

RTE DSE – Protection Demonstration

Final Project Report

T-59G

Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System

RTE DSE – Protection Demonstration

Final Project Report

Project Team Sakis Meliopoulos, Project Leader George Cokkinides Georgia Institute of Technology

Graduate Students Jiahao Xie Yuan Kong Georgia Institute of Technology

PSERC Publication 18-09

September 2018

For information about this project, contact:

Sakis A.P. Meliopoulos Georgia Institute of Technology School of Electrical and Computer Engineering Dept Mail Code: 0250 777 Atlantic Dr NW Atlanta, GA 30332 Phone: 404-894-2926 E-mail: sakis.m@gatech.edu

Power Systems Engineering Research Center

The Power Systems Engineering Research Center (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry and educating the next generation of power engineers. More information about PSERC can be found at the Center's website: http://www.pserc.org.

For additional information, contact:

Power Systems Engineering Research Center Arizona State University 527 Engineering Research Center Tempe, Arizona 85287-5706 Phone: 480-965-1643 Fax: 480-727-2052

Notice Concerning Copyright Material

PSERC members are given permission to copy without fee all or part of this publication for internal use if appropriate attribution is given to this document as the source material. This report is available for downloading from the PSERC website.

© 2018 Georgia Institute of Technology. All rights reserved.

Acknowledgements

This targeted PSERC research project was funded by RTE. We express our appreciation to RTE, and especially to Patrick Pancitici, Thibault Prevost, Aurelien Watare, and Christian Guibout for their support and guidance. We also express our appreciation for the support provided by RTE members and PSERC members.

Executive Summary

This report describes the application of setting-less relay on the RTE digital substation. We describe the model developed to simulate various events, and then play back these events into the setting-less relays to assess their performance. Four protection zones have been identified within the RTE digital substation. Use cases for each one of these protection zones have been developed with multiple events. The protection of each one of these protection zones has been studied under multiple events. Sample use cases of this testing is included in this report. A new methodology for correcting measurement errors from the instrumentation has been also developed and tested.

The basic idea of the setting-less protection relay has been inspired from the differential protection function which has a very important characteristic: it does not require coordination with any other protection functions. The differential protection monitors the validity of Kirchhoff's current law (KCL) within a protection zone. The setting-less protection can be considered as an extension and generalization of differential protection, because it can be viewed as monitoring the validity of all physical laws within the protection zone, i.e. KCL, KVL, thermodynamics, mechanical motion, etc. depending on the type of protection zone. The setting-less relay does not require coordination with any other protection function, a very big advantage. The setting-less relay replaces all the protection functions that are typically apply to a protection use using legacy protection systems.

Four protection zones have been identified within the RTE digital substation. The protection of these four zones has been studied extensively with numerical experiments as well as in the laboratory with hardware in the loop. In these studies we used a number of simulated test events. For the generation of the test events, a model of the RTE digital substation and the interconnected 220 kV and 90 kV system has been modeled with equivalent sources at the ends of the 220 kV and 90 kV transmission circuits. The model has been developed in WinIGS-T format (time domain). The report provides an overview of the model and the parameters of the major devices and the definition of the protection zones. The majority of the model parameters were provided by RTE. For missing parameter values, typical values were used. The model has been used to develop a large number of events for the purpose of testing the setting-less relay application on various protection zones of the RTE digital substation. A small number of these events are documented in a number of use cases which are included in this report.

For secure and reliable protection of power components such as a generator, line, transformer, etc. a new approach has emerged based on component health dynamic monitoring. The proposed method uses dynamic state estimation, based on the dynamic model of the component, which accurately reflects the nonlinear characteristics of the component as well as the loading and thermal state of the component.

The performance of any protection system is always dependent upon the quality and validity of the measurements, i.e. the input data into the relay. This has been recognized for any protective system and it is valid for the setting-less relays. The introduction of merging units offers a powerful way of correcting the measured sampled values in real time. Specifically, the model of the instrumentation channel can be used in a dynamic state estimation procedure to provide the estimated values of the primary quantities from the secondary quantities. This task can be

performed on each one of the instrumentation channels independently from any other channel, i.e. it is a distributed computation process and it does not affect the operation of the relay other than a small latency that is only a fraction of the sampling period. The process provides the best estimate of the primary sampled values. The report describes the implementation of the method and demonstrates the method on an example test system. It is shown that the method performs remarkably well even in cases of severe saturation of instrument transformers.

Project Publications:

- [1] A. P. Sakis Meliopoulos, George Cokkinides, Jiahao Xie, and Yuan Kong, "Instrumentation Error Correction within Merging Units", Proceedings of the 2018 Georgia Tech Fault and Disturbance Analysis Conference, Atlanta, Georgia, April 30-May 1, 2018.
- [2] A. P. Sakis Meliopoulos, G. J. Cokkinides, Hussain Albinali, Paul Myrda and Evangelos Farantatos, "Integrated Centralized Substation Protection", *Proceedings of the of the 51th Annual Hawaii International Conference on System Sciences*, Hawaii, HI, January 3-6, 2018.

Student Theses:

- [1] Yuan Kong. Instrumentation Error Correction and its Effects on Transmission, PhD, Georgia Institute of Technology, 2019 (expected).
- [2] Jiahao Xie. *Centralized Substation Protection*, PhD, Georgia Institute of Technology, Expected Graduation: 2019 (expected).

Table of Contents

1.	Introduction1			
	1.1	Back	ground	1
	1.2	Over	view of the Problem	1
	1.3	Repo	ort Organization	1
2.	The	Setting	g-less Protective Relay	3
	2.1	Settir	ng-less Relay Testing with Hardware in the Loop	4
	2.2	Data	Correction within Merging Units	8
3.	Sam	ple Va	lue Data Correction	9
	3.1 Method Description			9
	3.2	Exan	ple Results	13
4.	App	licatio	n to the RTE System	17
5.	Exar	nple T	est Results, RTE Protection Zone 1	22
	5.1.	Creati	ng Protection Zone Models for EBP Relays	23
		5.1.1	Creating the Network Time Domain Model	23
		5.1.2	Creating Measurement Models for Merging Units	27
		5.1.3	Exporting Measurement and Protection Zone Models	38
	5.2	Creati	ng Events and Storing in COMTRADE	40
		5.2.1	Event A: UseCase_01.A	40
		5.2.2	Event B: UseCase_01.B	45
	5.3	EBP	Results	49
		5.3.1	Event A: UseCase_01.A	49
		5.3.2	Event B: UseCase_01.B	54
6.	Exa	mple 7	Fest Results: RTE Protection Zone 04	60
	6.1	Creati	ng Protection Zone Models for EBP Relays	61
		6.1.1	Creating the Network Time Domain Model	61
		6.1.2	Creating Measurement Models for Merging Units	65
		6.1.3	Exporting Measurement and Protection Zone Models	76
	6.2	Creati	ing Events and Storing in COMTRADE	78
		6.2.1	Event A: UseCase_01.A	78
		6.2.2	Event B: UseCase_01.B	81
	6.3	EBP R	esults	83

6.3.1 Event a: UseCase_01.A	
6.3.2 Event b: UseCase_01.B	89
7. Summary, Conclusions and Future Work	94
Appendix A: RTE Model: Device List and Parameters	95
Appendix B: BLOCAUX Substation 225 kV Section	99
Appendix C: BLOCAUX Substation 90 kV Section	107
Appendix D: Cables Between 225 kV and 90 kV Section	
Appendix E: 225 kV External System	111
Appendix F: 90 kV External System	116
Appendix G: Definition of Protection Zones Under Consideration	124
Protection Zone 1	
Protection Zone 2	134
Protection Zone 3	141
Protection Zone 4	148
References	152

List of Figures

Figure 2-1: Conceptual Description of the Estimation Based Protection	3
Figure 2-2: Block Diagram of Estimation Based Relay	5
Figure 2-3 Photograph of the PSCAL (Power System Control and Automation Laboratory)	6
Figure 2-4: Example Visualizations of a Setting-less Relay Applied to a Transformer	7
Figure 2-5: Error Correction within Merging Units	8
Figure 3-1: Instrumentation Channel Subsystem – Voltage and Current Instrumentation Channel	9
Figure 3-2: Typical Current Instrumentation Channel Configuration	11
Figure 3-3: Equivalent Circuit of CT's Primary Current Estimation	11
Figure 3-4: Example System for Current Instrumentation Channel Error Correction	13
Figure 3-5: CT Secondary Current through the Burden Resistor	14
Figure 3-6: Comparison between the CT Primary Current before and after Correction	15
Figure 3-7: CT Secondary Current through the Burden Resistor	15
Figure 3-8: Comparison between the CT Primary Current before and after Correction	16
Figure 4-1: The RTE Subsystem Single Line Diagram	17
Figure 4-2: Single Line Diagram of 225 kV Section	18
Figure 4-3: Single Line Diagram of 90 kV Section	18
Figure 4-4: RTE – BLOCAUX Substation – Protection Zone 1	19
Figure 4-5: RTE – BLOCAUX Substation – Protection Zone 2	20
Figure 4-6: RTE – BLOCAUX Substation – Protection Zone 3	20
Figure 4-7: RTE – BLOCAUX Substation – Protection Zone 4	21
Figure 5-1: Single Line Diagram of Protection Zone 1	24
Figure 5-2: Parameters of the Three-Phase Three-Winding Transformer	25
Figure 5-3: Parameters of the Three-Phase Cable	26
Figure 5-4: Merging Unit Main Parameter Dialog	27
Figure 5-5: Merging Unit Instrumentation Channel List Dialog	28
Figure 5-6: Example of a Voltage Instrumentation Channel Dialog	28
Figure 5-7: Example of a Current Instrumentation Channel Dialog	29
Figure 5-8: Instrument Transformer Library Dialog	32
Figure 5-9: Example Input Specifications of a GE MU320 Merging Unit	33
Figure 5-10: Measurement List Dialog	34

Figure 5-11: Voltage Measurement Parameters Dialog	35
Figure 5-12: Current Measurement Parameters Dialog	35
Figure 5-13: Selecting Zone Power Devices and Merging Units	38
Figure 5-14: EBP Export Dialog	39
Figure 5-15: Message Window Indicating EBP File Creation Progress & File Paths	39
Figure 5-16: Network Model with Fault between Phase A and Neutral at Bus TRNS1~90	40
Figure 5-17: Time Domain Simulation Parameters Dialog	41
Figure 5-18: Voltage and Current Measurements Obtained from Merging Unit 1 in Event A	42
Figure 5-19: Voltage and Current Measurements Obtained from Merging Unit 2 in Event A	43
Figure 5-20: Voltage and Current Measurements Obtained from Merging Unit 3 in Event A	44
Figure 5-21: Network Model with Fault between Phase A and Neutral at Bus A225D2	45
Figure 5-22: Voltage and Current Measurements Obtained from Merging Unit 1 in Event B	46
Figure 5-23: Voltage and Current Measurements Obtained from Merging Unit 2 in Event B	47
Figure 5-24: Voltage and Current Measurements Obtained from Merging Unit 3 in Event B	48
Figure 5-25: Opening the EBP Main Setup Form in the WinXFM Program	49
Figure 5-26: Importing Zone 1 Device and Measurement Definition Files	50
Figure 5-27: Opening the COMTRADE Setup Dialog	51
Figure 5-28: Selecting the COMTRADE Data Files for Playback	51
Figure 5-29: Plots of Some Actual/Estimated Measurements, Residuals, Confidence Level, and Trip Decision in Event A	52
Figure 5-30: A List of Available Channels for Plotting	53
Figure 5-31: Importing Zone 1 Device and Measurement Definition Files	55
Figure 5-32: Opening the COMTRADE Setup Dialog	56
Figure 5-33: Selecting the COMTRADE data files for Playback	57
Figure 5-34: Plots of Some Actual/Estimated Measurements, Residuals, Confidence Level, and Trip Decision in Event B	58
Figure 5-35: A List of Available Channels for Plotting	59
Figure 6-1: RTE System Network Model	62
Figure 6-2: RTE Substation Single Line Diagram (top) and Protection Zone 04 (bottom)	63
Figure 6-3: Protection Zone 4 Parameters	64
Figure 6-4: Merging Unit Main Parameter Dialog	65
Figure 6-5: Merging Unit Instrumentation Channel List Dialog	66
Figure 6-6: Example of a Voltage Instrumentation Channel Dialog	66

Figure 6-7: Example of a Current Instrumentation Channel Dialog	. 67
Figure 6-8: Instrument Transformer Library Dialog	. 70
Figure 6-9: Example Input Specifications of A GE MU320 Merging Unit	. 71
Figure 6-10: Measurement List Dialog	. 72
Figure 6-11: Voltage Measurement Parameters Dialog	. 73
Figure 6-12: Current Measurement Parameters Dialog	. 73
Figure 6-13: Selecting Zone Power Devices and Merging Units	. 76
Figure 6-14: EBP Export Dialog	. 77
Figure 6-15: Message Window Indicating EBP File Creation Progress & File Paths	. 77
Figure 6-16: Network Model with Fault between Phase A and Neutral of REACTOR Bus	. 78
Figure 6-17: Time Domain Simulation Parameters Dialog.	. 79
Figure 6-18: Time Domain Simulation Output Plot for Event A	. 80
Figure 6-19: Network Model with Fault between Phase A and Neutral of Bus A225D2	. 81
Figure 6-20: Time Domain Simulation Output Plot for Event B	. 82
Figure 6-21: Opening the EBP Main Setup Form in the WinXFM Program	. 83
Figure 6-22: Importing Zone 4 Device and Measurement Definition Files	. 84
Figure 6-23: Opening the COMTRADE Setup Dialog	. 85
Figure 6-24: Selecting the COMTRADE data files for Playback	. 85
Figure 6-25: Starting the EBP Relay Using Playback Data (COMTRADE)	. 86
Figure 6-26: Plots of Measurement and Estimated Values, Confidence Level and Trip Decision during Event A	. 87
Figure 6-27: Available Data for Plotting on the Main WinXFM Window	. 88
Figure 6-28: Importing Zone 4 Device and Measurement Definition Files	. 89
Figure 6-29: Opening the COMTRADE Setup Dialog	. 90
Figure 6-30: Selecting the COMTRADE Data Files for Playback	. 91
Figure 6-31: Starting the EBP Relay Using Playback Data (COMTRADE)	. 92
Figure 6-32: Plots of Measurement and Estimated Values, Confidence Level and Trip Decision during Event B	. 93
Figure A-1: Single Line Diagram of the RTE System including the BLOCAUX Substation and Its External Links	. 98
Figure B-1: Single Line Diagram of 225 kV Section	. 99
Figure B-2: 245 kV Shunt Reactor Parameters	100
Figure B-3: 225/93/10.5 kV Transformer 641 Parameters	101

Figure B-4: 225/93/9.9 kV Transformer 642 Parameters	102
Figure B-5: 225/93/10.0 kV Transformer 643 Parameters	103
Figure B-6: 2 Winding Transformer 1 Parameters	104
Figure B-7: 2 Winding Transformer 2 Parameters	105
Figure B-8: 2 Winding Transformer 3 Parameters	106
Figure C-1: Single Line Diagram of 90 kV Section	107
Figure D-1: 90 kV cable 1 Parameters, Inside Substation	108
Figure D-2: 90 kV cable 2 Parameters, Inside Substation	109
Figure D-3: 90 kV cable 3 Parameters, Inside Substation	110
Figure E-1: Single Line Diagram of the External 225 kV System	111
Figure E-2: 225 kV Source Limeux Parameters	112
Figure E-3: 225 kV Source Argeouves Parameters	113
Figure E-4: 225 kV Trasmission Line From S-Limeux to Limeux Parameters	114
Figure E-5: 225 kV Trasmission Line From Argeouves to S-Argevs Parameters	115
Figure F-1: Single Line Diagram of the External 90 kV System	116
Figure F-2: 90 kV Transmission Line From Fouilloy1 to L-Fouillo Parameters	117
Figure F-3: 90 kV Transmission Line From L-Croixra to Croixraul Parameters	118
Figure F-4: 90 kV Transmission Line From L-Bourbel to Bourbel Parameters	119
Figure F-5: 90 kV Transmission Line From L-Aumale1 to Aumale1 Parameters	120
Figure F-6: 90 kV Transmission Line From Alleux~F2 to L-Allx-F2 Parameters	121
Figure F-7: 90 kV Transmission Line From Alleux1 to L-Alleux1 Parameters	122
Figure F-8: 90 kV Transmission Line From L-NFCHAUM to NFCH~AUM2 Parameters	123
Figure G-1: Protection Zone 1	125
Figure G-2: 225 kV / 93 kV / 10.5 kV Transformer 641 Parameters	126
Figure G-3: 90 kV Cable 1 Parameters	127
Figure G-4: Merging Unit 1 (Captures the Measurements of 225 kV/93 kV /10.5 kV Transformer 641)	128
Figure G-5: Instrumentation Channels of Merging Unit 1	129
Figure G-6: Measurement Channels of Merging Unit 1	129
Figure G-7: Merging Unit 2 (Captures the Measurements of 90 kV Cable 1)	130
Figure G-8: Instrumentation Channels of Merging Unit 2	131
Figure G-9: Measurement Channels of Merging Unit 2	131
Figure G-10: Merging Unit 8 (captures the voltage measurements of bus B1B2~225 kV)	132

Figure G-11: Instrumentation Channels of Merging Unit 8 133
Figure G-12: Measurement Channels of Merging Unit 8 133
Figure G-13: Protection Zone 2 134
Figure G-14: 225 kV / 93 kV Transformer 642 Parameters 135
Figure G-15: 90 kV Cable 2 Parameters 136
Figure G-16: Merging Unit 3 (Captures the Measurements of 225 kV/93 kV Transformer 642)
Figure G-17: Instrumentation Channels of Merging Unit 3 138
Figure G-18: Measurement Channels of Merging Unit 3138
Figure G-19: Merging Unit 4 (Captures the Measurements of 90 kV Cable 2) 139
Figure G-20: Instrumentation Channels of Merging Unit 4 140
Figure G-21: Measurement Channels of Merging Unit 4140
Figure G-22: Protection Zone 3 141
Figure G-23: 225 kV / 93 kV Transformer 643 Parameters 142
Figure G-24: 90 kV Cable 3 Parameters143
Figure G-25: Merging Unit 5 (Capture the Measurements of 225 kV/93 kV Transformer 643)
Figure G-26: Instrumentation Channels of Merging Unit 5
Figure G-27: Measurement Channels of Merging Unit 5
Figure G-28: Merging Unit 6 (Captures the Measurements of 90 kV Cable 3) 146
Figure G-29: Instrumentation Channels of Merging Unit 6 147
Figure G-30: Measurement Channels of Merging Unit 6 147
Figure G-31: Protection Zone 4 148
Figure G-32: 245 kV Shunt Reactor Parameters 149
Figure G-33: Merging Unit 7 (Captures the Measurements of 245 kV Shunt Reactor) 150
Figure G-34: Instrumentation Channels of Merging Unit 7 151
Figure G-35: Measurement Channels of Merging Unit 7 151

List of Tables

Table 5-1: Instrumentation Channel Parameters – User Entry Fields	30
Table 5-2: Measurement Parameters – User Entry Fields	36
Table 5-3: Instrumentation Channels of Merging Units in Protection Zone 1	37
Table 6-1: Instrumentation Channel Parameters – User Entry Fields	68
Table 6-2: Measurement Parameters – User Entry Fields	74
Table A-1: Tabulation of Major Devices Included in the Model	95

1. Introduction

1.1 Background

Georgia Tech and EPRI, over the last few years, they have been developing the Dynamic State Estimation based protection method (a.k.a. setting-less protection). This technology has been demonstrated in the laboratory and also a demonstration project with NYPA under NYSERDA sponsorship is in progress. The objective of the proposed project is to demonstrate the technology on the digital substation that RTE is developing. A DSE based relay has been developed for the protection of selected protection zones of the RTE's digital substation and factory tested at the Georgia Tech laboratory. The plan is to install this relay to an RTE substation. As of the end of this project, this installation has not been completed due to schedules beyond the control of the investigators. The plan is to install the relay in the field when the conditions will permit in the future.

This report describes the application of setting-less relay on the RTE digital substation. The report describes the model developed to simulate various events, and then play back these events into the setting-less relays to assess their performance. Four protection zones have been identified within the RTE digital substation. Use cases for each one of these protection zones have been developed with multiple events. The protection of each one of these protection zones has been studied under multiple events. Sample use cases of this testing are included in this report.

1.2 Overview of the Problem

For the generation of the test events, a model of the RTE digital substation and the interconnected 220 kV and 90 kV system has been modeled with equivalent sources at the ends of the 220 kV and 90 kV transmission circuits. The model has been developed in WinIGS-T format (time domain). The report provides an overview of the model and the parameters of the major devices and the definition of the protection zones. The majority of the model parameters were provided by RTE. For missing parameter values, typical values were used. The model has been used to develop a large number of events for the purpose of testing the setting-less relay application on various protection zones of the RTE digital substation. A small number of these events are documented in a number of use cases which are included in this report.

1.3 Report Organization

The report is organized as follows:

Section 2 provides a brief description of setting-less protection relay.

Section 3 introduces the sample data correction method for the instrumentation channel.

Section 4 together with Appendices A, B, C, D, E and F provides the parameters of the major devices included in the model. The EBP setting-up is also included in Section 4.

Section 5 and section 6 present a number of events for protection zones. The events include various fault and non-fault conditions and they are used for laboratory evaluation of the setting-less relays.

Appendix G provides detailed description of protection zones of the BLOCAUX substation to be considered for implementation of the setting-less relay. It does not include all the protection zones of the substation.

2. The Setting-less Protective Relay

For secure and reliable protection of power components such as a generator, line, transformer, etc. a new approach has emerged based on component health dynamic monitoring. The proposed method uses dynamic state estimation, based on the dynamic model of the component, which accurately reflects the nonlinear characteristics of the component as well as the loading and thermal state of the component.

The basic idea of the setting-less protection relay has been inspired from the differential protection function which has a very important characteristic: it does not require coordination with any other protection functions. The differential protection monitors the validity of Kirchhoff's current law (KCL) within a protection zone. The setting-less protection can be considered as an extension and generalization of differential protection, because it can be viewed as monitoring the validity of all physical laws within the protection zone, i.e. KCL, KVL, thermodynamics, mechanical motion, etc. depending on the type of protection zone. The setting-less relay does not require coordination with any other protection function, as it is illustrated in Figure 2-1.

Figure 2-1: Conceptual Description of the Estimation Based Protection

In differential protection the electric currents at all terminals of a protection zone are measured and their weighted sum must be equal to zero (generalized Kirchhoff's current law). As long as the sum is zero or near zero no action is taking. Note that there are possible internal faults in a protection zone that will result in satisfaction of Kirchhoff's current law for the currents at the terminals of the protection zone. In this case the differential protection will not detect these faults, i.e. differential protection fails in this case. In DSE based protection, all existing measurements in the protection zone are utilized. Specifically, currents and voltages at the terminals of the protection zone, as well as voltages, currents inside the protection zone (as in

capacitor protection) or speed, temperature and torque in case of rotating machinery or any other internal measurements. Then, the dynamic model of the device (consisting of physical laws such as KCL, KVL, motion laws, thermodynamic laws, etc.) is used to provide the inter-relationships among all measured quantities. When there is no fault within the protection zone, the measurements should satisfy the dynamic model of the protection zone. A dynamic state estimation procedure provides a systematic and mathematically rigorous way to verify that the measurements satisfy the mathematical model. When an internal fault occurs, the measurements do not fit the mathematical model of the protection zone and a protection action is triggered. The resulting method is a Dynamic State Estimation Based Protective relay (EBP relay). When an internal fault occurs, even high impedance faults or faults along a coil, etc., the dynamic state estimation reliably detects the abnormality and a trip signal can be issued. Three distinct dynamic state estimation algorithms (Extended Kalman Filter, Constraint Optimization and Unconstraint Optimization) have been developed and tested. Each algorithm requires the mathematical model of the protection zone, including instrumentation and the measurements. This basic approach has been extensively tested in the laboratory for several protection zones and presented in technical papers. It was named setting-less protection because of the simplicity of use and its lack of coordination issues with other relays, in the same way as differential protection does not require coordination.

In addition, setting-less relays have been extensively tested in the laboratory with hardware in the loop.

2.1 Setting-less Relay Testing with Hardware in the Loop

Prototype setting-less protective relays have been developed in the laboratory, connected to a system represented with a simulator, digital to analog conversion, amplifiers and data acquisition systems (merging units). This setup enables testing with hardware in the loop. The setup consists of (a) merging units to perform data acquisition, (b) a process bus, and (c) a personal computer attached to the process bus and performing the protection functions (the personal computer "runs" the setting-less protection). The setting-less protective relay block diagram, as implemented in the laboratory is illustrated in Figure 2-2.

Figure 2-2: Block Diagram of Estimation Based Relay

The physical system under protection (not shown in the figure) is simulated in the laboratory via a computer controlled system of digital to analog converters, amplifiers (we use Omicron amplifiers) that amplify the signal to relay instrumentation levels and then the signals are injected into the merging units, shown in Figure 2-2. From that point on, the setup uses actual equipment. The merging units are GE Hardfiber, Siemens or Reason (we can include more manufacturers of merging units as they become available). Merging units are connected to a process bus. A personal computer is connected to the process bus and retrieves the streaming data as they are reported by the merging units. The personal computer performs the setting-less protection functions and optionally displays the results or selective visualizations. The physical construction of the laboratory is shown in the photograph below.

Figure 2-3 Photograph of the PSCAL (Power System Control and Automation Laboratory)

The laboratory experiments indicate that the analytics of the setting-less protection function can be performed within the time period between two successive sets of streaming data, i.e. the setting-less protection can operate in real time as any other numerical relay by simply using a standard high end personal computer. In the tests we used sampling rates of 80 samples per cycle (IEC standard). In this case the available time between two successive executions of the dynamic state estimator is 416 microseconds. This is plenty of time to perform the computations for most protection zones. For complex protection zones, such as unit protection of a generator and transformer, higher power computers may be needed or the algorithms must be parallelized and be running on multiple core computers.

The setting-less relay has been also named the EBP relay, standing for Estimation Based Protection.

Many visualizations have been developed which provide real time view of the operation of the estimation based relay. Figure 2-4 shows two example visualizations from an EBP applied to a three phase delta-wye connected transformer. Many other visualizations are possible and are typically customized to specific protection zones.

Figure 2-4: Example Visualizations of a Setting-less Relay Applied to a Transformer

The development of the EBP relay faced several challenges. A partial list of the challenges is given below. These challenges can be overcome with present technology. The project has demonstrated that these challenges are met.

- 1. Ability to perform the dynamic state estimation in real time
- 2. Initialization issues
- 3. Communications in case of a geographically extended component (i.e., lines)
- 4. New modeling approaches for components connects well with the topic of modeling
- 5. Requirement for GPS synchronized measurements in case of multiple independent data acquisition systems.

The modeling issue is fundamental in this approach. For success the model must be dynamic and high fidelity so that the component dynamic state estimator will reliably determine the operating status (health) of the component. For example, consider a transformer during energization. The transformer will experience high in-rush current that represent a tolerable operating condition and therefore no relay action should occur. The component state estimator should be able to "track" the in-rush current and determine that they represent a tolerable operating condition. This requires a transformer model that accurately models saturation and in-rush current in the transformer. We foresee the possibility that a high-fidelity model used for protective relaying can be used as the main depository of the model which can provide the appropriate model for other applications. For example, for EMS applications, a positive sequence model can be computed from the high-fidelity model and send to the EMS data base. The advantage of this approach will be that the EMS model will come from a field validated model (the utilization of the model by the relay in real time provide the validation of the model). Since protection is ubiquitous, it makes economic sense to use relays for distributed model data base that provides the capability of perpetual model validation.

For this project, dynamic high fidelity models were developed for the four protection zones of the RTE substation. These protection zones include the following components: (a) three-phase 90 kV cables, (b) three winding transformers, and (c) three phase reactors. Dynamic high fidelity models of these components have been developed.

2.2 Data Correction within Merging Units

The technology used in the implementation of the setting-less relays provides another possibility. Specifically, merging units sample voltages and currents and transmit the sample values to the process bus and upstream applications. It is possible to provide intelligence to the merging units to make error correction on these measurements. Specifically, the instrumentation channel model is known. The instrumentation channel model together with the measurement at the burden of the channel at the merging unit can be used in a dynamic stat estimation procedure to provide the best estimate of the primary quantity. Note this process can be applied to any instrumentation channel independently of how many channels exist. It is also performed at the merging unit level so that the merging unit will stream the estimated values of the primary quantities. The implementation of this approach is shown in Figure 2-5. The details of the method and results are presented in section 3.

Figure 2-5: Error Correction within Merging Units

We have demonstrated the feasibility of the method and the results are very good. The algorithm practically removes the errors from the non-ideal instrumentation components (instrument transformers, cables, burdens, etc.) and the estimated primary quantities are practically identical to the actual primary quantities. The study has been performed with a series of computational experiments. It is expected that in the future these algorithms will be impeded in merging units. This feature will have a very favorable impact on the performance of the setting-less relays as the quality of the data will drastically improve.

3. Sample Value Data Correction

The performance of any protection system is always dependent upon the quality and validity of the measurements, i.e. the input data into the relay. This has been recognized for any protective system. The introduction of merging units offers a powerful way of correcting the measured sampled values in real time. Specifically, the model of the instrumentation channel can be used in a dynamic state estimation procedure to provide the estimated values of the primary quantities from the secondary quantities. The dynamic state estimation has the inherent capability to correct the errors introduced by the instrumentation channel. While this approach works, it generates a very large dynamic model for the setting-less relay application. The dynamic model consists of the protection zone and all the instrumentation channel models. The dimensionality of this model is very large and impacts the ability of the setting-less relay to perform the computations within the time step between sampled values. One way to avoid this problem is to distribute the computations. Specifically, the instrumentation channel modeling and error correction can be performed for each individual instrumentation channel separately. This process can provide the best estimate of the primary sampled values. This approach is presented here.

3.1 Method Description

The instrumentation subsystem is to provide the proper interface between the high voltage electric power system and the relays that operate at relatively low voltage. In this report, we focus on instrumentation subsystems that are based on Merging Units (MU). In this case, the instrumentation subsystem consists of instrument transformers that convert the high voltage and/or high current of the power system into instrumentation level voltages and currents that can be fed into the Merging Unit. Standard voltages for Merging Units are 69 V and 115 V and standard currents are 5A and 1A.

Merging Unit

As shown in Figure 3-1, in general, the instrumentation subsystem consists of instrument transformers (voltage transformers and current transformers), copper wires and the merging unit/relay input circuit. The analog to digital conversion stage is contained in the Merging Unit. Ideally, these voltages and currents should be scaled replicas of the high voltages and currents of the electric power system. Practically, however, the instrumentation channels introduce errors that can distort the waveforms of the high voltage and currents. In some cases, these errors will even cause the mal-operation of the relay. Therefore, to make the protection scheme reliable, it is essential to correct the errors introduced by the instrumentation channels. We define instrumentation error as follows:

Current Instrumentation Channels:

$$\varepsilon = \frac{\left| k \cdot i_{S}(t) - i_{P}(t) \right|}{I_{range}}$$

Where :

 $i_s(t)$ is the secondary instantaneous current value

 $i_p(t)$ is the primary instantaneous current value

 I_{range} is the CT's primary current range

Voltage Instrumentation channels:

$$\varepsilon = \frac{\left| k \cdot v_{S}(t) - v_{P}(t) \right|}{V_{range}}$$

Where:

 $v_p(t)$ is the primary instantaneous voltage value

 $v_s(t)$ is the secondary instantaneous voltage value

 V_{range} is the PT's primary voltage range

There are four parts in the instrumentation channel introducing errors to the primary voltage and current:

Instrument Transformers Copper Wires Merging unit/relay input circuit Analog to Digital Converter

In the following analysis, we will focus on the error introduced by the instrument transformers, copper wires and the merging unit/relay input circuit in the following analysis. As for error introduced by a N bit Analog to Digital Converter (ADC), which is called the "Quadratuer Error", it is typically very small for today's IEDs and can be calculated as:

Quadratuer Error =
$$0.5 * \frac{V_{\text{max}}}{2^{N}}$$

Where Vmax is the scale voltage for the ADC.

A typical Current Instrumentation Channel configuration is shown in Figure 3-2. It has three components: the current transformer, the instrumentation cable and the burden resistor. The problem is stated as follows: a measurement is taken of the voltage or current through the burden to estimate the electric current in the primary of the CT. As shown in Figure 3-2, the measurement we have is the voltage across the burden resistor, which is "Vout". The current we are going to compute is the current transformer primary current, which is i_1 . Then, the dynamic state estimation method will be used to compute i_1 .

Figure 3-2: Typical Current Instrumentation Channel Configuration

Figure 3-3: Equivalent Circuit of CT's Primary Current Estimation

The equivalent circuit of CT's primary current estimation is shown in Figure 3-3. To estimate the CT's primary current, the measurement model will be constructed. The measurement model has 19 states, which is:

$$X = \begin{bmatrix} v_1(t) & v_2(t) & v_3(t) & v_4(t) \\ i_p(t) & i_{L_1}(t) & i_c(t) & e_c(t) & i_m(t) & \lambda(t) \\ i_{L_2}(t) & i_{L_3}(t) & v_{s2}(t) & v_{s3}(t) \\ y_1(t) & y_2(t) & y_3(t) & y_4(t) & y_5(t) \end{bmatrix}^T$$

In the measurement model, there are 24 measurements, including 1 actual measurement, 8 derived measurements, 1 pseudo measurement, and 14 virtual measurements.

One approach to achieve the robustness of setting-less protection is to get the estimation of primary current (voltage) from the secondary current (voltage). Then, this estimated current and voltage will be used in the setting-less protection scheme. The weighted least square (WLS) method is used for the estimation. WLS method provides a solution that minimizes the sum of squares of the residuals for each single measurement equation. For the nonlinear measurement model, a local optimal solution can usually be reached using the Newton's method.

Taking the instrument transformer as an example, any measurement (actual, derived, pseudo or virtual measurement) can be expressed in terms of the transformers states and the transformer dynamic model in AQCF form:

$$\mathbf{z}(t) = \mathbf{h}_{t}(\mathbf{x}(t), \mathbf{x}(t_{m})) = Y_{t,x} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{x}(t_{m}) \end{bmatrix} + \begin{cases} \vdots \\ \mathbf{x}(t_{m}) \end{bmatrix}^{T} F_{t,x}^{i} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{x}(t_{m}) \end{bmatrix}^{T} + N_{t,x} \mathbf{x}(t-h) + M_{t} \mathbf{i}(t-h) + K_{t} + \eta_{t} \\ \vdots \end{cases}$$
$$\mathbf{z}(t_{m}) = \mathbf{h}_{im}(\mathbf{x}(t), \mathbf{x}(t_{m})) = Y_{im,x} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{x}(t_{m}) \end{bmatrix} + \begin{cases} \vdots \\ \mathbf{x}(t) \\ \mathbf{x}(t_{m}) \end{bmatrix}^{T} F_{im,x}^{i} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{x}(t_{m}) \end{bmatrix} + N_{im,x} \mathbf{x}(t-h) + M_{im} \mathbf{i}(t-h) + K_{im} + \eta_{im} \\ \vdots \end{cases}$$

Where z is the measurement (actual, derived, pseudo or virtual measurement), x is the state variables.

Mathematically, the WLS method can be written in the following way:

Min
$$J = \sum_{i=1}^{n} \left(\frac{h_i(x) - z_i}{\delta_i} \right)^2 = \sum_{i=1}^{n} s_i^2 = \eta^T W \eta$$

Where $\eta = h(x) - z$, $s_i = \frac{\eta_i}{\delta_i}$ and $W = diag(\dots, \frac{1}{\delta_i^2}, \dots)$ and δ_i is the standard deviation of the

meter by which the corresponding measurement z is measured.

The best estimate of the system is obtained from the Gauss-Newton iterative algorithm:

$$\hat{x}^{\nu+1} = \hat{x}^{\nu} - (H^T W H)^{-1} H^T W (h(\hat{x}^{\nu}) - z)$$

Where \hat{x}^{ν} refers to the best estimate of the state vector x, and H is the Jacobian matrix of the measurement equations: $H = \frac{\partial h(x)}{\partial x}$

The goodness of fit is defined as the probability that the distribution of the measurement errors are within the expected bounds. Consider the normalized residuals computed at the solution \hat{x} , we have postulated that the normalized residuals are Gaussian random variables with zero mean and standard deviation 1.

Now the goodness of fit is defined as the probability that the distribution of the measurement errors is within the expected bounds. This probability is computed as follows. Assume that the state estimate has been computed with the least square approach. Consider the normalized residuals computed at the solution \hat{x} . We have postulated that the normalized residuals s_i are Gaussian random variables with zero mean and standard deviation 1. Now consider the following variable

$$\chi^2 = \sum_{i=1}^m s_i^2$$

The probability distribution function of a general chi-square distributed random variable

$$\Pr(\zeta, v) = \Pr\left[x^2 \le \zeta\right], \text{ with } v \text{ degrees of freedom, where } \zeta = \sum_{i=1}^m s_i^2(\hat{x}) = \sum_{i=1}^m \left(\frac{h_i(\hat{x}) - b_i}{\sigma_i}\right)^2.$$

We will call this probability the confidence level of the state estimate. The confidence level is computed as follows. The confidence level is computed as follows. Consider the least squares solution \hat{x} , this solution minimizes the sum of the squares of s_i , i.e. any other state vector x will result in a larger value of χ^2 . The probability of above event, $x^2 \ge \zeta$ is given by the chi-square distribution

$$\Pr\left[x^2 \ge \zeta\right] = 1 - \Pr\left[x^2 \le \zeta\right] - 1 - \Pr(\zeta, v)$$

3.2 Example Results

An example test system is utilized to model instrumentation channels and merging units to create simulated data of primary currents and measured values at the merging units. Subsequently, the measured values at the merging unit are used in the dynamic state estimation to provide the best estimate of primary current. Since the primary current is known form the simulation, the absolute error of the method can be computed, thus providing and excellent measure of performance of the proposed method.

The example test system is presented in Figure 3-4. It comprises a 115-kV transmission system. A current transformer measures phase A current of the line that is located on the left hand side of the figure. The CT ratio is 800:5A, and the error class for the CT is 10C100. The instrumentation cable is #10 cable with the length 96 meters. The burden resistance is 0.1 Ω .

Figure 3-4: Example System for Current Instrumentation Channel Error Correction

Event 1: Low CT saturation: A phase A to ground fault at bus MID (middle of Figure 3-4) was simulated. This fault yields fault current that causes low CT saturation of the instrumentation channel. The merging unit measures the CT secondary current through the burden resistor, as shown in Figure 3-5. It can be seen in Figure 3-5 that the CT secondary current is moderately distorted.

Figure 3-5: CT Secondary Current through the Burden Resistor

Application of the current instrumentation channel error correction algorithm provides the best estimate of the CT primary current. Figure 3-6, top set of traces, provides a graph of the estimated primary current, the actual primary current and the primary current computed by simply multiplying the measurement secondary current time the transformation ratio. The last quantity is referred to as "Ratio*CT Secondary Current". Note a sizable difference between the last quantity and the actual primary current. On the other hand the estimated primary current tracks very well the actual primary current. The bottom set of traces of Figure 3-6 provides the error between the uncorrected primary current and the actual primary current as well as the error between the estimated and actual primary current. Note that without error correction the error reaches 50% while with error correction the error is below 1%.

Figure 3-6: Comparison between the CT Primary Current before and after Correction

Event 2: Deep CT Saturation: A phase A to phase C fault at bus MID (middle of Figure 3-4) was simulated. This fault yields fault current that causes high CT saturation of the instrumentation channel. The merging unit measures the CT secondary current through the burden resistor, as shown in Figure 3-7. It can be seen in Figure 3-7 that the CT secondary current is highly distorted.

Figure 3-7: CT Secondary Current through the Burden Resistor

Application of the current instrumentation channel error correction algorithm provides the best estimate of the CT primary current. Figure 3-8, top set of traces, provides a graph of the estimated primary current, the actual primary current and the primary current computed by simply multiplying the measurement secondary current time the transformation ratio. The last quantity is referred to as "Ratio*CT Secondary Current". Note a large difference between the last quantity and the actual primary current. On the other hand the estimated primary current tracks very well the actual primary current. The bottom set of traces of Figure 3-8 provides the error between the uncorrected primary current and the actual primary current as well as the error between the estimated and actual primary current. Note that without error correction the error exceeds 200% while with error correction the error is below 2.5%.

Figure 3-8: Comparison between the CT Primary Current before and after Correction

This section presented an on-line current instrumentation channel error correction method using dynamic state estimation. The method can be integrated with the merging units so that they directly provide corrected values of the primary quantities. The method has been demonstrated on current instrumentation channels. It can reliably reproduce the primary current under various saturation conditions of the CT. The computation of the method can be performed within a fraction of one sampling interval of merging units. This additional latency does not cause any problems in the streaming of the data from the merging units. The method can be applied equally well on voltage instrumentation channels.

4. Application to the RTE System

This section describes the relay setup and laboratory tests with hardware in the loop for the eventual installation of the DSE based relays (aka setting-less relays) in an RTE substation.

In order to prepare for the installation of the DSE-protection method to the RTE system, the RTE system has been modeled in the software WinIGS for the purpose of simulating a variety of faults and examining the performance of the relay with hardware in the loop. A single line diagram of the modeled system is given in Figures 4-1, 4-2 and 4-3.

Figure 4-1 shows the single line diagram of the modeled power system which includes the BLOCAUX substation and its external links to a 225 kV and 90 kV system. Specifically the BLOCAUX substation is connected to the power grid which is represented with equivalent sources at the next substations. There are two 225 kV circuits and several 90 kV circuits.

Figure 4-1: The RTE Subsystem Single Line Diagram

The substation BLOCAUX consists of the 225 kV section and the 90kV section, which are interconnected via transformers and short cables inside the substation. The 225 kV and 90 kV bus configurations of the substation are shown in Figure 4-2 and Figure 4-3, respectively.

Figure 4-2: Single Line Diagram of 225 kV Section

Figure 4-3: Single Line Diagram of 90 kV Section

The BLOCAUX substation has many protection zones. For the purpose of this project four protection zones have been selected for laboratory testing and eventual installation in the substation. In other words, these zones are targeted for application of the setting-less protective relay.

Figure 4-4: RTE – BLOCAUX Substation – Protection Zone 1

Figure 4-5: RTE – BLOCAUX Substation – Protection Zone 2

Figure 4-6: RTE – BLOCAUX Substation – Protection Zone 3

Figure 4-7: RTE - BLOCAUX Substation - Protection Zone 4

A detailed description of the four protection zones is provided in Appendix G. The detailed description of each protection zone includes (a) The physical system to be protected. The protection zone is connected to the rest of the system with interrupting devices (breakers), (b) the merging units with the data acquisition system (instrumentation channels) that perform measurements; and the definition of the output measurements by the merging units.

In the next section we present the overall process for setting up and installing the EBP relay for each one of the protection zones. We also provide example test results with several test events. We refer to these descriptions and results as use cases. Note that protection zones 1, 2 and 3 comprise a three-phase three-winding transformer and a three-phase cable. Since protection zones 1, 2 and 3 are similar, we present a use case for protection zone 1 and a use case for protection zone 4.

5. Example Test Results, RTE Protection Zone 1

This section describes a use case for preparing and running the setting-less relay for the specific protection zone 1 of the RTE substation BLOCX. Protection Zone 1 consists of a **three-phase three-winding transformer XFM641** (225 kV/90 kV/10.5 kV), a **90-kV cable 1**, four breakers, and two switches.

First, the protection zone model is developed in the program WinIGS-T. Once the protection zone model has been defined, it is exported into two files that are readable by the Estimation **B**ased **P**rotection (*EBP*) program. The first file contains the model of the protection zone power components. Note that a protection zone may include one or more components, for example protection zone 1 contains a transformer, a cable and breakers. Each protection zone component model is represented in its **SCPAQCF** format (State, Control, and Parameter Algebraic Quadratic Companion Form). The second file contains the definition of the measurement, type of measurements definition provides the IED, Merging unit providing the measurement, type of measurement, and where on the protection zone the measurement was taken. The measurement definition is key-word oriented.

A number of events have been simulated with the program WinIGS-T, using the RTE BLOCAUX substation model. The results of the simulation provided by the merging units of the Protection Zone 1 are stored in COMTRADE format. These files are used for playback through a series of conversions and amplifiers into merging units connected to the EBP relay in the laboratory.

The use case demonstrates the EBP setup and testing procedure consisting of the following steps:

- Read model and measurement files
- Read event data (COMTRADE files)
- Run the setting-less relay.

This report includes several simulated events as well as the EBP results.
5.1. Creating Protection Zone Models for EBP Relays

WinIGS-T includes a tool which automatically generates the model of the user selected protection zone in the **SCPAQCF** syntax. The protection zone can be a single component protection zone or it may comprise several components and/or breakers. The estimation based protective relay (EBP, a.k.a. setting-less relay) requires the model of the protection zone in SCPAQCF standard. The user should select the components that constitute the protection zone and which must be exported in the **SCPAQCF** syntax into a file. In addition, the user must specify the merging units providing data to the EBP relay in order to generate a second file describing the measurement parameters. These two files are read by the WinXFM-EBP program that executes the estimation based protective relay algorithm.

5.1.1 Creating the Network Time Domain Model

The procedure to generate the EBP model file begins by building a system model in WinIGS-T. The WinIGS-T model could include the entire or part of the large system (for simulation studies and for generating events) and must also include the models of the protection zone under study. Specifically:

- The power devices comprising the EBP protection zone.
- The instrumentation channels available to the EBP relay via merging units.
- The breakers/switches that enable the protection of the zone.

The WinIGS-T model for the RTE system, including the necessary merging unit information is provided along with this document. The single line diagram of the interested protection zone (i.e., Protection Zone 1) is illustrated in Figure 5-1. Protection Zone 1 contains a three-phase three-winding transformer, a cable, four breakers, and two switches. The diagram also includes three Merging Units that capture the voltages and currents from the transformer and the cable.

Figure 5-1: Single Line Diagram of Protection Zone 1

The parameter dialog of the three-phase three-winding transformer and the cable are illustrated in Figure 5-2 and Figure 5-3, respectively. This dialog can be accessed via left button double clicking on the device icon.

Figure 5-2: Parameters of the Three-Phase Three-Winding Transformer

Figure 5-3: Parameters of the Three-Phase Cable

5.1.2 Creating Measurement Models for Merging Units

The instrumentation channel and measurement parameters to be used by the EBP relay for the Protection Zone 1 are modeled in the Merging Unit (see MU icon in Figure 5-1). In this example, three merging units are set up to monitor the phase currents and voltages in the protection zone. The total number of measurements obtained from merging units is 24 at time t.

The merging unit model parameters and instrumentation channel list can be edited by clicking on the merging unit icon. This action will bring the user interface illustrated in Figure 5-4. Click on the Instrumentation button to open the instrumentation channel list dialog, illustrated in Figure 5-5.

Double-click on each list table entry to inspect the instrumentation channel parameters. Figures 5-6 and 5-7 illustrate examples of a voltage and a current channel, respectively. Note that a WinIGS-T instrumentation channel model includes models of the instrument transformer, instrumentation cable, burdens, and data acquisition device.

A short description of the instrumentation channel parameters is presented in Table 5-1.

Merging U	Init ASDU		Cancel	Apply	OK
Substation	none IU1	-		Active 1.00 F	ont Size
Manufacturer	Manufacturer MU320_Reason	Instrun Measu	rements	Non-Syncl Show Link	hronized s
Network Adaptor				Field Param	eters Neasurements *
MAC Address	00:00:00:00:00:00 N/A	Auto C	onfigure	Simulation	Parameters
Data Set ID	N/A	Status Svnc	Receiving None	 Update CC Create SD 	MTRADE File C File
* Compute Measureme Program Win1GS	ents form From Field Instrumentat -T - Form IGS_M015_	tion Data		-	

Figure 5-4: Merging Unit Main Parameter Dialog

	Instrumentation Channels								
	Name	Туре	StdDev	Scale	Value	Bus	Phase	Pwr Dev	
1	V_VT1_AN	V-Time	0.010000	360000.000		TRNS1~225	AN	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
2	V_VT1_BN	V-Time	0.010000	360000.000		TRNS1~225	BN	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
3	V_VT1_CN	V-Time	0.010000	360000.000		TRNS1~225	CN	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1-
4	C CT1 A	I-Time	0.010000	3000.000		TRNS1~225	Α	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
5	C CT1 B	I-Time	0.010000	3000.000		TRNS1~225	В	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
6	C CT1 C	I-Time	0.010000	3000.000		TRNS1~225	С	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1-
7	C CT3 A	I-Time	0.010000	500.000		TRNS1~T	А	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
8	C CT3 B	I-Time	0.010000	500.000		TRNS1~T	В	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
9	C CT3 C	I-Time	0.010000	500.000		TRNS1~T	С	3 Winding Transformer 641 (Transforme	r at TRNS1~225 TRNS1
•	11040	νp]	New		Delet	`		Guileon
	Move D	own		Edit					Accept
	Program WinIGS-T - Form IGS_ICHAN_LIST								

Figure 5-5: Merging Unit Instrumentation Channel List Dialog

Figure 5-6: Example of a Voltage Instrumentation Channel Dialog

Figure 5-7: Example of a Current Instrumentation Channel Dialog

Parameter	Description
Data Type	Specifies the type of the measured quantity. Valid options for merging units are Voltage Time Domain Waveform and Current Time Domain Waveform.
Bus Name	The bus name where the measurement is taken
Power Device	Identifies the power device into which the current is measured (not used for voltage measurements)
Phase	The phase of the measured quantity (A, B, C, N, etc.)
Current Direction	The direction of current flow which is considered positive. For example, checking into device indicates that the positive current flow is into the power device terminal (See also Power Device parameter above)
Standard Deviation	Quantifies the expected error of the instrumentation channel in per unit of the maximum value that the channel can measure (See also channel scale parameter).
Meter Scale	The maximum peak value that the channel can measure defined at the instrument transformer primary side. Note that this value can be directly entered by the user, or automatically computed from the instrument transformer and data acquisition device characteristics. In order to automatically compute the, click on the Update button located below the Meter Scale field.
Instrument Transformer Code Name	An identifier of the instrument transformer associated with this channel. Note that WinIGS uses this identifier to generate the channel name. For example, the phase A voltage channel is automatically named V_VT1_AN, if the instrument transformer name is set to VT1.
Instrument Transformer Type and Tap	Selects instrument transformer parameters from a data library. The library includes parameters needed to create instrument channel models such as turns ratio, frequency response, etc. To select an instrument transformer model, click on the type or tap field to open the instrument transformer data library dialog (See also Figure 5-8)
L-L Nominal Primary Voltage	The line to line voltage at the instrument transformer primary side.
Instrumentation Cable Length	The length of the instrumentation cable connecting the instrument transformer secondary with the data acquisition device.
Cable Type	The instrumentation cable type and size. Clicking on this field opens the cable library selection window. Note that if the desired cable is not found in the library, a cable library editor is available allowing adding and modifying cable parameters (See WinIGS-T

Table 5-1: Instrumentation Channel Parameters – User Entry Fields

	user's manual for details).
Attenuator	Attenuation value of any additional voltage or current reduction divider. Set to 1.0 if none.
Burden	The equivalent resistance of the burdens attached to the instrument transformer secondary.
IED	Selects data acquisition device from an IED library. This setting retrieved the data acquisition device frequency response for the purpose of applying error correction. Set to UNITY if this information is not available.
Maximum Peak Value	Set to the maximum instantaneous (peak) voltage or current value that will not saturate the data acquisition device input. This value can be found in data acquisition device specifications. For example, the GE Merging unit voltage and current max peak values can be derived from the voltage and current range specifications shown in Figure 5-9. Note that the range is specified in RMS so these Figures must be multiplied by $\sqrt{2}$ to obtain the peak values (i.e.: 325.3 Volts and 282.8 Amperes)
Calibration Factor	The channel output is multiplied by this value. Set to 1.0 if none required.
Calibration Offset	This value is added to the channel output. Set to 0.0 if none required.
Time Skew	Time delay in seconds of this channel with respect to time reference. Set to zero for no delay.

Figure 5-8: Instrument Transformer Library Dialog

CURRENT INPUTS

Nominal Current (In)	5 A	1 A
Nominal frequency	50/60Hz	50/60Hz
Current range (rms)	0.25 200A	0.05 40A
Accuracy	± 0.1 % F.S.	± 0.1 % F.S.
Impedance	3 m Ω	15 m Ω
Burden In	50 m VA	< 0.02 VA
Continuous overload	20A (4 x ln)	4A (4 x ln)
AC current thermal withstand 1 s (Ith rms)	320A (64 x ln)	100A (100x In)
AC current thermal withstand 10 s (Ith rms)	100A (20 x ln)	30A (30 x ln)
Insulation	> 3.5 kV	> 3.5 kV
Bandwidth	3 k Hz	3 k Hz

VOLTAGE INPUTS

Nominal Voltage (Vn)	115 V	
Nominal frequency	50/60Hz	
Voltage range	0.02 230 V	
Accuracy	± 0.1 % F.S.	
Impedance	> 210 k Ω	
Burden Vn	< 0.1VA	
Continuous overload	240 V	
Maximum overload (1 s)	460 V (4 x Vn)	
Bandwidth	3 k Hz	

Figure 5-9: Example Input Specifications of a GE MU320 Merging Unit

Note that the order of the instrumentation channels can be modified using the **MoveUp** and **MoveDown** buttons of the instrumentation channel list dialog (Shown in Figure 5-5). Once the instrumentation channel parameter entry is completed, click on the **Accept** button of the instrumentation channel list dialog, to save the channel parameters. Note that the instrumentation channel parameters are saved in an ASCII file named:

CASENAME_Fnnnnn.ich

where CASENAME is the WinIGS-T network model file name root, and nnnnn is a 5-digit integer. These files are stored in the same directory as the WinIGS-T network model file.

The next step is to define the measurements to be used for the EBP relay, in terms of the defined instrumentation channels. This is accomplished by clicking on the **Measurement** button of the merging unit ASDU dialog (Shown in Figure 5-4). This action opens the Measurement List Dialog illustrated in Figure 5-10.

For most cases (including the protection zone 1 described in this document), the measurement parameters can be created automatically using the **Auto Create** button in the Measurement List Dialog.

Measurement Channels Manual Edit Mode							
	Name	IED Alias	Туре	Value	Nominal	Scale	St.Dev
5	V_TRNS1~225_AN	Va_1	V-Time		225.0 kV	360.0 kV	0.010
6	V_TRNS1~225_BN	Vb_1	V-Time		225.0 kV	360.0 kV	0.010
7	V_TRNS1~225_CN	Vc_1	V-Time		225.0 kV	360.0 kV	0.010
1	C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~225_A	Ia_1	I-Time		60.00 A	3.000 kA	0.010
2	C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~225_B	Ib_1	I-Time		60.00 A	3.000 kA	0.010
3	C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~225_C	Ic_1	I-Time		60.00 A	3.000 kA	0.010
9	C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~T_A	Ia_2	I-Time		10.00 A	500.0 A	0.010
10	C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~T_B	Ib_2	I-Time		10.00 A	500.0 A	0.010
11	C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~T_C	Ic_2	I-Time		10.00 A	500.0 A	0.010
	Move Up New Dele	te	Α	uto Upo	late	Car	ncel
▼	Move Down Edit Auto C	reate	Au	to Map	ping	Acc	ept
	ram WinIGS-T - Form IGS_MCHAN_LIST						

Figure 5-10: Measurement List Dialog

Measurement parameters can be manually created and edited using the **New** and **Edit** buttons of the Measurement List dialog (Figure 5-10), which open the measurement parameter dialog illustrated in Figures 5-11 and 5-12. The fields in this dialog are briefly described in Table 5-2.

Меа	asurement Definit	ion	Ca	ancel	Accept
Instrumentation Channels		Measurem	ent Formula		
1 V_VT1_AN 2 V_VT1_BN 3 V_VT1_CN 4 C_CT1_A 5 C_CT1_B 6 C_CT1_C 7 C_CT3_A 8 C_CT3_B 9 C_CT3_C	V_VT1_AN				
			1		
	Validate	Auto Update			
	Measurement Name	V TRNS1-225 AN			
	Name at IED		IED Channel O	rder 5	
		iva i			
	IED	<u> </u>	RTE_BLOCX_Manufa	acturer	
	Power Device	₹	Referre	d to	Primary
	3 Winding Transformer 64	41 (Transformer at TRI	NS1~225 TRNS1~90	TRANS1~	T, Circuit: 1)
	Bus & Phase	TRNS1~225_AN	Meter Scale (Prim	ary)	360.0 kV
	Measurement Type	V-Time	Nominal Va	alue	225.0 kV
	Channel Correction	0.9963, -0.016 Deg	Std. Deviation	(pu)	0.01000 pu
	MU Scale Factor	0.010000	MU Of	fset	0.000000
	Magnitude Calibration	1.00000	Phase Calibration (deg)	0.00000

Figure 5-11: Voltage Measurement Parameters Dialog

Меа	asurement Definit	ion	Cance	Accept
Instrumentation Channels		Measurem	ent Formula	
1 V_VT1_AN 2 V_VT1_BN 3 V_VT1_CN 4 C_CT1_A 5 C_CT1_B 6 C_CT1_C 7 C_CT3_A 8 C_CT3_C	C_CT1_A			
			1	
	Validate	Auto Update		
	Measurement Name	C TRNS1~225 TRN	IS1~90 TRNS1~T 1 TF	NS1~225 A
	Name at IED	la 1	IED Channel Order	1
	IED		RTE_BLOCX_Manufacture	r
	Power Device	1	Referred to	Primary
	3 Winding Transformer 64	41 (Transformer at TRI	NS1~225 TRNS1~90 TRNS	S1~T, Circuit: 1)
	Bus & Phase	TRNS1~225_A	Meter Scale (Primary)	3.000 kA
	Measurement Type	I-Time	Nominal Value	60.00 A
	Channel Correction	0.9858, 0.726 Deg	Std. Deviation (pu)	0.01000 pu
	MU Scale Factor	0.001000	MU Offset	0.000000
	Magnitude Calibration	1.00000	Phase Calibration (deg)	0.00000

Figure 5-12: Current Measurement Parameters Dialog

Parameter	Description
Measurement Formula	Mathematical expression giving measurement value in terms of instrumentation channel values. Note that the measurement formula for automatically created measurements form instrument channels is simply the instrument channel name. However, a measurement can be manually defined as any expression involving all available instrument channels.
Measurement Name	Voltage measurements names are automatically formed based on the bus name, phase and measurement type. For example, a phase A voltage measurement on Bus TRNS1~225 is automatically named V_TRNS1~225_AN. Similarly, <i>current measurements</i> are automatically formed by identifying a power device and a specific terminal into which the measured current is flowing. For example, the phase A current into the transformer at Bus TRNS1~225 is named C_TRNS1~225_TRNS1~90_TRNS1~T_1_TRNS1~225_A, where the part TRNS1~225_TRNS1~90_TRNS1~T_1 identifies the power device as circuit 1 connected to the bus TRNS1~225, and the last part _TRNS1~225 identifies the terminal into which the measured current is flowing. Note that the name part 1 is the user specified Circuit Name of the transformer.
Name at IED	The measurement name as defined by the merging unit or other IED used. The default channel names vary with IED manufacturers and IED types. For example, the GE MU320 merging units default channel names are Ia_1, Ib_1, Ic_1, for the current channels and Va_1, Vb_1, Vc_1, for voltage channels.
IED Channel Order	An order number (starting with 1) indicating the ordering of the channels in the Sample Value packets. For example, GE MU320 merging units SV packets have four current channels followed by four voltage channels. Thus, the current channel order numbers are 1, 2, 3, 4 for phase A, B, C N, and the voltage channel order numbers are 5, 6, 7, and 8 for phases A, B, C, and N.
Merging Unit Scale Factor and Merging Unit Offset	These values define the conversion from the 32 bit integer Sample Values to actual values in Volts and Amperes. Specifically: $V_k = a X_k + b$ where Vk is a voltage sample in volts, a is the Scale Factor, Xk is the sample value voltage sample (32 bit integer), and b is the Merging Unit Offset. The default merging unit scale factor for voltage channels is 0.01, while for current channels is 0.001. Default offsets are zero.

Table 5-2: Measurement Parameters – User Entry Fields

Magnitude	Measurement magnitude and a phase angle correction value.
Calibration and	Default values are 1.0 and 0.0 respectively.
Phase Calibration	1 5

In this example, 3 merging units are placed in this protection zone for estimation based protection. The instrumentation channels of these merging units are listed in Table 5-3. The total number of these channels is 24.

MU Name	Voltage Channels	Current Channels	# of channels of this MU
MI 1	AN, BN, CN at	A, B, C at TRNS1~225 (into the XFMR)	0
WIC1	TRNS1~225	A, B, C at TRNS1~T (into the XFMR)	2
MU2	AN, BN, CN at TRNS1~90 AN, BN, CN at TRNS1~T	A, B, C at TRNS1~90 (into the XFMR)	9
MU3	AN, BN, CN at CABLE1~90	A, B, C at CABLE1~90 (into the cable)	6

Table 5-3: Instrumentation Channels of Merging Units in Protection Zone	e 1
---	-----

5.1.3 Exporting Measurement and Protection Zone Models

In order to generate the estimation based protective relay files (to be used in the XFM program EBP feature), perform the following steps:

- 1. Select the power devices belonging to the protection zone of interest. In this example select the transformer, cable, and two breakers in the protection zone 1. (NOTE: to select multiple objects, hold down the CTRL key, and *left-click* on the elements to be selected).
- Select the merging units monitoring the voltages and currents to be used in the EBP relay. In this example, select the merging unit named "MU1", "MU2", and "MU3" in Figure 5-2. (NOTE: to select multiple objects, hold down the CTRL key, and *left-click* on the elements to be selected).
- 3. Execute the SCAQCF Export command of the Tools menu, or click on the toolbar icon:

Figure 5-13: Selecting Zone Power Devices and Merging Units

This command/toolbar button opens the dialog window illustrated in Figure 5-14.

E	Export EE	BP Model	Close			
Export File Path						
Sampling Rate	80 8 3	Samples / Cycle Power Devices Selectec IED's Selected	Export QDM Export Report			
 Select Devices F Select Related IE Select Export File Click on Export B 	orming Protect D's Path utton	tion Zone	BRC			

Figure 5-14: EBP Export Dialog

- 4. Click on the entry field under the Export File Path label in order to select the file path of the files to be generated.
- 5. Click on the **Export** button to generate the files. Optionally click on the Report button to verify that the process was completed successfully (See Figure 5-15)

Export EBP Model Close						
Export File Path						
F:\SettingLessProtection\RTE System\Protection Zone 1\PZone1_N						
Sampling Rate 80 Samples / Cycle DExport QDM						
8 Power Devices Selectec Export						
3 IED's Selected Report						
8 power devices and 3 IED's processed						
 Select Devices Forming Protection Zone Select Related IED's Select Export File Path Click on Export Button 						
	rotection\R 80 8 3 IED's proce orming Protect D's Path utton	Export EBP Model rotection\RTE System\Protection Zon 80 Samples / Cycle 8 Power Devices Selectec 3 IED's Selected 3 IED's processed orming Protection Zone D's Path utton				

Figure 5-15: Message Window Indicating EBP File Creation Progress & File Paths

The generated files are next used to automatically setup the EBP relay in the XFM program.

5.2 Creating Events and Storing in COMTRADE

For the above stated purpose, we use WinIGS-T to define events, simulate the events and store the results in COMTRADE format. Two such events are described below.

5.2.1 Event A: UseCase_01.A

Event A is defined with a phase A to neutral fault at TRNS1~90 bus within the protection zone. Figure 5-16 shows the fault model and fault model parameters dialog. This is a fault occurring inside Zone 1 which should be cleared by opening the two breakers connected to this zone. The fault is initiated at 0.5 seconds from the start of the simulation.

Figure 5-16: Network Model with Fault between Phase A and Neutral at Bus TRNS1~90

The simulation is executed for a period of one second. The measurements generated during the simulation are stored in a COMTRADE file. Figure 5-17 shows the time domain simulation parameters dialog where the simulation time step, duration, as well as the COMTRADE output is specified. Note that the time step is selected to match the standard merging unit sampling rate at 80 samples per cycle. For a 50 Hz system this is achieved by selecting the time step at:

 $\Delta t = 1,000,000 / (50 \times 80) = 250$ microseconds.

The voltages and currents captured by the three merging units are plotted in Figure 5-18 to Figure 5-20.

The WinIGS-T case files is named RTE_PZone1_EVENT_A.NMT and is provided with this report. The generated COMTRADE configuration and data files are named RTE_PZone1_EVENT_A_BLOCX.cfg and RTE_PZone1_EVENT_A_BLOCX.dat respectively.

Figure 5-17: Time Domain Simulation Parameters Dialog

Figure 5-18: Voltage and Current Measurements Obtained from Merging Unit 1 in Event A

Figure 5-19: Voltage and Current Measurements Obtained from Merging Unit 2 in Event A

Figure 5-20: Voltage and Current Measurements Obtained from Merging Unit 3 in Event A

5.2.2 Event B: UseCase_01.B

Event B is defined as a phase A to neutral fault at bus **A225D2** (an external fault). Figure 5-21 shows the fault model and fault model parameters dialog. This is a fault occurring outside protection zone 1 and therefore the breakers of zone 1 should not operate. The fault is initiated at 0.5 seconds from the start of the simulation and lasts 0.1 second.

Figure 5-21: Network Model with Fault between Phase A and Neutral at Bus A225D2

The simulation is executed for a period of one second. The measurements generated during the simulation are stored in a COMTRADE file. The time step is selected to match the standard merging unit sampling rate at 80 samples per cycle, which for a 50 Hz system is 250 microseconds (i.e. same as for Event A).

The voltages and currents captured by the three merging units are plotted from Figure 5-22 to Figure 5-24.

The WinIGS-T case file is named as RTE_PZone1_EVENT_B.NMT and is provided with this report. The generated COMTRADE configuration and data files are named RTE_PZone1_EVENT_B_BLOCX.cfg and RTE_PZone1_EVENT_B_BLOCX.dat, respectively.

Figure 5-22: Voltage and Current Measurements Obtained from Merging Unit 1 in Event B

Figure 5-23: Voltage and Current Measurements Obtained from Merging Unit 2 in Event B

Figure 5-24: Voltage and Current Measurements Obtained from Merging Unit 3 in Event B

5.3 EBP Results

This section presents the results obtained from the EBP relay for the use case and events described in Section 5.2. The EBP relay has been implemented within the WinXFM Program. In order to setup the EBP relay and run the use cases, execute the WinXFM program, open one of the provided WinXFM files, and click on the EBP button as indicated in Figure 5-25.

	0 (0) 8192.0 Hz, 1024 Samples Cursor Left Cursor 💽 Operated PMU
MU Data Concentrator Start Stop Circular Buffer Circular Buffer Start Stop Start Start	
Update To Estimates Reports Animation Field Performance Performance	NU Dela Concentrator EBP Relay Start Start Stop Setup Circular Buffer Start Device & Agonther Start Stop Start Stop Start Start Stop Start Stop Start Stop Start Stop Start Stop Execution Rate 0.00 Measurements Start Sch2OcF Sch2OcF Sch2OcF Sch2OcF Sch2OcF Sch2OcF Sch2OcF Setup Animation
COMITRADE Data Start Reset Stop Setup Target Reset Setup	CONTRADE Data Start Stop Setup

Figure 5-25: Opening the EBP Main Setup Form in the WinXFM Program

5.3.1 Event A: UseCase_01.A

As described in Section 5.2, Event A is defined as a phase A to neutral fault at bus TRNS1~90. To run the EBP relay using the Event A data, execute the WinXFM program and open the WinXFM file:

RTE-SYSTEM-B-EVENT-A

Note: this file is provided with this report under the file name RTE-SYSTEM-B-EVENT-A.xfm

Click on the Import button of the main EBP dialog window to open the "*Device and Measurement File*" dialog shown in Figure 5-25. Verify that the Zone_1 Device and Measurement files have been selected and that the model domain and model kind are selected as "**Time Domain**" and "**Algebraic Companion Form**". Click on the **Import** button, and verify that the selected protection zone devices are listed and the active column is checked as illustrated in Figure 5-26. Click on the **Accept** button to close the *Device and Measurement File* dialog. This procedure imports the measurement definition and device model data generated using the WinIGS-T program and stored in the data files:

• PZone1.TDMDEF (Measurement Definition File)

• PZone1.TDSCAQCF (Device Model File)

Device and Measurement Files Cancel Accept							
Model Domain Model Kind							
○ Time Domain ○ Algebraic Companion Form							
O Quasi-Dynamic Domain							
L							
Device & Measurement Model Files PZone1							
Located at Directory Normalize Equations							
F:\SettingLessProtection\RTE System\Protection Zone 1\PZone1_NonLinear\Event-B\							
Select Protection Zone Devices							
Code Active Description							
1	105	V	3 Winding Transformer 641				
2	123	V	90 kV Cable				
3	192	V	CB_TRANS1				
4	192	V	CB_CABLE1_90				
5	192	V	CB_A225D1_B1				
6	192	V	CB_A225D1_B2				
7	192	V	Switch CB_A90U1_B1				
8	192	V	Switch CB_A90U1_B2				
Model Importing mpleted Messages							

Figure 5-26: Importing Zone 1 Device and Measurement Definition Files

Next click on the Setup button of the COMTRADE Data block of the main EBP dialog (See Figure 5-27) to open the COMTRADE Data Playback dialog (shown in Figure 5-28). Verify that the **COMTRADE File Name** field indicating the Event A waveform data has been selected: (file name: RTE_PZone1_EVENT_A_BLOCX). Also verify the following:

- Playback rate is set at **4000** samples per second for 50 Hz systems.
- Speed Factor radio button is selected and the speed factor is set to 5.0.

The speed factor option allows the relay response to be observed in slow motion. Otherwise, if you select the real-time option, the playback will occur in real time and the whole process will be completed in one second, i.e., the duration of the waveform data stored in the COMTRADE file.

Click on the **Close** button to close the COMTRADE Data Playback dialog.

opy Print Help Estimatio	on Based Protection	Close
MU Data Concentrator	EBP Relay CPU Time Used (%) Start Stop Execution Rate 0.00 C SCAQCF Algorithm (° SCAQCF C SCAQCF - Constraint ° EKF Update (° Measurements from (° Measurements ° Estimates	Device & Measurement Model Import Relay Settings
COMTRADE Data Start R Stop Setup	Feal. Performance Breaker Closed Close Open Open Target Assorted Reset	Animation Performance Parameter Estimator Setup

Figure 5-27: Opening the COMTRADE Setup Dialog

Figure 5-28: Selecting the COMTRADE Data Files for Playback

At this point, the system is ready to execute the EBP relay using the Event A data. It is recommended to click on the **Save** (\square) button of the main WinXFM user interface (Horizontal Tool-Bar) in order to save all entered setup parameters.

Click on the **Start** button of the EBP Relay block to start the EBP relay, then on the **Start** button of the COMTRADE Data block to start streaming the data to the relay.

The performance metrics of this event is illustrated in Figure 5-29. Note that the confidence level is 100% before the fault, and reaches to zero immediately upon the fault initiation. The trip decision is then made within a certain delay that can be determined by clicking the **Relay Settings** button in Figure 5-27. In addition to the channels shown in Figure 5-29, a list of available channels for plotting is shown in Figure 5-30. This can be achieved by clicking on the **Select Channels to Display** (^(*)) button in the main WinXFM user interface (Horizontal Tool Bar).

Figure 5-29: Plots of Some Actual/Estimated Measurements, Residuals, Confidence Level, and Trip Decision in Event A

Select Channels to Display

F#	Display	ved Channels	i	Add All	Available Channels
F1 Volt Est	age_TRNS1~22 _Meas_Voltage	25_A_TRNS1 _TRNS1~225	~225_N ^ 5_A_TRN	One Bus per Frame	1 Voltage_TRNS1~225_A_TRNS1~225_N 2 Voltage_TRNS1~225_B_TRNS1~225_N 3 Voltage_TRNS1~225_C_TRNS1~225_N
F2 Cur Est	rent_TRNS1~22 _Meas_Current	25_A _TRNS1~225	_A	Add in	4 Current_TRNS1~225_A 5 Current_TRNS1~225_B 6 Current_TRNS1~225_C
F3 Res	idual_Voltage_	TRNS1~225_	A_TRNS1	Separate	7 Current_TRNS1~T_A
F4 Res	idual_Current_1	RNS1~225_	A	Frames	9 Current_TRNS1~T_C
F5 Cor	fidence_Level			Add in Single	10 Voltage_TRNS1~90_A_TRNS1~90_N 11 Voltage_TRNS1~90_B_TRNS1~90_N 12 Voltage_TRNS1~90_C_TRNS1~90_N
F6 Trip	Decision			Frame	13 Current_TRNS1~90_A
				Add to Selected Frame	14 Current_TRNS1~90_B 15 Current_TRNS1~90_C 16 Voltage_TRNS1~T_A 17 Voltage_TRNS1~T_B 18 Voltage_TRNS1~T_C
				Remove Selected	19 Voltage_CABLE1~90_A_CABLE1~90_N 20 Voltage_CABLE1~90_B_CABLE1~90_N 21 Voltage_CABLE1~90_C_CABLE1~90_N 22 Current_CABLE1~90_A
			~	Remove All	23 Current_CABLE1~90_B 24 Current_CABLE1~90_C 25 Est_Meas_Voltage_TRNS1~225_A_TRNS1~ 26 Est_Meas_Voltage_TRNS1~225_B_TRNS1~
Split	Combine Selected	Sort	Auto Color	CLOSE	27 Est_Meas_Voltage_TRNS1~225_C_TRNS1~ 28 Est_Meas_Current_TRNS1~225_A 29 Est_Meas_Current_TRNS1~225_B

x

Figure 5-30: A List of Available Channels for Plotting

5.3.2 Event B: UseCase_01.B

Event B is defined as a phase A to neutral fault at bus **A225D2** (an external fault). To run the EBP relay using the Event B simulated waveforms, execute the WinXFM program and open the WinXFM file:

RTE-SYSTEM-B-EVENT-B

Note: this file is provided with this report under the file name RTE-SYSTEM-B-EVENT-B.xfm

Click on the Import button of the main EBP dialog window to open the "*Device and Measurement Files*" dialog shown in Figure 5-31. Verify that the Zone_1 Device and Measurement files have been selected and that the model domain and model kind are selected as "Time Domain" and "Algebraic Companion Form". Click on the **Import** button, and verify that the selected protection zone devices are listed and the active column is checked as illustrated in Figure 5-31. Click on the Accept button to close the *Device and Measurement Files* dialog. This procedure imports the measurement definition and device model data generated using the WinIGS-T program and stored in the data files:

- PZone1.TDMDEF (Measurement Definition File)
- PZone1.TDSCAQCF (Device Model File)

Device and Measurement Files Cancel Accept							
M	Model Domain Model Kind						
Time Domain							
Quasi-Dynamic Domain O Differential Equation Form							
Device & Measurement Model Files PZone1							
Located at Directory Import							
F:\SettingLessProtection\RTE System\Protection Zone 1\PZone1_NonLinear\Event-B\							
Select Protection Zone Devices							
	Code	Active	Description				
1	105	V	3 Winding Transformer 641				
2	123	V	90 kV Cable				
3	192	V	CB_TRANS1				
4	192	V	CB_CABLE1_90				
5	192	V	CB_A225D1_B1				
6	192	V	CB_A225D1_B2				
7	192	V	Switch CB_A90U1_B1				
8	192	V	Switch CB_A90U1_B2				
Model Importing mpleted Messages Program WinXFM - Form SET_PRO_IMPORT_MODEL							

Figure 5-31: Importing Zone 1 Device and Measurement Definition Files

Next click on the Setup button of the COMTRADE Data block of the main EBP dialog (See Figure 5-32) to open the COMTRADE Data Playback dialog (shown in Figure 5-33).

Settingless Protection Relay Version 1.00 Copy Print Help Estimatio	n Based Protection	Close
MU Data Concentrator Start Run Data Stop Setup	EBP Relay CPU Time Usage (%) • CPU Time Usage (%)	Device & Measurement Model Import Relay Settings
Circular Buffer	Start Stop Execution Rate 0.00 Algorithm SCAQCF SCAQCF SCAQCF - Constraint C FKF FKF	View Block Diagram Measurements Setup Animation
	Update C Measurements from Estimates	Reports Animation Performance
Start R Stop Setup	Breaker Open Open Open Target Asserted Reset	Parameter Estimator
Program WinXFM - F	LFORM	

Figure 5-32: Opening the COMTRADE Setup Dialog

Verify that the **COMTRADE File Name** field indicates that the Event B waveform data has been selected: (file name: RTE_PZone1_EVENT_B_BLOCX). Also verify the following:

- Playback rate is set at **4000** samples per second for 50 Hz systems.
- Speed Factor radio button is selected and the speed factor is set to 5.0.

The speed factor option allows the relay response to be observed in slow motion. Otherwise, if you select the real-time option, the playback will occur in real time and the whole process will be completed in one second, i.e., the duration of the waveform data stored in the COMTRADE file.

Click on the **Close** button to close the COMTRADE Data Playback dialog.

Figure 5-33: Selecting the COMTRADE Data files for Playback

At this point, the system is ready to execute the EBP relay using the Event B data. It is recommended to click on the **Save** () button of the main WinXFM user interface (Horizontal Tool-Bar) in order to save any modified setup parameters.

Click on the **Start** button of the EBP Relay block to start the EBP relay, then on the **Start** button of the COMTRADE Data block to start streaming the data to the relay.

The performance metrics of this event is illustrated in Figure 5-34. Note that the confidence level is nearly 100% before the fault, as well as during the fault. Only small spikes occur when the fault is initiated and ended. Note that the breakers remain closed (as expected) during the whole event since the fault is outside the protection zone. In addition to the channels shown in Figure 5-34, a list of available channels for plotting is shown in Figure 5-35. This can be achieved by clicking on the **Select Channels to Display** ($^{\textcircled{O}}$) button in the main WinXFM user interface (Horizontal Tool Bar).

Figure 5-34: Plots of Some Actual/Estimated Measurements, Residuals, Confidence Level, and Trip Decision in Event B
Select C	hannels to Display				×
F#	Display	ved Channels		Add All	Available Channels
F1 Vo Es	oltage_TRNS1~22 st_Meas_Voltage	25_A_TRNS1 _TRNS1~225	~225_N 5_A_TRN:	One Bus per Frame	1 Voltage_TRNS1~225_A_TRNS1~225_N 2 Voltage_TRNS1~225_B_TRNS1~225_N 3 Voltage_TRNS1~225_C_TRNS1~225_N
F2 Cu Es	urrent_TRNS1~22 st_Meas_Current	25_A _TRNS1~225	_A	Add in	4 Current_TRNS1~225_A 5 Current_TRNS1~225_B 6 Current_TRNS1~225_C
F3 Re	esidual_Voltage_	TRNS1~225_	A_TRNS1	Separate	7 Current_TRNS1~T_A 8 Current_TRNS1~T_B
F4 Re	esidual_Current_T	TRNS1~225_	A	- Tames	9 Current_TRNS1~TC 10 Voltage_TPNS1~90_A_TPNS1~90_N
F5 Co	onfidence_Level			Add in Single	11 Voltage_TRNS1~90_A_TRNS1~90_N 12 Voltage_TRNS1~90_0_TRNS1~90_N
F6 Tri	ip_Decision			Frame	12 Voltage_TRNS1~90_C_TRNS1~90_N 13 Current_TRNS1~90_A
				Add to Selected Frame	14 Current_TRNS1~90_B 15 Current_TRNS1~90_C 16 Voltage_TRNS1~T_A 17 Voltage_TRNS1~T_B 18 Voltage_TRNS1~T_C
				Remove Selected	19 Voltage_CABLE1~90_A_CABLE1~90_N 20 Voltage_CABLE1~90_B_CABLE1~90_N 21 Voltage_CABLE1~90_C_CABLE1~90_N 22 Current_CABLE1~90_A
			~	Remove All	23 Current_CABLE 1~90_D 24 Current_CABLE1~90_C 25 Est_Meas_Voltage_TRNS1~225_A_TRNS1~ 26 Est_Meas_Voltage_TRNS1~225_B_TRNS1~
Split	Combine Selected	Sort	Auto Color	CLOSE	27 Est_Meas_Voltage_TRNS1~225_C_TRNS1~ 28 Est_Meas_Current_TRNS1~225_A 29 Est_Meas_Current_TRNS1~225_B

Figure 5-35: A List of Available Channels for Plotting

6. Example Test Results: RTE Protection Zone 04

This section describes a use case for preparing and running the setting-less relay for the specific protection zone 4 of the RTE substation BLOCX. Protection Zone 4 is a **shunt reactor bank** at the 225 kV section of the BLOCKX substation. The inductor bank is connected to breaker and a main/transfer bus arrangement.

First, the protection zone model is developed in the program WinIGS-T. Once the protection zone model has been defined, it is exported into two files that are readable by the Estimation Based Protection (EBP) program. The first file contains the model of the protection zone power components. Note that a protection zone may include one or more components, for example protection zone 4 contains a reactor and breakers. Each protection zone component model is represented in its SCPAQCF format (State, Control, and Parameter Algebraic Quadratic Companion Form). The second file contains the definition of the measurement, type of measurements definition provides the IED (Merging unit providing the measurement, type of measurement, and where on the protection zone the measurement was taken. The measurement definition is key-word oriented.

A number of events have been simulated with the program WinIGS-T, using the RTE BLOCAUX substation model. The results of the simulation provided by the merging units of the Protection Zone 4 are stored in COMTRADE format. These files are used for playback through a series of conversions and amplifiers into merging units connected to the EBP relay in the laboratory.

The use case demonstrates the EBP procedure consisting of the following steps:

- Read model and measurement files
- Read event data (COMTRADE files)
- Run the setting-less relay.

This report includes several simulated events as well as the EBP results.

6.1 Creating Protection Zone Models for EBP Relays

WinIGS-T includes a tool which automatically generates the model of the user selected protection zone in the **SCPAQCF** syntax. The protection zone can be a single component protection zone or it may comprise several components and/or breakers. The estimation based protective relay (EBP, a.k.a. setting-less relay) requires the model of the protection zone in SCPAQCF standard. The user should select the components that constitute the protection zone and which must be exported in the **SCPAQCF** syntax into a file. In addition, the user must specify the merging units providing data to the EBP relay in order to generate a second file describing the measurement parameters. These two files are read by the WinXFM-EBP program which executes the estimation based protective relay algorithm.

6.1.1 Creating the Network Time Domain Model

The procedure to generate the EBP model file begins by building a system model in WinIGS-T. The WinIGS-T model could include the entire or part of the large system (for simulation studies and for generating events) and must also include the models of the protection zone under study. Specifically:

- The power devices comprising the EBP protection zone.
- The instrumentation channels available to the EBP relay via merging units.
- The breakers/switches that enable the protection of the zone.

The WinIGS-T model for the RTE system, including the necessary merging unit information is provided along with this document. The RTE network model is shown in Figure 6-1. Note that the RTE substation of interest is represented by the circular icon labelled **SUB BLOCKX**. Double click on this icon to open the substation single line diagram view, illustrated in Figure 6-2.

Next zoom in to view the protection zone if interest i.e. Protection Zone 4, containing a 3-Phase shunt reactor bank and a breaker. The diagram also includes a Merging Unit which captures the reactor voltages and currents.

Figure 6-1: RTE System Network Model

Figure 6-2: RTE Substation Single Line Diagram (top) and Protection Zone 04 (bottom)

The parameters dialog of the shunt inductor bank is illustrated in Figure 6-3. This dialog can be accessed via left button double clicking on the inductor icon. Note that the model parameters are typical nameplate information such as rated voltage and reactive power. Ensure that the reactor model parameters are correctly set. The magnetizing current of the inductor are calculated by a non-linear function in terms of the flux through the core.

Figure 6-3: Protection Zone 4 Parameters

6.1.2 Creating Measurement Models for Merging Units

The instrumentation channel and measurement parameters to be used by the EBP relay for the Zone 4 Protection are modeled in the Merging Unit (see MU icon in Figure 6-2). In this example the EBP relay monitors the phase currents and voltages at the reactor bank terminals.

The merging unit model parameters and instrumentation channel list can be edited by clicking on the merging unit icon. This action will bring the user interface illustrated in Figure 6-4. Click on the Instrumentation button to open the instrumentation channel list dialog, illustrated in Figure 6-5.

Double-click on each list table entry to inspect the instrumentation channel parameters. Figures 6-6 and 6-7 illustrate examples of a voltage and a current channel respectively. Note that a WinIGS-T instrumentation channel model includes models of the instrument transformer, instrumentation cable, burdens, and data acquisition device (i.e. a merging unit in these example).

A short description of the instrumentation channel parameters is presented in TABLE 6-1.

Merging	Unit ASDU	Cancel	Apply	ОК
Substation Description Manufacturer	RTE_BLOCX Reactor Merging Unit GE	Instrumentation	Active 0.500 Non-Sync	Font Size
Model Network Adaptor	MU320_GE	Measurements	Show Link Field Paran Compute	rs neters Measurements *
MAC Address Merging Unit ID Data Set ID	00:00:00:00:00 N/A N/A	Auto Configure Status Receiving Sync None	Simulation Update Co	Parameters OMTRADE File DC File
* Compute Measuren Program Win1G	nents form From Field Instrumentati S-T - Form IGS_M015_	ion Data MAIN		

Figure 6-4: Merging Unit Main Parameter Dialog

Instrumentation Channels								
	Name	Туре	StdDev	Scale	Value	Bus	Phase	Pwr Dev
1	V_R1_AN	V-Time	0.010000	521739.130		B~REACTOR	AN	Reactor I
2	V_R2_BN	V-Time	0.010000	521739.130		B~REACTOR	BN	Reactor I
3	V_R3_CN	V-Time	0.010000	521739.130		B~REACTOR	CN	Reactor I
4	C_R4_A	I-Time	0.010000	72000.000		A225D3	А	Breaker -
5	C_R5_B	I-Time	0.010000	72000.000		A225D3	В	Breaker -
6	C_R6_C	I-Time	0.010000	72000.000		A225D3	С	Breaker -
Move Up New Delete Auto Default Cancel Move Down Edit Accept Program WinIGS-T - Form IGS_ICHAN_LIST								

Figure 6-5: Merging Unit Instrumentation Channel List Dialog

Figure 6-6: Example of a Voltage Instrumentation Channel Dialog

Figure 6-7: Example of a Current Instrumentation Channel Dialog

Parameter	Description			
Data Type	Specifies the type of the measured quantity. Valid options for merging units are Voltage Time Domain Waveform and Current Time Domain Waveform.			
Bus Name	The bus name where the measurement is taken			
Power Device	Identifies the power device into which the current is measured (not used for voltage measurements)			
Phase	The phase of the measured quantity (A, B, C, N, etc.)			
Current Direction	The direction of current flow which is considered positive. For example, checking into device indicates that the positive current flow is into the power device terminal (See also Power Device parameter above)			
Standard Deviation	Quantifies the expected error of the instrumentation channel in per unit of the maximum value that the channel can measure (See also channel scale parameter).			
Meter Scale	The maximum peak value that the channel can measure defined at the instrument transformer primary side. Note that this value can be directly entered by the user, or automatically computed from the instrument transformer and data acquisition device characteristics. In order to automatically compute the ,click on the Update button located below the Meter Scale field.			
Instrument Transformer Code Name	An identifier of the instrument transformer associated with this channel. Note that WinIGS uses this identifier to generate the channel name. For example the phase A voltage channel is automatically named V_REACTOR_AN, if the instrument transformer name is set to REACTOR.			
Instrument Transformer Type and Tap	Selects instrument transformer parameters from a data library. The library includes parameters needed to create instrument channel models such as turns ratio, frequency response, etc. To select an instrument transformer model, click on the type or tap field to open the instrument transformer data library dialog (See also Figure 6-8)			
L-L Nominal Primary Voltage	The line to line voltage at the instrument transformer primary side.			
Instrumentation Cable Length	The length of the instrumentation cable connecting the instrument transformer secondary with the data acquisition device.			

 Table 6-1: Instrumentation Channel Parameters – User Entry Fields

Cable Type	The instrumentation cable type and size. Clicking on this field opens the cable library selection window. Note that if the desired cable is not found in the library, a cable library editor is available allowing adding and modifying cable parameters.(See WinIGS-T user's manual for details).
Attenuator	Attenuation value of any additional voltage or current reduction divider. Set to 1.0 if none.
Burden	The equivalent resistance of the burdens attached to the instrument transformer secondary.
IED	Selects data acquisition device from an IED library. This setting retrieved the data acquisition device frequency response for the purpose of applying error correction. Set to UNITY if this information is not available.
Maximum Peak Value	Set to the maximum instantaneous (peak) voltage or current value that will not saturate the data acquisition device input. This value can be found in data acquisition device specifications. For example, the GE Merging unit voltage and current max peak values can be derived from the voltage and current range specifications shown in Figure 6-9. Note that the range is specified in RMS so these Figures must be multiplied by $\sqrt{2}$ to obtain the peak values (i.e.: 325.3 Volts and 282.8 Amperes)
Calibration Factor	The channel output is multiplied by this value. Set to 1.0 if none required.
Calibration Offset	This value is added to the channel output. Set to 0.0 if none required.
Time Skew	Time delay in seconds of this channel with respect to time reference. Set to zero for no delay.

Figure 6-8: Instrument Transformer Library Dialog

CURRENT INPUTS

Nominal Current (In)	5 A	1 A
Nominal frequency	50/60Hz	50/60Hz
Current range (rms)	0.25 200A	0.05 40A
Accuracy	± 0.1 % F.S.	± 0.1 % F.S.
Impedance	3 m Ω	15 m Ω
Burden In	50 m VA	< 0.02 VA
Continuous overload	20A (4 x In)	4A (4 x ln)
AC current thermal withstand 1 s (Ith rms)	320A (64 x In)	100A (100x In)
AC current thermal withstand 10 s (Ith rms)	100A (20 x ln)	30A (30 x ln)
Insulation	> 3.5 kV	> 3.5 kV
Bandwidth	3 k Hz	3 k Hz

VOLTAGE INPUTS

Nominal Voltage (Vn)	115 V	
Nominal frequency	50/60Hz	
Voltage range	0.02 230 V	
Accuracy	± 0.1 % F.S.	
Impedance	> 210 k Ω	
Burden Vn	< 0.1VA	
Continuous overload	240 V	
Maximum overload (1 s)	460 V (4 x Vn)	
Bandwidth	3 k Hz	

Figure 6-9: Example Input Specifications of A GE MU320 Merging Unit

Note that the order of the instrumentation channels can be modified using the **MoveUp** and **MoveDown** buttons of the instrumentation channel list dialog (Shown in Figure 6-5). Once the instrumentation channel parameter entry is completed, click on the Accept button of the instrumentation channel list dialog, to save the channel parameters. Note that the instrumentation channel parameters are saved in an ASCII file named:

CASENAME_Fnnnnn.ich

where CASENAME is the WinIGS-T network model file name root, and nnnnn is a 5-digit integer. These files are stored in the same directory as the WinIGS-T network model file.

The next step is to define the measurements to be used for the EBP relay, in terms of the defined instrumentation channels. This is accomplished by clicking on the **Measurement** button of the merging unit ASDU dialog (Shown in Figure 6-4). This action opens the Measurement List Dialog illustrated in Figure 6-10.

For most cases (including the protection zone 4 described in this document) the measurement parameters can be created automatically using the **Auto Create** button if the Measurement List Dialog.

Measurement Channels							
	Name	IED Alias	Туре	Value	Nominal	Scale	St.Dev
5	V_B~REACTOR_AN	Va_1	V-Time		600.0 V	521.7 kV	0.01000 1
6	V_B~REACTOR_BN	Vb_1	V-Time		600.0 V	521.7 kV	0.01000 1
7	V_B~REACTOR_CN	Ve_1	V-Time		600.0 V	521.7 kV	0.01000 1
1	C_B~REACTOR_2_B~REACTOR_A	Ia_1	I-Time		240.0 A	72.00 kA	0.01000 1
2	C_B~REACTOR_2_B~REACTOR_B	Ib_1	I-Time		240.0 A	72.00 kA	0.01000 1
3	C_B~REACTOR_2_B~REACTOR_C	Ic_1	I-Time		240.0 A	72.00 kA	0.01000 1
▲ ▼	Move Up New Move Down Edit	Delet Auto Cre	e eate	A	uto Update uto Mapping	g	Cancel Accept

Figure 6-10: Measurement List Dialog

Measurement parameters can be manually created and edited using the **New** and **Edit** buttons of the Measurement List dialog (Figure 6-10), which open the measurement parameter dialog illustrated in Figures 6-11 and 6-12. The fields in this dialog are briefly described in Table 6-2.

	Меа	surement Defini	tion		Cancel	Accept			
Ins	trumentation Channels		Measurement Formula						
1	V_R1_AN	V_R1_AN							
2	V_R2_BN								
3	V_R3_CN								
4	C_R4_A								
5	C_R5_B								
6	C_R6_C								
		· · · · ·	-	-					
		Validate	Auto Update						
		Measurement Name	V B~REACTOR AN						
		Name at IED	Va 1	IED Char	nel Order 5				
		IED		RTE_BLOCX_M	anufacturer				
		Power Device	Ŧ	R	eferred to	Primary			
		Reactor bank (Device at B~	REACTOR, Circuit: 2)						
		Bus & Phase	B~REACTOR_AN	Meter Scale	(Primary)	521.7 kV			
		Measurement Type	V-Time	Nom	inal Value	600.0 V			
		Channel Correction	0.9956, -0.083 Deg	Std. Dev	iation (pu)	0.01000 pu			
		MU Scale Factor	0.010000		MU Offset	0.000000			
		Magnitude Calibration	1.00000	Phase Calibra	ation (deg)	0.00000			

Figure 6-11: Voltage Measurement Parameters Dialog

Меа	surement Defini	tion	Cancel	Accept			
Instrumentation Channels	Measurement Formula						
1 V_R1_AN	C R4 A						
2 V_R2_BN							
3 V_R3_CN							
4 C_R4_A							
5 C_R5_B							
0 U_K0_U							
	Validato	Auto Undato	1				
	Valluate	Auto Opuate					
	Measurement Name						
	Name at IED	IC BAREACTOR 2 I	JED Channel Order				
	IED.	I	RIE_BLOCX_Manufacturer				
	Power Device	➡	Referred to	Primary			
	Reactor bank (Device at B~	REACTOR, Circuit: 2)					
	Bus & Phase	B~REACTOR_A	Meter Scale (Primary)	72.00 kA			
	Measurement Type	I-Time	Nominal Value	240.0 A			
	Channel Correction	0.3632, 6.254 Deg	Std. Deviation (pu)	0.01000 pu			
	MU Scale Factor	0.001000	MU Offset	0.000000			
	Magnitude Calibration	1.00000	Phase Calibration (deg)	0.00000			

Figure 6-12: Current Measurement Parameters Dialog

Parameter	Description
Measurement Formula	Mathematical expression giving measurement value in terms of instrumentation channel values. Note that the measurement formula for automatically created measurements form instrument channels is simply the instrument channel name. However, a measurement can be manually defined as any expression involving all available instrument channels.
Measurement Name	<i>Voltage measurements</i> names are automatically formed based on the bus name, phase and measurement type. For example, a phase A voltage measurement on Bus REACTOR is automatically named V_REACTOR_A.
	Similarly, <i>current measurements</i> are automatically formed by identifying a power device and a specific terminal into which the measured current is flowing. For example, the phase A current into the shunt reactor connected to bus reactor is named C_REACTOR_R1_REACTOR_A, where the part REACTOR_R1 identifies the power device as circuit the R1 connected to the bus REACTOR, and the last part _REACTOR_A identifies the terminal into which the measured current is flowing. Note that the name part R1 is the user specified Circuit Name of the reactor connected at bus REACTOR.
Name at IED	The measurement name as defined by the merging unit or other IED used. The default channel names vary with IED manufacturers and IED types. For example the GE MU320 merging units default channel names are Ia_1, Ib_1, Ic_1, for the current channels and Va_1, Vb_1, Vc_1, for voltage channels.
IED Channel Order	An order number (starting with 1) indicating the ordering of the channels in the Sample Value packets. For example GE MU320 merging units SV packets have four current channels followed by four voltage channels. Thus the current channel order numbers are 1, 2, 3, 4 for phase A, B, C N, and the voltage channel order numbers are 5, 6, 7, and 8 for phases A, B, C, and N.
Merging Unit Scale Factor and Merging Unit Offset	These values define the conversion from the 32 bit integer Sample Values to actual values in Volts and Amperes. Specifically: $V_k = a X_k + b$ where Vk is a voltage sample in volts, a is the Scale Factor, Xk is the sample value voltage sample (32 bit integer), and b is the Merging Unit Offset. The default merging unit scale factor for voltage channels is 0.01, while for current channels is 0.001. Default offsets are zero.

Table 6-2: Measurement Parameters – U	Jser Entry Fields
---------------------------------------	-------------------

Magnitude Calibration and Phase Calibration	Measurement magnitude and a phase angle correction value. Default values are 1.0 and 0.0 respectively.
---	---

6.1.3 Exporting Measurement and Protection Zone Models

In order to generate the estimation based protective relay files (to be used in the XFM program EBP feature), perform the following steps:

- 6. Select the power devices belonging to the protection zone of interest. In this example select the shunt reactor bank connected to bus REACTOR and also the breaker connected in series with the shunt reactor bank. (NOTE: to select multiple objects, hold down the CTRL key, and *left-click* on the elements to be selected).
- Select the merging units monitoring the voltages and currents to be used in the EBP relay. In this example select the merging unit named "Reactor Merging Unit" in Figure 6-2. (NOTE: to select multiple objects, hold down the CTRL key, and *left-click* on the elements to be selected).
- 8. Execute the SCAQCF Export command of the Tools menu, or click on the toolbar icon:

(See also Figure 6-13)

Figure 6-13: Selecting Zone Power Devices and Merging Units

This command/toolbar button opens the dialog window illustrated in Figure 6-14

Estimation Based Protection Mo	del Construction							
Copy Print Help								
E	Close							
Export File Path								
C:\AGC-Projects	s\000_RTE	Zone_4						
Sampling Rate	Sampling Rate 80 Samples / Cycle							
	2	Power Devices Selectec	Export					
	1	IED's Selected	Report					
1. Select Devices Forming Protection Zone								
2. Select Related IED's								
3. Select Export File	3. Select Export File Path							
4. Click on Export B	utton							
Program WinIGS-T - Form	SCAQCF_EXPORT							

Figure 6-14: EBP Export Dialog

- 9. Click on the entry field under the Export File Path label in order to select the file path of the files to be generated.
- 10. Click on the **Export** button to generate the files. Optionally click on the Report button to verify that the process was completed successfully (See Figure 6-15)

Message Window			
Clear	Close	🗆 Single Trace	
(3) 2 powe (2) 6 Meas (1) Create (0) Create	er devices and surements Defi ed: C:\AGC-Pro ed: C:\AGC-Pro	d 1 IED's processed .ned ojects\000_RTE\Zone_4.TDMDEF ojects\000_RTE\Zone_4.TDSCAQCF	*

The generated files are next used to automatically setup the EBP relay in the XFM program.

6.2 Creating Events and Storing in COMTRADE

For the above stated purpose, we use WinIGS-T to define events, simulate the events and store the results in COMTRADE format. Two such events are described below.

6.2.1 Event A: UseCase_01.A

Event A is defined with a Phase A to neutral fault on the REACTOR bus within the protection zone. Figure 6-16 shows the fault model and fault model parameters dialog. This is a fault occurring inside Zone 4 which should be cleared by opening the reactor breaker. The fault is initiated at 0.5 seconds from the start of the simulation.

Figure 6-16: Network Model with Fault between Phase A and Neutral of REACTOR Bus

The simulation is executed for a period of one second. The measurements generated during the simulation are stored in a COMTRADE file. Figure 6-17 shows the time domain simulation parameters dialog where the simulation time step, duration, as well as the COMTRADE output is specified. Note that the time step is selected to match the standard merging unit sampling rate at 80 samples per cycle. For 50 Hz system this is achieved by selecting the time step at:

$$\Delta t = 1.000.000 / (50 \times 80) = 250$$
 microseconds.

The voltages and currents captured by the reactor bank merging unit are plotted in Figure 6-18.

The WinIGS-T case files is named RTE-SYSTEM-B-EVENT-A.nmt and is provided with this report. The generated COMTRADE configuration and data files are named RTE-SYSTEM-B-EVENT-A_BLOCX.cfg and RTE-SYSTEM-B-EVENT-A_BLOCX.dat respectively.

Figure 6-17: Time Domain Simulation Parameters Dialog.

Figure 6-18: Time Domain Simulation Output Plot for Event A

6.2.2 Event B: UseCase_01.B

Event B is defined a Phase A to neutral fault on the bus A225D2. Figure 6-19 shows the fault model and fault model parameters dialog. This is a fault occurring outside Zone 4 and therefore the reactor breaker should not operate. The fault is initiated at 0.5 seconds from the start of the simulation and lasts 0.2 seconds.

BLOCAU	JX Substation - Case: RTE-	SYSTEM-B-EVENT-B	
			Ē
Copy Print Help			A225D2
Fault Model	Cancel	Accept	
Electric Fault with Clearing Logic			₩ ₩
Fault Conductance	100.0	Mhos	
Fault Start Time	0.5	seconds	
Fault Clearing Time	0.7	seconds	
First Node Name Second Node Name Circuit Name	A225D2_A A225D2_N 1		TRNS3-225

Figure 6-19: Network Model with Fault between Phase A and Neutral of Bus A225D2.

The simulation is executed for a period of one second. The measurements generated during the simulation are stored in a COMTRADE file. The time step is selected to match the standard merging unit sampling rate at 80 samples per cycle, which for a 50 Hz system is 250 microseconds (i.e. same as for Event A).

The voltages and currents captured by the reactor bank merging unit are plotted in Figure 6-20

The WinIGS-T case files is named RTE-SYSTEM-B-EVENT-B.nmt and is provided with this report. The generated COMTRADE configuration and data files are named RTE-SYSTEM-B-EVENT-B_BLOCX.cfg and RTE-SYSTEM-B-EVENT-B_BLOCX.dat respectively.

Figure 6-20: Time Domain Simulation Output Plot for Event B

6.3 EBP Results

This section presents the results obtained with the EBP relay for the use case and events described in Section 6.2. The EBP relay has been implemented within the WinXFM Program. In order to setup the EBP relay to run the use cases, execute the WinXFM program, open one of the provided WinXFM files, and click on the EBP button as indicated in Figure 6-21.

Ede Lot live Wordow DAQ Help Tools	' ⇒ ■ ● 辨 な 夢 ≌ 飽 跑 等 副 鞭 ≒ 習 管 置 置 風 弾 テ Ⅲ ≤ ?
	0 (0) 0152.0 Hz, 1024 Samples Cursor Uet Cursor Organization PMU
	Settingless Protection Relay Version 1.00 Copy Print Help Estimation Based Protection Close
	MU Data Concentrator Sar Sop Setup Circular Buffer ScAQCF Agath ScAQCF Agath COMTRADE Deta Star Stop Star ScAQCF Agath COMTRADE Deta Star Stop Star Common Parameter Common Parameter Stop Stop Stop Stop Stop Stop Stop Stop Start Deta Start Stare Start
0.000 s	1.863 ns
or Help, press F1	

Figure 6-21: Opening the EBP Main Setup Form in the WinXFM Program

6.3.1 Event a: UseCase_01.A

As described in Section 6.2, event A is defined as a Phase A to neutral fault on the REACTOR bus. To run the EBP relay using the Event A data, execute the WinXFM program and open the WinXFM file:

RTE-SYSTEM-B-EVENT-A

Note: this file is provided with this report under the file name RTE-SYSTEM-B-EVENT-A.xfm

Click on the Import button of the main EBP dialog window to open the "Device and Measurement File" dialog shown in Figure 6-22. Verify that the Zone_4 Device and Measurement files have been selected and that the two checkboxes titled Time Domain and Algebraic Companion Form are checked. Click on the Import button, and verify that the selected protection zone devices are listed and the active column is checked as illustrated in Figure 6-22. Click on the Accept button to close the Device and Measurement File dialog. This procedure imports the measurement definition and device model data generated using the WinIGS-T program and stored in the data files:

- Zone_4.TDMDEF (Measurement Definition File)
- Zone_4.TDSCAQCF (Device Model File)

	P	Device	and Measur	ement File	s	Cancel	Accept	
Model Domain Model Kind Time Domain Quasi-Dynamic Domain Differential Equation Form 								
De Loc	Device & Measurement Model Files Zone_4 Located at Directory Normalize Equations							
	C:\testcases\RTE_WinIGS-T_System_B\Test4_2\ Select Protection Zone Devices							
1 2	Code 192 116	Active V V	Description Breaker Reactor ba	n 4 Ink				
							Messages	

Figure 6-22: Importing Zone 4 Device and Measurement Definition Files

Next click on the Setup button of the COMTRADE Data block of the main EBP dialog (See Figure 6-23) to open the COMTRADE Data Playback dialog (shown in Figure 6-24). Verify that the **COMTRADE File Name** field indicates that the Event A waveform data has been selected: (file name: RTE-SYSTEM-B-EVENT-A_BLOCX). Also verify the following:

- Playback rate is set at **4000** samples per second for 50 Hz systems.
- Speed Factor radio button is selected and the speed factor is set to 20.0.

The speed factor option allows the relay response to be observed in slow motion. Otherwise, if you select the real time option, the playback will occur in real time and the whole process will be completed in one second i.e. the duration of the waveform data stored in the COMTRADE file.

Click on the **Close** button to close the COMTRADE Data Playback dialog.

MU Data Concentrator	Device & Measurement Mode
Update C Measuremer from C Estimates	Import Import Relay Settings View Block Diagram 0.00 Constraint
COMTRADE Data COMTRADE Data Start Stop Setup Target Closed Contract Closed Contract	mance Close Open Reset Parameter Estimate

Figure 6-23: Opening the COMTRADE Setup Dialog

Figure 6-24: Selecting the COMTRADE Data files for Playback

At this point, the system is ready to execute the EBP relay using the Event A data. It is

recommended to click on the **Save** () button of the main WinXFM user interface (Horizontal Tool-Bar) in order to save all entered setup parameters.

Click on the **Start** button of the EBP Relay block to start the EBP relay, then Click on the **Start** button of the COMTRADE Data block. (See Figure 6-25 for the location of these buttons).

Figure 6-25: Starting the EBP Relay Using Playback Data (COMTRADE)

A number of plots can be viewed on the main WinXFM user interface such as measured and estimated values trip decision etc. An example of such plots is given in Figure 6-26. A list of the available channels for plotting is shown in Figure 6-27. Note that the confidence level is nearly 100% before the fault, and reaches to almost zero immediately upon the fault initiation.

Figure 6-26: Plots of Measurement and Estimated Values, Confidence Level and Trip Decision during Event A

Available Channels	
1 Actual_Inst_Voltage_B~REACTOR_A_B~REACTOR_N	
2 Actual_Inst_Voltage_B~REACTOR_B_B~REACTOR_N	
3 Actual_Inst_Voltage_B~REACTOR_C_B~REACTOR_N	
5 Actual Inst Current B~REACTOR B	
6 Actual Inst Current B~REACTOR C	
7 Est_Meas_Actual_Inst_Voltage_B~REACTOR_A_B~REACTOR_	N
8 Est_Meas_Actual_Inst_Voltage_B~REACTOR_B_B~REACTOR_	N
9 Est_Meas_Actual_Inst_Voltage_B~REACTOR_C_B~REACTOR_	N
10 Est_Meas_Actual_Inst_Current_B~REACTOR_A	
12 Est Meas Actual Inst Current B~REACTOR C	
13 Est State B~REACTOR A	
14 Est_State_B~REACTOR_B	
15 Est_State_B~REACTOR_C	
16 Est_State_B~REACTOR_N	
17 Est_State_Internal_State_5	
19 Est State Internal State 7	
20 Est State Internal State 8	
21 Est_State_Internal_State_9	
22 Est_State_Internal_State_10	
23 Est_State_Internal_State_11	
24 ESI_State_Internal_State_12	
26 Est State Internal State 14	
27 Est_State_Internal_State_15	
28 Est_State_Internal_State_16	
29 Est_State_Internal_State_17	
30 Est_State_Internal_State_18	
32 Est State Internal State 20	
33 Est State Internal State 21	
34 Est_State_Internal_State_22	
35 Est_State_Internal_State_23	
36 Est_State_Internal_State_24	
37 Est_State_Internal_State_25	
39 Residual Actual Inst Voltage B~REACTOR B B~REACTOR N	
40 Residual_Actual_Inst_Voltage_B~REACTOR_C_B~REACTOR_N	
41 Residual_Actual_Inst_Current_B~REACTOR_A	
42 Residual_Actual_Inst_Current_B~REACTOR_B	
43 Residual_Actual_Inst_Current_B~REACTOR_C	N
44 Norm_Res_Actual_Inst_Voltage_D~REACTOR_A_D~REACTOR_ 45 Norm_Res_Actual_Inst_Voltage_B~REACTOR_B_B~REACTOR_	N
46 Norm Res Actual Inst Voltage B~REACTOR C B~REACTOR	N
47 Norm_Res_Actual_Inst_Current_B~REACTOR_A	
48 Norm_Res_Actual_Inst_Current_B~REACTOR_B	
49 Norm_Res_Actual_Inst_Current_B~REACTOR_C	
50 Chi_Square	
52 Execution time	
53 Trip Decision	
54 Avg_covariance	
55 Min_covariance	
56 Max_covariance	

Figure 6-27: Available Data for Plotting on the Main WinXFM Window

6.3.2 Event b: UseCase_01.B

Event B is defined as a Phase A to neutral fault on bus **A225D2**. To run the EBP relay using the Event B simulated waveforms, execute the WinXFM program and open the WinXFM file:

RTE-SYSTEM-B-EVENT-B

Note: this file is provided with this report under the file name RTE-SYSTEM-B-EVENT-B.xfm

Click on the Import button of the main EBP dialog window to open the "Device and Measurement File" dialog shown in Figure 6-28. Verify that the Zone_4 Device and Measurement files have been selected and that the two checkboxes titled TDSCAQCF and TDMDEF are checked. Click on the Import button, and verify that the selected protection zone devices are listed and the active column is checked as illustrated in Figure 6-28. Click on the Accept button to close the Device and Measurement File dialog. This procedure imports the measurement definition and device model data generated using the WinIGS-T program and stored in the data files:

- Zone_4.TDMDEF (Measurement Definition File)
- Zone_4.TDSCAQCF (Device Model File)

	P	Device	and Meas	suremen	t Files	Cancel	Accept		
Model DomainModel KindImage: Image:									
De ⊢ Loo	Device & Measurement Model Files Zone_4								
	C:\testcases\RTE_WinIGS-T_System_B\Test4_2\								
	Select Protection Zone Devices								
	Code	Active	Descrip	tion					
1	192	V	Breake	er 4 bonk					
2	110	V	Reactor	Dalik					
							Messages		
Program	WinXFM - F	orm SET_PI	RO_IMPORT_N	IODEL					

Figure 6-28: Importing Zone 4 Device and Measurement Definition Files

Next click on the Setup button of the COMTRADE Data block of the main EBP dialog (See Figure 6-29) to open the COMTRADE Data Playback dialog (shown in Figure 6-30).

Figure 6-29: Opening the COMTRADE Setup Dialog

Verify that the **COMTRADE File Name** field indicates that the Event B waveform data has been selected: (file name: RTE-SYSTEM-B-EVENT-B_BLOCX). Also verify the following:

- Playback rate is set at **4000** samples per second for 50 Hz systems.
- Speed Factor radio button is selected and the speed factor is set to 20.0.

The speed factor option allows the relay response to be observed in slow motion. Otherwise, if you select the real time option, the playback will occur in real time and the whole process will be completed in one second i.e. the duration of the waveform data stored in the COMTRADE file.

Click on the **Close** button to close the COMTRADE Data Playback dialog.

Figure 6-30: Selecting the COMTRADE Data Files for Playback

At this point, the system is ready to execute the EBP relay using the Event B data. It is recommended to click on the **Save** (\supseteq) button of the main WinXFM user interface (Horizontal Tool-Bar) in order to save any modified setup parameters.

Click on the **Start** button of the EBP Relay block to start the EBP relay, then Click on the **Start** button of the COMTRADE Data block. (See Figure 6-31 for the location of these buttons).

Figure 6-31: Starting the EBP Relay Using Playback Data (COMTRADE)

A number of plots can be viewed on the main WinXFM user interface such as measured and estimated values trip decision etc. An example of such plots is given in Figure 6-32. Note that the confidence level is nearly 100% before the fault, as well as during the fault. Note that the breaker remains closed (as expected) since the fault is outside the protection zone.

Figure 6-32: Plots of Measurement and Estimated Values, Confidence Level and Trip Decision during Event B

7. Summary, Conclusions and Future Work

The application of setting-less protection on the RTE substation BLOCAUX has been demonstrated on selected protection zones of the substation. The application was testing with numerical experiments and at the laboratory with hardware in the loop. The application was focused on four protection zones of the BLOCAUX substation. Three of the protection zones represent a unit protection. Specifically the protection zone consists of a 90 kV three phase cable and a three winding transformer protected as a single unit. The forth protection zone consists of a three phase reactor bank. The results demonstrate the feasibility of the approach.

The report also describes a new development, the ability to correct for instrumentation channel errors within a merging unit. The method has been demonstrated with numerical examples. The method performs remarkably well correcting the instrumentation channel error even in cases when the instrument transformer experiences high saturation.

The future plan is to install the setting-less relays in the field. The timetable will depend on the utility.
Appendix A: RTE Model: Device List and Parameters

The list of devices that have been modeled is provided in Table A-1. The columns provide information about the device location, type (transmission line, transformer, etc.) and name. The device name consists of its operating voltage, device type and the bus/buses that the device is connected to.

Location	Device Type	Name
	3 phase	225 kV SOURCE LIMEUX
	Source	225 kV SOURCE ARGOEUVES
		225 kV Transmission Line From S-LIMEUX To LIMEUX
	Transmission Line	225 kV Transmission Line From ARGEOUVES To S-ARGEVS
Outside of		90 kV Transmission Line From L-NFCHAUM To NFCH~AUM2
Substation		90 kV Transmission Line From L-BOURBEL To BOURBEL
		90 kV Transmission Line From L-CROIXRA To CROIXRAUL
		90 kV Transmission Line From L-AUMALE1 To AUMALE1
		90 kV Transmission Line From ALLEUX~F2 To L-ALLX-F2
		90 kV Transmission Line From FOUILLOY1 To L-FOUILLO

	Table A-1: Tabulation	of Major	Devices	Included	in the	Model
--	-----------------------	----------	---------	----------	--------	-------

		90 kV Transmission Line From ALLEUX1 To L-ALLEUX1	
		90 kV Load NEUFCHATEL-AUMALE 2	
		90 kV Load BOURBEL	
		90 kV Load CROIXRAULT	
	Load	90 kV Load AUMALE1	
		90 kV Load ALLEUX FOUILLOY2	
		90 kV Load FOUILLOY 1	
		90 kV Load ALLEUX1	
		90 kV cable 1	
	Underground Cable	90 kV cable 2	
		90 kV cable 3	
Inside the		225/93/10.5 kV Transformer 641	
Substation	3-Winding Transformer	225/93/9.9 kV Transformer 642	
		225/93/10 kV Transformer 643	
	2- Winding	10.5/0.23 kV Transformer 1	
	Transformer	9.9/0.23 kV Transformer 2	

	10.0/0.23 kV Transformer 3
3-Phase Reactor	245 kV 3 phase shunt reactor

The parameters of the major devices of the model are provided in this section. Most of the parameters are taken from the documents provided by RTE. The objective of this part of the report is to provide a working document on which RTE personnel will mark the correct parameters of the various components.

The single line diagram of the modeled power system including the BLOCAUX substation and its external links are shown in Figure A-1. The substation is connected to the power grid via two 225 kV transmission lines terminated to two substations. The remaining system past these two substations is represented as two equivalent sources. On the 90 kV level, seven 90 kV transmission lines connect the substation to several substations of the power grid. Because of lack of information, the rest of the 90 kV power grid is represented with loads – this may change, most likely we need an equivalent.

The parameters of the major components of the system are provided in several Appendices.

Appendix B provides the parameters of all components in the 225 kV section of the substation BLOCAUX.

Appendix C provides the parameters of all components in the 90 kV section of the substation BLOCAUX.

Appendix D provides the parameters of all components connecting the 90 kV and 225 kV sections of the substation BLOCAUX.

Appendix E provides the parameters of all components in the external 225 kV system.

Appendix F provides the parameters of all components in the external 90 kV system.

Appendix G provides the protection zones of the BLOCAUX substation which were considered for protection using the setting-less relay.

Figure A-1: Single Line Diagram of the RTE System including the BLOCAUX Substation and Its External Links

Appendix B: BLOCAUX Substation 225 kV Section

The parameters of all components in the 225 kV section of the substation BLOCAUX are provided here. The 225-kV bus configuration of the substation is shown in the figure below. We provide the parameters for all components appearing in the single line diagram of Figure B-1.

Figure B-1: Single Line Diagram of 225 kV Section

Figure B-2: 245 kV Shunt Reactor Parameters

Figure B-3: 225/93/10.5 kV Transformer 641 Parameters

Copy Print Help						
3-Phase 3-Winding Transformer Cancel Accept						
		3 Winding Tr	ansformer	642		
Short Circuit Test Data (PU) Winding Impedances (Ohms)						
R 2 P-S 0.0105 0.1	K 283	Base (MVA) 100.0	Ohms		Winding Resistance	Leakage Reactance
P-T 2.061699 39.7 S-T 2.068787 39	7483 .62	100.0	 Per Unit Per Cent 	P S	2.6578 0.45407	33.704 5.7581
				T	6.0674	121.10
Primary Secondary Tertiary XFM2~225 XFM2~93 XFM2~9.9 Circuit Number 225.0 kV (L-L) 93.0 kV (L-L) 9.9 kV (L-L) 1 C C C C Phase Connection						
B (Wye C Delta	A A A A A A A A A A A A A A A A A A A					 Standard Alternate
Core Parameters (PU) Nominal Core Loss : 0.001 pu						
	Exponent (n) 50					
¥	Flux Constant (2,) 1.0 pu					
$i(t) = i_0 \left \frac{\lambda(t)}{\lambda_0} \right ^n \times sign(\lambda(t))$ Base (MVA): 100.00						
Sequence		Pos/Neg	Primary Zer	o S	econd. Zero	Ground Zero
Parameters (PU)	R	0.01050	0.007508		0.002996	3.398
Equivalent Circuit	X	0.1283	0.1256		0.002694	37.85

Figure B-4: 225/93/9.9 kV Transformer 642 Parameters

Copy Print Help					
3-Phase 3-WindingTran	sformer	1 AC	Canc	el Accept	
	3 Winding T	ransformer (6 <mark>43</mark>		
Short Circuit Test Data (Pl	ר)		Winding Imp	edances (Ohms)	
R X P-S 0.011 0.1331	Base (MVA) 100.0	Ohms	Windin Resista	ng Leakage nce Reactance	
P-T 2.1924 32.1731	100.0	Per Unit Per Cent	P 2.784	4 35.122	
S-T 2.1988 32.04	100.0	O Per Cent	S 0.4757	70 6.0003 9 100.41	
			1 0.575	5 100.41	
Primary Secondary Tertiary					
225.0 kV (1 1) 93.0 kV (1 1) 10.0 kV (1 1) 1					
A B A B A B A Connection (© Wye O Delta (© Wye O Delta O Wye (© Delta O Wye O Delta O					
Core Parameters (PU) Nominal Core Loss : 0 001 pu					
Nominal Magnetizing Current : 0.001 pu					
Exponent (n) 5.0					
$Flux Constant (\lambda_0) 1.0 pu$					
Base (MVA) : 100.00					
Sequence Parameters (PU)	Pos/Neg	Primary Zero	Second. Ze	ro Ground Zero	
R	0.01100	0.007396	0.003608	3.050	
Equivalent Circuit X	0.1331	0.1308	0.002301	30.84	
Program WinIGS-Q - Form IGS_M10					

Figure B-5: 225/93/10.0 kV Transformer 643 Parameters

Figure B-6: 2 Winding Transformer 1 Parameters

Figure B-7: 2 Winding Transformer 2 Parameters

Figure B-8: 2 Winding Transformer 3 Parameters

Appendix C: BLOCAUX Substation 90 kV Section

The parameters of all components in the 90 kV section of the substation BLOCAUX are provided here. The 90-kV bus configuration of the substation is shown in Figure C-1. We provide the parameters for all components appearing in the single line diagram of Figure C-1.

Figure C-1: Single Line Diagram of 90 kV Section

Appendix D: Cables Between 225 kV and 90 kV Section

The parameters of the three cables connecting the 225 kV and 90 kV sections of the substation BLOCAUX are provided here. The three 90 kV cables connect the 90 kV section to the 90 kV side of the transformers in the 225 kV section.

Figure D-1: 90 kV cable 1 Parameters, Inside Substation

Figure D-2: 90 kV cable 2 Parameters, Inside Substation

Figure D-3: 90 kV cable 3 Parameters, Inside Substation

Appendix E: 225 kV External System

The parameters of all components in the external 225 kV system are provided here. The single line diagram is shown in Figure E-1.

Figure E-1: Single Line Diagram of the External 225 kV System

There are two voltage sources and two transmission lines connecting the sources to the substation BLOCAUX. The parameters of the voltage sources Limeux and Argeouves are given in the Figure E-2 and Figure E-3, respectively. The 225 kV transmission line parameters are given as in Figures E-4 and Figure E-5.

Figure E-2: 225 kV Source Limeux Parameters

Figure E-3: 225 kV Source Argeouves Parameters

Figure E-4: 225 kV Transmission Line From S-Limeux to Limeux Parameters

The detailed data of this transmission line is not provided by Feb 05, 2017. It is modelled using the same tower structure as for line From Argeouves to BLOCAUX substation. Table below provides a comparison of the modeled line parameters with the provided data.

	blocaux limeux	WinIGS Model
Rd	0.721	0.813
Xd	5.419	5.242
R0	4.68	4.126
X0	7.652	14.62

		225.0	kV Line From ARGEOUVES T	o S-ARGEVS		AutoTitle	Cancel
Line S	Sections		Edit	Сору	Delete	Up	Down
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res
1	4.785 mi	0.2175 mi	RTE-C1TB3_W	AAC/ASTER_570	AAC/PHLOX_116.2	25.0	100.0
2	20.968 mi	0.1762 mi	RTE-C1TB3_W_NOGAURD	AAC/ASTER_570	N/A	25.0	100.0
3	3.458 mi	0.2029 mi	RTE-C1TB3_W	AAC/ASTER_570	AAC/PHLOX_147.1	25.0	100.0
•							
Bus N	ame, Side 1		Circuit Number	Length from G) S	Bus	Name, Side 2
_	ARGEO	UVES	1	N/A		S-ARGEV	'S
	ASTER	670 / PHLOX_118.2	,	ASTER_570	ASTER_	070 / PHLOX_147.1	
		4.785 miles	2	L22222221 20.968 miles	3	458 miles	
Tota	al Length: 29	.21 miles, 1	54234 ft		Operating Voltage (kV)	2	25.0

Figure E-5: 225 kV Trasmission Line From Argeouves to S-Argevs Parameters

Based on the provided data, it is seen that this line has different sections with and without the guard conductor. Also, the guard conductor is different and there are two types of those. Therefore, both guard conductor types are modelled as well as the phase conductors. Tower structure is also modified to with-guard and no-guard. Table below provides a comparison of the modeled line parameters with the provided data.

	argoeuvre blocaux	WinIGS Model
Rd	2.47	2.726
Xd	16.443	17.589
R0	8.79	10.841
X0	52.472	61.797

Appendix F: 90 kV External System

The parameters of all components in the external 90 kV system are provided here. The system is shown in Figure F-1.

Figure F-1: Single Line Diagram of the External 90 kV System

Because of lack of information, we applied a load at the other ends of the 90 kV lines. We expect that in the final model we will have an equivalent representation of the stem at the other end of the 90 kV circuits. The parameters of the external 90 kV transmission lines are given in Figures F-2 to F-8.

Figure F-2: 90 kV Transmission Line From Fouilloy1 to L-Fouillo Parameters

	Blocaux - Fouil 1	WinIGS Model
Rd	0.79	0.809
Xd	2.11	1.954
R0	2.209	2.369
X0	6.639	5.908

90	kV Trans	mission L	ine From L-CROI	KRA To CROIXR	AUL-SEC1	AutoTitle	Cancel
Line	Sections	5	Edit	Сору	Delete	Up	Down
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res 🔺
1	9.1197 mi	0.1361 mi	RTE-KBF-NOGAURD	AAC/CANNA_228	N/A	25.0	100.0
2	4.2977 mi	0.2047 mi	RTE-KBF	AAC/ASTER_228	AAC/PHLOX_94.1	25.0	100.0
Bus	Name, Side	e 1	Circuit Number	Length from	GIS	Bus Nam	e, Side 2
	L-CROI	XRA		N/A	C	ROIXRA	UL -
	CANNA_228 ASTER_228 / PHLOX_94.1 Image: Canna and the second secon						
Tot	al Lengtl	h: 13.42	miles, 70844 ft	Opera	ating Voltage (kV)	90	0.0

Figure F-3: 90 kV Transmission Line From L-Croixra to Croixraul Parameters

Similar to the "argoeuvre blocaux" line, this line ("blocaux croiraux") has also sections with and without guard conductor. Therefore, both cases are considered in the model. Table below provides a comparison of the modeled line parameters with the provided data.

	blocaux croiraux	WinIGS Model
Rd	3.28	3.328
Xd	8.44	8.063
R0	7.153	7.282
X0	28.989	29.515

g	00 kV Tran	smission	Line From L-BOU	RBEL To BOURE	BEL-SEC1	AutoTitle	Cancel	
Line	Sections	5	Edit	Сору	Delete	Up	Down	
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res	
1	10.655 mi	0.1567 mi	RTE-KBF-NOGAURD	AAC/CROCUS_228	N/A	25.0	100.0	
2	1.5463 mi	0.1718 mi	RTE-KBF	AAC/ASTER_228	AAC/PHLOX_52.4	25.0	100.0	
3	7.9333 mi	0.1984 mi	RTE-KBF	AAC/ASTER_228	AAC/PHLOX_94.1	25.0	100.0	
Bus	Name Side	e 1	Circuit Number	Length from	GIS	Bus Nar	ne. Side 2	
-	L-BOUR	BEL	1	N/A		BOURB	EL	
	CR	OCUS_228	AS	TER_228 / PHLOX_52.4	ASTER	228 / PHLOX_94.1		
Tot	al Length	n: 20.13	miles, 106311 ft	Oper	ating Voltage (kV)	9	0.0	

Figure F-4: 90 kV Transmission Line From L-Bourbel to Bourbel Parameters

	blocaux bourbel	WinIGS Model
Rd	3.57	4.944
Xd	9.19	11.589
R0	7.71	11.546
X0	31.167	41.915

	90 kV Tra	nsmissio	n Line From L-AUM	ALE1 TO AUMAL	E1-SEC1	AutoTitle	Cancel	
Line	Sections	5	Edit	Сору	Delete	Up	Down	
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res	
1	0.673 mi	0.1346 mi	RTE-H1TT-NOGAURD	AAC/CROCUS_228	N/A	25.0	100.0	
2	0.8451 mi	0.1690 mi	RTE-H1TT	AAC/ASTER_228	AAC/PHLOX_94.1	25.0	100.0	
•							Þ	
Bus	Name, Side	e 1	Circuit Number	Length from	n <mark>GI</mark> S	Bus Na	ame, Side 2	
-	L-AUM/	ALE1	1	N/A		AUMAL	.E1	
		CROC	US_228		ASTER 228 / PHLOX 94	k.1		
Tot	al Lengt	h: 1.52 m	niles, 8016 ft	Ope	rating Voltage (k)	/)	90.0	

Figure F-5: 90 kV Transmission Line From L-Aumale1 to Aumale1 Parameters

	aumal blocaux	WinIGS Model
Rd	0.32	0.369
Xd	0.83	0.906
R0	0.746	0.744
X0	2.778	3.355

9	0 kV Trar	nsmission	Line From ALLEL	JX~F2 To L-ALL	X-F2-SEC1	AutoTitle	Cancel
Line	Section	IS	Edit	Сору	Delete	Up	Down
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res
1	4.993 mi	0.1664 mi	RTE-KBF	AAC/ASTER_228	AAC/PHLOX_94.1	25.0	100.0
2	1.008 mi	0.2017 mi	RTE-KBF	AAC/CANNA_228	AAC/PHLOX_94.1	1 25.0	100.0
3	1.440 mi	0.160 mi	RTE-KBF-NOGAURD	AAC/ASTER_228	N/A	25.0	100.0
4	3.246 mi	0.1708 mi	RTE-KBF-NOGAURD	AAC/CANNA_228	N/A	25.0	100.0
Bus	Name, Si	de 1	Circuit Number	Length from	n GIS	Bus Nar	ne, Side 2
-	ALLEU	X~F2	1	N/A		L-ALLX-	F2 -
	ASTER_228 / PH	HLOX_94.1	CANNA 228 / PHLOX_94.1	ASTE/ 	2 228	CANNA_22	2
Tot	al Leng	th: 10.69	miles, 56427 ft	Ope	rating Voltage (kV	/) 9	0.0
				Mahammulan 4000	2010		

Figure F-6: 90 kV Transmission Line From Alleux~F2 to L-Allx-F2 Parameters

Table below provides a comparison of the modeled line parameters with the provided data. The difference between the provided data and the modelled values might be due to the fact that the model considers all the line sections in parameter calculation from the "Blocaux" substation up to the load at the end of the line. However, as the line name shows: "ALLEUX (GRANDVILLIERS-BLOCAUX-FOUILLIOY 2", it has a substation on the way. Thus, it is highly probable that the provided data is only for one of these sections since they are lower than the modeled values.

	Blocaux - Fouil 2	WinIGS Model
Rd	0.78	2.601
Xd	2.08	6.280
R0	1.867	6.283
X0	6.79	22.381

	90 kV ⁻	Transmiss	sion Line From AL	LEUX1 To L-AL	LEUX1	AutoTitle	Cancel
Line	Section	S	Edit	Сору	Delete	Up	Down
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res
1	Length Span Tower Phases Shields 8.3277 mi 0.1696 mi RTE-KBF AAC/ASTER_228 AAC/PHLOX_S 2 2.1697 mi 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 N/A 2 2.1697 mi 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 N/A 3 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 N/A 4 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 N/A 5 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 N/A 5 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 N/A 5 0 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 5 0 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 5 0 0.1669 mi RTE-KBF-NOGAURD AAC/CANNA_228 5 0 0 0 0 6 1 0.1669 mi 0 0 6 1 0.1669 mi 0 0 6 1 0.1669 mi 0 0	AAC/PHLOX_94.1	25.0	100.0			
2	2.1697 mi	0.1669 mi	RTE-KBF-NOGAURD	AAC/CANNA_228	N/A	25.0	100.0
		3277 mi 0.1696 mi RTE-KBF 1697 mi 0.1669 mi RTE-KBF-NOG me, Side 1 Circuit Nu ALLEUX1 1					
•							Þ
Bus	Name, Sid	e 1	Circuit Number	Length from	GIS	Bus Nar	ne, Side 2
_	ALLEU	JX1	1	N/A		L-ALLEU	J <mark>X1</mark> _
		ASTER_228 / 1	PHLOX_94.1		CANNA_228		
Tot	al Lengt	h: 10.50	miles, 55426 ft	Oper	rating <mark>Volt</mark> age (kV	') <mark>9</mark>	0.0
Winte	S-0 - Form	1GS M110	- Convright © A P	Melionoulos 1998-2	013		

Figure F-7: 90 kV Transmission Line From Alleux1 to L-Alleux1 Parameters

	Alleux blocaux	WinIGS Model
Rd	2.518	2.522
Xd	6.702	6.072
R0	6.672	6.684
X0	21.033	20.689

90) kV Trans	smission	Line From L-NFCH	AUM To NFCH~	AUM2-Sec1	AutoTitle	Cancel
Line	Sections	5	Edit	Сору	Delete	Up	Down
	Length	Span	Tower	Phases	Shields	Gnd Res	Soil Res
1	11.282 mi	0.1762 mi	RTE-J1AT-NOGAURD	AAC/CANNA_356	N/A	25.0	100.0
2	0.6891 mi	0.1149 mi	RTE-J1AT-NOGAURD	AAC/CANNA_228	N/A	25.0	100.0
3	6.307 mi	0.1577 mi	RTE-J1AT-NOGAURD	AAC/ASTER_228	N/A	25.0	100.0
4	0.791 mi	0.1979 mi	RTE-J1AT	AAC/ASTER_228	AAC/PHLOX_94.1	25.0	100.0
5	1.5059 mi	0.188 mi	RTE-J1AT	AAC/ASTER_228	AAC/PHLOX_52.4	25.0	100.0
•							
Bus	Name, Side	e 1	Circuit Number	Length from	n GIS	Bus Na	me, Side 2
	L-NFCH	AUM	1	N/A	1	VFCH~A	UM2
	CANNA_358		CANNA_228	ASTER_228	ASTER 228 / PHLOX_94.1	ASTER 228	/ PHLOX_52.4
Tot	al Lengtl	h: 20.58	miles, 108636 ft	Ope	rating Voltage (kV	/) 9	90.0

Table below provides a comparison of the modeled line parameters with the provided data. Again, since the line has passed a substation on the way to the load, the provided data that is for only one of these sections differs from the the modeled values that are calculated for the line from "Blocaux" substation to the load.

	aumal blocaux	WinIGS Model
Rd	0.31	4.024
Xd	0.82	12.392
R0	0.733	9.001
X0	2.685	46.476

Figure F-8: 90 kV Transmission Line From L-NFCHAUM to NFCH~AUM2 Parameters

Appendix G: Definition of Protection Zones Under Consideration

This Appendix defines four protection zones. These zones are targeted for application of the setting-less protective relay. It should be understood that these zones do not represent all the protection zones of this substation.

Each protection zone is presented in terms of the following:

- 1. The physical system to be protected. The protection zone is connected to the rest of the system with interrupting devices (breakers).
- 2. The merging units or data acquisition system that perform measurements at the protection zone. The specific measurements are identified.

Protection Zone 1

This protection zone comprises the 90 kV Cable 1 plus the 225 kV/93 kV/10.5 kV Transformer 641.

The protection zone can be isolated from the system by the breakers: the Breaker 1_1 and Breaker 1_2.

Three merging units (Merging Unit 1, 2 and 8) collect measurements to be fed into the settingless relay.

Figure G-1: Protection Zone 1

Figure G-2: 225 kV / 93 kV / 10.5 kV Transformer 641 Parameters

Figure G-3: 90 kV Cable 1 Parameters

Yolanda-PC				_ C X
Copy Print Help				
Intelligent Electronic De	evice	Can	:el	Accept
Substation none Description Merging Unit 1 Manufacturer GE Model MU320_GE Font Size 1.0 Instr Non-Synchronized	PMU Name PMU Alias umentation	MU320 ALIAS Measuremen	ts	 ✓ IED Active Update SDC File ✓ Update COMTRADE File ✓ Format ○ Rectangular ○ Polar ○ Record Frequency ○ Record dF/dt ○ Evaluate M from I ○ Add Error
Phasor Streaming (C37.118) Local IP Address: 143.215.115 UDP Port Number: 0 Outstation IP Address: 192.168.0.92 TCP Port Number: 20000 Outstation ID: 7 Set Rate	.187 • • • • • • • • • • • • • • • • • • •	Connect Start Stop Disconnect Copy CFG /iew CFG Frame /iew Data Frame		col TCP UDP-1 UDP-2 TCP/UDP Adjust PC Clock
		Clear		

Figure G-4: Merging Unit 1 (Captures the Measurements of 225 kV/93 kV /10.5 kV Transformer 641)

	Mame	Tune	StdDay	Cosla	Value	But	Phase		Pur Dev			luter	Tao	Cable	Length	IED	Call	Offe
00000	CT225 D1 A CT225 D1 B CT225 D1 C CT25 D1 C CT10 D2 A CT10 D2 C	C-Phasor C-Phasor C-Phasor C-Phasor C-Phasor C-Phasor	0.010000 0.010000 0.010000 0.010000 0.010000 0.010000	4000,000 4000,000 4000,000 4000,000 4000,000 4000,000		XFM1-225 XFM1-225 XFM1-225 XFM1-10.5 XFM1-10.5 XFM1-10.5	A B C A B C	3 Winding Transformer 641 3 Winding Transformer 641 3 Winding Transformer 643 3 Winding Transformer 643 3 Winding Transformer 641	(Transformer at XFM1 (Transformer at XFM1 (Transformer at XFM1 (Transformer at XFM1 (Transformer at XFM1) (Transformer at XFM1)	225 FFM1-93 XFM 225 FFM1-93 XFM 225 FFM1-93 XFM 225 FFM1-93 XFM 225 XFM1-93 XFM 225 XFM1-93 XFM	11-10.5, Gricut 1) 1-10.5, Gricut 1) 1-10.5, Gricut 1) 1-10.5, Gricut 1) 1-10.5, Gricut 1) 1-10.5, Gricut 1)	CT2000-5-MR CT2000-5-MR CT2000-5-MR CT2000-5-MR CT2000-5-MR	x2,x3 x2,x3 x2,x3 x2,x3 x2,x3 x2,x3 x2,x3 x2,x3 x2,x3	COP PAR.10 COP PAR.10 COP PAR.10 COP PAR.10 COP PAR.10 COP PAR.10	200.00 200.00 200.00 200.00 200.00 200.00	MU320 MU320 MU320 MU320 MU320 MU320	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	
	Mo	ove U	p			New	v +		Delete		Auto	Default			0	Canc	el	

Figure G-5: Instrumentation Channels of Merging Unit 1

PTIN	t Help			_		_				_	_			
				Μ	eas	sur	em	ent C	han	ne	Is			
	Name XFM1-225_XFM1-91_XFM1-10.5_1_XFM1-225_A _XFM1-222_XFM1-91_XFM1-10.5_1_XFM1-225_B _XFM1-222_XFM1-93_XFM1-10.5_1_XFM1-225_ _XFM1-225_XFM1-93_XFM1-10.5_1_XFM1-20.5_25_ _XFM1-225_XFM1-93_XFM1-10.5_1_XFM1-10.5_25_	IED Alias	Type C.Phasor C.Phasor C.Phasor C.Phasor	Value	Nominal 640.0 A 640.0 A 640.0 A 640.0 A 640.0 A	Scale 4.000 kA 4.000 kA 4.000 kA 4.000 kA 4.000 kA	St.Dev 0.01000 pa 0.01000 pa 0.01000 pa 0.01000 pa 0.01000 pa	Correction 0.998 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg	Bus NFM1-225 XFM1-225 XFM1-225 XFM1-225 XFM1-10.5	Phase A B C ZS ZS ZS	IED MU320 MU320 MU320 MU320 MU320	Winding Transformer 641 (Transformer Winding Transformer 641 (Transformer	*wr Dev at XFM1-225 XFM at XFM1-225 XFM at XFM1-225 XFM XFM1-225 XFM at XFM1-225 XFM	1–93 XFM1–10.5, Circuit 1–93 XFM1–10.5, Circuit 1–93 XFM1–10.5, Circuit 1–93 XFM1–10.5, Circuit 1–93 XFM1–10.5, Circuit
	Move Up		Nev	N			D	elete			A	uto Update		Cancel
Move Down		Edit				Auto Create			Auto Mapping				Accept	

Figure G-6: Measurement Channels of Merging Unit 1

Volanda-PC			
Copy Print Help			
Intelligent Electronic D	evice	Cance	l Accept
Substation none Description Merging Unit 2 Manufacturer GE Model MU320_GE Font Size 1.0 Instr Non-Synchronized	PMU Name PMU Alias	MU320 ALIAS Measurements	 ✓ IED Active Update SDC File ✓ Update COMTRADE File Format C Rectangular Format Polar Record Frequency Record dF/dt Evaluate M from I Add Error
Phasor Streaming (C37.118 Local IP Address: 143.215.118 UDP Port Number: 0 Outstation IP Address: 192.168.0.92 TCP Port Number: 20000 Outstation ID: 7 Set Rate	3) 5.187 ▼ Copy 2 4	Connect Start Stop Disconnect Copy CFG View CFG Frame View Data Frame	Protocol TCP UDP-1 UDP-2 TCP/UDP Adjust PC Clock
		Clear	
Program WinIGS-Q - Form IGS_	M007_MAIN		

Figure G-7: Merging Unit 2 (Captures the Measurements of 90 kV Cable 1)
V_PT V_PT V_PT C_CT C_CT	Name 90_D1_AN 90_D1_BN 90_D1_CN 90_D1_A 90_D1_B 90_D1_C	Type V-Phasor V-Phasor V-Phasor C-Phasor C-Phasor C-Phasor	StdDev 0.010000 0.010000 0.010000 0.010000 0.010000 0.010000	Scale 300000.000 300000.000 300000.000 48000.000 48000.000 48000.000	Value	Bus CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90	Phase AN BN CN A B C	Per Dev Per Dev Op KV Cable 1 (Cable at CABLE 1-90 XFM1-93, Circuit 1) 90 KV Cable 1 (Cable at CABLE 1-90 XFM1-93, Circuit 1) 90 KV Cable 1 (Cable at CABLE 1-90 XFM1-93, Circuit 1) 90 KV Cable 1 (Cable at CABLE 1-90 XFM1-93, Circuit 1) 90 KV Cable 1 (Cable at CABLE 1-90 XFM1-93, Circuit 1) 90 KV Cable 1 (Cable at CABLE 1-90 XFM1-93, Circuit 1)	bdmr PT-69K PT-69K PT-69K CT2000-5-MR CT2000-5-MR CT2000-5-MR	Tap Y2-Y3 Y2-Y3 Y2-Y3 X2-X3 X2-X3 X2-X3	Cable COP-PAIR-10 COP-PAIR-10 COP-PAIR-10 COP-PAIR-10 COP-PAIR-10 COP-PAIR-10	Length 200.00 200.00 200.00 200.00 200.00 200.00	IED MU320 MU320 MU320 MU320 MU320 MU320	CallF 1.00 1.00 1.00 1.00 1.00 1.00	Offs 0.00 0.00 0.00 0.00 0.00 0.00	Attn 1 00 1 00 1 00 1 00 1 00 1 00	Peak 300.00 300.00 300.00 300.00 300.00 300.00	Rb 1000.00 1000.00 1000.00 1000.00 1000.00
J				6 T														

Figure G-8: Instrumentation Channels of Merging Unit 2

Print	Help												
					M	eas	ure	ment	Ch	an	ne	ls	
v v v c c c c c	Name CABLE1-40_AN CABLE1-40_GN CABLE1-40_CN CABLE1-40_CN CABLE1-40_XNII-43_1_CABLE1-40_A CABLE1-40_XNII-43_1_CABLE1-40_C CABLE1-40_XNII-43_1_CABLE1-40_ZS	IED Alles	Type V-Phasor V-Phasor C-Phasor C-Phasor C-Phasor	Value	Nominal 51.96 kV 51.96 kV 51.96 kV 640.0 A 640.0 A 640.0 A	Scale 300.0 kV 300.0 kV 48.00 kA 48.00 kA 48.00 kA 48.00 kA	SLDev 0.01000 ps 0.01000 ps 0.01000 ps 0.01000 ps 0.01000 ps 0.01000 ps 0.01000 ps	Correction 0.4977-0.030 Deg 0.4977-0.030 Deg 0.4977-0.030 Deg 0.182/26733 Deg 0.182/26733 Deg 0.182/26733 Deg 0.182/26733 Deg	Bus CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90 CABLE1-90	Phase AN BN CN A B C ZS	IED MU320 MU320 MU320 MU320 MU320 MU320	Per Dev 90 kV Catle 1 (Cable at CABLE1-90 XINII-93, Carolt 90 kV Catle 1 (Cable at CABLE1-90 XINI-93, Carolt	Pormula) V.PT.90.DL,AN) V.PT.90.DL,BN) V.PT.90.DL,BN) V.PT.90.DL,CN C.CT.90.DL,A C.CT.90.DL,A C.CT.90.DL,A C.CT.90.DL,A C.CT.90.DL,A+C_CT.90.DL C.CT.90.DL,A+C_CT.90.DL
	Move Up Move Down			Ne	w		A	Delete auto Cre	e ate			Auto Update Auto Mapping	Cancel

Figure G-9: Measurement Channels of Merging Unit 2

III Yolanda-PC	10.0		
Copy Print Help			
Intelligent Electronic D	evice	Cancel	Accept
Substation none Description Merging Unit 8 Manufacturer GE Model MU320_GE Font Size 1.0 Instr Non-Synchronized	PMU Name PMU Alias rumentation	MU320 ALIAS Measurements	 ✓ IED Active Update SDC File ✓ Update COMTRADE File ✓ Format ○ Rectangular ○ Polar ○ Record Frequency ○ Record dF/dt ○ Evaluate M from I ○ Add Error
Phasor Streaming (C37.118 Local IP Address: 143.215.115 UDP Port Number: 0 Outstation IP Address: 192.168.0.92 TCP Port Number: 20000 Outstation ID: 7 Set Rate	3)	Connect P Start Stop Disconnect Copy CFG /iew CFG Frame ////////////////////////////////////	Image: Second state
Program WinIGS-Q - Form IGS_	M007_MAIN		

Figure G-10: Merging Unit 8 (Captures the Voltage Measurements of Bus B1B2~225 kV)

Cop	ру	Print Help							
				Instr	umentati	on Ch	annels		
		Name	Туре	StdDev	Scale	Value	Bus	Phase	Pwr Dev 🔺
1	1	V_PT225_D1_AN	V-Phasor	0.010000	360000.000		B1B2~225	AN	BUS-COUPLER (Breaker at
2	2	V_PT225_D1_BN	V-Phasor	0.010000	360000.000		B1B2~225	BN	BUS-COUPLER (Breaker at
	3	V_PT225_D1_CN	V-Phasor	0.010000	360000.000		B1B2~225	CN	BUS-COUPLER (Breaker at
									•
									•
				1					
		Move Up	N	ew	Delet	e	Auto	Default	Cancel
-			E	dit					Accept
		MOVE DOWN	E	uit					
Pr									

Figure G-11: Instrumentation Channels of Merging Unit 8

E	-	March 14	_	-	-	-	- Farmer -		x
Сору	Print Help								
			Meas	ureme	ent Chan	inels			
	Name	IED Alias	Туре	Value	Nominal	Scale	St.Dev	Correction	u 🔺
1	V_B1B2~225_AN		V-Phasor		225.0 kV	360.0 kV	0.01000 pu	0.996 / -0.085 Deg	
2	V_B1B2~225_BN		V-Phasor		225.0 kV	360.0 kV	0.01000 pu	0.996 / -0.085 Deg	
3	V_B1B2~225_CN		V-Phasor		225.0 kV	360.0 kV	0.01000 pu	0.996 / -0.085 Deg	
									- 1
									-
<u> </u>									
•								•	·
	Move Up	Nev	v	De	elete	A	uto Update	Cancel	
▼ [Move Down	Edi	t	Auto	Create	A	uto Mapping	Accept	
	ram WinIGS-Q - For							,	

Figure G-12: Measurement Channels of Merging Unit 8

Protection Zone 2

This protection zone comprises the 90 kV Cable 2 plus the 225 kV/93 kV/9.9 kV Transformer 642.

The protection zone can be isolated from the system by the breakers: the Breaker 2_1 and Breaker 2_2 .

Three merging units (Merging Unit 3, 4 and 8) collect measurements to be fed into the settingless relay.

Figure G-13: Protection Zone 2

Copy Print Help				
3-Phase 3-WindingTi	ransformer	1 AC	Cancel	Accept
	3 Winding T	r <mark>ansformer</mark> (6 <mark>42</mark>	
Short Circuit Test Data R X P-S 0 0105 0 128	(PU) Base (MVA)	C Ohma	Winding Impeda	Ances (Ohms)
P-T 2.061699 39.748 S-T 2.068787 39.62	33 100.0 2 100.0	 Per Unit Per Cent 	P 2.6578 S 0.45407 T 6.0674	33.704 5.7581 121.10
Primary XFM2~225 225.0 kV (L-L) C A B (Wye Delta	Secondary XFM2~93 93.0 kV (C B (• Wye) De	A B Ita () Wye	Tertiary (FM2~9.9 kV (L-L) A (© Delta	Circuit Number 1 Phase Connection © Standard O Alternate
Core Parameters (PU)	Non	Nominal (ninal Magnetizing	Core Loss : 0.00 g Current : 0.00	01 pu 01 pu
$i(t) = i_0 \left \frac{\lambda(t)}{\lambda_0} \right ^n \times sig$	$n(\lambda(t))$	Flux Cor	nstant (λ _o) 1.0	,) ри 00
Sequence Parameters (PU)	Pos/Neg	Primary Zero	Second. Zero	Ground Zero
Equivalent Circuit	R 0.01050 X 0.1283	0.007508 0.1256	0.002996 0.002694	3.398 37.85

Figure G-14: 225 kV / 93 kV Transformer 642 Parameters

Figure G-15: 90 kV Cable 2 Parameters

Volanda-PC	
Copy Print Help	
Intelligent Electronic Device Cancel	Accept
Substation none Description Merging Unit 3 Manufacturer GE PMU Name MU320 Model MU320_GE PMU Alias ALIAS Font Size 1.0 Instrumentation Measurements Non-Synchronized Show Links	 IED Active Update SDC File Update COMTRADE File Format Rectangular Polar Record Frequency Record dF/dt Evaluate M from I
Phasor Streaming (C37.118) Connect Protocol Local IP Address: 143.215.115.187 Connect © TC UDP Port Number: 0 Copy Start Stop © UD Outstation IP Address: 192.168.0.92 Disconnect © UD © UD TCP Port Number: 20000 Copy CFG © UD © TC Outstation ID: 7 View CFG Frame Address	P-1 P-2 IJust PC Clock
Clear	
Program WinIGS-Q - Form IGS_M007_MAIN	

Figure G-16: Merging Unit 3 (Captures the Measurements of 225 kV/93 kV Transformer 642)

	XFM2-9.9	BC	3 Winding Transformer 642 (Transformer at XFM2-225 XI 3 Winding Transformer 642 (Transformer at XFM2-225 XI 3 Winding Transformer 642 (Transformer at XFM2-225 XI	FM2-93 XFM2-9.9, Circuit. 1) FM2-93 XFM2-9.9, Circuit. 1) FM2-93 XFM2-9.9, Circuit. 1) FM2-93 XFM2-9.9, Circuit. 1)	CT2000-5-MR CT2000-5-MR CT2000-5-MR CT2000-5-MR	X2-X3 X2-X3 X2-X3 X2-X3	COP.PAIR-10 COP.PAIR-10 COP.PAIR-10 COP.PAIR-10	200.00 200.00 200.00 200.00 200.00	MU320 MU320 MU320 MU320 MU320	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00

Figure G-17: Instrumentation Channels of Merging Unit 3

_		ICD Alles		Metro Mandaal	Baala		Constant	D	Dharas	150	Due Dec	
1 2 3 4 5 5 6 6 7 8	C_XFM2-225_XFM2-91_XFM2-991_XFM2-225_A C_XFM2-225_XFM2-91_XFM2-991_XFM2-225_B C_XFM2-225_XFM2-91_XFM2-991_XFM2-225_C C_XFM2-225_XFM2-91_XFM2-991_XFM2-292 C_XFM2-225_XFM2-91_XFM2-991_XFM2-99B C_XFM2-225_XFM2-91_XFM2-991_XFM2-99B C_XFM2-225_XFM2-91_XFM2-991_XFM2-99Z C_XFM2-225_XFM2-91_XFM2-991_XFM2-99Z C_XFM2-225_XFM2-91_XFM2-991_XFM2-99Z	IED Allas	type C.Phasor C.Phasor C.Phasor C.Phasor C.Phasor C.Phasor C.Phasor	Value Rominal 6400 A 6400 A 6400 A 6400 A 6400 A 6400 A 6400 A	Scale 4 000 kA 4 000 kA	SLIVY 0.01000 pc 0.01000 pc 0.01000 pc 0.01000 pc 0.01000 pc 0.01000 pc 0.01000 pc 0.01000 pc 0.01000 pc	Correction 0.998 / 0.070 Deg 0.998 / 0.070 Deg	808 NFM2-225 NFM2-225 NFM2-225 NFM2-99 NFM2-99 NFM2-99 NFM2-99 NFM2-99	A B C ZS A B C ZS ZS	MU320 MU320 MU320 MU320 MU320 MU320 MU320	3 Winding Transformer 642 (Transformer at XPM 3 Winding Transformer 642 (Transformer at XPM	-225 XFM2-93 XFM2-99, Creat 1 -215 XFM2-93 XFM2-99, Creat 1 -215 XFM2-93 XFM2-99, Creat 1 -225 XFM2-93 XFM2-99, Creat 1
	Move Up Move Down		Ne	w	 	D	elete o Creat	e		A	Auto Update	Cancel

Figure G-18: Measurement Channels of Merging Unit 3

Volanda-PC	
Copy Print Help	
Intelligent Electronic Device	Cancel Accept
Substation none Description Merging Unit 4 Manufacturer GE PMU Name Model MU320_GE PMU Alias Font Size 1.0 Instrumentation Measurementation Non-Synchronized State	✓ IED Active ✓ Update SDC File ✓ Update COMTRADE File ✓ Update COMTRADE File ✓ Update COMTRADE File ✓ Format [
Phasor Streaming (C37.118) Local IP Address: 143.215.115.187 Connect UDP Port Number: 0 Copy Start Sta	Protocol itop © TCP © UDP-1 © UDP-2 © TCP/UDP ame Adjust PC Clock
	lear

Figure G-19: Merging Unit 4 (Captures the Measurements of 90 kV Cable 2)

51-90_DZ_C C4	Phasor 0.010000 Phasor 0.010000	4000.000 4000.000 4000.000	CABLE CABLE CABLE CABLE	2-90 B 2-90 C 2-90 A 2-90 B 2-90 C	N	99 WY Cable 21 (Cable at CABLE2-90 XFM2-93, Circuit 1) 90 WY Cable 2(Cable at CABLE2-90 XFM2-93, Circuit 1) 90 WY Cable 2(Cable at CABLE2-90 XFM2-93, Circuit 1) 90 WY Cable 2(Cable at CABLE2-90 XFM2-93, Circuit 1) 90 KY Cable 2 (Cable at CABLE2-90 XFM2-93, Circuit 1)	PT-69K PT-69K CT2000-5-MR CT2000-5-MR CT2000-5-MR	Y2-Y3 Y2-Y3 X2-X3 X2-X3 X2-X3	COP.PAIR.10 COP.PAIR.10 COP.PAIR.10 COP.PAIR.10 COP.PAIR.10	200.00 200.00 200.00 200.00 200.00	MU320 MU320 MU320 MU320 MU320	1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00	1.00 1.00 1.00 1.00 1.00	300.00 300.00 25.00 25.00 25.00	1000.0 1000.0 0.10 0.10 0.10

Figure G-20: Instrumentation Channels of Merging Unit 4

				М	eas	sure	ment	Ch	an	ne	ls	
					cuc		mem	. •				11
Name V_CABLE2-00_RN V_CABLE2-00_CN C_CABLE2-00_CN C_CABLE2-00_XNYL-01_1_CABLE2-00_R C_CABLE2-00_XNYL-01_1_CABLE2-00_C C_CABLE2-00_XFN2-01_1_CABLE2-00_C	IED Alias	Type V-Phaser V-Phaser V-Phaser C-Phaser C-Phaser	Value	Nominal \$1.96 kV \$1.96 kV \$1.96 kV \$1.96 kV \$600 A \$600 A \$600 A \$600 A	Scale 300.0 kV 300.0 kV 300.0 kV 4.000 kA 4.000 kA 4.000 kA	SLDev 0.01000 pa 0.01000 pa 0.01000 pa 0.01000 pa 0.01000 pa 0.01000 pa	Correction 0.497 / - 0.030 Deg 0.497 / - 0.030 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg	Bus CABLE2-00 CABLE2-00 CABLE2-00 CABLE2-00 CABLE2-00 CABLE2-90 CABLE2-90	Phase AN BN CN A B C	IED MU320 MU320 MU320 MU320 MU320 MU320	Pwr Dev 90 kV Cable 2 (Cable at CABLE2-40 NTML-93, Caralt 90 kV Cable 2 (Cable at CABLE2-40 NTML-93, Caralt	Formula V V,PT-80, DL3N V V,PT-80, DL3N V V,PT-80, DL3N V C,CT-80, DL6N V C,CT-80, DL6N V C,CT-80, DL6N V C,CT-80, DL6N
Move Up Move Down			Ne	ew dit		-	Delet Auto Cre	e eate			Auto Update Auto Mapping	Cancel

Figure G-21: Measurement Channels of Merging Unit 4

Protection Zone 3

This protection zone comprises the 90 kV Cable 3 plus the 225 kV/93 kV/10.0 kV Transformer 643.

The protection zone can be isolated from the system by the breakers: the Breaker 3_1 and Breaker 3_2 .

Three merging units (Merging Unit 5, 6 and 8) collect measurements to be fed into the settingless relay.

Figure G-22: Protection Zone 3

					_ 🗆 🗙
Copy Print Help					
3-Phase 3-WindingTrai	nsformer	1 A	ec	Cancel	Accept
	3 Winding T	ransformer	<mark>643</mark>		
Short Circuit Test Data (P	U)		Windi	ing Impeda	nces (Ohms)
R X P-S 0.011 0.1331	Base (MVA) 100.0	Ohms		Winding Resistance	Leakage Reactance
P-T 2.1924 32.1731	100.0	Per Unit Per Cont	Р	2.7844	35.122
S-T 2.1988 32.04	100.0	() Fer Cent	S	0.47570	6.0003
				0.3799	100.41
Primary	Secondary		Tertiary		
XFM3~225	XFM3~93		XFM3~10) (Circuit Number
225.0 kV (L-L)	93.0 kV (L-L) 10.	.0	kV (L-L)	1
		A _			Phase Connection Standard Alternate
🖲 Wye 🔿 Delta	(Wye 🔿 De	lta 🔿 Wye	e (i Del	Ita	
Core Parameters (PU)	Nam	Nominal	Core Los	s : 0.00 ⁴	1 pu
		inai magneuzir	ig curren	n) 50	pu
$ \lambda(t) ^n$		—— Flux Co	onstant ()	() 3.0 () 1.0	pu
$i(t) = i_0 \left \frac{\lambda(t)}{\lambda_0} \right \times sign(\lambda)$	A(t))	В	ase (MVA): 100.0	0
Sequence Parameters (PU)	Pos/Neg	Primary Zero	o Sec	cond. Zero	Ground Zero
R	0.01100	0.007396	0	.003608	3.050
Equivalent Circuit X	0.1331	0.1308	0	.002301	30.84
Program WinIGS-Q - Form IGS_M1	05_T				

Figure G-23: 225 kV / 93 kV Transformer 643 Parameters

Figure G-24: 90 kV Cable 3 Parameters

Volanda-PC			
Copy Print Help			
Intelligent Electronic De	vice	Cance	Accept
Substation none Description Merging Unit 5 Manufacturer GE Model MU320_GE Font Size 1.0 Instru	PMU Name PMU Alias	MU320 ALIAS Measurements	 ✓ IED Active Update SDC File ✓ Update COMTRADE File Format C Rectangular Polar Record Frequency Record dF/dt Evaluate M from I Add Error
Phasor Streaming (C37.118) Local IP Address: 143.215.115. UDP Port Number: 0 Outstation IP Address: 192.168.0.92 TCP Port Number: 20000 Outstation ID: 7 Set Rate	187 Copy	Connect Start Stop Disconnect Copy CFG View CFG Frame View Data Frame	Protocol TCP UDP-1 UDP-2 TCP/UDP Adjust PC Clock
		Clear	
Program WinIGS-Q - Form IGS_M00	7_MAIN		

Figure G-25: Merging Unit 5 (Capture the Measurements of 225 kV/93 kV Transformer 643)

1 C 2 C 3 C 4 C 6 C	Name C1225, D1_A C1225, D1_B C1225, D1_C C110_D2_A C110_D2_B C110_D2_C	Type C-Phasor C-Phasor C-Phasor C-Phasor C-Phasor	StdDev 0.010000 0.010000 0.010000 0.010000 0.010000 0.010000	Scale 4000.000 4000.000 4000.000 4000.000 4000.000 4000.000	Value	Bus XFM3-225 XFM3-225 XFM3-225 XFM3-10 XFM3-10 XFM3-10	Phase A B C A B C	3 Winding Transfe 3 Winding Transfe 3 Winding Transfe 3 Winding Transfe 3 Winding Transfe 3 Winding Transfe	ormer 643 (Transform Immer 643 (Transform Immer 643 (Transform Immer 643 (Transform Immer 643 (Transform Immer 643 (Transform	Pwr Dev er at XFM3- er at XFM3- er at XFM3- er at XFM3- er at XFM3- er at XFM3- er at XFM3-	225 XFM3-92 225 XFM3-92 225 XFM3-92 225 XFM3-92 225 XFM3-92 225 XFM3-92	XFM3-10, Circu XFM3-10, Circu XFM3-10, Circu XFM3-10, Circu XFM3-10, Circu XFM3-10, Circu XFM3-10, Circu XFM3-10, Circu	t 1) CT t 1) CT	bdmr (2000-5-MR (2000-5-MR (2000-5-MR (2000-5-MR (2000-5-MR (2000-5-MR	7ap X2-X3 X2-X3 X2-X3 X2-X3 X2-X3 X2-X3	Cable COP-PAIR-10 COP-PAIR-10 COP-PAIR-10 COP-PAIR-10 COP-PAIR-10 COP-PAIR-10	Length 200.00 200.00 200.00 200.00 200.00 200.00	IED MU320 MU320 MU320 MU320 MU320	CalF 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00	Attn 10 10 10 10 10
	Ма	ove U	p			Nev	v		Dele	ete		Αι	ito E	Defau	lt			Can	cel		

Figure G-26: Instrumentation Channels of Merging Unit 5

ny P	rint Help										_			
				N	lea	su	rem	ient C	Chai	nn	els	;		
1 2 3 4 5	Name C XFMI-225 XFMI-93 XFMI-10_1 XFMI-225 A C XFMI-225 XFMI-93 XFMI-10_1 XFMI-225 B C XFMI-225 XFMI-93 XFMI-10_1 XFMI-225 Z C XFMI-225 XFMI-93 XFMI-10_1 XFMI-225 Z C XFMI-225 XFMI-93 XFMI-10_1 XFMI-210 Z	IED Alias	Type C-Phasor C-Phasor C-Phasor C-Phasor C-Phasor	Value	Nominal 640.0 A 640.0 A 640.0 A 640.0 A 640.0 A	Scale 4.000 kA 4.000 kA 4.000 kA 4.000 kA 4.000 kA	St.Dev 0.01000 pu 0.01000 pu 0.01000 pu 0.01000 pu 0.01000 pu	Correction 0.998 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg	Bus XFM3-225 XFM3-225 XFM3-225 XFM3-225 XFM3-10	Phase A B C ZS ZS ZS	IED MU320 MU320 MU320 MU320 MU320	Pwr Dev 3 Winding Transformer 643 (Transformer at XFMS 3 Winding Transformer 643 (Transformer at XFMS	-225 XFM3-93 XFM3-10, Circuit 1) -225 XFM3-93 XFM3-10, Circuit 1) -225 XFM3-93 XFM3-10, Circuit 1) -225 XFM3-93 XFM3-10, Circuit 1) -225 XFM3-93 XFM3-10, Circuit 1)	
1														
L.	Move Up		Ne	w			0	Delete				Auto Update	Cancel	
	Move Down		Ec	lit			Aut	o Creat	е		A	uto Mapping	Accept	

Figure G-27: Measurement Channels of Merging Unit 5

Volanda-PC	
Copy Print Help	
Intelligent Electronic Device	Cancel Accept
Substation none Description Merging Unit 6 Manufacturer GE PMU Name Model MU320_GE PMU Alias Font Size 1.0 Instrumentation	✓ IED Active Update SDC File ✓ Update COMTRADE File ✓ Update COMTRADE File ALIAS Format [O Rectangular Measurements Record Frequency ✓ Record dF/dt
Non-Synchronized	Show Links Evaluate M from I Add Error
Local IP Address: 143.215.115.187 Co UDP Port Number: 0 Copy Outstation IP Address: 192.168.0.92 Disc TCP Port Number: 20000 Co Outstation ID: 7 View C	Protocol Stop © TCP onnect © UDP-1 y CFG © UDP-2 FG Frame © TCP/UDP ata Frame © Adjust PC Clock
	Clear
Program WinIGS-Q - Form IGS_M007_MAIN) ·

Figure G-28: Merging Unit 6 (Captures the Measurements of 90 kV Cable 3)

1 300000.000 CABLE3-90 CN 48000.000 CABLE3-90 A 48000.000 CABLE3-90 B 48000.000 CABLE3-90 C	90 KY Cable 3 (Cable at CABLES = 90 KFM3 - 93, Circuit 1) 90 KY Cable 3 (Cable at CABLES - 90 KFM3 - 93, Circuit 1) 90 KY Cable 3 (Cable at CABLES - 90 KFM3 - 93, Circuit 1) 90 KY Cable 3 (Cable at CABLES - 90 KFM3 - 93, Circuit 1) 90 KY Cable 3 (Cable at CABLES - 90 KFM3 - 93, Circuit 1)	PT-69K Y2-Y3 COP-PAIR-10 CT2000-5-MR X2-X3 COP-PAIR-10 CT2000-5-MR X2-X3 COP-PAIR-10 CT2000-5-MR X2-X3 COP-PAIR-10 CT2000-5-MR X2-X3 COP-PAIR-10	20000 MU320 1.00 0.00 1.00 300.00 1000.00 20000 MU320 1.00 0.00 1.00 300.00 1000.00
	11 11		11
	New	New Delete	New Delete Auto Default

Figure G-29: Instrumentation Channels of Merging Unit 6

				M	eas	ure	ment	Cha	an	ne	s	
Name V_CABLE3-40_AN V_CABLE3-00_BN V_CABLE3-00_NN-93_1_CABLE3-90_A C_CABLE3-00_NN-93_1_CABLE3-90_B C_CABLE3-00_NN-193_1_CABLE3-90_ZS C_CABLE3-60_NN-193_1_CABLE3-90_ZS	JED Alias	Type V-Phasor V-Phasor C-Phasor C-Phasor C-Phasor C-Phasor	Value	Nominal 51.96 kV 51.96 kV 640.0 A 640.0 A 640.0 A	Scale 300.0 kV 300.0 kV 300.0 kV 48.00 kA 48.00 kA 48.00 kA 48.00 kA	SLDev 0.01000 pu 0.01000 pu 0.01000 pu 0.01000 pu 0.01000 pu 0.01000 pu	Correction 0.497 / -0.030 Deg 0.497 / -0.030 Deg 0.497 / -0.030 Deg 0.182 / 26.723 Deg 0.182 / 26.723 Deg 0.182 / 26.723 Deg 0.182 / 26.723 Deg	Bus CABLE3-90 CABLE3-90 CABLE3-90 CABLE3-90 CABLE3-90 CABLE3-90 CABLE3-90	Phase AN BN CN A B C 25	IED MU320 MU320 MU320 MU320 MU320 MU320	Pwr Dav 90 kV Cable 3 (Cable at CABLE3-60 XFM3-93, Circuit 1) 90 kV Cable 3 (Cable at CABLE3-60 XFM3-93, Circuit 1) 90 kV Cable 3 (Cable at CABLE3-60 XFM3-93, Circuit 1) 90 kV Cable 3 (Cable at CABLE3-60 XFM3-93, Circuit 1) 90 kV Cable 3 (Cable at CABLE3-60 XFM3-93, Circuit 1) 90 kV Cable 3 (Cable at CABLE3-60 XFM3-93, Circuit 1)	Formula V_PT-90_D1_AN V_PT-90_D1_BN V_PT-90_D1_CN C_CT-90_D1_A C_CT-90_D1_B C_CT-90_D1_B C_CT-90_D1_B C_CT-90_D1_A + C_CT-90_D1_A + C
Move Up Move Down			Ne Ec	w lit		A	Delete uto Cre	e ate		-	Auto Update Auto Mapping	Cancel Accept

Figure G-30: Measurement Channels of Merging Unit 6

Protection Zone 4

This protection zone comprises the 245 kV Shunt Reactor.

The protection zone can be isolated from the system by the breaker: the Breaker 4.

Two merging unit (Merging Unit 7 and 8) collect measurements to be fed into the setting-less relay.

Figure G-31: Protection Zone 4

Figure G-32: 245 kV Shunt Reactor Parameters

Volanda-PC	
Copy Print Help	
Intelligent Electronic Device Cance	el Accept
Substation none Description Merging Unit 7 Manufacturer GE PMU Name Model MU320_GE PMU Alias Font Size 1.0 Instrumentation Measurements Non-Synchronized Image: Show Links	✓ IED Active ✓ Update SDC File ✓ Update COMTRADE File ✓ Format ○ Rectangular ○ Polar ○ Record Frequency ○ Record dF/dt ○ Evaluate M from I ○ Add Error
Phasor Streaming (C37.118) Local IP Address: 143.215.115.187 UDP Port Number: 0 Outstation IP Address: 192.168.0.92 TCP Port Number: 20000 Outstation ID: 7 Set Rate 4	Protocol TCP UDP-1 UDP-2 TCP/UDP Adjust PC Clock
Clear	
Program WinIGS-Q - Form IGS_M007_MAIN	

Figure G-33: Merging Unit 7 (Captures the Measurements of 245 kV Shunt Reactor)

Name C_CT245_D1_ C_CT245_D1_ C_CT245_D1_ C_CT245_D1_	Type C-Phasor 0 C-Phasor 0 C-Phasor 0	StdDev 0 010000 0 010000 0 010000	Scale 4000 000 4000 000 4000 000	Value	Bus REACTOR REACTOR REACTOR	Phase A B C	Per Dev 245 kV Shunt Reactor (Device at REACTOR, Circuit 2 245 kV Shunt Reactor (Device at REACTOR, Circuit 2 245 kV Shunt Reactor (Device at REACTOR, Circuit 2	Ixfmr CT2000-5-MR CT2000-5-MR CT2000-5-MR	Tap X2-X3 X2-X3 X2-X3 X2-X3	Cable COP-PAIR-10 COP-PAIR-10 COP-PAIR-10	Length 200.00 200.00 200.00	IED MU320 MU320 MU320	CalF 1.00 1.00 1.00	Offs 0.00 0.00 0.00	Attn 1.00 1.00 1.00	Peak 25.00 25.00 25.00	Rb 0.10 0.10 0.10	Xb 0.00 0.00 0.00	245 245 245
M	ove Up	,			Nev	v	Delete		Αι	ito Defa	ault	=1			3	Car	cel		
Mo	ve Dow	vn	1		Edi	t									A	Acc	ep	t	

Figure G-34: Instrumentation Channels of Merging Unit 7

				N	leas	suren	nen	t C	Cha	annels	nnels					
Name C_REACTOR_2_REACTOR_A C_REACTOR_2_REACTOR_B C_REACTOR_2_REACTOR_C C_REACTOR_2_REACTOR_ZS	IED Alias	Type C-Phasor C-Phasor C-Phasor C-Phasor	Value Nominal 640.0 Å 640.0 Å 640.0 Å 640.0 Å	Scale 4.000 kA 4.000 kA 4.000 kA 4.000 kA	St.Dev 0.01000 pu 0.01000 pu 0.01000 pu 0.01000 pu	Correction 0.996 / 0.070 Deg 0.996 / 0.070 Deg 0.998 / 0.070 Deg 0.998 / 0.070 Deg	Bus REACTOR REACTOR REACTOR REACTOR	Phase A B C ZS	IED MU320 MU320 MU320 MU320	Pur Dev 245 kV Shart Reactor (Device at REACTOR, Circuit 2) 245 kV Shart Reactor (Device at REACTOR, Circuit 2) 245 kV Shart Reactor (Device at REACTOR, Circuit 2) 245 kV Shart Reactor (Device at REACTOR, Circuit 2)	C_CT245_D1_A C_CT245_D1_B C_CT245_D1_C C_CT245_D1_C C_CT245_D1_A+1	Formula C_CT245_D1_B + C_CT245_D1				
		11					Dele			Auto Undet	- ÊÊ	Concel				
Move Do	wn		E	dit		Au	to Ci	te reat	e	Auto Updat Auto Mappir	e	Accept				

Figure G-35: Measurement Channels of Merging Unit 7

References

- [1] A. P. Sakis Meliopoulos, Anjan Bose, PSERC Publication 10-17, Substation of the Future: A Feasibility Study, October 2010.
- [2] A. P. Sakis Meliopoulos, G. Cokkinides, R. Huang, E. Farantatos, S. Choi, Y. Lee, "Wide Area Dynamic Monitoring and Stability Controls", IREP Symposium 2010, Bulk Power System Dynamics and Control VIII, Buzios, Brazil, August 1-6, 2010.
- [3] P. Sakis Meliopoulos, George Cokkinides, Renke Huang, Evangelos Farantatos, Sungyun Choi, Yonghee Lee and Xuebei Yu, "Smart Grid Technologies for Autonomous Operation and Control", IEEE Transactions on Smart Grid, Vol 2, No 1, March 2011.
- [4] Sungyun Choi, Yonghee Lee, George Cokkinides and A. P. Sakis Meliopoulos, "Transformer Dynamic State Estimation Using Quadratic Integration", Proceedings of the 2011 Power Systems Conference & Exposition, Phoenix, AZ, March 20-23, 2011.
- [5] Sungyun Choi, Yonghee Lee, George Cokkinides, and A. P. Meliopoulos, "Dynamically Adaptive Transformer Protection Using Dynamic State Estimation", Proceedings of the PAC World Conference 2011, Dublin, Ireland, June 27-30, 2011.
- [6] A. P. Sakis Meliopoulos, George Cokkinides, Sungyun Choi, Evangelos Farantatos, Renke Huang and Yonghee Lee, "Symbolic Integration and Autonomous State Estimation: Building Blocks for an Intelligent Power Grid", Proceedings of the 2011 ISAP, Xersonissos, Crete, Greece, September 25-28, 2011.
- [7] P. Meliopoulos, E. Polymeneas, Zhenyu Tan, Renke Huang, and Dongbo Zhao, "Advanced Distribution Management System", IEEE Transsactions on Smart Grid.
- [8] Sungyun Choi, Yonghee Lee, George Cokkinides, and A. P. Meliopoulos, "Dynamically Adaptive Transformer Protection Using Dynamic State Estimation", Proceedings of the PAC World Conference 2011, Dublin, Ireland, June 27-30, 2011.
- [9] E. Farantatos, R. Huang, G. Cokkinides, A. P. Sakis Meliopoulos, B. Fardanesh, and G. Stefopoulos, "Advanced Disturbance Recording and Playback Enabled by a Distributed Dynamic State Estimation Including Bad Data Detection and Topology Change Identification", Proceedings of the IEEE-PES 2012 General Meeting, San Diego, CA, July 22-26, 2012.
- [10] M. Kezunovic, V. Vittal, S. Meliopoulos, M. Venkatasubramanian and A. Sprintson, "Synchrophasors and the Smart Grid", Proceedings of the IEEE-PES 2012 General Meeting, San Diego, CA, July 22-26, 2012.
- [11] A. P. Sakis Meliopoulos, "Update on the Substation Based Distributed State Estimator and Field Experience", Proceedings of the IEEE-PES 2012 General Meeting, San Diego, CA, July 22-26, 2012.
- [12] A. P. Sakis Meliopoulos, George Cokkinides, Zhenyu Tan, Sungyun Choi, Yonghee Lee, and Paul Myrda, "Setting-less Protection: Feasibility Study", Proceedings of the of the 46st Annual Hawaii International Conference on System Sciences, Maui, HI, January 7-10, 2013.
- [13] Sungyun Choi, A. P. Meliopoulos and Ratnesh Sharma, "Autonomous State Estimation Based Diagnostic System in Smart Grid", Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies, Washington, DC, Feb 24-27, 2013.