctly captures

the external impact of internal power injections in Area i; it represents its power interchange

schedule. Therefore, in what follows, those equivalent power injections are associated with

interface bids from external market participants. Hereafter, we drop the word “external” if that

does not cause any confusion.

4.1.2 Definition of interface bids

GCTS uses the same format of bids as CTS. Namely, an interface bid i is defined by a triple

B � {< Bpm,Bqn >,Δπi,smax,i},
where

1. < Bpm,Bqn > is an ordered pair of boundary buses that specifies the bid as withdrawing at

bus m in Area p and injecting the same amount at bus n in Area q. They need not be directly

connected by a tie-line;

power flow model.
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2. Δπi is its price bidding on the anticipated price gap that the bid is settled in the two real-time

markets6;

3. smax,i is its maximum quantity.

The only difference between CTS and GCTS is that, in stead of using a single proxy bus in each

area, GCTS allows bids to be submitted to all pairs of boundary buses across the boundary, as

illustrated in Figure 4.6.

Figure 4.6: Network equivalence on the boundary. Dotted-line arrows represent three interface bids in the

example below: s1 injects at B11 and withdraws at B21; s2 injects at B11 and withdraw at B22; s3 injects at B12

and withdraws at B22.

We aggregate all interface bids with an incidence matrix Mi associated with boundary buses in Area

i. Specifically, each row of Mi corresponds to a boundary bus of Area i, and each column of which

corresponds to an interface bid. The entry Mi(m,k) is equal to one if interface bid k buys power at

boundary bus Bim from Area i, minus one if it sells power at bus Bim to Area i, and zero otherwise.

For example, if there are three bids as illustrated in Figure 4.6, matrices Mi(i = 1,2) are

M1=

[
1 1 0

0 0 1

]
(B11)

(B12)
,M2=

[ −1 0 0

0 −1 −1

]
(B21)

(B22)
. (4.4)

Consequently, let s be the vector whose ith entry si is the cleared quantity of bid i. Then Mis
represents the aggregated equivalent power injection induced by cleared interface bids on boundary

buses in Area i. By substituting the right-hand side in (4.2) by Mis, we have

[
Ỹ1̄1̄ Y1̄2̄

Y2̄1̄ Ỹ2̄2̄

][
θ̄1

θ̄2

]
=

[
M1s
M2s

]
. (4.5)

6 This may not be equal to the LMP difference. See Subsection III-D and Remark 2 after Theorem 4 for mathematical

and economical interpretations.
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In (4.5), the interchange schedule is solely determined by the cleared interface bids from market

participants. In the market clearing process of GCTS, as presented in the next subsection, Equation

(4.5) will be incorporated as an equality constraint in the optimization model where the internal

bids gi and interface bids s are cleared together.

4.1.3 Market clearing mechanism

GCTS preserves the architecture of CTS; it assumes the presence of a coordinator who collects

interface bids and clears them via a look-ahead dispatch, and the interface bids are settled separately

in the real-time markets. GCTS removes the proxy bus approximation, and its clearing of interface

bids is based on a generalization of JED. The key idea is to clear interface bids by optimizing the

boundary state as follows:

minimize
{gi,s,θ̄ ,θi}

c(g1,g2,s) =
2

∑
i=1

ci(gi)+ΔπT s, (4.6a)

subject to ǧi ≤ gi ≤ ĝi, i = 1,2, (4.6b)

0 ≤ s ≤ smax, (4.6c)

Hiθi +Hīθ̄i ≤ fi, i = 1,2, (4.6d)

H̄1̄θ̄1 + H̄2̄θ̄2 ≤ f̄ , (4.6e)⎡
⎢⎢⎢⎣

Y11 Y11̄

Y1̄1 Y1̄1̄ Y1̄2̄

Y2̄1̄ Y2̄2̄ Y2̄2

Y22̄ Y22

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

θ1

θ̄1

θ̄2

θ2

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣

g1 −d1

0

0

g2 −d2

⎤
⎥⎥⎥⎦ , (4.6f)

[
Ỹ1̄1̄ Y1̄2̄

Y2̄1̄ Ỹ2̄2̄

][
θ̄1

θ̄2

]
=

[
M1s
M2s

]
, (4.6g)

where decision variables are the cleared internal generation bids gi with the quantity limit (4.6b),

the cleared interface bids s with the quantity limit (4.6c), and the system states (θi, θ̄ ) subject to

internal and tie-line power limits (4.6d) and (4.6e). Any bid i with si = smax,i is fully cleared, any

with si = 0 is rejected, and any with 0 <si< smax,i is partially cleared at amount si.

Note that, the term ΔπT s represents the market cost of clearing interface bids. Because the price

difference in the real time is in general different from the look-ahead dispatch, market participants

carry a certain amount of risk. Thus the bid Δπi represents the willingness of the bidder i to take

that risk. See [58] for details of the quantification for risks.

The market clearing model of GCTS (4.6a)-(4.6g) differs from JED in two aspects: (i) the market

cost of clearing interface bids ΔπT s in the objective function and (ii) the additional equality

constraint (4.6g) that determines the boundary state by clearing interface bids subject to their
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quantity limits. The coordinator sets the interchange by clearing the interface bids to minimize

the overall cost subject to operational constraints and constraints (4.6c) and (4.6g) imposed by the

interface bids.

The clearing problem (4.6a)-(4.6g) of GCTS is a look-ahead economic dispatch where the load

powers di are predicted values. It should be solved in a hierarchical or decentralized manner. Any

effective multi-area economic dispatch method can be employed. See, e.g., [39, 59] where (4.6a)-

(4.6g) is solved with a finite number of iterations.

4.1.4 Real-time dispatch and settlement

Interface bids are settled in the real-time market together with internal bids. There is no

coordination required at this step. Specifically, ISO 1 solves its local economic dispatch with fixed

boundary state θ̄ :

minimize
{g1,θ1}

c1(g1), (4.7a)

subject to H1θ1 +H1̄θ̄1 ≤ f1, (ηR
1 ) (4.7b)

ǧ1 ≤ g1 ≤ ĝ1, i = 1,2,
(

ξ̄ R
1 ,ξ

R
1

)
(4.7c)

[
Y11 Y11̄

Y1̄1 Y1̄1̄ Y1̄2̄

]⎡⎣ θ1

θ̄1

θ̄2

⎤
⎦=[ g1 −dR

1

0

]
,
(λ R

1 )

(λ̄ R
1 )

(4.7d)

where dR
1 represents real-time internal loads, which may deviate from their predictions in the look-

ahead dispatch (4.6a)-(4.6g). The real-time internal dispatch in each area should be compliant with

the pre-determined interchange schedule. To this end, boundary state θ̄ is fixed at the solution to

Equation (4.6g) with s cleared interface bids solved from (4.6a)-(4.6g). All multipliers are given to

the right of corresponding constraints.

ISO 1 simultaneously settles internal and interface bids in the real-time market. Internal bids are

settled at the LMP λ R
1 . To settle interface bids, we need to analyze the sensitivity of the local

optimal cost in (4.7a) with respect to s. In the real-time dispatch (4.7a)-(4.7d), the impact of

interface bids s is imposed via the fixed boundary state variables θ̄ . The sensitivity of local optimal

cost with respect to θ̄ is

∇θ̄ c∗1 =
[

Y1̄1 Y1̄1̄

Y2̄1̄

][
λ R

1

λ̄ R
1

]
+

[
HT

1̄
ηR

1

0

]
. (4.8)

The sensitivity of local optimal cost with respect to s is
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∇sc∗1=[∇sθ̄ ]T ∇θ̄ c∗1=MT
[

Ỹ1̄1̄ Y1̄2̄

Y2̄1̄ Ỹ2̄2̄

]−1

∇θ̄ c∗1 �μR
1 . (4.9)

In the absence of tie-line congestion, interface bids pay prices μR
1 in Area 1 and μR

2 in Area 2 (they

get paid if μi < 0). In general, interface bids are not settled at LMPs. This is because the change of

the objective function (4.7a) with an increment of cleared s differs from that with an increment of

load power.

If there are tie-lines congested, similar to CTS, we will compute congestion rents according to the

look-ahead dispatch (4.6a)-(4.6g) and subtract them from the payment to interface bidders. Tie-line

congestion prices associated with interface bids are calculated by

ρ = MT S̃T η̄ , S̃ = [H̄1̄ H̄2̄]

[
Ỹ1̄1̄ Y1̄2̄

Y2̄1̄ Ỹ2̄2̄

]−1

, (4.10)

where η̄ is the shadow price in (4.6e), and S̃ is the shift factor of boundary buses with respect to

tie-lines in Figure 4.6. Similar to CTS, we evenly split the congestion rent price ρ into two areas7.

Namely, market participants pay μR
i + ρ

2 in Area i, i = 1,2.

If dR
i = di, one can prove that the real-time dispatch level and prices are consistent with the look-

ahead dispatch. Note that fixing some variables at their optimal values does not change optimal

values of other primal and dual variables. If the real-time dispatch (4.7a)-(4.7d) is infeasible, ad

hoc adjustments such as relaxations of flow limits can be employed in practice.

4.2 Properties of GCTS

4.2.1 Efficiency and price convergence of GCTS

By removing the proxy bus approximation and adopting a strict DC OPF model in (4.6a)-(4.6g),

we are able to establish many important properties for GCTS. All proofs are omitted and can be

found in [60] .

We first show that GCTS asymptotically achieves seamless interfaces when more and more bidders

participate in the competition at all possible pairs of trading locations. Intuitively, for GCTS to

achieve the cost of JED, two conditions are necessary in general. First, there have to be enough

bidders who try to capture the arbitrage profits across the interface so that they drive Δπ → 0. This

follows the standard economic argument of perfect competition. Second, bids need to be diverse

7 When there are more than two areas, tie-line congestions may induce positive shadow prices ρ for interface bids over

other interfaces. Nevertheless, the calculation of ρ is the same as in (4.10), and the shadow price should be evenly

split by neighboring areas.
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enough to make the matrix M full row rank so that the tie-line flows of the GCTS can match those

of JED. It turns out that both conditions can be satisfied simultaneously by conditions below.

Theorem 4. (Asymptotic efficiency) Consider a market with N independent interface bidders.
Assume that (i) both JED and GCTS are feasible and each has an unique optimum, (ii) the number
of aggregated bids for each pair of source and sink buses grows unbounded with N, and (iii) bidding
prices for all participants go to zero as N → ∞, i.e. limN→∞ Δπ = 0, then the scheduled tie-line
power flows and generations in each area by GCTS converge to those of the JED as N → ∞.

Remark 1: Recall that JED by a “super ISO” provides the lowest possible generation cost, thus

achieving the overall market efficiency. In practice, the power system is artificially partitioned into

multiple subareas that are operated by financially neutral ISOs, and interchange scheduling has

to rely on bids from market participants. Such operational regulations will naturally create seams

at interfaces. Theorem 4 shows that, however, GCTS asymptotically achieves seamless interfaces

under mild conditions. This indicates that GCTS leads to the price convergence between regional

electricity markets.

Remark 2: The price convergence implies that there is no arbitrage opportunity, and that the

dispatch level of GCTS is the same as that of JED. Note that due to congestions, boundary buses

may have different LMPs even under the administration of a “super-ISO”. So the price convergence

is in fact for shadow prices of s. This also explains why interface bids should be settled at μR
i in

(4.9) but not LMPs.

Remark 3: The assumptions that bidding locations are diverse enough and that Δπ goes to zero as

N increases come from the interpretation that, as the number of bidders increases, there are always

enough bids that can be cleared to satisfy the desired interchange level. Thus individually, each

bidder seeks trading locations with seams and reduces its bidding price so that it will have a better

chance to be cleared.

4.2.2 Relation between GCTS and CTS

Next we establish connections between GCTS and CTS. Specifically, we show that the two

mechanisms are equivalent in a particular simple setting.

Theorem 5. When there is a single tie-line between two areas, the clearing process of GCTS
(4.6a)-(4.6g) provides the same interchange as that of CTS.

Remark: A natural corollary of Theorem 5 is that when there is a single tie-line between two

areas and real-time load is the same as the load considered in the interchange scheduling, then

CTS provides the optimal interchange schedule in the sense that the posterior real-time dispatch gR
i

minimizes the total cost of all internal and external market participants.

In practice, however, neither condition in these two theorems is likely to hold. In such cases, our
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simulations show that GCTS generally has lower overall cost than CTS and its dispatch satisfies

security constraints. CTS, may on the other hand, may violate security constraints due to the loop

flow problem engendered by its proxy-bus approximation. See Section V for details.

4.2.3 Revenue adequacy

In this subsection, we establish the revenue adequacy for the real-time market (4.7a)-(4.7d). Recall

that, in the single-area economic dispatch, each area has a non-negative net revenue, which is

equal to its congestion rent. We prove in the following theorem that each area achieves its revenue

adequacy in the same fashion in GCTS in an interconnected power system.

Theorem 6. Assume that the real-time dispatch (4.7a)-(4.7d) is feasible and that the settlement
process follows our description in Subsection III-D, then the net revenue of each area is non-
negative and is equal to its congestion rent.

4.2.4 Local performance

ISOs are mainly responsible of the efficiencies of their own regional markets, rather the overall

efficiency. Therefore, an ISO may be reluctant to implement any interchange scheduling approach

that worsens its local performance for the sake of the overall efficiency. We partly address this issue

in this subsection.

In the conventional interchange scheduling before CTS, market participants split their bidding

prices into Δπ = π1 +π2 and separately submit them to the two neighboring ISOs who clear these

bids independently. Only bids cleared in both markets will be scheduled [61]. In essence, we take

the minimum of the cleared quantities. In the following theorem, we prove that GCTS achieves

higher local surpluses in all areas than the conventional approach under a simple setting:

Theorem 7. Assume that (i) there is a single tie-line between two neighboring areas, (ii) real-time
load demands are the same as their look-ahead predictions, and (iii) each market clearing problem
has an unique optimum, then there is

L̃Si ≥ L̂Si, (4.11)

where L̃Si is the local surplus of area i in its real-time market (4.7a)-(4.7d) with θ̄ determined by
the optimal s̃ cleared in GCTS (4.6a)-(4.6g). Specifically, it is defined as

L̃Si � (Di − (λ̃ R
i )

T di)+((λ̃ R
i )

T g̃i − ci(g̃i))+ f T
1 η̃R

1 , (4.12)

where Di is the constant utility of consumers. Variables with tildes are solved with s̃. The local
total surplus in Area i is the sum of its consumer surplus, supplier surplus, and the surplus of
transmission owners. The local surplus L̂Si with ŝ the result of separate clearing is similarly
defined.

We remove this result from our journal submission because this is more about CTS. In general,

when there are multiple tie-lines, Theorem 7 may not hold for GCTS. Nevertheless, it is important
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to look into performances in regional markets, especially for power systems that cover multiple

regions or even countries. Investigating weaker conditions for Theorem 7 would be an interesting

direction for future works.

4.3 Numerical tests

4.3.1 Two-area 44-bus system

GCTS was tested on a two-area system composed of the IEEE 14-bus system (Area 1) and the

30-bus system [62] (Area 2). The system configuration and reactance and capacities of tie-lines are

illustrated in Figure 4.7.

Figure 4.7: Configuration of the two-area power system

Two groups of simulations were conducted. First, we aimed to illustrate the market clearing process

of GCTS. Second, we compared GCTS with JED and CTS and numerically demonstrated the

asymptotic convergence of GCTS to JED as in Theorem 4.

Illustration of the market clearing process

Eight interface bids were considered in the first group of simulations. Their trading locations and

prices Δπ are listed in Table 4.1. Some market participants traded on boundary buses without direct

connections, such as bids 2 and 5. The maximal quantities of all bids were set as 30MW.

From default prices in Area 1, we used a weighting factor w to generate scenarios with various

degrees of price discrepancies. For all scenarios, cleared interface bids, tie-line power flows,

marginal prices, and system costs are presented in Table 4.2:

The second block (second to ninth rows) in Table 4.2 lists cleared amounts for interface bids. With

the increase of w, bids delivering power from Area 2 to Area 1 were cleared at greater quantities,

see the fifth and eighth rows, while those delivering power in the opposite direction were cleared at

smaller quantities, see the second row.
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Table 4.1: Profile of interface bids

Indices Sell to Buy from Price ($/MWh)

1 Bus 15 (Area 2) Bus 5 (Area 1) 1

2 Bus 28 (Area 2) Bus 5 (Area 1) 2

3 Bus 5 (Area 1) Bus 15 (Area 2) 1.5

4 Bus 5 (Area 1) Bus 28 (Area 2) 0.5

5 Bus 15 (Area 2) Bus 9 (Area 1) 1.0

6 Bus 28 (Area 2) Bus 9 (Area 1) 2.0

7 Bus 9 (Area 1) Bus 15 (Area 2) 1.5

8 Bus 9 (Area 1) Bus 28 (Area 2) 0.5

The third block includes results on tie-line power flows. They were determined by the boundary

power flow equation (4.5) and cleared amounts of bids in the second block. When w = 0.1, tie-

line power flows were in both directions. When w was increased, which signified greater price

discrepancies, tie-line power flows became unidirectional from the low-price area to the high-price

area.

The fourth block are marginal prices for all boundary buses in the market clearing process, i.e.,
multipliers associated with boundary equality constraint (4.6g). All bids whose prices were lower

than marginal price gaps between their trading points were totally cleared, see the second, twelfth,

and fourteenth rows when w = 0.1 and the second row in Table 4.1 as an example. All bids whose

prices were higher were rejected, see the third, twelfth, and fifteenth rows when w = 0.1 and the

third row in Table 4.1 as an example. For partially cleared interface bids, marginal price gaps

between their trading points were equal to their bidding prices, see the eighth, thirteenth, and

fourteenth rows when w = 0.1 and the eighth row in Table 4.1 as an example.

The last block are generation costs, costs of market participants, and total costs per hour in the

proposed approach. GCTS considered the total market cost of internal and interface bidders.

Comparison with existing benchmarks

In the second group of simulations, we compared the proposed method with existing approaches

on tie-line scheduling. Specifically, the following methods were compared:

i) JED that minimized the total generation cost;

ii) CTS wherein proxy buses were selected as bus 5 in Area 1 and bus 15 in Area 2;

iii) The proposed mechanism of GCTS.

Default generation prices were considered in this test. We used similar bids to those in Table 4.1
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Table 4.2: Results of interface bid clearing

Weighting factor 0.1 0.15 0.2 1.0

Cleared
quantities

of
interface

bids
(MW)

1 30 30 5.56 5.56

2 0 0 0 0

3 0 0 0 0

4 0 0 30 30

5 0 0 0 0

6 0 0 0 0

7 10.40 30 30 30

8 30 30 30 30

Tie-line bus 15 to 5 -8.66 5.53 38.60 38.60

flow (MW) bus 28 to 9 19.05 41.31 45.84 45.84

Marginal
prices

($/MWh)

bus 5 -0.10 0.02 0.82 15.62

bus 9 2.90 4.34 6.49 45.96

bus 15 1.40 1.04 1.82 16.62

bus 28 0.0 0.0 0.0 0.0

Market
costs
($/h)

Internal 923.2 1148.2 1371.0 4525.4

interface 58.1 90 80.56 80.56

total 983.0 1238.2 1451.6 4605.9

for GCTS but their quantity limits and prices were uniformly set as smax = 100MW and Δπ =
$0.1/MWh. In CTS, all bids were placed at proxy buses with the same quantity limits and prices.

We compared market costs in the look-ahead interchange scheduling as well as those in the real-

time local dispatch. For the latter, we generated 100 normally distributed realizations of real-

time load consumptions whose mean values were their look-ahead predictions (default values in

the system data) and standard deviations were 5% of their mean values. Comparisons on net

interchange quantities, look-ahead generation costs and total costs, and real-time average total costs

for all samples are recorded in Table 4.3:

Table 4.3: Comparison of JED, CTS, and GCTS for the two-area test

JED CTS GCTS

Net interchange amounts (MW) 87.0 80.3 87.0

Look-ahead generation costs ($/h) 4039.8 4109.9 4039.8

Look-ahead total costs ($/h) – 4118.0 4048.5

Average real-time total costs ($/h) 4096.2 4139.8 4115.7

From Table 4.3 we observed that GCTS achieved lower look-ahead and average real-time costs

than CTS. Specifically, GCTS had lower real-time costs in 88 out of the 100 samples. In addition,
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CTS suffered from the loop-flow problem in that branch power flows solved with the global power

flow equation and real-time dispatch levels in both areas deviated from internal real-time schedules.

In this test, average discrepancies on tie-line power flows were 18.25% for Area 1 and 16.38% for

Area 2, respectively. As a result, CTS caused unpredicted overflows for transmission lines in all

of the 100 scenarios, with 2.72 overflowed transmission lines in each scenario on average and the

average ratio of overflows as 11.27%. In GCTS, however, such problems did not exist because it

is based on the exact DC power flow model. Another takeaway of Table 4.3 is that, with sufficient

bids and relatively low prices (Δπ = $0.1/MWh), the interchange scheduled by GCTS was the

same as that in JED in this test.

We illustrate the price convergence of GCTS with different values of w in Figure 4.8 by adjusting

the uniform bidding price Δπ . No bid was cleared when the bidding price Δπ = $100/MWh.

When Δπ decreased to small enough values ($0.1/MWh in this test), generation costs of GCTS in

all scenarios were equal to those of JED. In general, the more significant the price discrepancy was,

the faster the price converged. This is consistent with our intuition that market participants could

be cleared at higher prices when there is more room for arbitrations.

Figure 4.8: Price convergence of GCTS with different bidding prices

Note that such price convergence did not happen in CTS. For the test in Table 4.3, for example, if

we set the bidding price of CTS as zero, the total generation cost would be $4109.7 per hour, which

was higher than that of JED.

4.3.2 Three area 189-bus system test

The proposed method was also tested on a three-area system as shown in Figure 4.9. The system

was composed of IEEE 14, 57, and 118-bus systems. Power flow limits on all lines were set as 100

MW. Eight interface bids were considered. For each tie-line, there were two interface bids who

traded at their terminal buses but in opposite directions. The prices and maximum quantities for all

interface bids were respectively set as $0.5/(MW-h) and 100MW.
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Figure 4.9: Configuration of the three-area power system

The results of market clearing are given in Figure 4.10, where internal parts of all areas are

represented by their network equivalences. Cleared interface bids are denoted by power injections

at boundary buses. Power flows through tie-lines are also shown, which were determined by the

DC power flow equation for the network (4.5) in Figure 4.10.

The total cost of the three-area system was $1.263×105/h, in which the cost of market participants

was $601.43/h and the rest was the generation cost. As a reference, if there is no interchange at

all, the total generation cost would be $1.394× 105/h. The reduction of generation cost largely

exceeded the cost of market participants.

Figure 4.10: Clearing of interface bids and tie-line power flows (MW)

We did similar comparisons of JED, CTS, and GCTS for this three-area test as in Table 4.4. In

CTS, interchange schedules were set in a pairwise manner, and proxy buses were always selected

as ones with the smallest indices on their sides.

Our conclusions of comparisons were similar to those in the two-area test. GCTS had lower look-

ahead costs than CTS, which was close to JED. Although its real-time costs were similar to CTS,
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Table 4.4: Comparison of JED, CTS, and GCTS for the three-area test

JED CTS GCTS

Look-ahead generation costs ($/h) 1.255×105 1.261×105 1.257×105

Look-ahead total costs ($/h) – 1.262×105 1.257×105

Average real-time total costs ($/h) 1.255×105 1.263×105 1.263×105

GCTS removed the loop-flow problem in CTS. Namely, CTS suffered from overflow problems in

92 out of the 100 scenarios with randomly generated load powers.

4.3.3 Cases with more than two areas

In this subsection, we generalize GCTS to cases with more than two areas. For each area, the

network equivalence is illustrated in Figure 4.11. Therein, internal buses are eliminated, and the

equivalent admittance matrix Y1̄1̄ and injection g̃i are still calculated by (4.3). The calculation of

Y1̄1̄ and g̃i only requires local information.

Figure 4.11: Network equivalence with more than two areas

Thereby, the equivalent model of the global power system, corresponding to the Figure 4.5, can be

obtained by eliminating all internal buses. An example of a three-area system can be seen in Figure

4.10. In the clearing of GCTS with n areas, the constraint (4.6g) becomes⎡
⎢⎢⎢⎣

Ỹ1̄1̄ Y1̄2̄ . . . Y1̄n̄
Y2̄1̄ Ỹ2̄2̄ . . . Y2̄n̄
. . . . . . . . . . . .

Yn̄1̄ Yn̄2̄ . . . Ỹn̄n̄

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

θ̄1

θ̄2

. . .

θ̄n

⎤
⎥⎥⎥⎦=
⎡
⎢⎢⎢⎣

M1

M2

. . .

Mn

⎤
⎥⎥⎥⎦s. (4.13)
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The clearing problem can be solved in a distributed fashion via existing solutions like [59], which 
is capable to solve problems with more than two areas.

The real-time problem of Area i and the settlement process are similar to those of the two-area 
cases discussed above.
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5. Conclusion

The aim of this work is to unify major approaches to interchange scheduling: JED that achieves 

the ultimate economic efficiency and CTS that is the state-of-the-art market solution. GCTS 

partially meets this goal by maintaining the same market structure as CTS while asymptomatically 

achieving the economic efficiency of JED under given assumptions. GCTS also ensures the 

revenue adequacy of each system operator. 

Several important issues not considered here require further investigation. Among these are the 

impacts of strategic behavior of market participants, uncertainties in real-time operations, and the 

asynchronous mode of interchange scheduling among more than two areas.  
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