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Executive Summary 

 
Recent advances in design of fast oscillation monitoring algorithms have paved the way for real-

time detection and analysis of electromechanical oscillations from wide-area synchrophasor 

measurements in large power interconnections. The oscillations if left unmitigated can lead to 

unwanted tripping of transmission lines and generators that could cascade into devastating 

blackouts. Oscillation monitoring algorithms developed at Washington State University have 

previously been implemented and tested in North American power grid and in India. In this project, 

we have studied oscillation phenomena in the RTE portion of the European power grid by using 

available synchrophasor data. Suitability of ambient versus ringdown analysis algorithms for 

analyzing recent oscillation events in RTE have been investigated. The effectiveness of the 

oscillation algorithms have been tested and improved by using simulated PMU data from dynamic 

models of the RTE system wherein the expected answers are known from small-signal analysis of 

the dynamic models.  
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1. Introduction 

1.1  Background 

Power system oscillations have been a serious concern of operators for decades [1]. Oscillations 

with low or negative damping can lead to catastrophic blackouts or islanding of interconnected 

power systems [2]. Therefore, the monitoring and analysis of oscillations can help to enhance the 

operational reliability of the power system. Utilizing the linearized model of the system is the 

traditional way for the modal analysis of the system [1]. However, this approach suffers from some 

challenges such as the need for a detailed model of each system component and the inability to 

quickly update the model with system changes [3]. With the increased penetration of Phasor 

Measurement Units (PMUs) in power systems, measurement-based modal analysis methods have 

been received a lot of attention in recent years [4]. These methods are designed based on the type 

of PMU data which can be ambient [4-7], ringdown [8-11], or probing [12, 13]. A ringdown data 

is from the system response after a sudden disturbance in a power system such as outage of a 

generator or line tripping which results in a significant excitation of oscillatory modes. For ambient 

data, power system is assumed to be operating at its quasi-steady-state condition while the system 

input is from continuous small random fluctuations in loads and other related small variations 

which are assumed to be white noise. Since ambient data is always available through Wide Area 

Measurement Systems (WAMS) and they act as non-intrusive measurements, accurate oscillation 

analysis of ambient PMU data is of great importance. These analysis methods can provide 

operators with continuous estimates of system modes by monitoring routine system changes to 

random load fluctuations that are always present in any power system.  

1.2  Literature Survey 

There is an extensive literature on the different types of modal analysis methods. As mentioned 

earlier, ringdown data is a transient response which normally results from sudden disturbances, 

such as line tripping, adding or removing heavy loads, and tripping generators, and so on. One of 

the most prominent approaches for the analysis of this kind of data is the Prony method [8]. 

Authors of [14] proposed multi-channel Prony method to improve the performance of single-

channel Prony method. Reference [15] proposed Matrix Pencil method as another tool for the 

modal analysis of ringdown data. Multi-Dimensional Fourier Ringdown Analysis was proposed in 

[9]. Authors of [11] proposed a non-stationary analysis method based on a refined Margenau-Hill 

distribution to extract the modal features from ringdown data. Modal analysis of PMU ambient 

data can be carried out by time- or frequency-domain methods. Another classification can be based 

on the number of PMU signals (channels) employed by the technique; some methods [16-18] use 

only one channel, whereas some others [4, 6, 19-21] utilize multiple channels for estimating 

modes. In [16], Yule-Walker (YW) method is applied to both simulated and real PMU data. [17] 

and [22] proposed Least Mean Square (LMS) and Recursive Least Squares (RLS) methods to 

extract the frequency and damping of inter-area modes by analysis of  specific PMU signals 

respectively. In [18], Error–Feedback Lattice RLS filter is applied to the data of a single channel 

to estimate specific modes of the system, where it is assumed that the approximate value of mode 

frequencies are known a priori. All these mentioned single-channel methods analyze a signal with 

the highest observability of a mode for their estimation. On the other hand, there are multi-channel 

methods in which all the PMU signals can be analyzed together. Since a window of data from all 
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the PMUs throughout the power system is analyzed in these methods, all the system modes as well 

as forced oscillations can be detected even if they are observable in any one signal or a few signals. 

In [20], Fast Frequency Domain Decomposition (FFDD) method is proposed to estimate modal 

properties of the system by all available PMU signals. Recursive Adaptive Stochastic Subspace 

Identification (RASSI) method was proposed in [9] as a time-domain multi-channel modal analysis 

method.  

1.3  Scope of Work 

The first part of this report presents two examples from RTE power system where critical situations 

arise, and the modal estimation is significantly important yet challenging. Critical situations refer 

to the conditions when there is a forced or sustained oscillation whose frequency is close to the 

system natural mode or even when two or more system natural modes have close frequencies. Fast 

SSI-Cov (FSSI-Cov) and fast FFD (FFDD) methods which are well-known, powerful, and suitable 

for real-time modal analysis of power systems are selected as the analysis tools. We will show that 

FSSI-Cov modal analysis method can handle these situations reasonably well, while the other 

method may have some limitations. Furthermore, the computational complexity of these methods 

is discussed. It will be explained that FSSI-Cov suffers from high computational burden, while 

FFDD enjoys the advantage of low computational burden. We will discuss strategies and 

improvements needed for implementing ambient modal engines such as FFDD and FSSI-Cov for 

real-time modal analysis.  

In the next part of this report, the problem of clustering of estimates from an ambient oscillation 

monitoring algorithm into groupings representative of different system modes is addressed for the 

first time. The well-known DBSCAN method is applied for clustering the estimates. Archived 

results from three days of oscillation monitoring implementation in a real system, which were 

obtained from Fast Frequency Domain Decomposition (FFDD) modal analysis method in the RTE 

power system, are utilized for evaluation of the methodology.  

1.4  Report Organization  

The rest of the report is organized as follows. Section 2 presents the modal analysis for two recent 

major oscillation events in the RTE power system. In this section, first, the formulation of FFDD 

and FSSI as the measurement-based modal estimation tools utilized in this report are discussed. 

Afterward, these methods are applied to the RTE PMU data. Modal estimates are presented and 

discussed in this section. It is shown that how FSSI method can help in the precise interpretation of 

a phenomenon. Pros and cons of methods, implementation strategies, and improvements needed for 

the better performance of these methods are explained in the last part of this section. In Section 3, 

the problem of clustering of estimates is defined and the significant importance of clustering as a 

key step of data-based modal analysis techniques in small signal stability monitoring is clarified. 

Furthermore, DBSCAN formulation and the implementation process for clustering of power system 

modes is explained in this section. Results and discussions are presented in the last part of this 

section. Section 4 provides concluding remarks to this report. 
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2. PMU-based Modal Analysis of Two Major Events in RTE Power System 

In this part, modal analysis is presented for two recent major oscillation events in the RTE power 

system. Data from Phasor Measurement Units (PMUs) collected during the events are analyzed by 

using Fast Frequency Domain Decomposition (FFDD) and Covariance-based Stochastic Subspace 

Identification (SSI-Cov) modal analysis methods. In the first event, we show that the frequency of 

an inter-area mode changes dramatically after a system topology change while the damping also 

decreases. The second event may be related to the emergence of an unknown sustained oscillation 

whose frequency is close to that of a system inter-area mode. Analysis of these two events shows 

the relative strengths and weaknesses of different oscillation monitoring algorithms and their 

usefulness in measurement-based modal analysis. Furthermore, the report will also discuss 

challenges in implementing the algorithms in real-time applications. 

2.1 Overview 

Ambient modal analysis methods are of great importance since they can provide operators with 

continuous estimates of system modes by monitoring routine system changes to random load 

fluctuations that are always present in any power system. Although the performance of the most of 

methods in the literature is acceptable in normal operating condition of the system, the estimation 

results of these algorithms should be carefully handled when there is a forced or sustained 

oscillation whose frequency is close to the system natural mode or even when two or more system 

natural modes have close frequencies. 

In these critical situations, accurate estimation of all system modes and forced oscillation is 

significantly important for the correct understanding of system characteristics and subsequently 

triggering mitigatory actions. As is shown in the literature [23, 24], the interaction of system modes 

and forced oscillation can result in the emergence of resonance effects. The resonance can be 

intensified when the frequency of the forced oscillation is close to the frequency of the system 

poorly-damped inter-area mode. In this condition, accurate estimation of characteristics of both 

system mode and forced oscillation can help operators to prevent the system from catastrophic 

blackouts.  

Authors of [25] provided some examples to show the erroneous modal estimation of methods such 

as Yule-Walker and Welch-Half-Power-Point method in the presence of forced oscillations. In the 

paper [24], it was shown that although Frequency Domain Decomposition (FDD) method can 

perfectly detect the forced oscillation, it is unable to simultaneously estimate system modes and 

forced oscillation when they have close frequencies. The event of November 2005 in the Western 

American power system was analyzed by covariance-based Stochastic Subspace Identification 

(SSI-Cov) in [23]. It was shown that this method can accurately estimate both system mode and 

forced oscillation when they have close frequencies. Authors of [26] evaluated the performance of 

SSI-Cov and SSI-data in the presence of forced oscillation whose frequency was close to that of 

system mode in Kundur test system. It was shown that although both methods can simultaneously 

detect forced oscillation and system mode with the lowest possible model order, SSI-data suffers 

from non-negligible bias.    

This part of the report presents two examples from RTE power system where the above-mentioned 

critical situations arise, and the modal estimation is significantly important yet challenging. Fast 
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SSI-Cov (FSSI-Cov) and fast FFD (FFDD) methods which are well-known, powerful, and suitable 

for real-time modal analysis of power systems are selected as the analysis tools. We will show that 

FSSI-Cov modal analysis method can handle these situations reasonably well, while the other 

method may have some limitations. Furthermore, the computational complexity of these methods 

is discussed. It will be explained that FSSI-Cov suffers from high computational burden, while 

FFDD enjoys the advantage of low computational burden. We will discuss strategies and 

improvements needed for implementing ambient modal engines such as FFDD and FSSI-Cov for 

real-time modal analysis. 

2.2 Modal Analysis methods 

In this report, fast FDD and fast SSI-Cov methods are utilized for the modal analysis of PMU data. 

In the following subsections, first, the foundation of these methods is explained. Afterward, the 

speedup procedure of FDD and SSI-Cov to make them applicable for real-time application is briefly 

discussed. 

2.2.1 Fast Frequency Domain Decomposition (FFDD) 

The key idea behind FDD is to apply Singular Value Decomposition (SVD) to the power spectrum 

matrix of measurements. After linearizing a high-order nonlinear power system model about its 

equilibrium point, the state-space equations can be written as follows, 

x A x B u

y C x

    

  

&
 (1) 

 

where , ,x u  and y  are the state, input, and output vectors, respectively. The Power Spectrum 

Density (PSD) matrix relating inputs and outputs in a multi-input multi-output system, can be 

written as follows, 

 

       *

yy uu
S H S H     (2) 

 

in which  
yy

S  and  
uu

S  are the 
y y

n n and
u u

n n  output and input PSD matrices, respectively. If 

the inputs are white noise,  
uu

S   will be a constant diagonal matrix.  H  is 
y u

n n frequency 

response matrix and 
*

( )g is the Hermitian transpose operation. Next step in FDD is to estimate 

 
yy

S   matrix from PMU measurements and apply SVD to this matrix for each discrete frequency

i
  . Decomposition of the estimated PSD matrix  ˆ

yy
S  is: 
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   
   
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i
W is the matrix of singular vectors and

i
S is the diagonal matrix of singular values. The rank of

 ˆ
yy

S   indicates the number of contributing modes when  ˆ
yy

S  is evaluated near 
r

 . If there is 

no significant contribution from other poorly-damped system modes or forced oscillations near the 

PSD peak frequency
r

 ,  ˆ
yy

S  can be approximated by a rank-one matrix. In other words, 
i

S will 

have one dominant singular value  1 is   and        *

1 1 1
ˆ

yy i i i iS s w w    . The collection of the 

first singular values as the function of frequency makes the complex mode identification function 

(CMIF). By taking the inverse FFT of CMIF near the peak frequency of  ˆ
yy

S   a signal with the 

exponential sum model is obtained. Applying the Prony-type analysis to the obtained signal will 

result in the estimation of the frequency and damping ratio of the corresponding oscillation.  

The process of making the FDD fast starts with the following theory for the calculation of the PSD 

matrix, 

 

     *ˆ
yy i iiS F F    (4) 

where      
1 yi i in

T

F F F   
 

L is the PMU measurements FFT matrix in frequency 
i

 . The 

main simplification in FFDD is the procedure of CMIF calculation. Given   0
i

F   , it can be 

shown that the matrix  ˆ
yy iS  has only one nonzero singular value which can be calculated as 

follows, 

     *

1
1

yn

j i j i

j

i F Fs   


  (5) 

and the corresponding singular vector is  
i

F  . Terms    *

j i j i
F F   are the auto spectrum 

estimates of the jth signal. Therefore, the CMIF, which is a function based on the dominant singular 

values of PSD matrix, can be directly calculated from the auto spectrum of signals. By doing so, 

the computational burden significantly decreases. In this simplification, the corresponding mode 

shape can be found from the right singular vector  
i

F  . Estimates obtained from FFDD are 

identical to the results of FDD if the PSD is calculated by a single windowing function. However, 

if higher-order windowing functions are used for the calculation of PSD, the results of FFDD will 

approximately match the estimates of FDD.  

2.2.2 Fast Stochastic Subspace Identification (FSSI)       

The stochastic state-space model of a system can be defined as follows, 

1k k k

k k k

x Ax w

y Cx v

  

 
 (6) 

where
k

w is process noise due to the modeling inaccuracies and disturbances and
k

v is the 

measurement noise. In this model, which is a pertinent design for ambient modal analysis, the 

input vector is implicitly modeled by ,
k k

vw . The essential assumption for ,
k k

vw is the whiteness 

which should not be violated. In general, there are two types of SSI methods: data-driven and 

covariance-driven. In the first method, the data matrix is the basis of analysis, while the second 
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method operates on the covariance matrix. In this report, we focus on the covariance-based SSI 

method. Basically, the straightforward implementation of covariance-based stochastic subspace 

identification for modal analysis of PMU measurements can be summarized as the following steps. 

The proof of each step can be found in [27]. 

Collecting PMU data and make the measurements matrix as follows: 

0 1

2 1

0 1 1

1 2

1 2

1 1

1 2

2 1 2 2 2

1

...
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... ... ... ...
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... ... ... ...

...

i

i i

j

j

ii i j P

i i i j f

i ji i

i i i j

Y Li

LiYj

y y y

y y y

y y y Y
Y

y y y Y

y y y

y y y







  
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 

  

 
 
 
 
 
    
     
     

    
 
 
 
 
 

 
b

b
 (7) 

where L is the number of PMU channels and i and j are the length of the internal analysis window 

and total analysis window. 
p

Y  and 
f

Y  denotes the past and future data blocks which are obtained 

from dividing Y  into two block matrices. The covariance matrix H can be obtained as follows, 

1 1

1 2

2 1 2 2

i i

i i Li Li

i i i

H



 

 

   
 
    

 
 
   

L

L
¡

M M M M

L

 (8) 

where 
T

i k i k
E y y


      and  

i
E  g  denotes the expected value. Considering Eq. 8 and assuming 

ergodicity, the block Toeplitz matrix H can be calculated as follows: 

T

f pH Y Y  (9) 

We can define the state-output covariance matrix as follows, 

1

T

k kG E x y
     (10) 

Based on the definitions, the following property can be easily deduced, 

1i

i CA G   (11) 

therefore, the block Toeplitz matrix H can evidence as follows, 
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1
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i i
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where 
i

O  and 
i

C  are the extended observability and controllability matrices. Both matrices can be 

obtained by applying SVD to H matrix: 

  1 1

1 2 1 1 1

2

0

0 0

T

T T

T

S V
H USV U U U S V

V

  
    

  
 (13) 

in which U and V are matrices of right and left eigenvectors, respectively. S is a diagonal matrix 

containing the singular values in descending order. It is assumed that 
1

S  contains n dominant 

singular values and the rest is considered to be zero.
1

U and 
1

V  are the corresponding right and left 

singular vectors. If the zero singular values and the corresponding singular vectors are deleted 

from the Eq. 13, the last equality of the Eq. 13 can be obtained. Based on the Eqs. 12 and 13, the 

extended controllability and observability matrices can be found as follows: 

 
1/2

1 1

1/2

1 1

i

T

i

O U S

C S V




 (14) 

 

from these matrices, A and C can be easily derived. According to the Eq. 12, C equals to the first 

l rows of 
i

O and A can be calculated by the following equation: 

 
†A O O  (15) 

 

where O is the matrix O without the last l rows and O is the matrix O  without the first l rows. The 

superscript †
•  denotes the Moor-Penrose pseudo-inverse. System modes and mode shapes can be 

obtained from the continuous-time matrices, which can be calculated as follows: 

 

.log( )c sA f A         cC C  (16) 

 

in which 
s

f is the sampling frequency.  

In order to speed up the SSI-Cov method, four efficient strategies are proposed in [28]. In this 

report, we have chosen the most efficient strategy to speed up the SSI-Cov. In this strategy, parallel 

computing is applied to the step of SVD decomposition. For SVD calculation, the partial Lanczos 

bidiagonalization technique is applied. Matrix computations are parallelized into the i independent 

tasks and distributed between available treads of the machine. More details of this procedure can 

be found in [28]. 
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2.3 Analysis and Results 

In this section, the modal analysis of two sets of data recorded by RTE PMUs is presented. These 

data sets contain ambient data as well as two major oscillatory events in the RTE system. It is 

noteworthy that because of specific characteristics of the oscillations in these two events, the 

accurate modal analysis is significantly important yet challenging. Voltage phase angles obtained 

from nine and twelve PMUs for the first and the second data sets are considered for the analysis by 

FFDD and FSSI methods implemented in the C# platform of Visual Studio 2017.  

2.3.1 The First Case 

Fig.2.1 is one of the voltage phase angle signals for the first event that occurred in the European 

interconnection on December 1, 2016 [32]. It can be seen that the event occurs at about 17th minute 

and it is cleared at about 24th minute. For the analysis of this event, the window length of 120s with 

the refresh rate of 5 seconds is chosen for the FFDD. Fig. 2.2 illustrates the estimated modes by 

FFDD. Evidently, there are 6 clusters of estimated modes. In this part, we focus on the modes with 

frequencies about 0.15Hz and 0.22Hz, since the main changes of the oscillatory behavior of the 

system during and after the event are related to these modes. Figs. 2.3 and 2.4 are the time plots of 

estimated frequencies about 0.15Hz and 0.22Hz and their corresponding damping ratios. As can be 

seen in Fig. 2.3, the damping ratio of mode with the frequency of 0.15Hz dropped to near-zero 

values once the event happened in the system. Meanwhile, estimates of the mode with frequency 

of 0.22Hz disappeared. In order to understand this phenomenon more deeply, we analyze PMU data 

with FSSI method. The window length for FSSI is selected as 240 seconds with the refresh rate of 

5 seconds. The inner window length i is set to be 6 seconds. Results of FSSI discover the other side 

of this event which is indeed interesting. Fig. 2.5 shows the estimation of the well-damped mode 

with the frequency of 0.15Hz. As is evident, estimates are persistent before, during, and after the 

event. Based on these estimates, it can be concluded that the well-damped mode of the system with 

the frequency of 0.15Hz is not affected by this event. However, Fig. 2.6 shows the other set of 

estimates with the same frequency of 0.15Hz. These poorly-damped estimates appear once the event 

happens in the system. At the exact same time, estimates with the frequency of 0.22Hz shown in 

Fig. 2.7, which were persistent before the event, disappear. According to this analysis, the most 

possible scenario is that the system well-damped mode with the frequency of 0.22Hz has changed 

to the poorly-damped mode with the frequency of 0.15Hz. Furthermore, field evidence confirms 

this theory. This event is the result of tripping a significant tie line carrying a huge amount of power 

between two areas of the system. This tie line, which was connecting two large areas whose inter-

area oscillatory mode was 0.22Hz, could not be recovered after the event. Therefore, the power 

flow had to be rerouted. Based on these observations and FSSI modal analysis, it seems that the 

change of the system topology as well as the operating point of the system result in the change of 

the well-damped mode 0.22Hz to the mode 0.15Hz. The abrupt change in mode frequency from 

0.22 Hz to 0.15 Hz and the reduction in its damping ratio have been verified in model based 

simulations of the European interconnection [33]. As can be seen in Fig. 2.6, the damping ratio of 

the second mode with frequency of 0.15Hz is increasing after the clearance of the event. 

In this case, although the FFDD analysis revealed that there is a poorly-damped oscillation in the 

system, the reason and characteristics of this oscillation were not quite clear. At first glance, one 

could think that the first system mode with frequency of 0.15Hz is getting poorly-damped after the 

event. However, FSSI results indicated that once the event happened in the system, another mode 
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with the frequency of 0.15Hz appeared in the system and the first mode with this frequency was not 

affected. Since there are two modes with approximately same frequencies in the system after the 

event, FFDD couldn’t detect both modes. The unique and significantly important capability of FSSI 

in the identification of both modes with close frequencies was the key in the more accurate analysis 

of this event.    

 

 

Fig. 2.1. Voltage phase angle before, during, and after the first event 

 

 

Fig. 2.2. Estimated modes by FFDD for the first set of PMU data 
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Fig. 2.3. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FFDD for mode with 

average frequency of 0.15Hz 
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Fig. 2.4. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FFDD for mode with 

average frequency of 0.22Hz 
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Fig. 2.5. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FSSI for the well-damped 

mode with average frequency of 0.15Hz 
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Fig. 2.6. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FSSI for the poorly-

damped mode with average frequency of 0.15Hz 
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Fig. 2.7. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FSSI for the mode with 

average frequency of 0.22Hz 

 

2.3.2 The Second Case 

Next an oscillation event that occurred in the European interconnection on December 3, 2017 is 

analyzed [34]. Fig. 2.8 illustrates one of the voltage phase angle signals utilized for the analysis of 

this case. As can be seen, the event occurs from 49th to 57th minutes. For the modal analysis of this 

case, the same settings as the previous case are selected for FFDD. Fig. 2.9 shows the estimates 

obtained by FFDD. In this case, we keep the focus of the study on the estimates with frequencies 

about 0.2Hz. Fig. 2.10 demonstrates time plots of the estimated frequency and damping ratio by 

FFDD. Evidently, before occurring the event, the frequency of estimates is about 0.22Hz and the 

damping ratio is high, which exactly matches the characteristics of the system mode. Once the event 

occurs, the frequency of estimates drops from 0.22Hz to 0.19Hz and the damping ratio drops from 

about 10% to near-zero values. For a better understanding of this event, data is also analyzed by 

FSSI. Initial window length of 120s, inner window length of 6s, refresh rate of 5s, and system order 

of 20 are the selected parameters for this analysis. Figs. 2.11 and 2.12 both are estimates with 

frequencies about 0.2Hz. In Fig. 2.11, estimates with the average frequency of 0.22Hz and damping 
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ratio of 9% persistently exist in the entire analysis time period. As can be seen in Fig. 2.12, once 

the event begins, a new set of estimates with the frequency of 0.19Hz and near-zero damping ratio 

appears in the system.  

In the modal analysis of this case, although FFDD shows estimates with near-zero damping ratios 

once the event happens, it is not clear whether the frequency and damping of the system mode 

decreased due to the event or a new oscillation appeared in the system. Results of FSSI confirm that 

the cause of the event is the appearance of a new sustained oscillation, not the dropping of the 

frequency and damping ratio of the system natural mode. 

 

 

 

Fig. 2.8. Voltage phase angle before, during, and after the second event 

 

Fig. 2.9. Estimated modes by FFDD for the first set of PMU data 
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Fig. 2.10. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FFDD 
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Fig. 2.11. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FSSI for the well-

damped mode with average frequency of 0.22Hz 
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Fig. 2.12. Time plots of (a) estimated frequency (b) estimated damping ratio obtained from FSSI for the poorly-

damped oscillation with average frequency of 0.19Hz 
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2.4 Discussion  

In both mentioned cases, it was shown that although FFDD can accurately detect the poorly-damped 

estimates which are of great importance for operators, it is not capable of tracking both system 

modes, or a system mode and sustained oscillations if they have close frequencies. In these 

situations, there are two dominant singular values in
1

S matrix in Eq.3. Therefore, considering only 

the largest singular value and discarding the second one brings about missing the second estimate. 

It is noteworthy that most of the modal analysis methods have difficulties in the handling of these 

challenging situations [25]. Although FFDD cannot detect both estimates simultaneously, the 

following significant advantages of this method make it universally applicable in the modal analysis 

of power systems: 

• Short analysis window and fast update about new events and changes in modal properties 

of the system. 

• Very fast and near-real-time calculations even for a large number of signals (more than a 

thousand signals). 

• Giving the correct estimates of the low-damped (i.e. the mode with higher energy) or a 

forced oscillation when there are system modes with close frequencies. 

All the above-mentioned advantages of FFDD are what really required for reliable estimation and 

source location of problematic oscillations. Fast estimation of the second largest singular value is 

the future research question for improving the performance of this method. 

On the other hand, FSSI can provide a clear insight about what is really happening in the mentioned 

challenging situations. Beside this distinctive and significantly important advantage of this method, 

this method has the following disadvantages: 

• The higher computational burden in the case of the large number of signals in comparison 

with FFDD.  

• More spurious estimates (outliers, noise) in comparison with FFDD.     

Decreasing the computational burden of FSSI and identification of real modes versus spurious 

modes are indicted for future researches.   Considering the pros and cons of each method, it is 

suggested to use both methods simultaneously, assuming enough computer resources are available. 

Otherwise, operators can select which method is more suitable for their purposes based on the 

mentioned features of each method and their available resources. 
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3. Clustering of Power System Oscillatory Modes Using DBSCAN Technique 

Measurement-based power system modal analysis is useful to operators in that alarms can be issued 

when the damping of some natural oscillatory modes becomes unacceptably low or when forced 

oscillations suddenly appear in a power system. Considering the fact that mitigating the mechanism 

of each mode or forced oscillation requires a specific remedial action, the mode estimates should 

be properly clustered and identified before such corrective actions can be decided. In this part of 

the report, the problem of clustering of estimates from an ambient oscillation monitoring algorithm 

into groupings representative of different system modes is addressed for the first time. The well-

known DBSCAN method is applied for clustering the estimates. Archived results from three days 

of oscillation monitoring implementation in a real system, which were obtained from Fast 

Frequency Domain Decomposition (FFDD) modal analysis method in the RTE power system, are 

utilized for evaluation of the methodology. 

3.1 Overview 

Measurement-based modal analysis of power systems is one of the most important Phasor 

Measurement Unit (PMU)-based applications [11, 29-31]. PMU-based real-time modal analysis of 

power systems can be used to send alarms to the control room for triggering mitigatory actions 

when the damping of a mode drops below a certain level or when a problematic forced oscillation 

appears in the system. Among all modal estimation methods, ambient data analysis techniques are 

of great importance [4, 6, 16, 17],[8-10]. These methods can provide the operator with early 

warnings of the system getting close to the small signal instability. Modal analysis of PMU ambient 

data can be carried out by time- or frequency-domain methods. Another classification can be based 

on the number of PMU signals (channels) employed by the technique; some methods [16-18] use 

only one channel, whereas some others [4, 6, 19-21] utilize multiple channels for estimating modes. 

In [16], Yule-Walker (YW) method is applied to both simulated and real PMU data. [17] and [22] 

proposed Least Mean Square (LMS) and Recursive Least Squares (RLS) methods to extract the 

frequency and damping of inter-area modes by analysis of  specific PMU signals respectively. In 

[18], Error–Feedback Lattice RLS filter is applied to the data of a single channel to estimate specific 

modes of the system, where it is assumed that the approximate value of mode frequencies are known 

a priori. In general, single-channel methods analyze a signal with the highest observability of a 

mode for its estimation. These methods are capable of estimating a limited number of modes from 

a single channel, since each channel contains the information of few system modes. The advantage 

of these methods is that the operator exactly knows which mode is being tracked by analyzing a 

specific PMU channel; then, remedial actions can be taken directly for the problematic mode based 

on the results of these methods. The main disadvantage of these techniques is their inability to track 

previously unknown modes and forced oscillations in the system. Furthermore, if the selected PMU 

signal encounters any significant issue, the estimation process may be interrupted.  

On the other hand, there are multi-channel methods in which all the PMU signals can be analyzed 

together. Since a window of data from all the PMUs throughout the power system is analyzed in 

these methods, all the system modes as well as forced oscillations can be detected even if they are 

observable in any one signal or a few signals. In [20], Fast Frequency Domain Decomposition 

(FFDD) method is proposed to estimate modal properties of the system by all available PMU 
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signals. Recursive Adaptive Stochastic Subspace Identification (RASSI) method was proposed in 

[9] as a time-domain multi-channel modal analysis method.  

Generally, ambient oscillation monitoring methods discussed above utilize a moving window 

approach to provide continuous modal estimation from ambient data. However, some issues such 

as changes in mode frequencies and their damping levels during the day, intermmitent observability 

of modes, forced oscillations, or existence of modes with close frequencies make the tracking of 

modes or forced oscillations from the estimates available from the moving window analysis 

challenging. 

In this report, Density-based spatial clustering of applications with noise (DBSCAN) which is a 

well-known clustering method is utilized to classify the estimated modes. DBSCAN is extensively 

used in power system studies such as PMU calibration [35] and anomaly detection [36, 37]. The 

procedure of implementation of DBSCAN for clustering of the system estimated modes is 

comprehensively discussed in Section III. Archived modal analysis results from RTE power system 

over three different days are used as test cases to evaluate the performance of the proposed method. 

In the first two days of these datasets, the power system is operating in a normal operating condition. 

On the third day, there is a sustained oscillation with its frequency close to that of a system mode 

for a period of time where proper clustering of estimates is especially important yet challenging. It 

is shown that with reasonable settings of the method, clusters obtained from this method for all 

three days are acceptable. 

3.2 Problem definition 

Fig. 3.1 illustrates the procedure of implementing single-channel modal analysis techniques in 

control rooms. An appropriate signal is selected based on the prior studies on the system dynamic 

model and features of the signals to monitor specific modes. After estimating the mode damping, 

they can set up an automatic alarm and remedial actions for the times when the damping of the 

mode becomes low. In multi-channel methods, since all the measurements throughout the system 

are analyzed together, all observable system modes and forced oscillations can be identified. The 

implementation procedure of these methods in control rooms is demonstrated in Fig. 3.2.  
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Fig. 3.1. The implementation process of the single-channel modal analysis methods 
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Fig. 3.2. The implementation process of the multi-channel modal analysis methods 

As can be seen in this figure, setting up an alarm and automatic triggering of control actions for 

problematic oscillations in the system needs an efficient way of clustering of estimated modes in 

each window. For the following reasons, real-time clustering of the results is a challenging problem: 

• Existence of spurious modes: time-domain approaches, deployed for modal analysis of 

synchrophasor data, try to fit mathematical models which emulate the small-signal behavior 

of power systems. A large model order introduces some spurious modes which are presented 

to satisfy the mathematical equations. In addition, numerical issues in frequency-domain 

methods or signal quality problems may introduce spurious modes as well. Spurious modes 

should be identified and discarded to prevent issuing any false alarm.   

• Changes of the characteristics of system modes: not only can the damping of a mode vary 

during the time by system changes, the frequency of a mode can vary as well. Therefore, 

tracking a mode by considering a constant value or even a range for its frequency might lead 

to an erroneous conclusion.  
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• Existence of close modes: power systems may have modes with close frequencies and 

damping levels.  

• The appearance of forced oscillation or new modes: It is always possible in a power system 

that unknown modes or forced oscillations may suddenly appear because of topological 

changes or accidents respectively.  

The above-mentioned reasons clearly justify the necessity of proper clustering of estimated modes. 

Furthermore, they show why only considering bands for frequency cannot address the problem of 

tracking different modes of the system. 

Application of the DBSCAN method for clustering the estimated modes is proposed in this report. 

In the next part, the proposed clustering methodology is explained.  

3.3   DBSCAN and system mode clustering 

3.3.1 DBSCAN Basics 

DBSCAN is an unsupervised data mining method which aims to discover clusters and noise in a 

spatial database [38]. Among different proposed clustering algorithms, DBSCAN offers the 

following advantages: 

• Discovering clusters of the arbitrary shapes 

• Not sensitive to the order of points 

• No need to the number of clusters as input 

• Capable of finding outliers 

However, this method needs two inputs from the user: 

• MinPts: the minimum number of points in a cluster 

• Epsilon ( ) : the neighborhood criteria. 

Suppose D is a set of points which should be clustered, and p and q are two points in this set. The 

  neighborhood of point p is defined as follows: 

( ) { | ( , ) }N p q D dist p q


    

where ( , )dist p q  is Euclidean distance between p and q. Based on ( )  and MinPts, all data points 

are classified into three types: 

• Core Point: The   neighborhood of core points contains at least MinPts data points.  

• Boundary Point: A point which has at least one core point in the   neighborhood but does 

not have MinPts data points as neighbors. 

• Outlier: The rest of the data points which are not core or boundary points are outliers. In 

other words, the points from the dataset which are not classified in any of the clusters are 

known as outliers.  

Before starting the explanation of the process of DBSCAN method, the following two definitions 

should be expressed: 
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• Directly density-reachable: An object q is directly density-reachable from object p if p is a 

core object and q is in the   neighborhood of p. 

• Density-reachable: A point p is density-reachable from a point q wrt.   and MinPts if there 

is a chain of points
1 2
, , ,

n
p p pK  ,

1
p q ,

n
p p such that 

1i
p


is directly density-reachable 

from 
i

p . 

The summary of the algorithm is as follows: 

• Select an arbitrary object p in the dataset D; 

• If it is unvisited, mark it as visited, and retrieve all objects in the   neighborhood of p; 

• If p is a core point wrt.  and MinPts, a cluster is formed. The density-reachable points from 

p should be retrieved and put in this cluster; 

• If p is a boundary point, according to definitions, no objects are density-reachable from p, 

then DBSCAN visit the next object of the dataset;   

• After algorithm visits all the points in the dataset, points are classified in different clusters. 

Points which are not in any clusters are outliers. 

3.3.2 Clustering of the mode estimates 

In order to efficiently apply the algorithm for the clustering of power system modes, some 

considerations should be taken into account. There are some common features in the estimated 

modes by modal analysis methods which should be used in the modification of the clustering: 

1- In the estimation of electromechanical modes, the range of frequency is usually 0.05Hz - 

2Hz, while the estimated damping ratio can be from 0% -20% or even higher.  

2- The standard deviation of damping ratio estimates is significantly higher than frequency 

estimates. In other words, the estimation of frequency is usually more accurate than the 

damping ratio.   

3- The range of change of a mode frequency due to system changes is usually less than that 

of the mode damping ratio.  

Therefore, instead of using  ,
i i

f  which are the estimated frequency and damping ratio of the ith 

system mode, weighted frequency is used and clustering algorithm is applied on  . ,
i i

f  .  is the 

weighting coefficient of frequency and is determined by the user based on the features of the 

system estimated modes. 

3.4 Implementation and Results 

In this section, two different cases are examined to evaluate the performance of DBSCAN method 

in the clustering of estimated modes. The first case includes the estimated modes of two days of 

PMU data from RTE when the power system is in normal condition, while in the second case, there 

is a sustained oscillation whose frequency is close to the system mode frequency. In both cases, 

system estimated modes are obtained by FFDD with the window length of 90s and refresh rate of 

10 seconds. The last part of this section is designated to a discussion about the limitations of this 

method.     
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3.4.1 Case 1: Clustering of estimated modes in normal operating condition 

In this case, estimated modes, which are obtained from 3.5 and 4.5 hours of RTE power system 

PMU data, are clustered by DBSCAN. For the first day,  and  are chosen as 200 and 1.6, 

respectively. MinPts is selected to be 12. Results are shown in Fig. 3.3. It can be seen that 10 clusters 

as well as outliers (noise) are precisely discovered. Time plots of modes estimated frequencies for 

the different clusters of the first day are shown in Fig. 3.4. The range of frequency change of the 

second cluster with the frequency mean value of 0.32Hz is from 0.3Hz to 0.34Hz. Therefore, if the 

clustering process is done simply by defining band frequencies, a frequency band of 0.04Hz should 

be defined to capture all the estimates of this mode in one cluster. If this frequency band was 

selected as the measure of clustering of the estimated modes, clusters of 0.057Hz and 0.082Hz 

would be mixed together. On the other hand, if the frequency band is set as low as 0.025Hz (or less) 

for the proper clustering of these two modes, quite a few number of estimates for the mode 0.32Hz 

would be classified in a wrong cluster. Therefore, defining a fixed frequency band as the measure 

of clustering can result in a misleading interpretation of modes. Fig. 3.5 illustrates the clustering of 

the second day estimated modes with parameters of 400  , 1.07  , and MinPts=10. Evidently, 8 

clusters as well as outliers are detected. Fig. 3.6 is the time plots of the estimated frequency of 

different clusters. Owing to the random nature of ambient load fluctuations, some modes get excited 

only for a short period of time, while some others persistent for long periods during the day. 

DBSCAN can easily designate new clusters for modes appearing only for a short time. Similar to 

the first day, there is no single frequency band which results in a correct clustering of modes. Tiny 

frequency bands can cluster one mode into two or more clusters, while a broad frequency band can 

combine two or more separate modes into one cluster. Therefore, clustering of modes using 

frequency bands might result in incorrect classification of estimates into modes. 

 

 

Fig. 3.3. Frequency vs. damping ratio of different clusters of the first day modes 
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Fig. 3.4. Time plots of modes estimated frequencies for different clusters of the first day 

 

 

Fig. 3.5. Frequency vs. damping ratio of different clusters of the second day modes 
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Fig. 3.6. Time plots of modes estimated frequencies for different clusters of the second day 

 

3.4.2 Case 2: Presence of sustained oscillation close to a system mode      

In this case, a sustained oscillation of unknown origin, whose frequency was close to the frequency 

of the system mode, happened in the RTE system and FFDD method could detect the undamped 

oscillation with damping estimates near zero. However, it is important to distinguish whether 

indeed the damping of the system mode was becoming low or an unrelated sustained oscillation 

(possibly a forced oscillation) was present in the system. Fig. 3.7 shows the results of clustering 

with parameters 400  , 2  , and MinPts = 12. Estimated frequency time plots for different 

clusters are shown in Fig. 3.8. It can be seen that 7 clusters as well as outliers are discovered. 

Among clusters, there are three clusters with the average frequency of 0.23Hz, 0.19Hz, and 

0.20Hz. In order to clarify the interpretation of each of these clusters in the real system, time plots 

of frequency and damping ratio of these clusters are brought in Figs. 3.9-3.11. Mode with the 

frequency of 0.23Hz and average damping ratio of 7.34% persistently exists in the system before 

time 1.6h. Afterward, estimates with the frequency of 0.19 Hz appears and damping of this cluster 

is changing from 10% to 5%. These estimates associate with the transition period when the 
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sustained oscillation appears in the system and the analysis window has the sustained oscillation 

as part of it. As time goes on and more data of the sustained oscillation comes through the analysis 

window, the estimated damping drops more and more. Eventually, the transition period is finished 

and the entire analysis window contains only the sustained oscillation data. Fig. 3.11 illustrates the 

cluster for frequency and damping estimates of the sustained oscillation. As is evident, the 

frequency of sustained oscillation is about 0.20 Hz and the average damping ratio is about 1.12%. 

The sustained oscillation observed in PMU data is detected with small positive damping ratio 

estimates by FFDD because of the nonlinear nature of the oscillations observed and from 

estimation bias. After disappearance of the sustained oscillation, there is another transition period 

which is shown in the right-hand side estimates of Fig. 3.10. Therefore, the clustering method with 

the mentioned parameters could successfully distinguish the system mode, transition of estimates, 

and the sustained oscillation. For this case, if a frequency band with specific bandwidth was chosen 

for the clustering of modes, results would be completely misleading. Clusters with the average 

frequency of 0.23Hz and 0.31Hz have the frequency deviation of 0.035Hz - 0.04Hz. Hence, the 

frequency band of at least 0.04Hz is suitable for capturing these estimates in one cluster. Selecting 

this band would combine all the estimates associated with the system mode and sustained 

oscillation into one cluster which may be problematic. 

 

 

Fig. 3.7. Frequency vs. damping ratio of different clusters of the system modes in the presence of sustained 

oscillation with frequency close to the system mode 
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Fig. 3.8. Time plots of modes estimated frequencies for different clusters of the day with sustained oscillation 
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Fig. 3.9. Time plots of estimated frequency and damping ratio of system mode before the appearance of sustained 

oscillation 
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Fig. 3.10. Time plots of estimated frequency and damping ratio in the transition period exactly after the appearance 

of sustained oscillation 
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Fig. 3.11. Time plots of estimated frequency and damping ratio of sustained oscillation 

 

3.5 Discussions   

In the previous two cases, it was shown that DBSCAN can efficiently cluster estimated modes in 

different system operating conditions. Although DBSCAN with the mentioned implementation 
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process and tuned parameters could successfully classify the estimated modes, there are some 

limitations on this clustering process: 

• The performance of the method is sensitive to the clustering parameter values. In other 

words, one set of parameters might not work for other datasets and proper tuning of 

parameters should be separately done for each set of data which may be unrealistic.  

• When there are multiple modes with close frequencies and damping ratios, the clouds of 

estimates might overlap with each other by the passage of time. Therefore, clustering 

these estimates would be more challenging and the proposed method is not able to 

correctly classify them. 

• When there is a sustained or possible forced oscillation in the system whose frequency 

is close to the frequency of a poorly damped system mode, the proposed method cannot 

distinguish the system mode estimates from the estimates of the sustained oscillation.   

Considering these limitations, it is noted that the problem of clustering of estimated modes 

obtained by multi-channel modal analysis methods requires further research. 

 



 

27 

 

4. Conclusion 

In the first part of this report, the modal analysis of two challenging events of RTE system was 

presented. For each event, data of PMUs before, during, and after the events were recorded and 

analyzed by two ambient modal analysis methods, FFDD and FSSI. Although the model of the 

system was not available and only a few number of PMUs installed in the system, the cause of these 

events could be guesstimated thanks to the distinctive and significantly important capability of FSSI 

in the estimation of oscillations with close frequencies. By the analysis of these two events, it was 

shown that FFDD, similar to the most of other modal analysis methods, encounter difficulties when 

there are two or more system modes with close frequencies, or a forced or sustained oscillation 

whose frequency is close to that of the system mode. However, FSSI could perfectly estimate both 

system modes with close frequencies in the first event and both system mode and sustained 

oscillation with close frequencies in the second event. As well as the demonstration of this 

outstanding and unique characteristic of FSSI in the modal analysis of challenging events, other 

advantages and disadvantages of FSSI and FFDD were comprehensively discussed. Although FSSI 

can simultaneously calculate estimates with close frequencies, it has a higher computational burden 

and more spurious estimates in comparison with FFDD. Besides low computational burden and 

capability of handling a large number of PMUs, FFDD can result in acceptable estimates with even 

small analysis windows, which is a crucially important feature for tracking the changes of system 

modal characteristics.  

In the second part of the report, the problem of clustering of estimated modes by multi-channel 

modal analysis methods was discussed. A well-known clustering method called DBSCAN was 

utilized for classifying estimated modes. The proposed clustering methodology was applied to the 

modal analysis results obtained by the real-time FFDD modal analysis tool installed in the RTE 

company. Two cases were examined to evaluate the performance of the clustering method. In the 

first case, the clustering process was applied to the estimated modes of two days when the system 

was operating in a normal condition. In the second case, a sustained oscillation whose frequency 

was close to the frequency of a system mode appeared in the system. In this condition, 

distinguishing system mode and sustained oscillation is of great significance for the operator. The 

clustering technique could successfully distinguish and classify not only all system modes in normal 

condition, but also the sustained oscillation when its frequency is close to the frequency of a system 

mode. It was shown that choosing a frequency band for clustering estimated modes cannot result in 

correct clusters. It was pointed out that the performance of this method is significantly dependent 

on the choice of parameters. Furthermore, specific situations were discussed where the proposed 

clustering method is not capable of yielding suitable results. In these cases, the clouds of estimates 

in the frequency-damping plane get mingled up, and this clustering method cannot correctly cluster 

the estimates. Future research is indicated for addressing these concerns. 
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