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Executive Summary 

The goal of this project is to investigate a reliability evaluation approach for power systems that 

are undergoing changes including increased penetration of renewable resources and the associated 

impact on system dynamic performance. These changes have brought complexities to reliability 

studies both for resource adequacy assessment and dynamic security assessment (DSA). Adequacy 

and dynamic security, the two fundamental functions of bulk power system reliability, have been 

analyzed separately in the system planning practice. With increasing proportion of converter-

interfaced generation, the reliability evaluation methodology needs to be revisited to incorporate 

the evaluation of the resource adequacy as well as the adequacy of stability control capability. It 

is also recognized that traditional deterministic methods are not capable of addressing the increased 

sources of uncertainty. Alternatively, probabilistic methodology is inherently more suited to 

represent stochasticity and therefore is the analysis method of choice for reliability evaluation in 

this project. 

 

A probabilistic reliability evaluation approach with adequacy and DSA integrated in a single 

framework is developed in this research. The research investigates the techniques for adequacy 

assessment and DSA, developing the quantification metrics for the assessment results that provide 

a solution to integrate adequacy assessment and DSA in an integrated framework. The sequential 

Monte Carlo Simulation (MCS) is selected as the analysis method as it is well suited for the 

analysis of large systems and is capable of considering time-vary characteristics in systems. The 

use of MCS for the assessment of a large number of cases can be time consuming, therefore, 

acceleration methods for the integrated reliability evaluation process are investigated to improve 

the practical application of the approach.  

 

This report consists of three parts. Part 1 studies the assessment methods of resource adequacy and 

dynamic security, as well as the MCS framework to integrate the resource adequacy assessment 

and DSA. To improve the computational efficiency, an acceleration method for MCS and a 

contingency pruning process for DSA, are developed and implemented as part of the integrated 

reliability evaluation approach. As a proof-of-concept, the proposed approach is demonstrated on 

a synthetic test system and the simulation results illustrate the efficacy of an integrated reliability 

evaluation approach. Part 2 is focused on improving the speed of computation by using machine 

learning. A time-consuming operation in the adequacy assessment is the use of OPF to evaluate if 

in a given state the load can be satisfied. It is shown that machine learning can successfully replace 

OPF for this purpose. Part 3 is a study on the characteristics of the Importance Sampling. This part 

provides a compact reference to Cross Entropy based Importance Sampling and studies the 

sensitivity of computational efficiency provided by it under various situations. This can provide 

some guidance under which conditions it is advantageous to use this variance reduction technique. 

 

Part I: Integrated Reliability Evaluation including Adequacy and Dynamic Security 

Assessment 

 

Power system reliability assessment includes two aspects: adequacy and security. The purpose of 

adequacy assessment of a power system is to ensure that there are enough generation and 

transmission resources to supply the aggregate electric power and energy requirements of the 

electricity consumers while taking into consideration scheduled and reasonably expected, 



iii 

 

unscheduled outages of system components. Security assessment, on the other hand, focuses on 

the ability of the electric system to withstand sudden disturbances or unanticipated loss of system 

components. Both system adequacy and security are considered essential to provide the desired 

level of reliability of power systems but the two aspects are traditionally treated separately in 

practice. 

 

In this part of the report, an integrated reliability evaluation combining both adequacy and dynamic 

security using a probabilistic approach is formulated and tested. With an integrated reliability 

evaluation, not only is the reliability of the post-contingency stable equilibrium point (SEP) 

assessed but also addresses the DSA related issue of whether a stable transition to a post-fault SEP 

can be achieved. The approach evaluates the system response for each selected contingency, 

examines transient stability in the transition from the pre-contingency to the post-contingency 

period, and finally evaluates the post-contingency steady-state equilibrium to ascertain that all 

flow limits and voltage limits are satisfied. Stochastic characteristics including renewable 

resources, component failures, and load variations are taken into consideration in probabilistic 

sampling and dynamic performance modeling. System adequacy and dynamic security are 

quantified in terms of MW load curtailment from the respective assessment processes and are 

incorporated into the calculation of the integrated reliability indices. The outcome of the integrated 

reliability evaluation provides the probability, frequency, and magnitude of system loss of load. 

 

There are two important steps in the integrated reliability assessment; 1) the methodology for 

system state generation and 2) the technique used for state evaluation to determine the reliability 

indices. MCS provides a framework of probabilistic analysis based on modeling the stochastic 

characteristics in the system. Each system state sampled from MCS consists of generator and 

transmission contingency information and the system pre-contingency steady-state operating 

condition. The impacts of a contingency on system adequacy and dynamic security are assessed 

using optimal power flow (OPF) analysis of the post-contingency steady-state condition and time-

domain simulation for examining the dynamic behavior, respectively. The procedure for each step 

is as follows: 

•    In each iteration of the sequential MCS, the system states are generated and incorporated with 

an annual 8760-hour load curve and wind speed curve. State evaluation is then conducted for 

each state to determine both the adequacy and the dynamic security. Dynamic security is first 

evaluated. When dynamic security evaluation indicates that there is a stable transition to a post-

fault stable equilibrium point (SEP), the adequacy assessment is then conducted to evaluate 

the post-fault steady-state condition. A state is seen as a successful state only if it is steady-

state stable and transiently stable. The duration time and load curtailment of all failure states 

are then utilized in the calculation of integrated reliability indices. Loss of load probability 

(LOLP), expected power not supplied (EPNS), and loss of load frequency (LOLF) are used to 

quantify the integrated reliability. After each iteration of the SMCS, reliability indices are 

updated. The coefficient of variance (COV) is calculated after each SMCS iteration to 

determine the convergence. The final reliability indices are obtained after the MCS converges. 

•   The adequacy assessment addresses the steady-state system condition after a contingency. 

Power flow analysis is used to assess system steady-state conditions. Considering realistic 

power system operating limits, AC power flow is used as the steady-state analysis technique 

in this work to take into consideration both bus voltage magnitude and thermal limits of 

transmission components. When the AC power flow results show that there is a violation of 
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operating limits, an AC optimal power flow (ACOPF) with remedial actions including 

generation rescheduling and load curtailment is deployed to optimally correct the abnormal 

system conditions. The remedial actions, first prioritize generation rescheduling, without 

curtailing any load. If the operating constraint violations still exist, remedial actions with load 

shedding capability are then applied. The minimum amount of load shedding that is needed to 

alleviate operating constraint violations is determined from the AC OPF study. In this work, 

the OPF package in PSS/E is utilized to solve this optimization problem. 

•    While adequacy studies evaluate post-contingency steady-state conditions, the DSA estimates 

whether the system can transition to an acceptable stable equilibrium point after a contingency. 

Time-domain simulation (TDS) is widely recognized as the most accurate method to describe 

power system transient behavior and therefore is the method of choice to perform the DSA in 

this work. As a result of the enhanced component modeling capabilities in TDS, critical 

protection systems can be modeled and their resulting actions can be simulated in the TDS. 

The protection systems that activate generator tripping and load shedding are represented such 

that following a contingency the action of these critical protections systems renders the power 

system to be transiently stable. Considering the requirements from the North American Electric 

Reliability Corporation (NERC) Protection and Control (PRC) standards, to stabilize the 

system, the protection systems include under-frequency load shedding, over frequency and 

under frequency generator tripping, over voltage and under voltage generator tripping are 

considered, and dynamic security is quantified by the MW load shedding due to security 

preserving corrective protection action. 

The proposed integrated reliability evaluation procedure has been tested on a synthetic power 

system, which is generated to represent the realistic test system comprising of Ontario and upstate 

New York. The test system consists of major features of a realistic power system for transient 

stability and reliability studies for system planning. Compared to the traditional reliability 

evaluation which evaluates the adequacy and dynamic security separately, the proposed method 

provides the reliability indices reflecting both adequacy and dynamic security based on the 

quantification of the two aspects of reliability in terms of load curtailments. The quantification of 

the impact of dynamic security is included by the load curtailment from protection action to 

maintain system stability after contingencies. By including the value of load curtailment into the 

calculation of reliability indices, the integrated system reliability can be represented using the well-

recognized reliability indices which are LOLP, EPNS, and LOLF. The results from case studies 

show the importance of considering the two reliability aspects together since both the steady-state 

and transient system performance need to be analyzed in reliability studies. Also, the two 

acceleration methods are verified with significant improvement of the computational efficiency. 

In practical applications, further methods can be explored to further reduce the computational 

burden. 

 

As an outcome of this project, a research-grade software has been developed to implement and 

demonstrate the proposed approach. 

 

Part II: Deep Learning and Multi-Label Learning Based MCS Methods for Composite 

System Reliability Evaluation 

 

The preferred technique for composite power system reliability evaluation has emerged to be the 

Monte Carlo Simulation. However, this method can be quite computation intensive especially for 
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high reliability systems. This is because for high reliability systems it takes longer time to collect 

enough samples with loss of load to calculate the reliability indices. This part of the report is 

focused on exploring the use of machine learning to improve the computational efficiency of the 

composite system reliability evaluation. 

 

The reliability evaluation is performed in three phases. In the first phase samples are generated, in 

the second phase the samples are evaluated to determine if a problem exists and then this 

information is used in the third phase to find estimates of reliability indices. Most of the 

computation effort comes from the first two phases. 

 

The computational effort coming from the first phase has been addressed by the use of Importance 

Sampling which appears to be a good tool for sampling from a distorted distributed with lower 

variance. In the second phase for adequacy evaluation, the time-consuming part is the optimal 

Power Flow whether DC or AC Power flow is used. This report is focused on exploring the use of 

machine learning to replace the OPF. The following results have been obtained. 

 

• A novel method to evaluate reliability indices for composite power systems is introduced with 

a combination of MLL and MCS. The proposed method is implemented for MLKNN and 

MLRBF classifiers to identify status of buses. The case studies show that the method 

significantly reduces the computational burden of MCS without sacrificing accuracy. 

Additionally, this method advances the state of the art of using machine learning in power 

system reliability evaluation from the previous methods by including computation of bus 

indices and the transmission line failures. Moreover, the work done shows that the proposed 

method can be combined with the well-known variance reduction technique of IS. The 

outcomes for this approach show this methodology improves time efficiency of MCS even 

further. 

• Deep learning structures are investigated to evaluate composite system reliability evaluation 

through MCS. A well-known deep learning topology, CNN, is implemented to characterize 

sampled system states for both AC and DC flow models. The results show that computational 

efficiency for classification using AC flow model is much higher than DC flow model since 

AC flow equations require nonlinear programming techniques while DC flow equations can 

be solved with linear techniques. The results obtained show that the proposed architecture 

performs state characterization with a high accuracy with COV equal or less than .01. The 

computation time is dramatically reduced. 

• This study demonstrates that the application of the proposed machine learning methods on 

composite power system reliability evaluation accurately determines the system status with a 

substantial speed up compared with OPF based Monte Carlo Simulation methods. At the same 

time the accuracy is not sacrificed. 

• Using machine learning to enhance the process of dynamic security assessment as well as the 

OPF should be investigated further. Then perhaps the Time Domain Simulation could be used 

to train CNN to replace this time consuming operation. This could make the inclusion of 

security assessment in composite reliability assessment computationally efficient and 

attractive to users. 
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Part III: Using Importance Sampling in Monte Carlo Simulation - Computation Time 

Sensitivity Studies 

The results obtained by Monte Carlo are only estimates of true values and not the true values. 

Therefore the estimates have a variance. The estimates approach the true values as the variance of 

estimates is reduced by increasing the sample size. Importance sampling helps further by reducing 

the variance of the estimator and thus a smaller sample size is needed to get the same coefficient 

of variation. The coefficient of variatin determines the gap between the upper and lower bounds 

with a given level of confidence. The smaller the coefficient of variation, the tighter are the bounds 

around the true values. The main advantage of using variance reduction technique of Importance 

sampling is the reduction in computational time. This section explores the conditions under which 

the computation time is reduced more favorably by implementation of Importance Sampling and 

thus it becomes advantageous to use this variance reduction approach. It is shown that in general, 

the conditions which lead to higher computation time for the straight MCS tend to favor the use of 

Importance Sampling for relatively higher reduction of computation time by reducing the variance 

of estimates. The conditions which lead to higher computation time are either the ones that lead to 

higher reliability, i.e. , lower loss of load probability or the ones where tighter bounds on estimates 

are needed to have higher confidence in the estimated results.
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GLOSSARY 

 

 

ACOPF  Alternating current optimal power flow. 

BPS   Bulk power system. 

CCT   Critical clearing time. 

CE   Cross-Entropy.  

CE-IS   Cross-Entropy based Importance Sampling. 

COV   Coefficient of variation. 

DSA   Dynamic security assessment. 

EENS   Expected energy not served. 

EPNS   Expected power not supplied. 

IS   Importance sampling. 

LOLF   Loss of load frequency. 

LOLP   Loss of load probability. 

MCS   Monte-Carlo simulation. 

MTTF   Mean time to failure in the unit of hours. 

MTTR   Mean time to repair in the unit of hours. 

NSMCS  Non-sequential Monte-Carlo simulation. 

NERC   North American Electric Reliability Corporation. 

PEBS   Potential energy boundary surface. 

PDF   Probability density function. 

TEF   Transient energy function. 

VRT   Variance reduce technique. 

OPF   Optimal power flow. 

SEP   Stable equilibrium point. 

SMCS   Sequential Monte-Carlo simulation.  

TDS   Time domain simulation. 

WTG   Wind turbine generator. 
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1. Introduction 

1.1 Background 

Power systems are designed and expected to provide reliable electrical energy to the customers 

with an acceptable degree of continuity and quality. However, power systems are exposed to 

disturbances all the time and failures in any part of the system may cause interruptions of power 

supply to end-users. The task of maintaining a reliable power supply is not easy. To maintain a 

high level of reliability in bulk power systems (BPS) is even more complicated and requires 

considerations of both system planning and operating time-frames. The North American Bulk 

Power System is an interconnected power system and its reliability needs to be maintained through 

both wide-area interregional planning and coordinated system operation.  

 

According to NERC’s definition, the reliability in a BPS is the degree to which the performance 

of the elements of that system results in power being delivered to consumers within accepted 

standards and in the amount desired [1]. The reliability assessment considers two basic and 

functional aspects: adequacy and security. The adequacy assessment of a power system addresses 

the ability to have the necessary generating capability and transmission line capacity. Its purpose 

is to ensure that there are enough generation and transmission resources to supply the aggregate 

electric power and energy requirements of the electricity consumers, taking into consideration 

scheduled and reasonably expected unscheduled outages of system components. A security 

assessment, on the other hand, focuses on the ability of the electric system to withstand sudden 

disturbances or unanticipated loss of system components, considering static security which 

analyzes post-disturbance system conditions and dynamic security which studies the transient 

period after contingencies occur. Security assessment addresses the consequences of contingencies 

and determines the system security margin after the contingency. In power system planning, 

considering both adequacy and security aspects are essential to provide the desired level of 

reliability for power systems. The current practice in the industry is that the two aspects are treated 

separately. 

 

Both adequacy and security issues in power systems have become more challenging with the 

growing penetration of renewable energy resources in the system. The main sources of this 

challenge stem from the uncertain nature of the renewable sources like wind and solar generation 

and the new equipment failure characteristics and altered inertia in the system due to the necessary 

power electronics interface to the grid. Additionally, the deregulation of power generation and 

open access to transmission have driven the system to be operated in a more competitive 

environment and closer to the security margin. All of these new features require that the evaluation 

of system reliability needs to take into consideration more stochastic factors and probabilistic 

methods to provide more comprehensive metrics to characterize system adequacy and security. 

 

The planning process evaluates power system reliability using different methods and objectives to 

assess adequacy and security, respectively. Such objectives and methods are typically known as 

either deterministic methods or probabilistic methods. Probabilistic methods are widely used in 

power system adequacy assessment. For security assessment, deterministic methods are the 

primary approaches used to measure system operating reliability, such as the percentage of reserve 

in generation capacity planning and the single-contingency principle in transmission planning. The 
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basic weakness of deterministic methods is that they do not respond to the probabilistic nature of 

power system behavior including load variation, component failures, and other such factors. 

Probabilistic assessment methods have drawn more attention in this new environment with the 

increasing penetration of renewable resources and lower security margins. It is recognized that the 

traditional deterministic methods to incorporate the increased sources of uncertainty are not 

adequate and are likely to yield pessimistic results. 

 

It is known that a power system must be both resource adequate and statically and dynamically 

secure to provide a high level of reliability. In current practice, system adequacy and security 

assessment for reliability evaluation have been treated separately. One reason for this is that 

assessment approaches widely used are different and the computation requirements to handle 

adequacy and stability at the same time can be significant.  

 

In system adequacy assessment, following a contingency, the faulted components are assumed to 

be disconnected from the grid immediately and the system is assumed to return to a stable state 

with suitable generation rescheduling to facilitate minimum load curtailments. Although the 

generation rescheduling optimization problem may converge to a feasible solution representing a 

steady-state operating point, a stable transition to a post-fault SEP is not guaranteed. Hence, it is 

important to integrate dynamic security in the evaluation and provide a more comprehensive 

indication of the system reliability level. As a key concern of dynamic security, transient stability 

should, therefore, be considered in the reliability evaluation to address the system’s ability to 

maintain stability during the transition, even though transient stability assessment is 

computationally burdensome and for this reason is often ignored in the overall reliability 

evaluation. 

1.2 Objectives 

Adequacy and stability analysis are important for ensuring a reliable bulk power system. With 

increased penetration of renewable sources and power electronics interfaces, the importance of an 

integrated reliability study to capture the resource adequacy and adequate control capability to 

maintain system stability has increased. Utilities and other stakeholders in the power grid need 

tools to simulate the behavior of the systems and compute risk-based measures to provide a rational 

basis for decision making. This project provides a tool that can be used to assess the reliability 

indices integrating adequacy and stability and thus provide a more realistic tool for decision 

making.  

• Designing the Monte Carlo Simulation (MCS) framework: MCS has emerged as a 

preferred approach for probabilistic analysis in large power systems. MCS deals with the 

issue of dimensionality by sampling states based on their probabilities and drawing the 

inference from the sample with a convergence criterion to ensure sufficient accuracy. One 

of the objectives is to develop a probabilistic approach for reliability evaluation integrating 

system adequacy assessment and dynamic security assessment into a single framework.  

• All relevant stochasticity in the system will be investigated to develop appropriate 

probability model representations. With proper stochastic models, those factors are thus 

brought into Monte Carlo simulation to sample system states. 
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• Integrated reliability assessment techniques: For the assessment of a state in integrated 

reliability evaluation, what will be examined includes the system dynamic performance 

after the disturbance and the post-contingency steady-state performance. The assessment 

techniques that can accurately evaluate the performance and can be brought into the 

integrated reliability measurements are investigated. 

• Dynamic system performance simulation is a time-consuming process, therefore, tools that 

can pre-determine the stability or instability of a case can significantly reduce the 

computational efforts. A pruning process will be developed to determine whether stability 

evaluation is warranted. Another acceleration will be investigated to improve the 

computation efficiency of the MCS process. 

• Develop quantitative metrics that integrate adequacy and dynamic security evaluation 

results, and develop a research-grade software to implement and demonstrate the tool. 

1.3 Organization of the Report 

The report is organized as follows. Chapter 2 presents a detailed literature review of the existing 

work in this area. Chapter 3 presents the mathematical component outage model and dynamic 

model for reliability evaluation, and the Monte-Carlo Simulation (MCS) method for probabilistic 

system analysis. Chapter 4 discusses the integrated reliability evaluation approach considering 

both system adequacy and dynamic security, which are assessed by steady-state analysis and 

transient stability analysis respectively. Two acceleration methods to speed up the integrated 

reliability evaluation are discussed. Chapter 5 presents the results of the application of the proposed 

methods along with discussions of the results. Chapter 6 summarizes the main conclusions of the 

work done and identifies additional research issues to be pursued as a continuation of this project. 
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2. Literature Review 

Reliability assessment has been a continuous concern in power systems. Extensive work has been 

done to evaluate the adequacy and security aspects of reliability.  Probabilistic analysis approaches 

have gained more attention because they incorporate a more complete and comprehensive 

representation of the system. A literature survey of existing methods of probabilistic reliability 

evaluation and a comprehensive consideration of adequacy and security into a single framework 

of reliability evaluation is presented in this Chapter. 

2.1 Integrated Reliability Assessment considering Adequacy and Dynamic Security 

In most power system reliability studies, the quantitative measures of the overall system reliability 

are based on the adequacy evaluation which only addresses the steady-state analysis. Dynamic 

security is an important factor to be considered in the reliability assessment since it represents 

whether the system is reliable before the system reaches a post-contingency SEP. Although the 

importance of dynamic security and its significant influence on the overall reliability is well 

recognized, there are limited efforts dedicated to the integrated reliability evaluation considering 

both adequacy and dynamic security analysis.  

 

Felix F. Wu, et al, in [5], proposed a conceptual framework of a unified approach to probabilistic 

steady-state and dynamic security assessment. The authors introduced the time to insecurity as the 

metric of system security. The probability distribution of the time to insecurity is obtained from 

the solution of a linear vector differential equation whose coefficients are expressed in terms of 

steady-state and dynamic security regions. Reference [6] presented an integrated approach to 

reliability evaluation including a probabilistic assessment of transient stability. In the proposed 

method, system stability is determined by a sampled fault clearing time. If the fault clearing time 

is within the critical clearing time, the system is seen to be able to maintain transient stability after 

the contingency. Comprehensive reliability metrics are presented in the same paper. The 

probability of transient instability and the mean time to instability are used to measure the dynamic 

aspect of reliability. LOLP, LOLF, LOLD, and EENS are used as the composite system indices. 

A method of composite power system reliability including both static and dynamic processes after 

contingency is proposed in [7]. Sequential Monte-Carlo Simulation (SMCS) is used in this method 

for system states selection. In the proposed method, the reclosing time is evaluated to classify fault 

to be transient or permanent. The loss of load during restoration under permanent and transient 

faults are calculated based on a corrective OPF. Reference [8] introduced a framework for 

extending conventional probabilistic reliability analysis to account for system stability limits 

including transient and voltage stability issues. An intelligent system which is a combination of 

neural network and a fuzzy neural network is used to predict the security aspects on the reliability 

indices based on generator angle after a fault. Andrea M. Rei, et al, in [9], presented a method for 

integrating adequacy and security reliability evaluation using SMCS to capture stochastic features 

in power systems. Transient stability is evaluated by comparing the critical energy based on CCT 

and the PEBS calculated based on TEF. More recently, Benidris, Mitra, and Singh in [10] proposed 

an integrated evaluation of the reliability and stability method. A direct method is utilized for 

transient stability assessment based on computing the energy margin of the system under fault. 

Three probabilistic transient stability indices are proposed to address system instability in the 

reliability indices calculation.  
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2.2 Probabilistic Assessment of System Adequacy  

Historically, reliability assessment of power systems has been conducted using deterministic 

approaches. Based on a list of pre-determined contingencies with some important power system 

components, power system planners incorporate sufficient redundancy so that system failures can 

be prevented [11-13]. In the complex operation of modern power systems, the need for systematic 

analysis of power system reliability becomes more critical. Probabilistic approaches have received 

considerable attention because they can assess not only the severity of an event but also the 

likelihood of its occurrence. Extensive work has been done for probabilistic reliability assessment 

but with an emphasis on system adequacy evaluation [12-15]. W. Li, in [15], addresses the fact 

that probabilistic reliability assessment is generally associated with four tasks: determining 

components outage models, the selection of system states, evaluating the consequences of the 

selected system states and indices calculating. The enumeration method and MCS are essentially 

the two different methods for system states selection. Billinton and Li in [16] compared the results 

using the MCS method with those obtained using the enumeration method and proposed a 

combined Monte-Carlo method based on a random sampling technique with an analytical 

approach. Both types of methods have been widely used with respective merits. However, because 

of the so-called curse of dimensionality, where the enumeration number increases exponentially 

with the number of components, the exhaustive enumeration is computationally intractable. For 

the assessment of a large power system, the MCS method is preferred.  

 

The drawback of Monte-Carlo simulation is the computation time, especially when the probability 

of failure state occurrence is very small. Efforts have been made by many researchers to lower the 

variance and reduce MCS time. High-speed computing and programming paradigms have been 

explored to improve Monte-Carlo simulation efficiency. Gubbala and Singh in [17] described two 

random number generation schemes and three topologies for parallelizing the fixed interval MCS 

for reliability evaluation of interconnected power systems. In [18], Borges, Falcao, Mello, and 

Melo demonstrated two parallel methods for composite reliability evaluation using SMCS. In one 

of the methods, a complete simulation year is analyzed on a single processor and the many 

simulated years necessary for convergence are analyzed in parallel. In another method, the 

assessment of the system states in the simulated years is performed in parallel and the convergence 

is checked on one processor at the end of each simulated year. Other computational techniques 

such as intelligent agent technology based on which reliability evaluations are assigned to different 

agents [19-20], artificial neural networks [21], and object-oriented programming (OOP) [22] have 

also been proposed to reduce the computational cost. Another way to make the MCS method more 

time efficient is to use variance reduction techniques (VRTs). The objective of VRTs is to 

mathematically decrease the variance of the estimators of the reliability indices while not affecting 

their expected value. By decreasing the variance, the number of samples needed for reaching 

convergence can be reduced which grants a convergence speed-up. Different types of VRTs such 

as Antithetic Variables (AV) [23-25], Control Variables (CV) [26-27], and the combination of 

VRTs [28] have been tested by researchers to increase the MCS efficiency. Importance Sampling 

(IS) is a relatively new VRT method that has also been verified for its efficiency. But, its utilization 

in the study of real systems has been limited by the fact that it is difficult to find the optimized IS 

distribution. The application of the Cross-Entropy (CE) method provided a possible solution to 

that problem. In [29-31], the Cross-Entropy -based optimization process was proposed in non-

sequential MCS to obtain an auxiliary sampling distribution, which helped minimize the variance 
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of the reliability index estimators. The method has been tested in generation reliability and in 

composite system reliability.  

2.3 Probabilistic Assessment of Dynamic Security 

To evaluate the ability of the power system to withstand sudden disturbances, dynamic security 

studies are necessary. To better understand the existing work, the definitions of dynamic security 

and transient stability need to be addressed. Reference [33] described the definition of power 

system security and stability: Security is the ability of a power system to withstand sudden 

disturbances such as electric short circuits or non-anticipated loss of system components. Dynamic 

security analysis involves examining the different categories of system stability including rotor 

angle stability, frequency stability, and voltage stability. Transient stability is an integral 

component of dynamic security and refers to large-disturbance rotor angle stability. Transient 

stability analysis focuses on studying whether the power system can maintain synchronism when 

subjected to a severe disturbance, such as a short circuit on a transmission line.  

 

Probabilistic dynamic security assessment approaches have been explored to consider stochastic 

aspects in power systems and provide the overall quantitative evaluation of system’s ability to 

withstand contingencies. Kirschen and Jayaweera in [34-35] addressed the differences between 

probabilistic and deterministic security assessment methods and illustrated the benefits of 

probabilistic security assessment over traditional deterministic approaches. Vaahedi, W. Li, Chia, 

and Dommel, in [36], presented the results of the probabilistic transient stability assessment on the 

large-scale system of B. C. Hydro and showed that deterministic criteria produce conservative 

results and also that the deterministic criteria do not always correspond to the worst case scenario. 

The practical meaning of exploring probabilistic dynamic security assessment methods are well 

illustrated in those papers.  

 

Billinton, Carvalho, and Kuruganty in [37] presented a probabilistic assessment method of power 

system transient stability using Lyapunov functions to determine the post-fault stable equilibrium. 

System risk is represented by the product of the probability of transient instability and the 

occurrence of the fault which caused the instability. In [38], a risk-based stability assessment 

method considering both transient stability and oscillatory instability is presented. The authors 

proposed a composite risk index which can be obtained as the summation over risks of each 

individual event. In [39], Acker, McCalley, Vittal, and Pecas Lopes presented a methodology to 

evaluate the probability and consequences of transient stability. A transient stability index based 

on transient energy components calculated in time domain simulations is used to quantify the 

transient stability of the system. EPRI and Iowa State University worked on a series of projects 

which tackled the risk-based security assessment issue. The identified methodology, software 

design and implementation of computing risk in those projects associated with line overload, 

transformer overload, and voltage out of limits, voltage instability, transient instability, and special 

protection schemes. These methods are based on the notion that risk is the product of probability 

and consequence. The computations were developed so that the risk result is a function of the 

operating condition, a specified contingency, and uncertainty related to the operating condition 

and the system performance following the contingency [40-42]. A probabilistic index for transient 

stability based on the probability distribution of the transfer admittance is described in [43] and its 

application in a practical system considering the probability of fault occurrence, fault location and 
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fault clearing time is illustrated in [44]. Similar probabilistic transient stability evaluations based 

on the enumeration approach is described in [45] with considerations of the probabilistic 

characteristics of the fault. In addition, a stochastic model of a high-speed reclosing relay is 

proposed in this paper and system stability is based on whether the fault clearing time is less than 

the CCT. In [46], a bisection method is utilized to evaluate probabilistic transient stability and 

reduce the amount of computation time of the evaluation. An analytical model that addresses the 

uncertainty of the fault clearing time for probabilistic transient stability assessment of power 

systems is proposed in [47]. The fault clearing time is compared with the CCT to assess system 

stability and a corrected transient energy function-based strategy is developed for case pruning to 

improve the computational efficacy. In [48], the system risk is calculated using the probability 

distribution of the transient stability margin and the severity quantifying the impact of a 

contingency with a variation of stability margin.  

 

Methods proposed in the above-mentioned papers are essentially based on an enumeration method 

or analytical method for probability calculation. Utilizing the conditional probability theorem, the 

analytical method is mainly concerned with the effect of probabilistic aspects of transient stability 

such as fault types, fault lines, the fault locations and fault clearing time etc.  

The other approach for probabilistic evaluation is the MCS. Some work has also been done using 

MCS to evaluate system stability. Anderson and Bose in [49] presented a conceptual framework 

for an approach to the probability assessment of power system transient stability using MCS and 

direct method. The computer program based on this method is described in [50]. Reference [51] 

introduced a procedure for evaluating overall system risk due to transient instability in the 

framework of MCS.  

2.4 Summary 

The literature survey presented above shows that the merits of a comprehensive reliability 

evaluation with adequacy and dynamic security integrated are well recognized. The benefits of 

MCS as a probabilistic approach to incorporate stochastic factors are also presented in much of 

the literature. Although extensive work has been done on the probabilistic approaches of adequacy 

or dynamic security assessment, few of the works presented a practical and accurate method of an 

integrated reliability evaluation. The utilization of MCS as a framework for integrating the 

adequacy and dynamic security assessment as well as comprehensive reliability metrics need to be 

studied. Accurate assessment methods for adequacy and dynamic security will also be investigated 

in this work. 
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3. Power System Models for Reliability Evaluation 

In this chapter, the component modeling for power system reliability assessment is discussed. For 

adequacy evaluation, component outage models and the concept of probabilistic sampling for 

selecting system states are discussed. The outage model of wind turbines, hourly wind speed curve, 

and hourly load curve are introduced to reflect the stochastic factors in the system. For dynamic 

security, the transient stability during system transition from the pre-contingency SEP to the post-

contingency SEP is of concern. The dynamic performance of the components needs to be modeled 

to conduct the transient stability study. The dynamic model of conventional generators, wind 

turbines, and protection systems are also discussed in this chapter.  

3.1 Outage Models of System Components 

A power system consists of various components, such as generators, lines, cables, transformers, 

and breakers. Component outage models play an important role in reliability assessment of the 

power grid. The outage model for different types of components varies. Both the outage model 

and outage model parameters are obtained mainly from statistical studies of historical data. For 

bulk power system reliability evaluation, components including generators and transmission are 

the major concern since the contingencies that happen on these components will directly affect the 

continuous power supply.  The outage model of conventional generators, transmission lines, and 

wind turbine are discussed in this section. 

3.1.1 Conventional Generator Outage Model 

The forced outages represent the availability of components. Most of the forced outages in a power 

system are repairable. An important method to model the repairable failures is the two-state 

Markov model using a steady up-down-up cycle process. While modeling outage cycle of 

conventional generators as a two-state Markov model, it is assumed that the maximum capacity of 

these generators are available during the up state. In the down state, the available capacity is zero. 

The transitions follow an exponential probability distribution. There are two ways to represent the 

two-stage outage model as shown in Figure 3.1 and 3.2 [52].  

up

down

d

r
 

Figure 3.1  Up and down process of a repairable component 
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Figure 3.1 shows the cycle process between the up state and down state of a component. The 

parameters 𝑑 and 𝑟 in Figure 3.1 represent the mean time to failure and mean time to repair (in 

years), respectively. 

Up state Down state

λ 

μ 
 

Figure 3.2  Stage space diagram of a repairable component 

Figure 3.2 gives the transition diagram in the form of the transition rate between the two states. 

The parameter 𝜆 and 𝜇 in this figure represent the failure rate and the repair rate respectively. 

Mathematically, the average unavailability in the long-term process is defined by the following 

equation:  

 U = 
λ

λ + μ
 = 

MTTR

MTTR + MTTF
 = 

f × MTTR

8760
 (3.1) 

where U is the average unavailability, MTTF the mean time to failure in the unit of hours, MTTR 

the mean time to repair in the unit of hours, and f the average failure frequency (failures/ year). 

The three definitions are, in essence, the same and if only two of the parameters in are known, the 

others can be calculated.  From the definition, we know that:  

 d = 
MTTF

8760
 (3.2) 

 r = 
MTTR

8760
 (3.3) 

In the reliability data from different providers, the known parameters could be different. For 

example, the reliability data for generators that can be obtained is normally the MTTR and MTTF, 

while the reliability data of transmission is normally the fault rate. Therefore, as the basis of the 

probabilistic fault parameter calculation, it is essential to know the relation between the parameters 

which are given in (3.4)- (3.9). 

 λ = 
1

d
 (3.4) 

 μ = 
1

r
 (3.5) 
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 f = 
1

d+r
 (3.6) 

  U = fr (3.7) 

  f = 
λ

1 + λr
 (3.8) 

  λ = 
f

1 - fr
 (3.9) 

3.1.2 Transmission Outage Model 

For composite reliability evaluation where both generation and transmission limits are considered, 

the ability to supply power will be limited if the transmission fault exists even if the generation 

capacity is adequate. The outage cycle for transmission lines is modeled by a two-state Markov 

model, with transitions that follow an exponential distribution. The transition between the two 

states follows the same process as shown in Figure 3.1 and Figure 3.2. The parameters of 

transmission outage model, on the other hand, are affected by many factors, such as weather, 

transmission line type, voltage level, and therefore is a complicated problem. The transmission 

outage statistic data in available data sources is generally represented as the outage frequency (per 

length per year) and mean duration. For transmission lines with different length, the frequency of 

outage can be calculated:  

 f  = f
u
 × L (3.10) 

where f
u
 is the outage frequency per length per year, L the length of a transmission line. 

 

Once the average failure frequency and MTTR are known, the other parameters can be calculated 

according to (3.4)- (3.9).  

 

For transmission contingencies, the stochastic characteristics of four fault types which include 

three-phase faults, double line-to-ground faults, line-to-line faults, and single line-to-ground faults 

are also considered based on their probability of occurrence. When a fault on a transmission line 

is selected, the type of the fault is then determined. The probability of occurrence for the four fault 

types are 6.2% (three-phase), 10.0% (double line-to-ground), 8.8% (line-to-line) and 75% (single 

line-to-ground), as provided in [41]. 

3.1.3 Wind Turbine Outage Model  

Because of the fact that the penetration of wind power has been increasing continuously, planning 

studies have to pay more attention to the impact of wind power on power system reliability. The 
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stochastic nature of wind speed should be considered in the reliability studies as well as the outages 

rates of turbines.  

 

In the assessment of the effect of wind power on power system reliability, outages of wind turbines 

have a significant impact on the available power. Considering the failure of each wind turbine as 

an independent event, the outage model of a wind turbine can be modeled as Markov components 

with up and down states. This outage model is considered the same with the outage model of 

conventional generators, yet the parameters λ and μ of wind turbines are normally quite different 

as compared with conventional generators. A substantial effort from both industry and research 

institutions has been made to develop databases and statistical analyses of wind turbine failures 

and reliability. For example, a large monitoring program is being pursued by Fraunhofer Institute 

for Wind Energy Systems (Fraunhofer IWES) Germany to establish a database that contains 

detailed information about reliability and availability of wind turbines. In the U.S., a CREW 

(continuous reliability enhancement for wind) database was developed by Sandia National 

Laboratories to benchmark the current U.S. wind turbine reliability performance. It collects wind 

farm SCADA data, downtime and reserve event records, and daily summaries of generating, 

unavailable, and reserve time for each turbine. From these databases, the MTTF and the average 

failure rate for the outage model can be obtained. 

 

A three-state model has been presented in some works [53-55]. The three-state model subdivides 

the up state to be a rated and a de-rated state. However, since the wind turbine output is mainly 

based on a current wind speed value, the two-state model considering the variable wind speed 

manages to represent the de-rated state. In this work, an 8760-hour (365-day) wind speed data 

obtained from the National Renewable Energy Laboratory (NREL), National Wind Technology 

Center Information Portal [63] is introduced and incorporated with the power curve of wind 

turbines to represent the stochastic WTG output. According to the proposed model in this work, 

the wind turbine up or down state is determined first. If the wind turbine is in the up state, its output 

is determined based on the current wind speed and the power curve performance of the wind 

turbine. The calculation between wind speed and the output active power is based on the following 

equation:  

 𝑃(ω) =

{
 
 

 
 

0                      ,0≤𝜔≤𝜔𝑖

𝑃𝑟
𝜔3 −𝜔𝑖

3

𝜔𝑟
3 −𝜔𝑖

3   ,𝜔𝑖≤𝜔≤𝜔𝑟

𝑃𝑟                     ,𝜔𝑟≤𝜔≤𝜔𝑜
0                       ,𝜔>𝜔𝑖

 (3.11) 

where, ω is the current wind speed, P(ω) the active power under the current wind speed,  ωi the 

cut-in wind speed, ωr the rated wind speed, ωo the cut-out wind speed, and Pr the rated active 

power. 



 

12 

 

3.2 Probabilistic Approach for Reliability Evaluation 

3.2.1 Probabilistic Analysis Approach 

For reliability evaluation of power systems, two key processes are required in the evaluation. The 

first one is system states selection and state probability calculation. The other one is the system 

states assessment. By contrast with the deterministic methods, the probabilistic reliability 

evaluation introduces a probabilistic approach for system states selection. There are two 

probabilistic approaches for system state selection: analytical-based methods and simulation-based 

methods. The widely used methods for those two types are state enumeration and MCS, 

respectively. 

3.2.1.1 State Enumeration 

Using state enumeration method, system states are selected based on a predefined contingency list, 

which may comprise the whole system or a subset of the system. Combining the elements of the 

list, different contingency levels may be generated. The probability of a system state, therefore, 

can be calculated as the product of the probability of success or failure probability of each 

component, as given in the following equation: 

 

𝑃(𝑠) =∏𝑃𝑓

𝑁𝑓

𝑖=1

∏𝑃𝑠

𝑁𝑠

𝑖=1

 (3.12) 

where Nf and Ns are the numbers of failed and successful components in state s respectively. The 

overall system reliability can be obtained based on the probability of each selected state and its 

reliability condition. 

 

For a system with n components and each component with two states (up or down), the total 

number of system states is 2
n
. Considering a system with 1000 components, the number of states 

is 2
1000

. Sampling such a large number of states is obviously impractical. Therefore, although the 

enumeration method is very straightforward, this method is only suitable for small systems. For a 

large power system, the MCS is the preferred method. 

3.2.1.2 Monte-Carlo Simulation 

The MCS method samples system states based on the probability of event occurrence.  Using MCS, 

system states transition process and random behavior are simulated. The advantage of MCS over 

enumeration of states is that the number of samples needed to reach a required accuracy does not 

depend on the size of the power system but rather on its reliability. There are two types of MCS: 

sequential MCS and non-sequential MCS. The NSMCS, sometimes called the state sampling 

approach, is based on sampling the probability of the component appearing in that state. However, 

similar to the state enumeration method, the NSMCS cannot simulate the chronology of time-

dependent events. 
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Considering the load uncertainty and the wind power variability, SMCS is a more suitable 

approach for system states sampling since it is easy to integrate stochastic factors with 

chronological characteristics into states sampling. 

 

The approach of SMCS is based on sampling a probability distribution of component state 

durations and includes the following steps: 

Step 1: Specify initial states of all components. Normally, all components are assumed to initially 

be in the up state. 

Step 2: Sample the duration of each component residing in its present state. The state duration 

distribution is assumed following an exponential distribution. Therefore, the duration of an up 

state or a down state is sampled according to the following equations: 

 

Tup,i=
1

λi

lnUi (3.13) 

 

Tdown,i=
1

μ
i

lnUi (3.14) 

where Ui is a uniformly distributed random number between [0,1] corresponding to the i th 

component, λi the failure rate of the i th component, and μ
i
 the repair rate. 

Step 3: Repeat Step 2 in the time span considered (years) and record sampling values of each state 

duration for all components. The chronological state transition processes of each component in the 

given time span can be obtained. The illustration of the component state transition process is given 

in Figure 3.3.  

up

down

Component 1

up

down

Component 2

 

Figure 3.3  Chronological state transition processes of components 
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Step 4: By combining the state transition processes of all components, the chronological system 

state transition cycles can be obtained.  

1 up, 2 up

1 down, 2 up

1 up, 2 down

1 down, 2 down

System states

 

Figure 3.4  Chronological system state transition process 

For example, combining the transition process of component 1 and component 2 in Figure 3.3, the 

system transition process is as shown in Figure 3.4. The state of each component and the duration 

of each system state are obtained. In power system reliability evaluation, all system states are then 

subject to evaluation. 

3.2.2 Stochastic Load Representation 

The electrical load in a power system during any time period is a stochastic process, which is 

difficult to describe with a simple mathematical formula. Different models are created, starting 

from primary load data according to the need to calculate reliability. Primary load data will provide 

a minimum amount of data that is needed to establish an hourly chronological load profile. Most 

primary load data consist of the percentage of maximum monthly load or weekly load in a year, 

the load in 24 hours in a typical day in each season and the maximum load in each day in a week. 

With the percentages of these data available and the annual peak load is known, the hourly 

chronological load profile can be established. 

 

The SMCS method follows these chronological loads steps as the simulation progresses. Since the 

load data changes every hour, the system state transition happens at least once an hour. The load 

curve is then combined with generator output and the up or down state of other components, to 

form the system scenarios.  

3.3 Dynamic models of system components 

Adequacy evaluation of the power system addresses the post-contingency steady-state system 

condition.  However, it is not guaranteed that a post-contingency SEP can always be reached. 

Transient stability needs to be assessed to determine the system condition during the transition.  
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Dynamic models of synchronous generator, wind turbine generator (WTG) and protection system 

are discussed in this section. 

3.3.1 Synchronous Generator Dynamic Model 

The detailed synchronous generator models are represented using the GENROU model in GE 

PSLF. 

 

To represent synchronous generator performance in a stability study, the governor model and 

exciter model are essential. The IEEE (1992, 2005) ST1A model, which is a controlled-rectifier 

excitation system model, is used to represent excitation system for all synchronous generators.   

 

Three governor models are used to represent the governor of a gas turbine, hydro turbine, and 

steam turbine respectively. 

3.3.2 Wind Turbine Generator Dynamic Model 

With increasing wind power penetration in power systems, the impact of these converter interfaced 

generators should be appropriately accounted for in the dynamic security assessment of power 

systems. In this project, wind turbines are detailed and aggregated in models used for system 

studies. With the current technology, new wind turbines are commonly equipped with capability 

of active power control, reactive power control and fault ride through, and these functions are 

modeled to represent the realistic behaviors of wind turbines during disturbances. 

 

In this work, a GE doubly-fed asynchronous generator (DFAG) known as type-3 WTG model in 

PSLF is used. Physically, the rotor side of the machines is connected with the grid through a ac-

dc-ac converter, hence have significantly different dynamic behavior than conventional machines. 

A GE WTG dynamic model includes three functional parts, as shown in Figure 3.5 [56].  

• Generator/ converter model: The generator/converter model is represented using GEWTG 

model in PSLF, it injects real and reactive current into the network in response to control 

commands, and represents low and high voltage protective functions (e.g., low voltage ride 

through capability). 

• Electrical control model: The electrical control model is represented using EXWTGE 

model in PSLF. It includes both closed and open loop reactive power controls based on the 

inputs from the turbine model (Pord) and from the supervisory VAr controller (Q
ord

), or 

voltage regulation with either a simplified emulator of GE’s WindCONTROL system or a 

separate, detailed model. This model sends real and reactive commands to the 

generator/converter model.  

• Turbine and turbine control model: The turbine and turbine control model is represented 

using WNDTGE model in PSLF, which represents the mechanical controls, including 

blade pitch control and power order (torque order in the actual equipment) to the 

converter; under speed trip; rotor inertia equation; wind power as a function of wind 

speed, blade pitch, rotor speed; and active power control. 
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Figure 3.5  GE WTG Dynamic Model Connectivity 

The active power control function can be modeled in the WindCONTROL function of the WTG 

model. Under normal operating conditions with near nominal system frequency, the control is 

either enforcing a maximum plant output or providing a specified margin by generating less power 

than is available from the wind (e.g., actual power generated is 95% of the available power). In 

response to frequency excursions, the control switches into another mode and calculates a plant 

power order as a function of system frequency. In the event of low system frequency, the wind 

plant will generate additional power in response to the loss of other generating facilities, whilst, 

reduce power generation in response to load loss. 
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Figure 3.6  Frequency response curve  

The active power control is normally set according to regional grid code requirements. An example 

frequency response curve is shown in Figure 5.6 [56], the APC performance is given by setting 

the points A through D on this response curve. The value of Pd should be greater than or equal to 

the minimum power, which is discussed below. The value of Fb must be less than 1, and that of 

Fc must be greater than 1. The value of Tpav may be increased to simulate fixed power reference. 

 

The detailed representation of the reactive power control model is shown in Figure 3.7. Three 

modes of reactive power control including power factor control, voltage control, reactive power 

control can be used by setting proper parameters. 
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Figure 3.7  Reactive power control model  

3.3.3 Modeling of System Protection 

The protection systems are modeled in this work to quantify system reliability during the transition 

period. With the protection systems, the severity of transient instability can be measured by the 

amount of load that is shed or generation that is tripped after a contingency in order to keep the 

system stable. Three types of protection systems are modelled in this work: 

• Under-frequency load shedding 

• Over/ under-frequency generator tripping 

• Over/ under - voltage generator tripping 

3.3.3.1 Under-Frequency Load Shedding  

The primary requirement of UFLS is to trip excess load to obtain generation-load balance 

following a disturbance which results from the tripping of lines and/or generators causing an area 

generation deficit [57]. Since generator turbines cannot operate at low frequencies (56-58 Hz), it 

is necessary to maintain frequency near the nominal frequency (60 Hz). Slow changes in load can 

be compensated by governor action if generators have available spinning reserve and equilibrium 

can be reached. However, during transient outages, the excess load is fed by the available kinetic 

energy of the rotating machines and frequency starts dropping. The only way to stabilize the system 

under such conditions is progressively shedding the load of pre-determined load centers at certain 

frequency thresholds. 
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LSDT1 model in PSLF is used to represent UFLS protection system. The setting of the load 

shedding relay is according to the NERC reliability standard [58]. Table 3.1 shows the UFLS 

criteria for the Eastern Interconnection for utilities with net peak loads greater than 100 MW. These 

criteria are used in the LSDT model.  

Table 3.1  UFLS attributes for with net peak load greater than 100MW 

Frequency 

Threshold (Hz) 

Total Nominal 

Operating Time (sec) 

Load Shed at Stage 

(%) 

Cumulative Load Shed 

(%) 

59.5 0.05 10 10 

59.2 0.05 20 30 

58.8 0.05 20 50 

3.3.3.2 Over/ under-Frequency Generator Tripping 

The over-frequency and under-frequency tripping of generators is required to maintain generation-

load balance [57]. If any area has a load deficit, the generators start speeding up. The generator 

turbines are designed to operate near nominal frequency and operation at an off-nominal frequency 

can damage the turbine blades. To protect the costly turbine generators, the NERC reliability 

criteria for UFLS [58] also provides guidelines for over-frequency and under-frequency generator 

tripping. Figure 3.8 shows the generator over-frequency and under-frequency performance 

characteristics and trip modeling criteria. In this work, the generators modeled with over-frequency 

and under-frequency relays are tripped if the over-frequency threshold of 61.2 Hz is violated or 

the under-frequency threshold of 58.2 Hz for 2 s is violated. 
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Figure 3.8  Design performance and modelling curves for over and under frequency generator 

trip [34] 

GP1 in PSLF is used as the generator protection model in this work. This is a multifunction model 

and can represent protections including under/ over frequency protection, under/ over voltage 

protection, field over-current, stator over-current, and reverse-power protection. 

3.3.3.3 Over/ under-Voltage Generator Tripping 

Generators are designed to operate at a continuous minimum terminal voltage of 0.95 pu of rated 

voltage while delivering power at rated voltage and frequency. Under voltage can reduce the 

stability limit, result in excessive reactive power import and malfunctioning of voltage sensitive 

equipment. In the TDS, if the generator terminal voltage reduces to 0.90 pu for 1.0 s, then the 

generator is tripped. Generator overvoltage protection, on the other hand, is required to prevent 

insulation breakdown due to sustained terminal overvoltage. The generator insulation is capable 

of operating at a continuous overvoltage of 1.05 pu of its rated voltage. If the generator terminal 

voltage increases to 1.15 pu for 0.5 s, the generators are tripped. 

 

The over/ under- voltage generator tripping protection is also modeled in GP1 in PSLF. 

3.4 Summary 

The first important steps in probabilistic reliability assessment is the methodology for system state 

generation. In this chapter, the details of using sequential MCS as the probabilistic analysis 

framework of the integrated reliability evaluation approach is discussed. With the modeling of the 
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traditional generator and transmission outage occurrence, chronological wind power generation, 

and wind turbine outage occurrence which with increasing penetration will have important impact 

in system reliability, the stochasticity is addressed in system states generation. The dynamic model 

of generators for transient stability analysis as well as the protection systems are presented in this 

Chapter. With probabilistic models and dynamic models described in this chapter provides as 

backbone, the assessment methods and overall procedure of integrated reliability evaluation are 

provided in the following chapter.  
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4. Adequacy and Dynamic Security Integrated Reliability Evaluation 

This chapter describes the integrated approach to reliability assessment addressing system 

adequacy and dynamic security. The assessment methods for system adequacy and dynamic 

security, namely power flow analysis, optimal power flow (OPF) analysis, and TDS, respectively, 

are discussed. The outcomes of the reliability evaluation procedure are comprehensive reliability 

indices that reflect power system reliability impacts from both adequacy and instability 

perspectives. To tackle the computational efficiency, two acceleration approaches are introduced 

in this work to speed up the convergence process of the MCS and the TDS for transient stability 

evaluation. Two widely used commercial power system analysis software packages, Siemens 

PSS®E OPF and GE PSLF, are used as analytical tools. The overall procedure including MCS 

framework is implemented in Python. 

4.1 Probabilistic Approach for Integrated Reliability Evaluation  

4.1.1 Procedure 

The basic idea of the probabilistic approach for integrated reliability evaluation is providing an 

iterative process to perform reliability assessment based on probabilistic sampling using SMCS. 

The process includes the following four steps: 

1. Selecting a system state,  

2. Analyzing the system state to judge if it is a failure state,  

3. Calculating risk indices for the failure state,  

4. Updating cumulative indices 

The flow chart of the integrated reliability evaluation procedure is provided in Figure 4.1. For each 

iteration of the SMCS, the system states are generated and incorporated with an annual 8760-hour 

load curve and wind speed curve. State evaluation is then conducted for each state. To determine 

both adequacy and dynamic security, each state is assessed using TDS and ACPF/ AC OPF. From 

TDS, if the system in the state considered is unstable during the transition after contingency, the 

amount of load curtailment that results from the activation of protection systems to maintain 

system stability is generated. The load curtailment value therefore, provides an indication of the 

severity of system instability. If the state is transiently stable, an AC power flow is conducted to 

simulate the outage stage and examine the post-disturbance stable equilibrium point. When any 

system operating limits are violated, the AC OPF is used for remedial action to reschedule 

generation and alleviate constraint violations, while avoiding load curtailment if possible or to 

minimize the total load curtailment if unavoidable. When load curtailment happens in either 

transient stability or steady-state reliability assessment, the system state is classified as a failure 

state.   

 

After each iteration of the SMCS, reliability indices are updated, and SMCS convergence is 

determined based on the coefficient of variance (COV) of reliability indices. The final reliability 

indices are obtained after the MCS converges. 
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Figure 4.1  Flow chart for reliability evaluation with adequacy and transient stability integrated 
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4.1.2 Adequacy Assessment Methods 

The objective of adequacy assessment is to determine whether the system is capable of supplying 

the electric load under the specified contingency without violations of the operating constraints. 

The assessment addresses the steady-state system condition after the contingency.  

4.1.2.1 AC Power Flow Analysis 

Power flow study is used to assess system steady-state conditions. Both DC power flow and AC 

power flow can be used as adequacy assessment methods. However, for composite system 

reliability study in a realistic power system, the system condition includes bus voltage and 

transmission limits which need to be evaluated. Therefore, the AC power flow is used as the 

steady-state analysis technique in this work. The equations for power flow injection at a node and 

power flow on a transmission line are addressed as follows: 

 

Pi(V,δ) = Vi∑Vj(Gijcosδij+Bijsinδij)

N

j=1

 (4.1) 

 

Q
i
(V,δ) = Vi∑Vj(Gijsinδij-Bijcosδij)

N

j=1

 (4.2) 

  
Tk(V,δ) = max{Tmn(V,δ),Tnm(V,δ)} (4.3) 

where, N is the set of all buses in the system; Gij and Bij are the real and imaginary parts of the i 

th row and j th column element of the bus admittance matrix; δi and δj is the angle of bus i and bus 

j respectively, and δij is the angle difference of bus i and bus j; Tmn(V,δ) and Tnm(V,δ) are the 

MVA flows at the two ends of line k. m and n are the two buses of line k. The MVA flow from bus 

m to n is calculated as  

 

Tmn(V,δ)=√Pmn
2 (V,δ)+Q

mn

2 (V,δ) (4.4) 

  
Pmn(V,δ)=Vm

2 (g
m0

+g
mn
)-VmVn(bmnsinδmn+g

mn
cosδmn) (4.5) 

  
Q

mn
(V,δ)=-Vm

2 (bm0+bmn)+VmVn(bmncosδmn-g
mn

sinδmn) (4.6) 

where, g
mn
+ 𝑗bmn is the primitive admittance of line k and g

m0
+ 𝑗bm0 is the equivalent admittance 

of the circuit to the ground at the end of bus m. 

 

When the AC power flow results show that there is a violation of operating limits, then remedial 

actions including generation rescheduling and load curtailment are considered to correct the 
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abnormal system conditions. The remedial actions reschedule generation first, without curtailing 

any load. If the operating constraint violations still exist, the remedial actions with load shedding 

capability are then applied to determine where and how much load shedding will be needed to 

alleviate operating constraint violations, which is recorded as a system failure. The results of the 

contingency evaluations are stored and subsequently used by the reliability calculation model to 

calculate the reliability indices. AC OPF is used as the technique to assess the system adequacy 

when the operating limits are violated.  

4.1.2.2 AC OPF Model 

As discussed previously, the objective of adequacy assessment is to determine whether a system 

is capable of supplying the electric demand considering possible generator and transmission 

contingencies while not violating any operating constraints. Assessment of adequacy is based on 

the alternating current optimal power flow (ACOPF) solution that analyzes whether load 

curtailment is required to maintain the system within operating limits during generator or 

transmission line contingencies. These contingencies are selected by the SMCS process based on 

the probability of fault occurrence and consideration of repair rate. 

 

Remedial actions modeled in the ACOPF formulation, include generator active and reactive power 

adjustment, schedule bus voltage magnitude adjustment, transformer tap ratio, and switched shunt 

admittance controls. As a consequence of faulted generators or transmission outages resulting in 

load not being served, the remedial actions are incorporated to maintain the system within 

operating limits. If operating constraints violations still exist after the remedial actions, load 

curtailments are invoked as a last resort to bring the system back within limits. The system is 

considered to be adequate when the operating limits are satisfied and no load needs to be curtailed. 

The minimum load curtailment is the quantitative metric of system adequacy. The objective 

function of the ACOPF is given in (4.7), and constraints including load adjustment limits, node 

power balance, line flow limits, generation output limits, voltage magnitude and angle limits are 

shown in (4.8) - (4.16). 

 

0: (1 )L LL
Min P 


  

(4.7) 

Subject to  

 

, ,L MIN L L MAX   
 

(4.8) 

 

0L L LS S 
 (4.9) 

  

( ) busG LS S diag V Y V
 

 
 

(4.10) 

  

,m line n mn MAXS  V Y V
 

(4.11) 
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,n line m nm MAXS  V Y V
 

(4.12) 

  

, ,G MIN G G MAXP P P 
 (4.13) 

  

, ,G MIN G G MAXQ Q Q 
 

(4.14) 

 

MIN MAXV V V 
 (4.15) 

 

MIN MAX   
 (4.16) 

where, ψ
L
 is the load adjustment factor, ψ

L,MIN
 and ψ

L,MAX
 are the minimum and maximum load 

adjustment factor respectively, PL0 is the initial active power of load, SL0 is the load initial MVA 

value, SL is the MVA value of load, SG is the MVA value of generator, V represent bus voltage, 

Ybus is the admittance matrices, Vm and Vn are bus voltage of bus m and bus n, 𝒀line is the 

admittance of line connecting bus m and bus n, Smn,MAX is the maximum flow on line between bus 

m and bus n, PG is the active power of generator, PG,MIN and  PG,MAX are the minimum and 

maximum value of generator active power output, Q
G

 is the reactive power of generator, Q
G,MIN

 

and  Q
G,MAX

 are the minimum and maximum value of generator reactive power output, V is voltage 

magnitude, VMIN and VMAX is the voltage magnitude lower and upper limits, θ is voltage angle, 

θMIN and θMAX are the voltage angle lower and upper limits. 

 

In this work, the PSSE OPF software tool is utilized to find the optimal solution based on a 

Lagrangian relaxation method. Therefore, the adequacy evaluation results are quantified by the 

minimum load curtailment from the optimization problem, as represented in (4.17). 

 

0{ (1 )}loadshed L LL
P Min P 


   

(4.17) 

4.1.3 Dynamic Security Assessment Methods 

While adequacy studies evaluate system conditions in post-contingency steady-state conditions, 

the DSA estimates whether the system can maintain stability during the transition period after a 

contingency. If the transition is stable and a new equilibrium point is reached, the system is termed 

dynamically secure, otherwise it is judged to be insecure. TDS is widely recognized as the most 

accurate method to describe power system transient behavior and therefore is the method of choice 

to perform the DSA in this work. An accurate system dynamic performance with the protection 

systems actions can be simulated in the TDS. The protection systems including under-frequency 

load shedding, over frequency and under frequency generator tripping, over voltage and under 

voltage generator tripping as described in Chapter 3 are modeled, so that by activating these 

protections, following a contingency the system should be transiently stable. The dynamic security 
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is quantified by the MW load shedding due to security preserving corrective protections, as 

represented in (4.18). 

 

, ,loadshed L pre fault L post faultP P P  
 (4.18) 

where Ploadshed is the assessment result in terms of the MW load curtailment, PL,pre-fault is the total 

active power of all loads at the pre-fault SEP of the system, and PL,post-fault is the total active power 

of all loads in the post-fault SEP. 

 

The drawback of TDS is the computational burden especially when simulating a big system with 

a large number of scenarios. To tackle this problem with TDS, a pruning process is introduced in 

this work to reduce the computational burden. The pruning process will be discussed in section 

4.2. 

4.1.4 Reliability Indices  

The most important outcome of the probabilistic reliability assessment is the reliability indices. 

Different from the deterministic methods, the probabilistic reliability indices provide a quantitative 

indication of the overall system reliability level. The indices such as LOLP, LOLE, EPNS, EENS, 

LOLP, and LOLD are the widely used reliability indices in traditional system adequacy 

assessment. They provide an effective means to include all the system states from MCS into the 

reliability calculation. From SMCS, in each sampled year, the reliability can be calculated based 

on states duration time and load curtailment results from states assessment. LOLP, EPNS, and 

LOLF which are the probability index, energy index, and frequency and duration index, 

respectively, are three key indices used in this work. The calculation of the three indices are given 

as follows: 

 

Assume that in the i th simulation year, Ni is the number of states, Xi is the set of all states, Xi,f is 

the set of failure states, Ti is the sum of the durations of all states, xj is the j th system state, τj is 

the duration time of state xj, LCj is the amount of load curtailment of state xj.  

1) Loss of Load Probability (LOLP) Index represents the probability of failure of the system to 

meet the demand. The LOLP index in the i th simulation year is calculated as: 

 

LOLPi=
1

Ti

∑ τj

xj∈Xi,f

 (4.19) 

2) Expected Power Not Supplied (EPNS) Index measures the expected load that will be curtailed 

in the cases of failure states. The EPNS index in the i th simulation year is calculated as: 

 

EPNSi=
1

Ti

∑ τj∙LCj

xj∈Xi,f

 (4.20) 

3) Loss of Load Frequency (LOLF) Index represents the average number of load curtailment 

events. The LOLF index in the i th simulation year is calculated as: 
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LOLFi=
1

Ti

∑ H(xj)∙8760

xj∈Xi,f

 (4.21) 

where, H(xj) is the indicator of success or failure of a state. In (4.21), for failure of a system state 

(xj∈Xi,f),  H(xj)=1 . 

 

In the integrated reliability evaluation, system states are assessed by both steady-state analysis and 

transient stability analysis. The state is seen as a successful state only when no load curtailment is 

required from both steady-state and transient stability analysis. 

 

The convergence of SMCS is typically based on the value of the coefficient of variation (COV) as 

it shows the extent of variability of the index in each simulation year in relation to the mean.  The 

COV can be calculated based on any of the reliability indices. For example, we choose the LOLP 

as the indication index to determine the convergence. After N simulation years, the LOLP index is 

calculated for each simulation year.  

 

The expected value of the index LOLP is  

 

LOLP̅̅ ̅̅ ̅̅ ̅̅ =
1

N
∑ LOLPi

N

i=1

 (4.22) 

The variance of the estimate is  

 

Var(LOLP̅̅ ̅̅ ̅̅ ̅̅ )=
∑ (LOLPi-LOLP̅̅ ̅̅ ̅̅ ̅̅ )

2N
i=1

N2
 (4.23) 

Then COV is calculated as: 

 

COV=
√Var(LOLP̅̅ ̅̅ ̅̅ ̅̅ )

LOLP̅̅ ̅̅ ̅̅ ̅̅  (4.24) 

Equation (4.24) shows that the COV is a normalized measure of the dispersion of probability 

distributions. Hence, the lower its value, the better is the accuracy of the estimate of 𝐿𝑂𝐿𝑃̅̅ ̅̅ ̅̅ ̅. To 

reach a demanding accuracy of SMCS, the criteria for COV is normally set to be 1% - 5%. Once 

the COV value attains the convergence criteria, the SMCS is completed and the reliability indices 

from the last simulation year represent the final reliability indices results. 

4.2 Reliability Evaluation Acceleration Methodology 

The reliability evaluation is basically a composite of two parts: states selection and states 

assessment. By using SMCS as the probabilistic method of states selection, it is easy to include 

chronological aspects of the power systems into the simulation. However, the computational 

efficiency is the main issue of SMCS. A large number of system states need to be sampled to 

assure accurate estimates of the reliability indices. With the objective of improving the 
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computational efficiency, an importance sampling based on the Cross-Entropy method is 

introduced for SMCS.  

 

Using TDS as the dynamic security assessment method also introduces computational burden. A 

pruning process is introduced to reduce the volume of cases goes through TDS. The pruning 

process classifies the states based on the kinetic energy gained due to the fault and the change in 

the magnitude of the Thévenin impedance (𝑍𝑡ℎ) at the point of interconnection (POI) of the 

generators in the post-contingency network. These two acceleration methodologies are discussed 

in this section. 

4.2.1 CE based Importance Sampling 

The number of samples required by the MCS methods can be reduced using variance reduction 

techniques (VRTs). Importance sampling (IS) has proved to be an effective means of improving 

the MCS method. The application of IS is based on the idea that certain variables have a greater 

impact on the estimation process of a target quantity. Thus, if these ‘important’ values are sampled 

more often based on an optimized PDF g
opt

(∙), the variance of the estimator should be reduced.  

 

The selection of the new g
opt

(∙) is a difficult task and for this reason the application of IS has been 

largely limited. However, this problem has been overcome by the CE method since it provides a 

simple adaptive procedure to obtain the optimal probability density function. In this work, the 

combination of the CE method with the IS technique is used as the approach to accelerate the 

convergence of SMCS. A mathematical illustration is discussed below.  

 

Consider the original PDF f(∙) is based on u which is the original unavailability vector of each 

component, Xi=(xi,1,…,xi,j, …,xi,n) as the state of each component sampled based on f(∙) in the 𝑖th 

simulation iteration, and Hi as the test function of a reliability index. Assuming that SMCS 

converges after N iterations, the estimation of the reliability index is 

 

Eu(H(x))=∫H(x)f(x)dx ≈
1

N
∑H(Xi)

N

i=1

 (4.25) 

If the system failures are rare, the estimation process via (4.25) is then very computational 

demanding. By using IS which introduces a new PDF g(∙)  in the form of a new unavailability 

vector v, a system state sample Xi is drawn based on v, and the reliability index is estimated using 

 

Ev(H(x))=∫H(x)
f(x)

g(x)
g(x)dx ≈

1

N
∑H(Xi)

N

i=1

W(Xi;n,u,v) (4.26) 

where W(Xi;n,u,v) is called the likelihood ratio to avoid any biased estimates. The likelihood ratio 

is given by 
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W(Xi;n,u,v)=
∏ (1-uj)

xi,j∙uj
(1-xi,j)n

j=1

∏ (1-vj)
xi,j∙vj

(1-xi,j)n
j=1

 (4.27) 

The problem now consists of finding the optimal v that minimizes the computational effort of the 

SMCS. 

 

The CE method solves the optimal v issue by minimizing the Kullback-Leibler distance between 

the g(∙) and the optimal g
opt

(∙) [59-60]. This distance is defined as: 

 

𝐷 (g
opt
(𝑋),g(𝑋)) = 𝐸g ∗ [𝑙𝑛

g
opt
(𝑋)

g(𝑋)
]

= ∫ g
opt
(𝑋)𝑙𝑛g

opt
(𝑋)𝑑𝑋 − ∫ g

opt
(𝑋)𝑙𝑛g(𝑋)𝑑𝑋 

(4.28) 

The minimization of (4.28) is equivalent to 

 

𝑚𝑎𝑥∫ g
opt
(𝑋)𝑙𝑛g(𝑋)𝑑𝑋 (4.29) 

Since f(X)=f(X;u), g(X)=f(X;v),  g
opt

(X)=
H(X)f(X)

Eu(H(X))
, then (4.29) is equal to  

 

maxv∫
H(x)f(X;u)

Eu(H(x))
lnf(X;v)dx →maxvEu(H(X))lnf(X;v) (4.30) 

The optimal vector of parameters vopt is the outcome of this optimization process. Assume now 

that IS can be used iteratively to solve (4.30). In the first iteration of this procedure, IS will use a 

new sampling function f(X;v0) with different parameters from f(X;u) and f(X;v). Accordingly, 

(4.30) is rewritten as 

 

maxvEw(H(X))
f(X;u)

f(X;v0)
lnf(X;v) (4.31) 

The respective optimal vector of reference parameters vopt is 

 
vopt=argmax

v
Ew(H(X))W(X;v0,u)lnf(X;v) (4.32) 

where W(X;v0,u)=f(X;u)/f(X;v0). 

 

One approach to solve (4.32) is to use the following stochastic program 

 

ṽ*=argmax
v

1

N
∑H(Xi)

N

i=1

W(Xi;v0,u)lnf(Xi;v) (4.33) 
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where N is the number samples drawn from f(X;v0). 

 

Reference [60] shows that the vector v can be calculated via 

 

vj=
∑ H(xi)

N
i=1 W(xi;w,u)xij

∑ H(xi)
N
i=1 W(xi;w,u)

 (4.34) 

Equation (4.30) shows that it is possible to create an IS-based multi-level algorithm to iteratively 

improve the reference parameters vj, j = 1, …, d, until the optimal vector vopt is obtained. 

 

Based on the details discussed above, the process of the CE IS variance reduction algorithm for 

composite system reliability assessment are presented as follows. The corresponding flow chart is 

shown in Figure 4.2. 

Step 1) Specify the CE optimization parameters: a multilevel ρ=0.1 to determine rate event 

percentage, a maximum sample size NMAX and COV criteria β
MAX

 for IS SMCS, and the iteration 

counter k=1. 

Step 2) Define v0=u, i.e., v0 is equal to the vector of the original unavailability. Determine the rare 

event criteria γ=Rmax. Rmax is assumed to be 1 MW representing the max acceptable load 

curtailment from state evaluation. 

Step 3) Generate composite system states for the current iteration X1, X2, …, XN based on vk-1. 

Evaluate states performance S(Xi) in the form of load curtailment needed to maintain the system 

within operating limit. Sort S(Xi) in the descending order so that S = [S[1], S[2], …, S[N]] and 

S[1]≥S[2]≥…≥S[N]. 

Step 4) Access the state performance value at the rare event multilevel S[ρN]. If S[ρN]≥γ, exit the CE 

optimization process. If S[ρN]<γ, evaluate the test function H(Xi) for all states Xi. If S(Xi)>γ, 

 H(Xi)=1; otherwise, H(Xi)=0. Calculate the likelihood ratio W(Xi;n,u,v)  and distorted PDF 

parameters vk based on (4.27) and (4.34) respectively. 

Step 5) k=k+1, go back to step 3) for the next iteration. 

Step 6) after the CE optimization is completed, say after k iterations, the vopt=vk gives the optimal 

PDF parameters. 
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Figure 4.2  CE-IS optimization procedure 



 

33 

 

The optimal PDF parameter vopt is used as the input value for the integrated reliability evaluation 

process. The fault rate is modified using 

 

λ
*
=

vopt

1-vopt

 (4.35) 

To avoid bias, the reliability indices calculated from the SMCS based on the optimal unavailability 

vopt are as follows: 

 

Tdown=∑ ti∙  W(Xi;n,u,v) (4.36) 

 

𝐸𝑁𝑆=∑ ti∙ ∆P(Xi)∙W(Xi;n,u,v) (4.37) 

  

𝑂𝐶𝐶=∑1∙W(Xi;n,u,v) (4.38) 

The reliability indices are calculated as: 

 

LOLP=
Tdown

8760
; EPNS=

ENS

8760
; LOLF=

OCC

8760
 (4.39) 

4.2.2 Transient Stability Pruning based on TEF 

The dynamic security of system states selected from SMCS is assessed via TDS. It is well known 

that the TDS, while providing accurate results, has a significant computational burden. A screening 

tool for TDS is therefore investigated in this work to make the evaluation process more efficient. 

The proposed screening tool classifies all system states based on a two-stage approach. Firstly, an 

early terminated TDS is conducted for each system state to obtain system operating condition after 

a fault is cleared (5 cycles after the fault occurred). The system states are classified to be critical 

or non-critical based on the kinetic energy gained by the machines due to the fault and the 

maximum change in the magnitude of Thévenin impedance seen at the point of interconnection 

(POI) of a generator.  

 

The reason for using these two indicators is that the stability of a power system during a fault 

basically depends on the kinetic energy gained by the system due to the fault and the robustness 

of the post-disturbance network [61]. During a fault, the ability of the network to export electrical 

power is severely restricted causing the machine to accelerate. Once the fault is cleared by opening 

the faulted line, the machine is able to export electrical power and it decelerates. The stability of 

the machine is dependent on its ability to decelerate in the post-disturbance condition and to reach 

a steady state. To estimate the ability of the system to decelerate, the change in the magnitude of 

Zth looking into the system at the POI of the generator due to the opening of the faulted line is 

computed. A review of the swing equation [61] indicates that a large change in the magnitude of 

Zth results in a substantial reduction in the peak of the post-fault swing curve as compared to the 
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pre-faulted condition. A reduction in the peak of the post-fault swing curve limits the ability of the 

generator to decelerate, thereby making it prone to instability.  

 

The kinetic energy and Thévenin impedance can be calculated from simulation results from the 

early terminated TDS which last to fault clear time. In this work, faults are assumed to be cleared 

in 5 cycles. Detailed TDSs are conducted for critical cases. Load curtailment can be calculated 

from TDS for each system scenario and serves as a system reliability index.  

 

From the early terminated TDS, the angular speed of generators at the end of the fault can be 

obtained. The calculation of corrected kinetic energy gained during the fault is as follows: 

 

ωcoi=
∑ Miallgens ωi

∑ Miallgens

 (4.40) 

  

Mcr= ∑ Micr

critical gens

 (4.41) 

  

Mnon_cr= ∑ Minon_cr

noncritical gens

 (4.42) 

  

ω̃cr=
∑ Micr(ωicr-ωcoi)critical gens

Mcr       
 (4.43) 

  

ω̃non_cr=
∑ Minon_cr

(ωinon_cr
-ωcoi)noncritical gens

Mnon_cr

 (4.44) 

  
Meq=Mcr*Mnon_cr/(Mcr+Mnon_cr) (4.45) 

  
ω̃eq=ω̃cr-ω̃non_cr (4.46) 

  

KEcorr=
1

2
Meq(ω̃eq)

2
 (4.47) 

where, ωcoi is the angular velocity of the center of inertia, ωi is the angular velocity of the i th 

generator, Mi is the inertia constant of thei th generator, Mcr is the inertia constants of the critical 

generator’s inertial center, Mnon_cr is the inertia constants of the non-critical generators inertial 

center, ω̃cr is the angular speed of the inertial center of the critical generator group, ω̃non_cr is the 

angular speed of the inertial center of the non-critical generator group, Meq and ω̃eq is the 

equivalent inertia constant and angular speed of the system, KEcorr is the corrected kinetic energy. 
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For the pre-fault condition, the Thévenin impedance at POI can be directly obtained by the pre-

fault network. The change in the magnitude of Zth can be calculated by removing faulted 

components based on the Zth in the pre-fault network. The maximum change ∆Zthmax in the 

magnitude of Zth and the corresponding bus number of the POI where it occurs are recorded. 

4.2.3 Reliability Evaluation Procedure with Accelerating Process 

Previously, the overall integrated reliability assessment method with the computation accelerating 

methods have been discussed and the integrated procedure is shown in Figure 4.3. 

 

Figure 4.3 Reliability evaluation procedure with accelerating process 

4.3 Summary 

In this chapter, the integrated reliability evaluation procedure is presented. The assessment 

methods for system steady-state reliability and dynamic security are discussed. The approach 

evaluates the system response for each selected contingency, examines transient stability in the 

transition from the pre-contingency to the post-contingency period, and evaluates the post-

contingency steady-state equilibrium where all flow limits and voltage limits are satisfied. 

Stochastic characteristics including the renewable resources, component failures, and load 
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variations are taken into consideration in probabilistic sampling and dynamic performance 

modeling. System adequacy and dynamic security are quantified in terms of MW load curtailment 

from the respective assessment processes and are incorporated into the calculation of the integrated 

reliability indices. The outcome of the integrated reliability evaluation provides the probability, 

frequency and magnitude of system reliability represented as LOLP, LOLF, and EENS. 

 

To address the computational efficiency problem, two accelerating techniques are presented this 

chapter with the objective to improve the computational efficiency of the MCS process and TDS 

process, respectively. The proposed approach is tested on a synthetic system, the test results are 

presented and discussed in the following chapter  
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5. Simulation, Results and Discussion 

This chapter provides the detailed simulation results of the integrated reliability evaluation. The 

test is performed on the test system described in section 5.1. The study is conducted using 

analytical tools from the GE PSLF and Siemens PSS®E OPF software. The overall procedure and 

coordination between different software tools are done using Python. 

5.1 System Description 

A synthetic test system is used to perform the reliability evaluation study. The single line diagram 

of the test system is shown in Figure 5.1. The system consists of 11 conventional synchronous 

generators, 10 wind farms with type-3 WTGs, 20 transmission lines, and 6 loads at different buses. 

The total installed capacity of conventional generation is 17,000 MW, among that wind energy is 

with an installed capacity of 1,680 MW. It includes major features of a realistic power system for 

transient stability and reliability studies for system planning, with detailed positive sequence 

generator, governor and exciter models for synchronous generators, generator, and converter control 

models for WTGs. The power flow and dynamic data for the test system are available in [64]. 

Table 5.1 Synthetic test system summary 

Buses 36 

Generators 11 Synchronous + 10 Wind farms 

Lines 30 

Total Synchronous Generation  17,000 MW installed capacity 

Wind Generation 1,680 MW installed capacity 

5.2 Parameters used in Reliability Evaluation 

5.2.1 Generator Reliability Data 

Generator reliability data for the test system is assembled base on the data from IEEE Reliability 

Test System-1996. Unit availability data in the form of MTTF and MTTR are given in Table 5.2.  

Table 5.2 Generation reliability data of the test system 

No. Bus(es) 
Base 

(MVA) 

Maximum 

output (MW) 

MTTF 

(hour) 

MTTR 

(hour) 

1 1 2200 2000 1150 100 

2 14, 22 2400 2000 1150 100 

3 24 4500 4000 1150 100 

4 2, 4, 5, 7, 26 1200 1000 1100 150 
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5 11 600 500 960 40 

6 20 1800 1500 1100 150 

7 8 33.4 30 1150 100 

8 33, 35 23.4 21 1150 100 

9 28, 29, 30,31 33.4 30 1100 150 

10 34 23.4 21 1100 150 

11 32 33.4 30 960 40 

12 36 23.4 21 1500 100 

 

 

Figure 5.1 Synthetic test system 

5.2.2 Transmission Reliability Data 

The fault rates for transmission lines are assembled based on the data in the Canadian Electricity 

Authority (CEA) 2012 annual report [62]. The CEA report provides the transmission line statistics 

for line-related transient forced outages data in the form of the frequency of outage of transmission 

lines for different voltage levels in number per 100 mile-annum. 
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Table 5.3 Transmission reliability data of the test system  

No. Voltage level (kV) Mean fault duration (hour) Unavailability (%) 

1 110 20.7 0.216 

2 500 27.2 0.077 

5.2.3 Load Curve Data 

Hourly load data in a year is based on the hourly load data from IEEE Reliability Test System-

1996. The data includes weekly peak loads in percent of the annual peak, the daily peak load in 

percent of the weekly peak, and the hourly load in percent of the daily peak. Once the system 

annual peak load is assigned, the 8760-hour load curve in the year can be calculated. 

Table 5.4 Hourly Peak Load in Percent of Daily Peak 

 

 
winter weeks weeks spring/fall weeks 

 

 
1 -8 & 44 - 52 18 -30 9-17 & 31 - 43 

Hour Wkdy Wknd Wkdy Wknd Wkdy Wknd 

12-1 am 67 78 64 74 63 75 

1-2 63 72 60 70 62 73 

2-3 60 68 58 66 60 69 

3-4 59 66 56 65 58 66 

4-5 59 64 56 64 59 65 

5-6 60 65 58 62 65 65 

6-7 74 66 64 62 72 68 

7-8 86 70 76 66 85 74 

8-9 95 80 87 81 95 83 

9-10 96 88 95 86 99 89 

10-11 96 90 99 91 100 92 

11-noon 95 91 100 93 99 94 

Noon-1pm 95 90 99 93 93 91 

1-2 95 88 100 92 92 90 

2-3 93 87 100 91 90 90 

3-4 94 87 97 91 88 86 

4-5 99 91 96 92 90 85 

5-6 100 100 96 94 92 88 

6-7 100 99 93 95 96 92 

7-8 96 97 92 95 98 100 

8-9 91 94 92 100 96 97 

9-10 83 92 93 93 90 95 

10-11 73 87 87 88 80 90 

11-12 63 81 72 80 70 85 
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5.3 System Adequacy Evaluation Results  

In this section, system reliability is evaluated using the traditional reliability evaluation approach 

which considers only system adequacy. As described in section 5.1, the total generation capacity 

is 17,000 MW, with an additional 1,680 MW from wind power. The system peak load is 7612 MW 

and 2108 MVAr. The hourly load data is generated based on system peak load and the hourly load 

percent listed in Table 5.4. SMCS sample system states based on the components fault data listed 

in Table 5.2 and Table 5.3 are obtained. According to the peak load and annual load curves, the 

system load in 8760 hours are obtained and assigned to the selected system states according to the 

time stamps of the states. The same is done for the annual wind speed data in each of the 8760 

hours. Since the system load level and wind speed vary in each state, the generators are dispatched 

accordingly. AC OPF is conducted for each system state to assess system adequacy. 

 

The convergence criterion, coefficient of variance (COV), is set to be 5%, and the simulation 

converges after 746 iterations with a total simulation time of 8.95×10
5
s, approximately 248 h 

(3600 seconds in an hour). Reliability evaluation results are given in Table 5.5. Figure 5.2 - Figure 

5.5 show the convergence trajectory of the COV and reliability indices of LOLP, EPNS, and LOLF 

respectively. After the convergence of the SMCS, the methods found an LOLP index around 

0.0015, an EPNS index around 0.0087 MW, and LOLF index around 2.7663 occ/ year. This 

simulation provides reference values of the reliability indices for the test system.  

Table 5.5 Reliability indices from traditional SMCS method 

# Iteration 
COV 

criteria 
COV LOLP EPNS (MW) 

LOLF 

(occ./y) 

746 5% 4.98% 0.0015 0.0087 2.7663 

5.4 Impact of Accelerating Techniques  

As illustrated in section 4.2.1, the CE IS method is introduced in the SMCS to improve the 

simulation efficiency. In this section the reliability results from CE IS based SMCS is presented 

and a comparison with the traditional SMCS is discussed. To illustrate the accuracy of the CE IS 

based SMCS algorithm, the simulation is conducted on the same input system peak load, annual 

load data, and annual wind speed data. The parameter settings of the CE-IS SMCS are as follows: 

ρ = 0.1, NMAX = 10000, β
MAX

 = 5%. Table 5.6 shows the adequacy evaluation results for the test 

system using the crude SMCS with and without the CE-IS acceleration method. Figure 5.6 - Figure 

5.9 show the comparison of the convergence trajectory of the COV, LOLP, EPNS, and LOLF 

indices using the two methods.  
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Figure 5.2 Convergence trajectory of COV from adequacy assessment based on SMCS 

 

Figure 5.3 Convergence trajectory of LOLP from adequacy assessment based on SMCS 
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Figure 5.4 Convergence trajectory of EPNS from adequacy assessment based on SMCS 

 

Figure 5.5 Convergence trajectory of LOLF from adequacy assessment based on SMCS 
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The evaluation based on SMCS with CE-IS obtains an LOLP value of 0.0014, which is within a 

0.01% deviation from the crude method result. Given that both values are only estimates of the 

true value, the difference is negligible. However, the CE-IS SMCS method reaches convergence 

much faster. The simulation converges after 81 iterations with a computation time of 0.98×10
5
 

seconds while the evaluation without CE-IS takes 8.95×10
5
 seconds to complete. Fig. 3 shows the 

convergence trajectory of the COV and LOLP values from the two methods. The results show that 

by applying the CE-IS SMCS acceleration method, a speed up factor of 9.13 in elapsed time is 

achieved, while maintaining approximately equal evaluation results. Hence, it can be concluded 

that the effect of CE-IS method is verified, it is applied for reliability evaluation studies in rest of 

the paper. 

Table 5.6 Reliability indices comparison between traditional SMCS and CE-IS SMCS 

Method LOLP EPNS 
LOLF 

occ./yr 

Number of 

iterations 

Computation 

time 

Crude SMCS 0.0015 0.0087 2.7663 746 
8.95×10

5
s 

(248 h) 

CE-IS SMCS 0.0014 0.0079 2.7650 81 
0.98×10

5
s  

(27 h) 

 

Figure 5.6 Convergence trajectory of COV from adequacy assessment based on CE-IS SMCS 
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Figure 5.7 Convergence trajectory of LOLP from adequacy assessment based on CE-IS SMCS 

 

Figure 5.8 Convergence trajectory of EPNS from adequacy assessment based on CE-IS SMCS 
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Figure 5.9 Convergence trajectory of LOLF from adequacy assessment based on CE-IS SMCS 

5.5 Integrated Reliability Evaluation Results  

Previous simulation results show the reliability indices from the traditional SMCS method and the 

CE IS based SMCS. Both methods reached a very similar reliability index associated with LOLP, 

while CE IS based SMCS demonstrated a computational speed-up of 9.13 times. Based on the 

proposed speed-up of the SMCS, this section will discuss the integrated reliability results 

considering both adequacy and transient stability. The integrated results provide a measure for 

both steady-state and dynamic evaluation of the ability of the system to meet electrical demand. 

The reliability results are compared in Table 5.7. With system dynamic security being quantified 

by load shedding due to the stability corrective control, the proposed method provides the 

quantitative integrated reliability evaluation results considering both system adequacy and 

dynamic security. The comparison between the results from the two approaches reflects the 

influence of including impact of dynamic security in the reliability evaluation. 

 

From Table 5.7, it can be observed that for this test system, accounting for dynamic security has a 

significant impact on all three reliability indices resulting in an increase in the LOLP, EPNS, and 

LOLF indexes. The LOLP index and LOLF index increase from 0.0014 to 0.0939 and from 2.7650 

to 35.6944, respectively.  The increase of these two indices indicates that among all sampled states 

in a year, there is large portion of cases and longer duration for which the system cannot provide 

reliable power supply because of dynamic security problems. The increase of the EPNS index is 

due to the fact that the load shedding value from DSA is included in the EPNS index calculation. 

Theoretically, the increase of all three reliability indices was to be expected because a stable 

transition to post-fault SEP is not always guaranteed after contingencies. However, these results 
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provide a quantitative analysis of this impact. Results in Table 5.7 also show that the number of 

iterations for the SMCS to converge is reduced in the integrated approach. The reason for this is 

that with DSA considered, the values of indices increase and the number of iterations is inversely 

proportional to the index being calculated. However, despite the fewer iterations, the computation 

time is still much higher than the adequacy evaluation computation time because of the 

computational burden introduced by TDS for DSA. A statistical summary of states evaluation in 

one iteration of SMCS shows that: among all 11992 system states that are sampled, there are 408 

cases labeled as steady-state unreliable from adequacy assessment, 5002 cases labeled as 

dynamically insecure, and 4603 cases labeled as steady-state reliable yet dynamically insecure. 

Among the 4603 cases, 8 cases are N-1 contingencies and 4595 cases are N-k contingencies with 

k>1. The statistical data confirms that the reliability study will give optimistic results if the DSA 

is not considered. 

Table 5.7 Reliability indices comparison: Adequacy Vs. Adequacy and transient stability 

Method LOLP EPNS 
LOLF 

occ./yr 

Number of 

iterations 

Computation 

time 

Integrated 

reliability 
0.0939 72.80 35.6944 20 

3.89×10
5
s  

(108 h) 

Adequacy 0.0014 0.0079 2.7650 81 
1.16×10

5
s  

(27 h) 

 

Figure 5.10  Convergence trajectory of COV comparison: adequacy Vs. adequacy and transient 

stability 
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Figure 5.11  Convergence trajectory of LOLP comparison: adequacy Vs. adequacy and transient 

stability 

 

Figure 5.12  Convergence trajectory of EPNS comparison: adequacy Vs. adequacy and transient 

stability 
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Figure 5.13  Convergence trajectory of LOLF comparison: adequacy Vs. adequacy and transient 

stability 

The trajectories of COV and the values of the three reliability indices are compared in Figure 5.10 

– Figure 5.13 to show the impact on reliability assessment when dynamic security is considered. 

As shown in Figure 5.10, the simulation of the integrated reliability evaluation converges faster 

than that without dynamic security. The reason for this is that with dynamic security considered, 

more cases are detected to be unreliable and are therefore considered in the reliability calculation. 

With a larger number of unreliable cases being viewed as important, the variance is reduced which 

provides the same effect as importance sampling. 

 

The analysis of a specific case is essential to understand the states that are steady-state reliable but 

dynamically insecure. A state with 6375 MW load and 6581 MW generation in the pre-fault 

condition is chosen to conduct this analysis. The set of contingencies in this selected state are listed 

in Table 5.8. 

 

For this case, the adequacy analysis using AC OPF gives a load curtailment of 0.185 MW. This 

assessment result indicates that the system state is steady-state reliable. By contrast, the results 

from TDS for DSA show that 1554.4 MW load needs to be shed to maintain stability. The load 

shedding protection actions are listed in Table 5.9. From Table 5.9, it can be observed that two 

stages of under-frequency load shedding protection are activated after the fault. The first stage 

protection was activated at around 2.5 s when the load bus frequency dropped to 59.5 Hz, and the 

second stage of protection action was initiated between 4.2 s-4.3 s when the load bus frequency 

dropped to 59.2 Hz, as shown in Figure 5.14. The two stages of protection action brought the 

system back to a stable operating condition. Figure 5.15 shows the active power output of the 11 
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synchronous generators in the system. Since the generators at bus 24 and bus 26 are the 

contingency components, the loads at bus 23 and bus 25 which were primarily supplied by 

generators at bus 24 and bus 26, suddenly lost their power supply. In addition, the transmission 

outage from bus 13 to bus 18 limited the power supply from the generator at bus 14 to the heavy 

load area in zone 4 and zone 5. The resulting system frequency decline, therefore, quickly triggered 

the load shedding corrective actions. Noticeably, this unreliability which is significant cannot be 

captured by the steady-state assessment and therefore it is essential to incorporate DSA in system 

reliability evaluation. 

Table 5.8 Pre-fault and post-fault condition of outage components 

No. Outage component Rating (MVA)  Pre-fault condition Fault at time 

1 Gen6 on bus 24 4500  
1849.3 MW 

generation 
1 s 

2 Gen8 on bus 26 1200  
405.9 MW 

generation 
1 s 

3 Wind farm on bus 808 33.4  9.80 MW generation 1 s 

4 Wind farm on bus 3404 23.4 6.90 MW generation 1 s 

5 Wind farm on bus 3405 23.4 6.90 MW generation 1 s 

6 Line from bus 13 to bus 18 1500 488.6 MW flow 1 s 

 

Figure 5.14  Load bus frequency under contingency 
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Figure 5.15  Generator output under contingency  

Table 5.9 Post-contingency protection action report 

Time (s) Switching Action Details 

2.4835 Stage 1 tripped  Load at bus 15 

2.4960 Stage 1 tripped Load at bus 12 

2.5044 Stage 1 tripped Load at bus 25 

2.5127 Stage 1 tripped Load at bus 23 

2.5169 Stage 1 tripped Load at bus 19 

2.5169 Stage 1 tripped Load at bus 21 

4.2629 Stage 2 tripped Load at bus 15 

4.2875 Stage 2 tripped Load at bus 12 

4.3004 Stage 2 tripped Load at bus 23 

4.3045 Stage 2 tripped Load at bus 19 

4.3045 Stage 2 tripped Load at bus 21 

Total Load shedding: 1554.4 MW 



 

51 

 

5.6 Transient Stability Pruning Effects 

Previous simulation results show the reliability indices obtained from the traditional SMCS 

method and the CE IS based SMCS. Both methods reached a similar result. This section shows the 

simulation results with the accelerating process applied. This section shows the evaluation results 

of two cases to illustrate the effect of the pruning process. One case is a reliability evaluation with 

the pruning process and the other is with no pruning process applied. Different load shed values 

ls_TDS are used to determine whether a system is transiently unstable and should be considered in 

the reliability indices calculation. If the load curtailment of a state from the TDS is higher than 

ls_TDS, then the state is a transiently unstable state and the amount of load curtailment, as well as 

state duration are introduced in the index’s calculation. 

 

For a chosen iteration, the pruning process eliminated 3842 states among 11992 states from the 

detailed TDS analysis, with a 32.04% speed up of the DSA. The criteria for the two stability 

estimation metrics are KEcr=0.5×10
-5

pu and ∆Zth=0.005 pu obtained by conducting a sensitivity 

study. Table 5.10 gives the comparison of LOLP results from the evaluation process with and 

without the TDS pruning process. The LSTDS in Table 5.10 represents the criteria for determining 

dynamically insecure cases. When the load shedding results from TDS are larger than LSTDS, the 

state is considered to be dynamically insecure. Simulation results show that the reliability 

evaluation with the pruning process gives similar results compared with no pruning process be 

applied. The deviations vary from 2.4494%-4.9645%. Additionally, from the sensitivity study of 

the different load shed threshold value, it can be seen that when LSTDS is equal to 20 MW, 100 

MW, and 200 MW, the LOLP results are very close to each other. Thus, we can choose any of the 

three values to be the load shed threshold to determine whether a state is transiently unstable from 

TDS. 

Table 5.10 Comparison of LOLP indices results: with and without pruning process 

 

LSTDS criteria 

(MW) 

Without Pruning 

Process 
With Pruning Process Deviation (%) 

20 0.0939 0.0916 2.4494 

100 0.0939 0.0916 2.4494 

200 0.0936 0.0913 2.4573 

400 0.0753 0.0721 4.2497 

500 0.0564 0.0536 4.9645 

600 0.0388 0.0375 3.3505 

700 0.0269 0.0259 3.3457 

800 0.0264 0.0257 2.2727 

Average deviation: 3.1924 
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6. Conclusions and Future Work 

6.1 Conclusions  

This research proposes a probabilistic reliability evaluation method with resource adequacy and 

DSA integrated in a single framework. Sequential MCS was used because it provides a flexible 

approach for considering time-variant stochastic characteristics in the system. Stochastic 

characteristics have been considered in this work and include components outages, different 

transmission fault types, chronological load variance, and stochastic wind power output. 

Compared to the traditional reliability evaluation which evaluates adequacy and dynamic security 

separately, the proposed method provides the reliability indices reflecting both adequacy and 

dynamic security based on the quantification of the two aspects of reliability in terms of load 

curtailments.  

 

The quantification of the impact of dynamic security is included by the load curtailment from 

protection action to maintain system stability after contingencies. By including this value of load 

curtailment into the calculation of reliability indices, the integrated system reliability can be 

represented using the well-recognized reliability indices which are LOLP, EPNS, and LOLF. The 

proposed method is tested on a synthetic test system and the results show the importance of 

considering the two reliability aspects together since both the steady-state and transient system 

performance need to be analyzed in reliability studies.  Also, the computational effort in the 

evaluation process is significant because of the sequential MCS and the TDS for dynamic security 

assessment. Two acceleration methods are introduced to lighten the computational burden. In 

practical applications, the computational time could be substantially reduced further by using 

parallel or distributed computing as the SMCS is amenable to such implementations. 

 

The work done in this project presents an approach for integrating adequacy and dynamic security 

assessment into a single framework. Dynamic security is of significant importance for power 

system reliability evaluation, the case studies show that when dynamic security is not considered 

in the reliability evaluation, many unstable system conditions are overlooked in the planning phase. 

The integrated reliability evaluation results can provide as a decision-making support to identify 

system conditions with inadequate resource or inadequate stabilization capability. An obstacle to 

integrating adequacy and security in reliability evaluation is the overwhelming number of cases 

that need to be assessed. The effect of the proposed Cross-Entropy based Importance Sampling 

method developed to speed up the convergence process of the MCS and the pruning process 

developed to reduce the computational burden of the transient stability assessment have been 

verified in the case studies. The main conclusions of the study are as follows: 

 

1. The proposed reliability evaluation approach provides an effective method of integrating 

adequacy and dynamic security into a single framework. Stochastic and time-variant 

characteristics in the system can easily be considered in the evaluation using SMCS.  

2. The dynamic security of a system state is quantified by the amount of load shed that is needed 

to keep the system stable during the transition. By introducing this value of load shed into the 

calculation of reliability indices, the overall system reliability can be represented using the well-

recognized reliability indices which are LOLP, EPNS, and LOLF. 
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3.  The proposed CE-IS method greatly speeds up the convergence process of the MCS and the 

pruning process considerably reduces the number of cases needing to be evaluated by TDS. The 

two acceleration methods were found to be accurate in the sense that they do not introduce bias 

into the calculation of the reliability indices. 

6.2 Future work 

• Computational efficiency: The large computational burden of the reliability evaluation is 

due to a large number of system states that are needed to reach an expected value of 

reliability indices. Although the approach proposed in this work is not targeted on real-

time evaluation, the computational efficiency is expected to be improved. Since each 

iteration of the MCS is independent of each other, parallel computing techniques and 

multiple CPU cores to execute reliability evaluation can be applied in this work.  

• Stochastic relay performance: In this work, it is assumed that the faults on transmission 

lines are cleared 5 cycles after the relay is tripped. However, in a practical scenario there 

is some uncertainty associated with the fault clearing time due to relay mis-operation which 

can be incorporated into the simulations. Also, if historical data on relay failures are 

available, the probability of relay failure can be incorporated into the dynamic security 

assessment.  
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Appendix A. Generator Dynamic Model Data  

A.1  Synchronous Generator Dynamic Data 

Generator, governor, and exciter are modeled for a synchronous generator in this project. Steam 

turbine, gas turbine, and hydro turbine are modeled with different governors that are represented 

by TGOV1, GGOV1 and HYGOV respectively in PSLF. The parameters of governor model are 

given in Table A.1. The parameters of synchronous generator model (GENROU) and exciter 

model are given in Table A.2. 

Table A.1 Synchronous generator governor dynamic data 

TGOV1 

R T1 Vmax Vmin T2 T3 Dt / 

0.05 0.5 1.0 0.0 3.0 10.0 0.0 / 

GGOV1 

r rselect Tpelec Maxerr Miner Kpgov Kigov Kdgov Tdgov vmax 

0.04 1.0 1.0 0.05 -0.05 10.0 2.0 0.0 1.0 1.0 

vmin Tact Kturb wfnl Tb Tc Flag Teng Tfload Kpload 

0.15 0.5 1.5 0.2 0.1 0.0 1.0 0.0 3.0 2.0 

Kiload Ldref Dm ropen rclose Kimw Pmwset / 

0.67 1.0 0.0 0.10 -0.1 0.002 80.0 / 

HYGOV 

Rperm rtemp Tr Tf Tg Velm Gmax Gmin Tw At 

0.04 0.3 5.0 0.05 0.5 0.2 1.0 0.0 1.0 1.2 

Dturb qn1 ttrip tn tnp db1 eps db2 GV0 Pgv0 

0.5 0.08 0 0 0 0 0 0 0 0 

GV1 Pgv1 GV2 Pgv2 GV3 Pgv3 GV4 Pgv4 GV5 Pgv5 

0 0 0 0 0 0 0 0 0 0 

hdam Bgv0 Bgv1 Bgv2 Bgv3 Bgv4 Bgv5 bmax tblade / 

1.0 0 0 0 0 0 0 0 100 / 
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Table A.2 Synchronous generator and exciter dynamic data 

GENROU 

Tpdo Tppdo Tpqo Tppqo H1 D Ld Lq Lpd 

7.0 0.025 0.75 0.05 6.0 0.0 2.2 2.1 0.22 

Lpq Lppd L1 S1 S12 Ra Rcomp Xcomp / 

0.416 0.2 0.147 0.109 0.3 0.0 0.0 0.0 / 

EXST1 

Tr Vimax Vimin Tc Tb Ka Ta Vrmax Vrmin 

0.0 0.1 -0.1 1.0 10.0 100.0 0.02 5.0 -5.0 

Kc Kf Tf Tc1 Tb1 Vamax Vamin Xe Ilr 

0.05 0.0 1.0 1.0 1.0 5.0 -5.0 0.04 2.8 

Klr / 

5.0 / 

 

A.2  Wind Turbine Dynamic Data 

The DFAG WTG are modeled using GEWTG, WNDTGE, EXWTGE in GE PSLF. The dynamic 

data used in this paper are provided in Table A.3 - Table A.5. 

Table A.3 Wind turbine generator/converter model 

lpp dVtrp1 dVtrp2 dVtrp3 dVtrp4 dVtrp5 dVtrp6 dTtrp1 dTtrp2 

0.8 -0.25 -0.5 -0.7 -0.85 0.1 0.15 1.9 1.2 

dTtrp3 dTtrp4 dTtrp5 dTtrp6 fcflg rrpwr brkpt zerox / 

0.7 0.2 1 0.1 0 10 0.9 0.5  

                                                 
1 For hydro turbine governor, H is 5.91 s; for steam turbine governor and gas turbine governor, H is 6, 9.7 or 14 

depends on the MVA rating of a unit. 
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Table A.4 Wind turbine electrical control model 

spdw1 tp tpc kpp kip kptrq kitrq kpc kic Pimax Pimin 

0 0.3 0.05 150 25 3 0.6 3 30 27 0 

Pwmax Pwmin Pwrat H nmass Hg Ktg Dtg Wbase Tw Apcflg 

1.12 0.04 0.45 4.94 1 0 0 0 0 1 1 

Pa Pbc Pd Fa Fb Fc Fd Pmax Pmin Kwi dbwi 

1 0.95 0.4 0.96 0.996 1.004 1.04 1 0.2 10 0.0025 

Twowi urlwi drlwi Pmxwi Pmnwi wfflg Td1 Tpset Pirat Tpav Tlpwi 

5.5 0.1 -1 0.1 0 0 0.15 5 10 0.15 1 

Table A.5 Wind turbine converter control model 

varflg Kqi Kvi Vmax Vmin qmax qmin xiqmax xiqmin tr tc kpv 

-1 0.1 40 1.1 0.9 0.436 
-

0.436 
1.45 0.5 0.02 0.15 18 

kiv vl1 vh1 tl1 tl2 th1 th2 ql1 ql2 ql3 qh1 qh2 

5 -9999 9999 0 0 0 0 0 0 0 0 0 

qh3 pfaflg fn tv tpwr ipmax xc kqd tlpqd xqd vermn vfrz 

0 0 1 0.05 0.05 1.22 0 0 5 0 0.1 0.7 
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1. Introduction 

  

Tremendous progress has been made on developing probabilistic methods for power system 

reliability evaluation over the past several decades. In most cases, these methods can be grouped 

into two categories, analytical solution methods and simulation-based methods. In analytical 

methods the system is represented by mathematical models and reliability indices computed using 

mathematical solutions. Even though these methods give exact solutions within assumptions made, 

deriving these models can become a challenging problem especially for large power systems.  

 

Among the many simulation methods developed (including Importance Sampling or Latin 

Hypercube Sampling), MCS based techniques are currently the most widely used methods to 

estimate the reliability indices of composite power systems. MCS methods sample system states 

with the basic concept that their occurrence is proportional to their probabilities. For most cases, 

MCS is more suitable for composite system analysis because of its simplicity and flexibility in 

estimating complex system parameters in various conditions [1, 2]. Despite the advantages of 

MCS, it requires solving optimization equations to perform optimal power flow (OPF) analysis for 

characterization of each sampled state and repetitive states most of the time. Therefore, MCS 

suffers from long computation time to produce statistically converged reliability indices. This 

indicates a need of research for efficient simulation methods in reliability analysis of large power 

systems.  

 

Considerable amount of research has been done on increasing computational efficiency of these 

simulations in the past few decades. Some of these approaches use variance reduction techniques 

[3], state space pruning [4], fuzzy optimal power flow [5] or more efficient sampling techniques 

like LHS [1] or IS [6]. Some of these researches also use population-based intelligent search (PIS) 

methods as an alternative to search for meaningful states to decrease the computational burden of 

these simulation methods. Some of classical examples of these methods are genetic algorithms 

(GA) [7,8], particle swarm optimization (PSO) [9] or ant colony optimization (ACO) [10]. Some 

of the researchers also implement pattern classification techniques to reduce the number of states 

to be evaluated in power system reliability assessment. Some examples of these methods are 

Artificial Neural Network (ANN) based classifiers [11], Artificial Immune Recognition System 

(AIR) [12] or Least Squares Support Vector Machine based classifiers [13]. Pattern classification-

based techniques have shown significant performance to reduce the computational burden required 

for reliability analysis, however, still more research is needed for increasing classification accuracy 

and model flexibility.  

 

The remainder of this part of the report is organized as follows: Section 2 provides background 

information about composite system adequacy analysis and MCS techniques. Section 3 

investigates different types of deep learning structures and demonstrates performance of those 

algorithms on case studies. Section 4 first gives a background information about multilabel 
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learning then performance of this type of learning for composite system reliability evaluation is 

explored through case studies. Section 5 focuses on combination of multilabel learning and 

importance sampling combination within MCS. After briefly explaining the theory behind 

importance sampling, performance results for proposed method is presented in this section. The 

conclusions and outlook are given in Section 6. References are listed at the end. 
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2. Concept of Composite Power System Reliability Evaluation and Monte 

Carlo Simulation 

 

2.1 Introduction 

 

There are two main categories of power system reliability evaluation techniques, analytical and 

simulation. In analytical modeling method, a model is built that reasonably approximates the 

physical system and is also amenable to calculations. Monte Carlo Simulation methods, on the 

other hand, are based on sampling and estimating the indices from the samples. MCS based 

techniques are able to handle any type of probability distribution associated with component state 

durations, capture systematic and temporal dependencies, and evaluate probability distributions of 

resultant indices. In general, they provide more flexibility to incorporate complex operating 

conditions in assessing especially large and complex power systems compared to analytical 

solutions [14,15]. In this section first MCS is introduced later power system models, test systems 

and metrics used to measure performance of AI based power system reliability evaluation methods 

are described. 

 

2.2 Monte Carlo Simulation  

 

Monte Carlo simulation is a representative simulation method that is usually adopted to deal with 

reliability evaluation of large-scale or complex power systems. MCS methods are classified into 

two categories, non-sequential simulation and sequential simulation. Non-sequential simulation is 

based on a random sampling algorithm, where a component state is selected according to its 

probability distribution without considering chronological connection. By using this approach, 

reliability indices such as loss of load probability (LOLP) and expected unserved energy (EUE) 

can be directly estimated. Assuming reliability coherence, the indices of frequency and duration 

can be estimated through a conditional probability approach [16,17], or calculated directly from 

sampled failure states using the frequency balance property [18].  

The main handicap of non-sequential approach emerges when an event chronology is required to 

reflect the inherent variability of reliability estimations or to incorporate time-varying 

characteristics. Sequential Monte Carlo Simulation approach becomes more suitable [19] in these 

circumstances. As an example, if aging factor is considered as a practical issue in reliability, then 

component failure rates that increase with time are naturally incorporated by sequential simulation 

[20]. Sequential simulation steps through system states in time domain, where a state of each 

component is chronologically connected to its preceding and succeeding states. A realistic history 

is created by combining sequences of component state durations and system load over a given time 

horizon. In this manner, using sequential simulation LOLP, EUE, LOLF or LOLD indices are 

calculated more simply and accurately. Also, economic indices such as loss of load cost (LOLC) 

can be estimated more accurately [21]. Compared to non-sequential approach, sequential 

simulation provides simplicity of accurately incorporating time-dependent variables and their 
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correlations, however, this approach requires considerably more computing time to converge than 

non-sequential simulation. In non-sequential simulation, any two sampled system states can be 

completely independent, on the other hand, in sequential simulation, any two consecutive system 

states differ by a realization of one random variable. As a result, the overall state space is less 

represented by sequential simulation than by non-sequential simulation considering the same 

number of sampled states. Therefore, sequential simulation would require a larger number of states 

to reach the same convergence criterion. This problem is especially critical for composite systems 

where their state evaluation involves analysis of power flow and optimization-based remedial 

action. 

 

2.2.1 Non-Sequential Monte Carlo Simulation 

 

In non-sequential MCS approach system states are randomly sampled from the state space. In the 

following, non-sequential MCS is described in three main steps.  

1.)  Select a state of the power system by random sampling of the states of all components and 

the load levels.  

2.) Characterize the selected state as success or failure through a test function, by performing 

an adequacy analysis, which usually involves optimal power flow (OPF).  

3.) Update the estimate𝐸(𝐹), the expected value of the system reliability indices using the 

results obtained in step 2. 𝐸(𝐹) is described in (eq 2.1). 

 

𝐸(𝐹) =
1

𝑁
∑ 𝐹(𝑥𝑖)
𝑁
𝑖=1          (2.1) 

 

where N is the number of simulated states. 

4.)  If the stopping criterion is satisfied then stop the simulation, otherwise, return to step 1. 

The estimate of uncertainty is usually represented by the coefficient of variation β. An acceptable 

value of the estimate of uncertainty is used as stopping criteria for the simulation. Besides variance, 

a determined specified number of samples can also be used as stopping criteria. Calculation of β 

is described in (2.2). 

 

𝛽 =  
√𝑉(𝐸(𝐹))

(𝐸(𝐹))
      (2.2) 

 

where 𝑉(𝐸(𝐹)) is the variance of the estimate𝐸(𝐹). 

 

2.2.2 Sequential Monte Carlo Simulation 

 

Sequential MCS is a type of MCS in which each system state is related to the previous set of 

system states. By doing this a sequential time evaluation of system behavior is created which 

enables evaluation of a wider range of reliability indices [22]. Sequential simulation can be 
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generally implemented with two methods, fixed time interval method and next event method. Both 

methods are described in the following subsections. 

 

2.2.2.1 Fixed Time Interval Method 

 

In this method, sequence of time intervals is stepped through, where component states are selected 

according to their transition probabilities. Its steps are described as follows. 

1.) Initialize component states with random sampling from their probabilities of being up or 

down. 

2.) Sample for component states in the next transition using each component transition 

probability matrix in (eq 2.3), where ∆𝜏 is a chosen as small time step. 

 

           

               𝑈𝑝          𝐷𝑜𝑤𝑛

𝑈𝑝
𝐷𝑜𝑤𝑛

[
1 − 𝜆∆𝜏 𝜆∆𝜏
𝜇∆𝜏 1 − 𝜇∆𝜏

]
      (2.3) 

 

3.) Generate a load level for step ∆𝜏 from historical chronology. 

4.) Evaluate current system state with contingency analysis. If no bus has loss of load then 

load curtailment is zero otherwise remedial action is called to find a load curtailment. 

5.) Repeat Steps 2–4 while updating reliability indices. If convergence criterion is satisfied, 

stop the program. 

 

The length of time step ∆𝜏 will affect simulation accuracy. A smaller step results in higher 

accuracy, but will require a larger number of states to be evaluated and thus result in higher 

computational cost. This issue imposes a computational limitation for fixed time interval method 

to be used in practice even though it is theoretically feasible.  

 

2.2.2.2 Next Event Method 

 

In this method, simulation proceeds by keeping a record of the time when the next event occurs, 

where the residence time of each component state is determined by the value of a random variable 

from its continuous distribution. Its steps are given as follows: 

1.) Initialize component states with random sampling from their probabilities of being up or 

down. 

2.) Generate the state (up or down) duration 𝜏 for each component𝑖. Draw a pseudo-random 

number 𝑧~𝑈(0,1) and substitute it into the inverse transform of distribution function 𝐹𝑡 in 

(eq 2.4). 

𝜏𝑖 = 𝐹𝑡𝑖
−1(𝑧)     (2.4) 

 

3.) Update the associated load sequence in correspondence to component sequence. 
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4.) Evaluate each state of system sequence obtained in Steps 2–3 in the similar way as seen 

in Step 4 of Fixed time interval method. 

5.) Repeat steps 2–4 while updating reliability indices. If convergence criterion is satisfied, 

stop the procedure. 

 

2.3 Composite System Adequacy Analysis  

 

MCS techniques are currently the most widely used methods to assess the adequacy analysis of a 

composite system [23]. The MCS is based on a combination of state sampling with direct approach 

for system analysis and the utilization of a minimization model for load curtailment. This method 

is especially well suited for large power systems and allows multi state representation of 

components as well. Minimization model for load curtailment is usually required to solve an 

optimization problem based on power flow equations. The power flow equations for analysis use 

either DC or AC power flow model. Following subsections presents the mathematical information 

required to perform load curtailment analysis based on DC or AC power follow model 

respectively.  

 

2.3.1 DC Power Model 

 

In composite system reliability studies, power flow analyses are usually carried out in solving 

optimization problems for minimum of load curtailment. There are usually two types of power 

flow analysis used to characterize a system state, DC and AC power flow analysis. The DC power 

flow model is described by the nodal equation 

 

𝛽𝛿 + 𝐺 = 𝐷      (2.5) 

and the line flow equation 

𝑏𝐴𝛿 = 𝐹      (2.6) 

where 

𝑁𝑏 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑢𝑠𝑒𝑠 

𝑁𝑡 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐿𝑖𝑛𝑒𝑠  

𝑏 = 𝑁𝑡𝑥𝑁𝑡 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠 

𝐴 = 𝑁𝑡𝑥𝑁𝑏  𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  

𝛽 = 𝑁𝑏𝑥𝑁𝑏 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  

𝛿 = 𝑁𝑏 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑔𝑙𝑒𝑠 

𝐺 = 𝑁𝑏 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 

𝐷 = 𝑁𝑏 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑏𝑢𝑠 𝑙𝑜𝑎𝑑𝑠 

𝐹 = 𝑁𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑖𝑛𝑒 𝑓𝑙𝑜𝑤𝑠 

 

Load curtailment can be found by solving following linear programming model 
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Loss of Load = min(∑ 𝐶𝑖
𝑁𝑏
𝑖=1 )                                       (2.7) 

Subject to 

𝛽𝛿 + 𝐺 + 𝐶 = 𝐷 

𝐺 ≤ 𝐺𝑚𝑎𝑥 

𝐶 ≤ 𝐷 

  𝑏𝐴𝛿 ≤ 𝐹𝑚𝑎𝑥          (2.8) 

−𝑏𝐴𝛿 ≤ 𝐹𝑚𝑎𝑥 

𝐺, 𝐶 ≥ 0 

𝛿, 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

 

2.3.2 AC Power Flow Model 

 

Following set of equations describes the formulation and incorporation of the objective function 

of minimum load curtailment in the non-linear programming problem. This objective function is 

subject to equality and inequality constraints of the power system operation limits. The equality 

constraints include the power balance at each bus and the inequality constraints are the capacity 

limits of generating units, power carrying capabilities of transmission lines, voltage limits at the 

nodes and reactive power capability limits. The minimization problem is formulated as follows 

[24] 

 

      Loss of Load = min(∑ 𝐶𝑖
𝑁𝑏
𝑖=1 )                                            (2.9) 

Subject to 

𝑃(𝑉, 𝛿) − 𝑃𝐷 + 𝐶 = 0 

𝑄(𝑉, 𝛿) − 𝑄𝑑 + 𝐶𝑞 = 0 

𝑃𝐺
𝑚𝑖𝑛 ≤ 𝑃(𝑉, 𝛿) ≤ 𝑃𝐺

𝑚𝑎𝑥  

               𝑄𝐺
𝑚𝑖𝑛 ≤ 𝑄(𝑉, 𝛿) ≤ 𝑄𝐺

𝑚𝑎𝑥                  (2.10) 

𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥 

𝑆(𝑉, 𝛿) ≤ 𝑆𝑚𝑎𝑥 

0 ≤ 𝐶 ≤ 𝑃𝐷 

𝛿, 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

 

In (2.9) and (2.10), 𝐶𝑖 is the load curtailment at bus i, C is the vector of load curtailments, 𝐶𝑞 is the 

vector of reactive load curtailments, V is the vector of bus voltage magnitudes, δ is the vector of 

bus voltage angles, 𝑃𝐷 and 𝑄𝐷 are the vectors of real and reactive power loads, 𝑃𝐺
𝑚𝑖𝑛, 𝑃𝐺

𝑚𝑎𝑥, 𝑄𝐺
𝑚𝑖𝑛 

and𝑄𝐺
𝑚𝑎𝑥 are the vectors of real and reactive power limits of the generators, 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are 

the vectors of minimum and maximum allowed voltage magnitudes, S (V, δ) is the vector of power 

flows in the lines, 𝑆𝑚𝑎𝑥 is the vector of power rating limits of the transmission lines and P(V, δ) 

and Q(V, δ) are the vectors of real and reactive power injections. Moreover, 𝑁𝑏 is the number of 

buses, 𝑁𝑑is the number of load buses, 𝑁𝑡 is the number of transmission lines and 𝑁𝑔 is the number 
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of generators. In the standard minimization problem given by (2.9) and (2.10), all generation and 

network constraints have been taken into consideration. It has been assumed that one of the bus 

angles is zero in the constraints (2.10) to work as a reference bus. 

 

2.4 Reliability Test Systems  

 

IEEE 30 bus test system or IEEE RTS is used to demonstrate performance of proposed methods 

in this study. In this subsection, test systems are described. 

 

2.4.1 IEEE 30 Bus Test System 

 

There are 41 transmission lines in this system, with 435 MW maximum generation and 255 MW 

maximum load. There are 9 generation units for 6 generation buses in this case study. Since there 

is no reliability data associated with this system, corresponding parameters are chosen from RTS, 

for simplicity, all generators share the same failure rates and repair time and all transmission lines 

share the same failure rates and repair time. A detailed schematic of IEEE 30 Bus Test System is 

given in figure 1. Data of the original IEEE 30 Bus Test System can be accessed through the [25]. 

 

 
Figure 2.1: Schematic for IEEE 30 Bus Test System 
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2.4.2 IEEE RTS 79 Test System 

 

This system has 24 buses (10 of them are generation buses), 38 transmission lines and 32 

generation units. The total installed capacity is 3405 MW and the system has 2850 MW at its 

annual peak. A detailed schematic of RTS is given in figure 2. Data of the original IEEE RTS can 

be accessed through the [26]. 

 

For some of case studies Modified RTS (MRTS) is preferred. MRTS is designed for the studies 

on transmission line reliability for composite systems. In this system, generation capacities are 

doubled and all the loads are multiplied by 1.8 while rest of the system parameters remain 

unchanged. In this way effect of transmission lines on overall system reliability is increased and 

becomes more observable. The total installed capacity is 6810 MW and the system has 5130 MW 

at annual peak. 

 
Figure 2.2: Schematic for IEEE RTS 

 

2.5 Performance Evaluation Metrics  

 

Performance of an AI based composite system reliability evaluation techniques is commonly 

considered as binary classification. To test performance of these systems usually statistical 

measures of Sensitivity (also termed as recall) and Specificity are utilized. These measurements 

are based on the terminologies of True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN). Here, True and False refers the assigned classification being correct or 

incorrect, while positive or negative refers to assignment to the positive or the negative category. 
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In a binary classification, sensitivity expresses proportion of correctly identified positives to all 

predictions classified as positive. Calculation of sensitivity is described in (eq 2.11). 

 

        𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (2.11) 

 

Sensitivity measures the performance of classifier in reducing computational time of MCS since 

each False Negative requires an analysis by power flow equation. Specificity on the other hand, 

measures the proportion of correctly identified negative samples of all samples that are classified 

as negative. Specificity is described in (2.12). 

 

          𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                (2.12) 

 

In terms of reliability evaluation, specificity measures the accuracy of classifier in estimating 

reliability parameters since incorrect classifications of negative cases tend to change calculated 

reliability parameters. In addition to the metrics described above, performance of the proposed 

method in estimating composite power system reliability indices is evaluated based on Loss of 

Load Probability (LOLP). Definition of LOLP is given in (2.13). 

 

   𝐿𝑂𝐿𝑃 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
    (2.13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

11 

 

3. Multi label classification for composite system reliability evaluation 

 

3.1 Introduction 

 

In this section a new approach for reliability evaluation of composite power systems by combining 

Monte Carlo simulation (MCS) and Multi Label Learning (MLL) is described. Multi Label K-

Nearest Neighbor (MLKNN) algorithm is used as a classifier to show effectiveness of the proposed 

method. MLL is a classification technique in which the target vector of each instance is assigned 

into multiple classes. In this research MLL method is used to classify states (failure or success at 

bus level) of a power system without requiring optimal power flow (OPF) analysis, except in the 

training phase. As a result, the computational burden to perform OPF is reduced dramatically. For 

illustration, the proposed method is applied to the IEEE 30 BUS Test System and IEEE Reliability 

Test System (IEEE RTS). The results from various case studies demonstrate that MLKNN based 

reliability evaluation provides promising results in both classification accuracy and computation 

time in evaluating the composite power system reliability. Details of the proposed method are 

presented in following subsections. 

 

3.2 Multi Label Learning for Power System Reliability Evaluation 

 

Multi label classification is a type of learning where each sample is associated with multiple labels, 

making it suitable for calculation of bus indices. The multi-label learning methods can be explored 

in two main groups which are algorithm adaptation and problem transformation methods. 

Algorithm adaptation methods mainly target to extend some specific single class learning 

algorithms to handle multi label classification problems directly. Some examples of this group 

include MLKNN, neural networks based Multi Label classification or decision trees. The 

transformation methods, on the other hand, aim to transform a multi label classification problem 

into a single label classification problem. Binary reverse method or pair-wise method can be given 

as examples for this method. In this part of research, a combination of MCS and MLKNN classifier 

is used to evaluate reliability indices of composite power systems.  

 

The main contribution of the proposed method is a technique that minimizes computational burden 

of classification of sampled states with MCS and reduces the need for OPF for the reliability 

evaluation, except in the training stage and to extend the capability to bus level classification. 

MLKNN has one of the most time efficient structures among many MLL methods. This feature 

allows increasing computational efficiency of MCS. Moreover, experiments show that 

performance of MLKNN is superior to those of some well-established multi-label learning 

methods [27, 28, 29, 30, and 31]. 
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3.3 Multi Label K-Nearest Neighbor Algorithm 

 

MLKNN approach is an MLL algorithm which is derived from the traditional KNN. In this 

method, KNN for each element in the training set is identified. Then statistical information is 

gained from the label sets for each instance. Lastly maximum a posteriori (MAP) principle is 

applied to determine the label for the test instance. In this study MLKNN algorithm is chosen for 

evaluation of reliability indices of composite power system because of its classification 

performance and time efficient structure.   

 

Before explaining the algorithm, several notations are introduced. Let there be an instance m and 

its associated label set Y ⊆ ý. Let ym⃗⃗⃗⃗  ⃗ be the category vector for m, where its q𝑡ℎ component  ym⃗⃗⃗⃗  ⃗(q) 

(q ∈ Y) takes the value of 1 if q ∈ Y and 0 otherwise. In addition, let N (m) denote the set of KNNs 

of m identified in the training set. Thus, based on the label sets of these neighbors, a membership 

counting vector can be defined as:  

 

      Cm⃗⃗ ⃗⃗  ⃗(q) = ∑ ya ⃗⃗⃗⃗  ⃗a∈N(m) (q),  q ∈ y        (3.1) 

 

Where Cm⃗⃗ ⃗⃗  ⃗(q) counts the number of neighbors of m belonging to the qth class. This vector is used 

to determine how many samples in number of neighbors N of sample m has labeled for each class 

described. In terms of composite system evaluation, the equation describes how many load failures 

occurred for the sample m in K number of neighbors. These numbers can be obtained by counting 

the occurrence of failures in training target matrix. 

 

For each test instance t, MLKNN firstly identifies its KNNs 𝑁(t) where N is the training set. Let 

H1
q
 be the event that t has label q, while H0

q
 be the event that t does not have label l. Furthermore, 

let  Ej
q
 (j ∈ {0,1, … . , K}) denote the event that, among the KNNs of t, there are exactly j instances 

which have label q. Therefore, based on the membership counting vector Ct⃗⃗  ⃗ the category vector yt⃗⃗  ⃗ 

is determined using the following maximum a posteriori principle: 

 

    yt ⃗⃗⃗⃗  (q) = argmaxb∈{0,1} P (Hb
q
|E
Ct⃗⃗⃗⃗ (q)

q
) , l ∈  Y                    (3.2) 

 

Using the Bayesian rule, Eq. (2) can be rewritten as: 

 

       yt ⃗⃗⃗⃗  (q) = argmaxb∈{0,1}
P(Hb

q
)P(E

Ct⃗⃗⃗⃗  ⃗(q)

q
|Hb
q
)

P(E
Ct⃗⃗⃗⃗  ⃗(q)

q
)

                 (3.3) 

 

 = argmaxb∈{0,1}P(Hb
q
)P (E

Ct⃗⃗⃗⃗ (q)

q
|Hb

q
)                 (3.4) 
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               P(q) = P (H1
q
|E
Ct⃗⃗⃗⃗ (q)

q
) =

P(H1
q
)P(E

Ct⃗⃗⃗⃗  ⃗(q)

q
|H1
q
)

∑ P(H
b
q
)P(E

Ct⃗⃗⃗⃗  ⃗(q)

q
|H
b
q
)b∈{0,1}

                           (3.5) 

Eq. (3.2 – 3.4) explain how to calculate prior and conditional probabilities. Prior probability term 

is used to describe the loss of load probability for each bus in overall training dataset. The output 

of this process is a Qx1 vector where Q is number of buses in a system. Conditional probability 

terms represent the loss of load probabilities for each bus of sample m in all K neighbors. This 

probability is also calculated by counting the occurrences of failures in all K neighbors for each 

bus Q. The output of this process is a Qx(K + 1) matrix where Q is number of buses in a system 

and K is the number of neighbors specified for classifier. 

 

As shown in Eq. (3.4), in order to determine the category vector yt⃗⃗  ⃗, all the information that is 

needed is the prior probabilities P(Hb
q
) (j ∈ {0,1, … . , K}). Actually, these prior and posterior 

probabilities can all be directly estimated from the training set based on frequency counting. 

 

Correspondingly, C′[j] counts the number of training instances without label q whose k nearest 

neighbors contain exactly j instances with label q. Finally, using the Bayesian rule, steps from (3.5) 

the algorithm's outputs based on the estimated probabilities can be computed. 

 

3.4 MLKNN for Power System Reliability Evaluation 

In this section, first formulation of general composite system reliability evaluation parameters is 

made, later, implementation of MLKNN algorithm is fully explained by steps. 

 

3.4.1 General Definition of MLKNN Parameters 

In this study, total generation capacities for buses of composite system are taken as input parameter 

for MLKNN classifier. So, each bus which is capable of generation in the system is considered as 

an element of input matrix G for every sample (instance) M as described in (3.6). 

  

          𝐺𝑖𝑛𝑝𝑢𝑡 = [
𝐺11 𝐺12 𝐺1𝑁
𝐺21 𝐺22 𝐺2𝑁
𝐺𝑀1 𝐺𝑀2 𝐺𝑀𝑁

]       (3.6) 

 

Where N is the number of the generation buses and M is the total number of samples in the input 

matrix. 

A target matrix T is also created for training of the MLKNN classifier which includes state 

information for each bus of the system for M different samples, described in (3.7).  

 

𝑇 = [

𝑇11 𝑇12 𝑇1𝑄
𝑇21 𝑇22 𝑇2𝑄
𝑇𝑀1 𝑇𝑀2 𝑇𝑀𝑄

]       (3.7) 



 

 

14 

 

 

Where Q is the number of the load buses in the system and S is the status information of bus q. 

While defining status of buses ‘-1’ is taken to describe ’success state’ and ‘1’ for ‘failure state’. 

Desired output for this classifier Pout, contains failure probabilities for each bus of composite 

reliability system for each sample M, described in (3.8). 

 

   𝑃𝑜𝑢𝑡 = [

𝑃11 𝑃12 𝑃1𝑄
𝑃21 𝑃22 𝑃2𝑄
𝑃𝑀1 𝑃𝑀2 𝑃𝑀𝑄

]        (3.8) 

 

3.4.2 Explanation of MLKNN Procedure 

 

After giving definitions of general parameters for MLKNN classifier, the training and testing 

procedure is now explained in steps. Before starting explanation, a few parameters are described: 

 

 m: defines index of current sample of the total M samples. 

 q: defines the bus index of total Q buses of system. 

 Tm defines the state of bus q at sample m so; 

𝑇𝑚(𝑞) = {
−1 𝑤ℎ𝑒𝑟𝑒 𝑏𝑢𝑠 𝑞 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠     
1  𝑤ℎ𝑒𝑟𝑒 𝑏𝑢𝑠 𝑞 = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

 

 

K indicates the determined nearest neighbor index used in classification. 

 

3.4.2.1 Training Procedure 

 

1. MLKNN is a classification technique which uses the k-nearest neighbor algorithm for 

finding the closest relationship between training samples. So, the first step of training 

procedure is creating a distance matrix. In this study, Euclidian distance method is used to 

create this matrix described in (3.9). 

 

∑ √(𝑎𝑖 − 𝑏𝑖)2
𝑀
𝑖=1         (3.9) 

 

For further explanation, a vector is described to represent sum of squares for input vectors 

for each sample in (3.10). 

 

𝐺𝑠𝑠 = [𝐺1
2 + 𝐺2

2…𝐺𝑁
2]    (3.10) 

 

Where 𝐺𝑠𝑠 sum of squares for each generation bus and N is the number of total generation 

buses. Based on equation (3.10) a concurrent generation matrix can be described in (3.11). 

 

𝐺𝑐𝑜𝑛𝑐𝑢𝑟 = [

𝐺𝑠𝑠1 𝐺𝑠𝑠1 𝐺𝑠𝑠1
𝐺𝑠𝑠2 𝐺𝑠𝑠2 𝐺𝑠𝑠2
𝐺𝑠𝑠𝑀 𝐺𝑠𝑠𝑀 𝐺𝑠𝑠𝑀

]   (3.11) 
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Where 𝐺𝑐𝑜𝑛𝑐𝑢𝑟 is the concurrent matrix created to calculate distance used in k-mean 

algorithm and M is number of total samples. At this point 𝐺𝑐𝑜𝑛𝑐𝑢𝑟 is applied to equation (9) 

described at (3.12). 

 

             𝐷𝑖𝑠𝑡 = √𝐺𝑐𝑜𝑛𝑐𝑢𝑟 + 𝐺𝑐𝑜𝑛𝑐𝑢𝑟𝑇 − 2(𝐺𝑖𝑛𝑝𝑢𝑡𝑥𝐺𝑖𝑛𝑝𝑢𝑡
𝑇 )                (3.12) 

 

Where 𝐷𝑖𝑠𝑡 is the matrix including the data of distances between samples. Finally, the 

distance matrix is described in (3.13) below. 

 

           𝐷𝑖𝑠𝑡 = [
𝐷𝑖𝑠𝑡11 𝐷𝑖𝑠𝑡12 𝐷𝑖𝑠𝑡1𝑀
𝐷𝑖𝑠𝑡21 𝐷𝑖𝑠𝑡22 𝐷𝑖𝑠𝑡2𝑀
𝐷𝑖𝑠𝑡𝑀1 𝐷𝑖𝑠𝑡𝑀2 𝐷𝑖𝑠𝑡𝑀𝑀

]                 (3.13) 

 

Where each element of the 𝑀𝑥𝑀 matrix describes the distances between samples.  

 

1- In the second step prior probabilities of failure for each bus are calculated based on 

counting instances as shown in (3.1). Calculation of prior probabilities is described in 

(3.14). 

 

  𝑃1(𝑞) =
∑ 𝑌𝑖(𝑞)
𝑀
𝑖=1

𝑀
         (3.14) 

 

            𝑃0(𝑞) = 1 − 𝑃1(𝑞)        (3.15) 

 

At the end of process, a Qx1 Prior and a Qx1 Compliment Prior probability matrix are 

obtained which gives prior probabilities of each bus. 

 

2- In the third step conditional and conditional compliment probabilities for buses are 

calculated for K nearest neighbors based on counting. In this step the algorithm first 

determines how many of K nearest neighbors for sample m have failure at bus q.  Later the 

process is repeated for all M samples to determine probability of failure for bus q 

conditional to the occurrence in nearest numbers. This process is formulated in (3.16). 

 

    𝐶𝑜𝑛𝑑(𝑘, 𝑞𝑏) = 𝑃 (𝐶(𝑘)∈{0,𝐾}]
𝑞 |𝐻𝑏∈{0,1}

𝑞 )                 (3.16) 

 

where 𝐶(𝑘)∈{0,𝐾}]
𝑞

 denote the number of instances which have failure on bus q. Also 𝐻1
𝑞
 describes 

the event bus q has failure at the sample x as likewise 𝐻0
𝑞
 describes the event bus q has not failure 

at the sample x.  

 

At the end of these steps four required probability matrices for system are obtained. 
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-Prior (Q) is a Q x 1 matrix that defines prior probability of failure for all buses in system.

-Prior Negative (Q) is a Q x 1 matrix that defines prior probability of failure for all buses in

system.

-Cond (𝐾|𝑄) is a Q x (K+1) matrix that shows conditional probabilities of failure for all buses

in system according to kth closest neighbor.

-Cond Negative (𝐾|𝑄) is a Q x (K+1) matrix that shows negative of conditional probabilities

of failure for all buses in system according to kth closest neighbor.

After training parameters are obtained, testing process is used to calculate probability of failure 

for each bus for given sample m based on using Bayesian rule showed in (3.5). 

3.4.2.2 Testing Procedure

After training of MLKNN classifier is completed, testing process can be used to identify bus 

statuses of a composite power system. Testing process has 3 main steps: 

1- As in training, the first step of testing is also calculating distance matrix between test data

and training data. The same process as described in (3.9) is used in this step. At the end of

this step 𝑀𝑡𝑒𝑠𝑡𝑥𝑀𝑡𝑟𝑎𝑖𝑛 distance matrix is obtained.

2- In this step, the number of failures in K nearest neighbors is determined based on the

counting process (3.1).  Results of the counting indicates the required indices for Cond (𝑘|𝑞)

where q indicates the bus number and 𝑘 ∈ {0,… . , 𝐾}.

3- In the last step Bayesian rule described in (3.5) used for determining failure probabilities of

busses in test database.

 𝑃(𝑞) =
𝑃(𝑞)𝑃(𝑘|𝑞)

∑ 𝑃(𝐶(𝑘)
𝑞
|𝐻𝑏
𝑞
)𝑏∈{0,1}

(3.17) 

Afterwards the probability matrix obtained previously specified threshold can be used to determine 

if a bus is in failure state or not. Overall flow diagram for the proposed MLKNN classifier for 

IEEE RTS 79 test system which has 24 buses (10 of them are generation buses), 38 transmission 

lines and 32 generation units is given in figure 3.1. 
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Fig 3.1: Overall diagram for MLKNN Classifier on RTS 79 

 

3.5 Proposed Topology 

 

This section explores the MLKNN classifier in conjunction with the MCS to reduce the 

computational requirements while evaluating the composite power system reliability. In this 

section firstly, the basic steps of the MCS are described and then detailed computational procedure 

of the proposed MLKNN classifier for the composite power system reliability evaluation is 

explained. 

 

In this study, the non-sequential MCS is used as a benchmark for  testing the performance of the 

proposed method. Non-sequential MCS is generally preferred for composite test system because 

of simplicity of method and its computational efficiency. The basic steps for the composite 

reliability evaluation by the non-sequential MCS are explained as follows; 

 

1- Select a random state for all components of the power system as 𝑥 = (𝑥1, 𝑥2…𝑥𝑚) where 

m is the component number in power system. 

 

2- Classify each of the selected state x (as success or failure) through KLMNN classifier 

(classifier is trained with a proper training database created in section A). 

 

3- Update the estimate E (F), the expected value of the system reliability indices using the 

results gathered from step 2 described in (3.18). 

𝐸(𝐹) = (
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖 )     (3.18) 

 

  Where N is the number of simulation steps. 
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4- If the determined criteria for variance is reached stop the simulation otherwise return to the 

first step.  

 

The estimate of uncertainty is usually represented by the coefficient of variation β. An acceptable 

value of the estimate of uncertainty is used as stopping criteria for the simulation. Besides variance, 

determined specified number of samples can also be used as stopping criteria. Composite power 

systems are generally highly reliable systems, so the probability that failed state occurs is much 

less than success states. Therefore, the steps described in this section repeat many times. As a 

result, reducing the computational burden of power flow analysis by using KLMNN classifier 

provides significant time and computational efficiency. 

 

The first step of implementing MLKNN classifier in composite system evaluation with 

combination of MCS is generating a training database. A proper dataset is created using a set of 

sampled states and the corresponding state classification labels for each bus (success or failure), 

which are obtained from the MCS. Once the appropriate training patterns are obtained, then the 

MLKNN classifier is trained, which would then be used for the state space classification of the 

testing database to evaluate the reliability. In this database, input vector is created by using 

generation buses while output of the classifier is defined as state (success or failure) of each bus 

of the selected test system. Proposed method is applied on two different test systems; IEEE 30 Bus 

Test System (case 1) and IEEE RTS 79 (case 2). Performance of proposed system is also tested on 

varying load levels (case 3) and under circumstance of failing transmission lines (case 4). In these 

test systems input data sampled from 6, 10, 24 and 47 input buses respectively while target matrices 

sampled from 24 and 30 buses for RTS and IEEE 30 Test System. General algorithm of the 

proposed method for composite reliability evaluation is shown in Fig. 3.2 and its detailed 

implementation procedure is outlined below. 

 

 

Fig 3.2: Flowchart of overall process of MCS-MLKNN method 

Training data samples for MLKNN classifier are obtained by the MCS. Size of these data samples 

can be determined by either using pre-specified number of samples or the convergence of the 

coefficient of variation method. In this study, size of dataset is determined by specific number of 

samples proportional to the LOLP of the system to get the sufficient number of attributes in the 
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input training patterns. In this training dataset, input vectors are created based on information of 

the total generation for each bus, and target matrices are created by using corresponding system 

state characteristics (success or failure) for each bus of the testing system. In the target matrix 1 

and -1 are used to represent the desired output of the success and failure states, respectively. In 

this study, the repetitive states of MCS are not included in the training database to reduce the 

number of samples included in the training process. It should be also noted that the number of 

obtained success states is much higher than failed states, some of the success states are discarded 

to prevent overemphasis of classification. Consequently, the number of training patterns is 

decreased to speed up the MLKNN training and a balanced training patterns is created to increase 

overall performance of classifier.  

 

After training patterns have been generated, the next step is training the MLKNN for selected set 

of input/output patterns. Once the MLKNN classifier is trained, the MCS follows the same steps 

as described early in this section with exception that the state characterization is now performed 

by the trained MLKNN instead of running the DC-OPF calculations. With this procedure, the 

composite reliability indices can be calculated without requiring power flow calculations. In this 

way, computational time necessary for evaluating the composite power system reliability is 

reduced dramatically. In this study, the simulations are run until coefficient of variation reaches 

(COV) 1% for testing stage in all case studies. COV indices are calculated based on overall failures 

of specified test system. It is because overall the failure rate of a system is much higher than bus 

level failures. The overall performance of the MLKNN classifier is measured by using the 

parameters: overall accuracy, sensitivity, specificity, g-mean and simulation time. 

 

3.6 Case Studies and Results 

 

In this section four case studies were conducted on IEEE 30 Bus System and IEEE RTS 

respectively to analyze the performance of MLKNN classifier.  

 

In case study one, performance of the proposed method is demonstrated on IEEE 30 Bus System. 

Following that, case studies are performed on the IEEE RTS since it is used by most of the 

developers of new algorithms for composite system reliability evaluation studies. Performance of 

the proposed method on RTS shown in case study two and case study three is for peak load level 

and hourly varying load level respectively. For the first three case studies the capacity and 

admittance constraints of transmission lines are considered. However, the transmission line 

failures are not considered as these have much smaller probabilities than the generator failures. 

In case study four, transmission line failures are also considered. For this case study, Modified 

RTS (MRTS) is preferred. MRTS is designed for transmission line reliability studies for composite 

systems. In this system, generation capacities are doubled and all the loads are multiplied by 1.8 

while rest of the system parameters remain unchanged. In this way effect of transmission lines on 

overall system reliability is increased and become more observable.  
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All the simulations are performed using MATLAB (2017b) platform on a PC with Intel Core i7-

4510 CPU (~2.6GHz), 16 GB Memory. Simulation results for case studies are discussed in 

following subsections. 

 

3.6.1 Case Study 1 

 

In case study 1, to test performance of the proposed classifier, the system is tested on IEEE 30 Bus 

Test System for single load level of 255 MW (annual peak). A total of 34867 samples are 

characterized through MCS to create a training dataset with 33744 success and 1123 failure states. 

In these samples a total of 2500 states are selected to train the classifier. After the training, the 

system is tested until COV reaches the limit of ≤ 1%. During this phase, 301583 samples are 

classified with 291243 success and 10340 failure states. The overall performance of MLKNN 

classifier is stated in table 3.1 as well as simulation times for each model (MLKNN Classifier and 

OPF). The classification performance is compared to results obtained from DC-OPF analyses in 

table 3.2. The performance indices to present obtained results are calculated according to metrics 

described before. 

 

According to the results stated in table 3.1, MLKNN Classifier can successfully identify overall 

LOLP of IEEE 30 Bus Test system with a small error rate. Table 3.1 also shows that MLKNN 

classification reduces the computation time for calculating reliability indices dramatically 

comparing to OPF based MCS methods. Table 3.2 shows that MLKNN classification method 

provides reasonably accurate classification of bus states of RTS composite power system (success 

or failure).  

 
 

Table 3.1: Comparison of Overall System Performance for MLKNN & CMCS for IEEE 30 Bus Test System 

 CMCS MLKNN 

Success States 291792 291502 

Failure States 9791 10081 

Loss of Load 0.032 0.033 

Sensitivity N/A 0.99812 

Specificity N/A 1 

G-Mean N/A 0.999 

Analysis Time (Sec) 28659 1639 
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Table 3.2: Comparison of MLKNN & CMCS in Bus Level for IEEE 30 Bus Test System 
 CMCS  MLKNN Accuracy 

FN LOL 

(%) 

FN LOL 

(%) 

Sensitivity Specificity G-Mean 

Bus1 0 0.00 0 0.00 N/A N/A N/A 
Bus2 1712 0.57 1831 0.61 0.998 0.988 0.9929 
Bus3 1519 0.50 1511 0.50 0.999 0.984 0.9914 
Bus4 3379 1.12 3363 1.12 1 0.993 0.9964 
Bus5 3558 1.18 3562 1.18 0.999 0.996 0.9974 
Bus6 0 0.00 0 0.00 N/A N/A N/A 
Bus7 2187 0.73 2194 0.73 0.999 1 0.9995 
Bus8 2030 0.67 2022 0.67 0.999 0.991 0.9949 
Bus9 0 0.00 0 0.00 N/A N/A N/A 
Bus10 1049 0.35 1038 0.34 1 0.981 0.9904 
Bus11 0 0.00 0 0.00 N/A N/A N/A 
Bus12 2366 0.78 2348 0.78 0.999 0.986 0.9924 
Bus13 0 0.00 0 0.00 N/A N/A N/A 
Bus14 2747 0.91 2729 0.90 1 0.989 0.9944 
Bus15 1686 0.56 1671 0.55 0.999 0.985 0.9919 
Bus16 1068 0.35 1045 0.35 0.999 0.974 0.9864 
Bus17 784 0.26 771 0.26 1 0.971 0.9853 
Bus18 1412 0.47 1394 0.46 0.999 0.982 0.9904 
Bus19 1500 0.50 1486 0.49 0.999 0.982 0.9904 
Bus20 1436 0.48 1423 0.47 0.999 0.981 0.9899 
Bus21 1755 0.58 1868 0.62 0.999 0.985 0.9919 
Bus22 0 0.00 0 0.00 N/A N/A N/A 
Bus23 1313 0.44 1291 0.43 1 0.977 0.9884 
Bus24 1370 0.45 1358 0.45 1 0.983 0.9914 
Bus25 0 0.00 0 0.00 N/A N/A N/A 
Bus26 1194 0.40 1182 0.39 1 0.976 0.9879 
Bus27 0 0.00 0 0.00 N/A N/A N/A 
Bus28 0 0.00 0 0.00 N/A N/A N/A 

Bus29 469 0.16 451 0.15 1 0.958 0.9787 
Bus30 1464 0.49 1447 0.48 1 0.981 0.9904 

 

 

3.6.2 Case Study 2 

 

In case study two, to test performance of the proposed classifier, the system is tested on single area 

IEEE RTS for single load level of 2850 MW (annual peak). There are 10 generation buses in RTS 

which are considered as input vector. To train the classifier, 14682 samples are obtained through 

MCS with 13381 successes and 1301 failures in this process. After obtaining adequate number of 

samples, the training patterns are recombined to generate a balanced training dataset (some of the 

success states are discarded to prevent overtraining). A total of 3000 samples are selected with 

1301 failure and 2699 success states for this dataset. It should be noted that most of the success 

states are ignored during this process to emphasize classification of failure states (which is 

reasonable in order to calculate reliability indices). After MLKNN classifier is successfully 

trained, the proposed system is tested until COV reaches the limit of ≤ 1%.  After testing is 

completed, 109743 samples are classified with 100470 successe and 9273 failure states.  

 

The overall classification performance of MLKNN classifier and time comparison between the 

proposed method and CMCS is shown in table 3.3. The classification performance at bus level is 

stated with comparison of results obtained from DC-OPF analyses in table 3.4.  
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According to the results in table 3.3, MLKNN Classifier can successfully identify overall LOLP 

of RTS system with a small error rate.  Similar to Case study one, MLKNN classification reduces 

computation time of reliability indices significantly comparing to OPF based CMCS.  

 
Table 3.3: Comparison of Overall System Performance for MLKNN & CMCS 

 CMCS MLKNN 

Success States 100470 100402 

Failure States 9273 9341 

Loss of Load 

Probability 

0.0845 0.085 

Sensitivity N/A 0.997 

Specificity N/A 0.993 

G-Mean N/A 0.994 

Analysis Time (Sec) 6271 448 

 
Table 3.4: Comparison of MLKNN & CMCS in Bus Level 

 MLKNN CMCS Accuracy 

FN LOL 

(%) 

FN LOL 

(%) 

Sensitivity Specificity G-Mean 

Bus1 2973 2.71 2934 2.67 0.998 0.974 0.9859 
Bus2 2937 2.68 2953 2.69 0.999 0.981 0.9899 
Bus3 0 0.00 0 0.00 N/A N/A N/A 
Bus4 0 0.00 0 0.00 N/A N/A N/A 
Bus5 936 0.85 952 0.87 0.999 0.972 0.9854 
Bus6 33 0.03 29 0.03 0.999 0.896 0.9460 
Bus7 5032 4.59 5063 4.61 0.998 0.981 0.9894 
Bus8 648 0.59 642 0.59 0.999 0.986 0.9924 
Bus9 3 0.0 1 0.0 0.999 0.33 0.5741 
Bus10 20 0.02 21 0.02 0.999 0.952 0.9752 
Bus11 0 0.00 0 0.00 N/A N/A N/A 
Bus12 0 0.00 0 0.00 N/A N/A N/A 
Bus13 456 0.42 471 0.43 0.999 0.946 0.9721 
Bus14 208 0.19 224 0.20 0.999 0.902 0.9492 
Bus15 0 0.00 0 0.00 N/A N/A N/A 
Bus16 56 0.05 51 0.05 1 0.882 0.9391 
Bus17 0 0.00 0 0.00 N/A N/A N/A 
Bus18 1018 0.93 1034 0.94 0.999 0.907 0.9518 
Bus19 48 0.04 51 0.05 0.999 0.921 0.9592 
Bus20 3802 3.46 3879 3.53 0.997 0.946 0.971 
Bus21 0 0.00 0 0.00 N/A N/A N/A 

Bus22 0 0.00 0 0.00 N/A N/A N/A 

Bus23 0 0.00 0 0.00 N/A N/A N/A 

Bus24 0 0.00 0 0.00 N/A N/A N/A 

 

As shown in Table 3.4, MLKNN classification method provides reasonably accurate classification 

of bus states of RTS composite power system (success or failure). It should be noted that if failure 

rate at a bus is very small (like bus-9) classifier may show lower performance than average. The 

reason is that, there are not enough samples generated to adjudicate properly for those buses neither 

in training nor testing stages.  

 

3.6.3 Case Study 3 

 

In case study three, performance of the proposed method is tested using varying load levels based 

on information provided in hourly load chart of RTS. To be able to classify varying load levels, 

load information should be added to the input of the classifier. For this purpose, the input equation 

(3.1) is modified and the new equation is described below in (3.23). 
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𝐼𝑖𝑛𝑝𝑢𝑡 = [
𝐺11 − 𝐷11 𝐺12 − 𝐷12 𝐺1𝑁−𝐷1𝑁
𝐺21 − 𝐷21 𝐺22 − 𝐷22 𝐺2𝑁 − 𝐷2𝑁
𝐺𝑀1 − 𝐷𝑀1 𝐺𝑀2 − 𝐷𝑀2 𝐺𝑀𝑁 − 𝐷𝑀𝑁

]   (3.23) 

 

In this equation G represents generation and D represents load at bus N for a total of M number of 

samples. 

 

However, size of classifier can become too large while classifying system states in varying load 

levels which reduces computational efficiency of the classifier. In this study, instead of using one 

classifier, multiple classifiers are trained for different load levels to handle this problem efficiently. 

Total state space sampled is divided to five main levels based on available generation data. For 

each of those levels a unique classifier is trained. In the testing stage, a decision tree is used to 

determine which classifier to be used for classification for every random sample. The overall 

diagram of the algorithm used in this case study is given in figure 3.3. 

 

 
Figure 3.3: Overall Diagram of Proposed Classifier for Variable Load Levels 

 

In the training phase of classifier, MCS is run for each load level until a total of 5000 samples are 

obtained with 3000 success and 2000 failure states. Most of the success states are discarded to 

prevent overtraining as in previous case studies. After MLKNN classifier is successfully trained, 

the proposed system is tested until COV reaches the limit of ≤ 1%.  After testing is completed, 

7540967 samples are classified with 7540967 successes and 9052 failure states. 
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The overall classification performance of proposed method for characterizing random samples is 

given in table 3.5. The classification performance at bus level is presented with comparison of 

results obtained from DC-OPF analyses in table 3.6.  

 

Results obtained in table 3.5 show that the proposed classifier can successfully identify overall 

LOLP of RTS system with an acceptable error rate. The results also show that computation time 

of reliability indices is reduced significantly comparing to CMCS. As presented in Table 3.6 

MLKNN classifier can characterize system buses very accurately in varying load levels.  

 
Table 3.5: Comparison of System Performance for Varying Hourly Load 

 CMCS MLKNN 

Success States 7540967 7540881 

Failure States 9052 9138 

Loss of Load 0.0012 0.0012 

Sensitivity N/A 0.99 

Specificity N/A 0.96 

G-Mean N/A 0.97 

Analysis Time (Sec) 375249 33492 
 

Table 3.6: Comparison of System Performance for Varying Hourly Load in Bus Level 

Location CMCS 

(Failures) 

MLKNN 

(Failures) 

Sensitivity Specificity G-Mean 
Bus1 2115 2178 0.99 0.97 0.98 
Bus2 1157 1204 0.99 0.98 0.98 
Bus3 N/A N/A N/A N/A N/A 
Bus4 N/A N/A N/A N/A N/A 
Bus5 606 612 0.99 0.97 0.98 
Bus6 36 51 0.99 0.92 0.95 
Bus7 4143 4051 0.99 0.91 0.95 
Bus8 325 371 0.99 0.97 0.98 
Bus9 N/A N/A N/A N/A N/A 
Bus10 N/A N/A N/A N/A N/A 
Bus11 N/A N/A N/A N/A N/A 
Bus12 N/A N/A N/A N/A N/A 
Bus13 269 291 0.99 0.88 0.94 
Bus14 247 278 0.99 0.89 0.93 
Bus15 0 0 N/A N/A N/A 
Bus16 43 49 1 0.91 0.95 
Bus17 0 0 N/A N/A N/A 
Bus18 1797 1658 1 0.86 0.93 
Bus19 239 291 1 0.92 0.96 
Bus20 4484 4303 1 0.91 0.95 
Bus21 N/A N/A N/A N/A N/A 
Bus22 N/A N/A N/A N/A N/A 
Bus23 N/A N/A N/A N/A N/A 
Bus24 N/A N/A N/A N/A N/A 
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3.6.4 Case Study 4 

 

In case study four, the proposed method is applied to include transmission line failures in the 

classification scheme. To create proper patterns to classify transmission line failures, states of 

transmission lines should be combined with the generation data as an input of classifier. Many of 

the previous studies that have a focus on machine learning techniques for state classification of 

composite power systems ignore system failures sourced from transmission lines by making some 

assumptions. The main difficulty lies here is combining information of available generation and 

transmission line capacity at the input of the classifier to create proper patterns. In this study, a 

new approach is proposed to achieve classification of failures reasoned from transmission line 

failures. In this approach, equation (3.1) is modified by applying discrete time convolution to the 

information obtained from generation and transmission line states. New input equation is described 

below in (3.24) below. 

 

𝐼𝑖𝑛𝑝𝑢𝑡 = [
𝐺11 𝐺12 𝐺1𝑁
𝐺21 𝐺22 𝐺2𝑁
𝐺𝑀1 𝐺𝑀2 𝐺𝑀𝑁

] ∗ [
𝑇𝑟11 𝑇𝑟12 𝑇𝑟1𝐿
𝑇𝑟21 𝑇𝑟22 𝑇𝑟2𝐿
𝑇𝑟𝑀1 𝑇𝑟𝑀2 𝑇𝑟𝑀𝐿

]               (3.24) 

 

Where G represents generation at bus N and Tr represents available transmission line capacity for 

transmission line L at total M number of samples. The description of discrete time convolution 

which symbolized as ‘*’ is presented in equation (3.25). 

 

                              (𝐺 ∗ 𝑇𝑟) = ∑ 𝐺(𝑖 − 𝑚)𝑥𝑇𝑟(𝑚)𝑚                     (3.25) 

 

In the training phase, MCS is run for each load level until a total of 10000 samples are obtained 

with 5000 failure and 5000 success states. As in the previous case studies, the remaining success 

states are discarded to prevent overtraining. After MLKNN classifier is successfully trained, the 

proposed system is tested until COV reaches the limit of ≤ 1%.  After testing is completed, 200387 

samples are classified with 189659 successes and 10728 failure states. It should be noted that load 

level is considered as constant at its annual peak level. 

 

The overall classification performance of the proposed method for characterizing random samples 

is given in table 3.7. The classification performance at bus level is presented with comparison of 

results obtained from DC-OPF analyses in table 3.8. Finally, table 3.9 demonstrates the 

classification performance of proposed approach only for system failures sourced from 

transmission line failures. 

 

Results obtained in table 3.7 show that proposed classifier can successfully identify overall LOLP 

of RTS system with an acceptable error rate. The results also show that time of computing 

reliability indices is reduced significantly comparing to CMCS. As presented in Table 3.8 MLKNN 

classifier can characterize system buses very accurately when transmission line failures 

considered.  
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Table 3.7: Performance Comparison when Transmission Line Failures Considered 

 CMCS MLKNN 

Success States 190659 190583 

Failure States 9728 9804 

Loss of Load 0.0485 0.0489 

Sensitivity N/A 0.99 

Specificity N/A 0.98 

G-Mean N/A 0.99 

Analysis Time (Sec) 12390 637 

 

Table 3.8: Comparison of Bus Level Classification Performance for Case 4 

 CMCS MLKNN Sensitivity Specificity G-Mean 

Bus1 961 986 0.98 0.97 0.97 

Bus2 304 321 0.99 0.98 0.98 

Bus3 42 51 N/A N/A N/A 

Bus4 194 206 N/A N/A N/A 

Bus5 360 372 0.99 0.97 0.98 

Bus6 2003 2028 0.99 0.92 0.95 

Bus7 1282 1307 0.99 0.97 0.98 

Bus8 440 452 0.99 0.99 0.99 

Bus9 38 47 0.99 0.98 0.98 

Bus10 258 271 0.99 0.97 0.98 

Bus11 N/A N/A N/A N/A N/A 

Bus12 N/A N/A N/A N/A N/A 

Bus13 1623 1702 0.99 0.93 0.96 

Bus14 4929 5013 0.99 0.91 0.95 

Bus15 1 3 N/A N/A N/A 

Bus16 821 833 1 0.91 0.95 

Bus17 N/A N/A N/A N/A N/A 

Bus18 721 739 0.99 0.89 0.94 

Bus19 320 332 0.99 0.93 0.96 

Bus20 400 421 0.99 0.97 0.98 

Bus21 N/A N/A N/A N/A N/A 

Bus22 N/A N/A N/A N/A N/A 

Bus23 N/A N/A N/A N/A N/A 

Bus24 N/A N/A N/A N/A N/A 

 

Table 3.9: Classification Performance for System Failures only Sourced from Transmission Line Failures 

 CMCS MLKNN Sensitivity Specificity G-Mean 

Bus1 10 13 0.98 1 0.99 

Bus2 N/A N/A N/A N/A N/A 

Bus3 22 22 1 1 1 

Bus4 34 36 0.99 0.97 0.98 

Bus5 26 23 0.97 0.85 0.91 

Bus6 127 123 0.98 0.95 0.96 

Bus7 7 8 0.99 0.88 0.93 

Bus8 44 46 0.98 0.96 0.97 

Bus9 17 15 1 0.88 0.94 

Bus10 58 57 1 0.98 0.99 

Bus11 N/A N/A N/A N/A N/A 

Bus12 N/A N/A N/A N/A N/A 

Bus13 3 3 1 1 1 

Bus14 42 45 0.99 0.98 0.99 

Bus15 24 24 1 1 1 

Bus16 14 15 1 0.91 0.9391 

Bus17 N/A N/A N/A N/A N/A 

Bus18 N/A N/A N/A N/A N/A 

Bus19 18 18 1 1 1 

Bus20 16 16 1 1 1 

Bus21 N/A N/A N/A N/A N/A 

Bus22 N/A N/A N/A N/A N/A 

Bus23 N/A N/A N/A N/A N/A 

Bus24 N/A N/A N/A N/A N/A 
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It is shown at table 3.9 that overall system failures sourced from transmission line failures are 

characterized with a high accuracy. The same table also shows that proposed method has a good 

classification accuracy for bus level characterization.  

 

 

3.7 Summary 

 

This section has presented a method to evaluate reliability indices for composite power systems. 

The proposed method uses a MLKNN classifier to identify status of buses that significantly 

reduces the computational burden of OPF analysis. The importance of reducing the computational 

time can be understood by two examples.  

 

In Monte Carlo Simulation, the accuracy of convergence is very important. Convergence is 

measured by the COV, smaller COV means better convergence and more confidence in the 

estimates. Now the sample size and consequently computational time is inversely proportional to 

COV or directly proportional to accuracy of convergence. The proposed method reduces the 

required time for reliability analysis considerably for the same level of accuracy defined by the 

coefficient of variation. Alternatively, for the same time this allows convergence to a higher level 

of accuracy. Another example is that for optimal planning of resources, reliability studies may 

need to be done many times. So, the reduction of computational time helps in optimal planning by 

being able to conduct more studies in the same time.  

 

The effectiveness of the proposed method is demonstrated on the IEEE 30 Bus Test System and 

IEEE RTS respectively in four different case studies. In the first two case studies, the load level of 

system is considered constant at its peak value, in the third case study performance of proposed 

method is tested on varying hourly load data of RTS and finally, the proposed system is used on 

MRTS with considering transmission line failures. The accuracy of classification is evaluated by 

considering the parameter of sensitivity, specificity and g-mean. The training samples are chosen 

using CMCS. After classifier is trained, testing is completed with CMCS until COV reaches 1% 

limit. All classifications in this step are made by MLKNN instead of DC-OPF analysis.   

 

The results show that the proposed method shows good performance for classifying success and 

failure states at constant load level for both IEEE 30 bus system and RTS. In some buses with 

lower failure rate, however, classification accuracy performs slightly below the average in some 

cases. This could be amended by adding more samples to the training dataset. It should also be 

mentioned that, classification of success states showed better performance than classification of 

failure states.  

 

In the third case study, demand information of sampled states is included in the input of the 

classifier for characterizing system state includes varying load levels. In this stage, a decision tree 
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is applied to choose one of the five different classifiers which are trained with a focus of load level 

of sampled states. The simulation results presented demonstrate that the proposed method can 

execute the classification with a good accuracy. 

 

In the last case study, a new approach is introduced to handle classification of failures sourced 

from inadequate transmission line capacities. Results presented for this case study proves that 

proposed approach can characterize those states with a high accuracy. 

 

It is also shown in all case studies that, the time required for calculating composite system 

reliability indices with MLKNN classifier is much less than OPF based reliability evaluation 

methods. These case studies demonstrate that the application of the proposed method to composite 

power system reliability evaluation accurately determines the states status with a huge speed up 

compared with OPF based Monte Carlo Simulation methods. This method advances the state of 

the art of using machine learning in power system reliability evaluation from the previous methods 

by including computation of bus indices and the transmission line failures. 
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4. Multi Label Classification & Importance Sampling Combination for         

Composite System Reliability Evaluation 

 

4.1 Introduction 

 

In this section a new approach for evaluation of power system reliability indices with Monte Carlo 

Simulation is explained with a combination of Multilabel Radial Basis Function (MLRBF) 

classifier and Importance sampling (IS). Multilabel classification algorithms are different from 

single label approaches, in which each instance can be assigned into multiple classes. This 

characteristic gives MLRBF  capability to be used to classify composite power system states 

(success or failure) without requiring optimal power flow (OPF) analysis, with the exception of 

training and cross-entropy optimization phases. The proposed method is applied to the IEEE RTS 

for different load levels. The outcomes of case studies show that MLRBF algorithm together with 

importance sampling provides good classification accuracy in reliability evaluation while reducing 

computation time substantially. The details of proposed method are explained in the following 

sections. 

 

4.2 MLRBF Classification for Power System Reliability Evaluation 

 

RBF is one of the most popular approaches among neural network classification methods. RBF 

Neural Networks are generally comprised of two layers of neurons. In RBF, each hidden neuron 

(basis function) in the first layer is associated with a prototype vector while each output neuron 

corresponds to a possible class. Usually training an RBF neural network is handled in a two-stage 

procedure. In the first layer, the basis functions are learned by performing clustering analysis on 

training instances while weights are optimized by solving a linear problem in the second layer. 

Comprehensive descriptions of RBF neural networks are available in [32]. In this section, first, a 

general formulation of composite system reliability evaluation parameters for MLRBF 

classification is explained, later, application of the proposed method is described in steps. Finally, 

a flow chart of MLRBF is provided for clearer understanding in Figure 4.1. 

 

4.2.1 General Definitions for MLRBF in Power System Reliability Evaluation 

 

In this study, total generation capacities and total demand for each bus of composite system are 

taken as input parameters for MLRBF classifier. So, generation and demand information for each 

bus in the system is considered as an element of input matrix I for every sample (instance) m as 

described in (4.1). 

  

   𝐼𝑖𝑛𝑝𝑢𝑡 = [
𝐺11 − 𝐷11 𝐺12 − 𝐷12 𝐺1𝑁−𝐷1𝑁
𝐺21 − 𝐷21 𝐺22 − 𝐷22 𝐺2𝑁 − 𝐷2𝑁
𝐺𝑀1 − 𝐷𝑀1 𝐺𝑀2 − 𝐷𝑀2 𝐺𝑀𝑁 − 𝐷𝑀𝑁

]             (4.1) 
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where N is the number of the buses and M is the total number of samples in the input matrix. Status 

of state information for each bus of the system for M different samples is stored in a target matrix 

T for the purpose of training the MLRBF classifier which is described in (4.2).  

 

          𝑇 = [

𝑆11 𝑆12 𝑆1𝑄
𝑆21 𝑆22 𝑆2𝑄
𝑆𝑀1 𝑆𝑀2 𝑆𝑀𝑄

]                  (4.2) 

 

where Q is the number of the load buses in the system and S is the status information of bus q. 

While defining status of buses ‘-1’ is used for ‘success states’ and ‘1’ for ‘failure states’ for the 

corresponding bus. Pout, contains failure probability for each bus of composite system for each 

sample M as the output for this classifier which described in (4.3). 

 

      𝑃𝑜𝑢𝑡 = [

𝑃11 𝑃12 𝑃1𝑄
𝑃21 𝑃22 𝑃2𝑄
𝑃𝑀1 𝑃𝑀2 𝑃𝑀𝑄

]    (4.3) 

 

Now, training and testing procedure is explained in steps in the following subsection.  

 

4.2.2 Explanation of MLRBF Classification Procedure 

It is necessary to describe some related parameters before starting explanation; 

 

m: defines index of current sample of total M samples. 

im: defines the input vector for sample m.  

q: defines the bus index of total Q buses of system. 

Ym defines the state of bus q in sample m so;  

 

 𝑌𝑚(𝑞) = {
 1 (𝑓𝑎𝑖𝑙𝑢𝑟𝑒) 𝑤ℎ𝑒𝑟𝑒   𝑇𝑖𝑞 = 1      

0 (𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑤ℎ𝑒𝑟𝑒  𝑇𝑖𝑞 = −1
 

 

Let I=Rd be the input space and Q= {1, 2…, Q} be the finite set of Q possible classes. Given a 

multilabel training dataset DSet= {(im,Ym)| ≤ m ≥ M}, where im ∈ I is a single instance and Ym ⊆ 

Q is label set associated with im.  

In this study, K-Means Clustering is applied for each class q ∈ Q on the set of instances Uq with 

label q which described in (4.4).  

 

      Uq= {im |(imYm) ∈ DSet, q ∈ Ym}           (4.4) 

 

In the next step, kq number of clustered groups are formed for class q and the jth centroid (1≤j≤kq) 

is regarded as a prototype vector cq
j of basis function αl

j(.). It should be noted that, kq is taken as a 

fraction of the total number of instances in Uq which is described as α. 
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As each output neuron of the MLRBF neural network is related to a possible class, weights 

between hidden and output layer can be shown as (4.5). 

 

   W=[wjq](K+1) XQ                            (4.5) 

 

Here, 𝐾 = ∑ 𝑘𝑞
𝑄
𝑞=1  shows the total number of prototype vectors retained in the hidden layer. The 

weight matrix W can be learned by minimizing the following sum-of-squares error function as 

described below (4.6). 

 

    𝐸 =
1

2
∑ ∑ (𝑌𝑞(𝑖𝑚) − 𝑇𝑞

𝑚)
2𝑄

𝑞=1
𝑀
𝑚=1                      (4.6) 

 

Where 𝑇𝑞
𝑚 represents the output of im on the q-th class, which takes the values of +1 if q ∈ Yi and 

-1 otherwise.  So, the output of im for the q-th class can be calculated as presented below (4.7). 

 

          𝑦𝑞(𝑖𝑚) = ∑ 𝑤𝑗𝑞𝜙𝑗(𝑖𝑚)
𝑄
𝑗=0                   (4.7) 

 

In this study, the basis function aj isrepresented with the following widely-used Gaussian style 

activation (4.8). 

 

           𝜙𝑗(𝑖𝑚) = exp (−
𝑑𝑖𝑠𝑡(𝑖𝑚,𝑐𝑗)

2

2𝜎𝑗
2 )                   (4.8) 

 

Here dist (im,cj) calculates the distance between im and the j-th prototype vector cj with the usual 

Euclidean distance algorithm. The smoothing parameter 𝜎 is shown with the equation below (4.9). 

 

   𝜎 = (
∑ ∑ 𝑑𝑖𝑠𝑡(𝑐𝑝,𝑐𝑟)

𝐾
𝑟=𝑝+1

𝐾−1
𝑝=1

𝐾(𝐾−1)

2

)        (4.9) 

 

Differentiating the error function (4.6) with respect to 𝑤𝑗𝑞 and setting the derivative to zero will  

result in the equation given below (4.10). 

 
              (𝜙𝑇𝜙)𝑊 = 𝜙𝑇𝑇                               (4.10) 

 

In equation 4.10, 𝜙 = [𝜙𝑚𝑗]m x [K+1] with elements, 𝜙𝑚𝑗 = 𝜙𝑗(𝑖𝑚), W= [𝑤𝑗𝑞]Q x [K+1] and T=[tmq]m 

x Q with elements tmq = 𝑡𝑞
𝑚. 
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Figure 4.1: Flowchart Describing Training Phase of MLRBF 

 

4.3 Importance Sampling 

 

Importance sampling is one of the most successful variance reduction techniques used in reliability 

evaluation of composite power systems [34]. Importance sampling changes probability density 

function of occurrences by emphasizing certain values of a random variable which have greater 

impact, when compared with others, on the estimation process of a target quantity. 

 

Consequently, values which have more importance are sampled more often and the variance of the 

estimator is reduced faster. IS aims to select a probability density function different from the 

original to minimize variance of samples [35]. To be able to obtain the maximum performance 

from importance sampling, selected probability density function should be equal or close to 

optimum 𝑓𝑜𝑝𝑡𝑖𝑚𝑢𝑚(. ) which is initially unknown.  

 

At this stage the CE method can be utilized for estimating the optimal, or at least close to optimal, 

reference parameters by minimizing the distance between the original sampling density and the 

optimal sampling density 𝑓𝑜𝑝𝑡𝑖𝑚𝑢𝑚(. ) iteratively. 

 

 Detailed technical information can be obtained from [36]. In following subsections general 

definitions regarding IS are presented and later implementation of CE method for power system 

reliability evaluation is described. 

 

4.3.1 General Definition of Importance Sampling 

 

Consider a power system with GN generating stations. Also, assume that the system has J identical 

and independent units, each one with a capacity Gnj for each of N stations. Let unj be a vector which 

contains original probability of unavailability of all generation units in the system. Under this 
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assumption, the analytical problem of evaluating the LOLP index can be described by the 

following equation: 

 

𝐿𝑂𝐿𝑃 =
1

𝑀
∑ 𝐻(𝑋𝑖)
𝑀
𝑖=1     (4.11) 

 

Where 𝑋𝑖  represents ith sample of M total samples and H represents the test function which takes 

value of 1 if sample 𝑋𝑖 has loss of load and 0 otherwise. Under these assumptions IS can be applied 

to the system by using the new unavailability vector vnj to calculate HIS. 

 

𝐿𝑂𝐿𝑃𝐼𝑆 =
1

𝑀𝐼𝑠
∑ 𝐻𝐼𝑆(𝑋𝑖)𝑊(𝑋𝑖; 𝑚𝐼𝑆; 𝑢; 𝑣)
𝑀𝐼𝑠
𝑖=1    (4.12) 

 

The expression 𝑊(𝑋𝑖; 𝑚𝐼𝑆; 𝑢; 𝑣) is called likelihood ratio. This value represents a necessary 

correction in the sampling process because of the changed unavailability vector v. In this study,  

𝑊(𝑋𝑖; 𝑚𝐼𝑆; 𝑢; 𝑣) is calculated using (4.13). 

 

          𝑊(𝑋𝑖; 𝑚𝐼𝑆; 𝑢; 𝑣) =
∏ (1−𝑢𝑗)

𝑥𝑗
𝐺

(𝑢𝑗)
1−𝑥𝑗

𝐺𝑁𝐺
𝑗=1

∏ (1−𝑣𝑗)
𝑥𝑗
𝐺
(𝑣𝑗)

1−𝑥𝑗
𝐺𝑁𝐺

𝑗=1

     (4.13) 

 

where 𝑥𝑗
𝐺  represents the availability of generation unit j. The main problem in this process is 

defining optimal v values to minimize the computation time. In this study CE algorithm is 

utilized for this purpose which is explained in following subsection. 

 

4.3.2 CE Algorithm 

 

In this subsection, CE algorithm to determine optimal unavailability (v) values for each generation 

unit is described. Detailed information about CE can be found in [37].  

 

The algorithm used in this study converges to optimal v parameters using an iterative procedure. 

During each iteration, v parameters are updated by using predefined number of system state 

samples. CE algorithm contains 6 main steps. While optimal v parameters are estimated in steps 

(1-4), loss of load indices are calculated with IS-MCS in steps (5-6).   

 

1- Define the initialization parameters as sample size used for each iteration N (e.g. 50,000), 

multilevel parameter p (e.g. between 0.01 and 0.1). Define v0=u, t=1 and ϕ= LLMAX where 

v represents updated unavailability vector, t iteration number, ϕ stopping criteria for 

performance function and LLMAX maximum peak load of the system. 

 

2- Generate a set of random samples of states X1, X2…XN from the densities f (., vt-1). 

Evaluate the performance of selected states S= [S1, S2 …, S(XN)] according to the selected 

performance function. Sort the performances of the states in an increasing order so that S 
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[1] ≤ S [2] ≤ … ≤S[XN]   and then compute the performance of state (p) quantile of the 

performances, S[(p)XN]. 

 

3- Set the ϕt = S[(1-p) XN] provided that ϕt is less than ϕ otherwise set ϕt = ϕ. Evaluate the 

indicator function H(Xi) such that H(Xi) =1 if S(Xi) > ϕt otherwise H(Xi)=0. 

 

4- Use the sample from step 2 to update the new unavailability vector 

 

                𝑣𝑡𝑗 = 1 −
∑ 𝐻𝑡(𝑋𝑖)𝑊𝑖,𝑡−1𝑋𝑖𝑗
𝑋𝑁
𝑖=1

∑ 𝐻𝑡(𝑋𝑖)𝑊𝑖,𝑡−1
𝑋𝑁
𝑖=1

                  (4.14) 

 

Where 

 

      𝑊𝑖,𝑡−1 = 𝑊(𝑋𝑖; 𝑢; 𝑣𝑡−1)                  (4.15) 

 

5- If ϕt = ϕ criteria has been satisfied, optimal parameters has been found otherwise increase 

iteration number as t=t+1 and go back to the step 2. 

 

6- Calculate loss of load indices with the equation (12) by using the optimal parameters 

defined in step 5. 

 

A flowchart is provided for a clear understating in explaining cross-entropy method at figure 4.2. 

 

 
Figure 4.2: Flow Chart of Importance Sampling 
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4.4 Application Procedure of the Proposed Method 

 

In this section application procedure of the proposed method is explained. This novel approach 

calculates reliability indices of composite power systems by combining multi label classifier and 

importance sampling technique within the framework of Monte Carlo Simulation (MCS). 

Generally, the most time-consuming part of composite system reliability evaluation is the optimal 

power flow analysis (OPF). This approach proposes use of a faster Multilabel classifier instead of 

OPF analysis after proper training. The proposed method can be applied while using either non-

sequential or sequential MCS, however, non-sequential approach is chosen to illustrate the 

performance in this study because of simpler architecture. A benchmark created with Crude Monte 

Carlo Simulation (CMCS) analysis is also provided for comparison purposes. 

 

The first step of applying combination of IS and ML classification is determining optimum 

unavailability vector via CE method as described in section B. After optimum unavailability vector 

is created then multi label classifier is trained and tested to use state space classification for 

evaluating the reliability indices of composite power system. Detailed implementation of multi 

label classifier is described below in two subsections defined as training and testing process. 

 

4.4.1 Training Process 

 

Training data samples for this study are created through MCS. The generation and demand 

information for each bus of selected sample states is used to create input vector while status of 

each bus for those states are recorded as target vector as shown in (1-2). To increase the training 

performance, input vector variables are normalized between -1 and 1. In this step, failure and non-

failure status observed for each bus are labeled as 1 and -1 respectively. It should also be noted 

that an equal number of success and failure states is chosen to create training dataset to prevent 

overtraining.  

 

 
Figure 4.3: Overall Diagram of Proposed Method 
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4.4.2 Testing Process 

 

In the testing process, MCS with importance sampling is used for generating random samples and 

these states are classified by multi label classifier until simulation reaches a previously determined 

stopping criterion. Stopping criteria for this study is defined as coefficient of variation (COV) to 

represent the estimated uncertainty. 

 

Reliability indices are calculated and a comparison is made with the results obtained from Crude 

MCS and IS benchmarks. Reliability indices are evaluated based on Loss of Load Probability 

(LOLP). Complete flowchart of the proposed methodology is presented in figure 4.3. 

 

4.5 Case Studies and Results 

 

IEEE Reliability Test System (RTS) is chosen for demonstration of the proposed method. Two 

case studies are implemented to demonstrate the performance of the proposed method. In the first 

case study, load level of RTS is considered constant at its annual peak. In the second case study 

hourly load data of RTS is divided to 5 different load levels by considering their occurrence 

probabilities similar to [38]. After the application procedure described in previous section is 

completed, performance comparison of the proposed multi label classifier is made with the results 

obtained from CMCS benchmark and standard importance sampling process after calculation of 

reliability indices for all system buses. Since system losses caused from transmission line failures 

are much lower than the ones occurring from generation unit failures, states of transmission lines 

are considered as available at all the time. The capacities of transmission lines are, however, 

considered. Initial parameters of cross entropy optimization are determined as sample size 

N=50000, multilevel parameter p=0.05. 

 

All simulations of this study are performed using MATLAB (2012) planform on a PC with Intel 

Core i7-4510 CPU (~2.6GHz), 16 GB Memory. It should be noted that the results presented below 

are the average of the 10 simulations. 

 

4.5.1 Case Study 1 

 

In this case study, load level of RTS is considered to be constant and at its peak value of 2,850W. 

To train MLRBF classifier 6000 samples are selected of which 3000 are success states and the rest 

are failure states. Clustering rate α is chosen as 0.25 for this case study which means number of 

clusters created is equal to one fourth of times of total failures for each bus as described in (6). 

After training of MLRBF classifier is completed, MCS is simulated until COV reaches 1% for all 

simulation types as it specified for stopping criteria of testing phase. In this process a total of 

109,743 samples were obtained with 100459 characterized as successes and 9284 as failures. The 

comparison of obtained results is made in Table 4.1 and 4.24. Simulation results for overall system 

classification performance and time comparison of MLRBF Classifier on RTS are presented in 
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Table 4.1. The simulation results for bus level classification performance are stated in Table 4.2. 

In this study, performance comparison in this study is made based on Loss of Load Probability 

(LOLP). Table 4.1 shows that MLRBF classification method can compute overall LOLP of RTS 

with a small fraction of error and computational time required to evaluate the reliability indices 

can be significantly reduced by proposed MLRBF – IS combination when compared to standard 

MCS methods. 

 
Table 4.1: Comparison on Overall Performance Analysis and CPU Time Spend 

Algorithm Success 

States 

Failure 

States 

LOLP 

x 10-2 

CPU Time 

(Sec x 103) 

CMCS 100459 9284 8.46 5.49 

CEIS 18786 1748 8.51 1.03 

ML-CEIS 21305 1988 8.53 0.069 

 

Table 4.2 also shows that proposed method shows reasonably accurate classification on 

characterizing the failed bus states of RTS. 
 

Table 4.2: Comparison of Classification Performance at Bus Level Based on LOLP 

Location CMCS 

(LOLP) 

x 10-2 

CEIS 

(LOLP) 

x 10-2 

ML-CEIS 

(LOLP) 

x 10-2 

Bus 1 2.67 2.71 2.82 

Bus 2 2.69 2.74 2.84 

Bus 3 0.00 0.00 0.00 

Bus 4 0.00 0.00 0.00 

Bus 5 0.87 0.84 0.89 

Bus 6 0.03 0.05 0.06 

Bus 7 4.61 4.72 4.75 

Bus 8 0.59 0.6 0.68 

Bus 9 0.00 0.00 0.00 

Bus 10 0.02 0.01 0.04 

Bus 11 N/A N/A N/A 

Bus 12 N/A N/A N/A 

Bus 13 0.43 0.47 0.52 

Bus 14 0.20 0. 24 0.29 

Bus 15 0.00 0.00 0.00 

Bus 16 0.05 0.1 0.15 

Bus 17 N/A N/A N/A 

Bus 18 0.94 1.1 0.81 

Bus 19 0.05 0.12 0.02 

Bus 20 3.53 3,59 3.76 

Bus 21 N/A N/A N/A 

Bus 22 N/A N/A N/A 

Bus 23 N/A N/A N/A 

Bus 24 N/A N/A N/A 

 

 

4.5.2 Case Study 2 

 

In this case study load level of the system is chosen randomly from the original load data of RTS. 

There are 8736 different load levels specified in annual hourly load values of RTS. As in the first 

case study, samples used for training MLRBF classifier are obtained through MCS. Since size of 

classifier is one of the most determining factor in classification time, multiple classifiers are trained 

for different load levels to handle this problem efficiently instead of training one large network. 
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For this purpose, five different thresholds are defined based on available power. For each level a 

unique classifier is trained. In testing stage, a decision tree is used to determine which classifier to 

be used for classification for every random sample. The overall diagram of the algorithm used in 

this case study is given in figure 4.4.  

 

 
Figure 4.4: Overall Diagram of Proposed Classifier for Variable Load Level 

 

For this case study each level is trained by 10000 samples which are obtained through MCS 

sampled with optimal unavailability vector obtained through the CE process. Similar to the first 

case study, clustering rate α is selected as 0.25 in this process. 

 

After training is completed, MCS is run until COV reaches 1% as in first case study. In this process 

a total of 7,442,879 samples were obtained by CMCS with 7,433,754 characterized as successes 

and 9,125 as failures. The comparison on classification performance and simulation time for 

obtained results is presented in Table 4.3 and 4.4. 

 

Comparison on overall classification performance and simulation times for the proposed method 

is given in Table 4.3. 

 
Table 4.3: Comparison on Overall Performance Analysis and CPU Time Spend for varying Load Levels 

Algorithm Success 

States 

Failure 

States 

LOLP 

x 10-3 

CPU Time 

(Sec x 103) 

CMCS 7433754 9125 1.20 376.690 

CEIS 473232 1740 1.23 23.710 

ML-CEIS 496277 1817 1.23 1.110 

 

It is clear from Table 4.3 that the proposed method can classify failure states of RTS in multi load 

level with a close performance. It is also observed in Table 4.3 that the proposed method provides 
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a huge boost in terms of calculation time. Table 4.4 shows performance of the proposed method 

for bus level classification.  It can be observed from the results that the proposed method can 

compute the LOLP accurately. 

 
Table 4.4: Comparison of Classification Performance at Bus Level Based on LOLP for varying Load Levels 

Location CMCS 

(LOLP) 

x 10-5 

CEIS 

(LOLP) 

x 10-5 

ML-CEIS 

(LOLP) 

x 10-5 

Bus 1 28.06 28.7 33.4 

Bus 2 15.35 16.43 17.51 

Bus 3 0 0.0 0 

Bus 4 0 0 0 

Bus 5 8.04 8.42 9.14 

Bus 6 0.49 0.43 0.21 

Bus 7 54.95 54.02 57.42 

Bus 8 2.31 1.90 3.28 

Bus 9 0 0 0 

Bus 10 0 0 0 

Bus 11 N/A N/A N/A 

Bus 12 N/A N/A N/A 

Bus 13 3.58 3.72 5.97 

Bus 14 3.28 3.10 4.51 

Bus 15 0 0 0 

Bus 16 0.58 0.99 1.2 

Bus 17 N/A N/A N/A 

Bus 18 10.81 12.26 19.58 

Bus 19 2.18 2.21 3.84 

Bus 20 60.47 61.28 64.91 

Bus 21 N/A N/A N/A 

Bus 22 N/A N/A N/A 

Bus 23 N/A N/A N/A 

Bus 24 N/A N/A N/A 

 

4.6 Summary 

 

In this study, a new method is presented to evaluate reliability indices for composite power 

systems. The proposed method uses an MLRBF classifier to identify status of buses in a way that 

does not require OPF analysis during Monte Carlo Simulation. The effectiveness of the proposed 

method is demonstrated on the IEEE RTS.   

 

As can be observed from the results, MLRBF classifier can classify loss of load states with good 

accuracy most of the times. It should also be noted that rate of classification error increases in 

states with low frequency of failures. The main reason of this performance loss for those buses is 

lack of adequate samples in the training dataset. Performance of the proposed method can be 

increased by adding more samples to the training dataset as a natural outcome. 

 

The main advantage of the proposed method is the ability of reducing the time for reliability 

analysis considerably which is shown in two different case studies. 
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5. Deep Learning for Composite Power System Reliability Evaluation 

 

5.1 Introduction 

 

In reliability analysis there is focus on searching the system state space for states that represent 

events of interest, like failure of the system to meet the required demand for a set of specific nodes. 

This indicates a need for methods that efficiently determine states to be examined and then 

evaluated. Artificial Intelligence (AI) based methods have been studied for this purpose either in 

themselves or in conjunction with widely used methods like Monte Carlo Simulation (MCS). In 

recent years, deep learning techniques have received considerable attention and showed significant 

promise in many fields when compared to other AI techniques. In this section a novel methodology 

based on combination of deep Convolutional Neural Networks (CNN) and MCS is presented for 

evaluation of composite power system reliability. This approach is applied to the IEEE Reliability 

Test System (RTS) by using both AC and DC power flow models for different load levels. The 

case studies show that the proposed method has a superior performance in both classification 

accuracy and reducing computational burden of reliability evaluation compared to previous AI 

based studies. 

 

5.2 Convolutional Neural Networks 

 

Recently, deep learning algorithms have drawn significant attraction in the area of artificial 

intelligence. This terminology is basically an extension of traditional artificial neural networks 

(ANN). These algorithms have dramatically improved the state of the art in areas like speech 

recognition, visual object recognition, object detection and many other domains such as drug 

discovery and genomics. Deep learning allows computational models that are composed of 

multiple processing layers to learn representations of data with multiple levels of abstraction. Their 

immense capability of learning optimal features from raw input data allows avoiding feature 

engineering. Through these algorithms, pattern classification performance of machines increased 

even more than humans in some applications [39, 40]. This section explores a new method for 

composite system reliability evaluation with combination of CNNs and MCS by considering both 

DC and AC approaches. 

 

CNN is a deep feed forward artificial neural network algorithm which is one of the most used 

architectures among deep learning methods. It can simply be described as neural networks that use 

convolution in place of general matrix multiplication in at least one of their layers. CNNs are 

inspired by research done on the visual cortex of mammals and how they perceive the world using 

a layered architecture of neurons in the brain, and the overall architecture is reminiscent of the 

LGN–V1–V2–V4–IT hierarchy in the visual cortex ventral pathway [41,42]. The CNNs can 

encode certain properties into the architecture which results in less feature engineering 

requirements compared to other algorithms. Also, CNNs are easier to train and have much fewer 
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parameters than fully connected networks with the same number of hidden units for this reason. 

In CNNs multi-level neural networks are trained with less neuron requirements. The ability to 

characterize system features in its own system makes CNNs more suitable for many pattern 

recognition problems [43]. 

A typical CNN architecture consists of three stages including convolutional layers, pooling layers 

and fully connected layers. Input data is sampled into smaller sized feature maps by filters in 

convolution layer. This process is done by computing the dot product between the entries of the 

filter and the input. Then pooling layers are applied to reduce the size of the data obtained in 

convolutional layer. This is followed by connected layer. In this layer activation function is applied 

to the features gathered in the previous layers, as seen in regular neural networks. At the end, 

predictions for trained classes can be obtained by applying a SoftMax function. Remaining of this 

section describes basic concepts of CNNs in subsections. Rigorous theoretical explanation on 

CNNs can be found in [44,45].  

 

5.2.1 Convolutional Layer 

 

Typically, in convolutional layers input data is applied to a convolutional operation to transfer the 

results to the next layer. In convolutional network terminology, the first argument to the 

convolution is often referred to as the input, and the second argument as the kernel or feature map. 

In usual convolution process, the kernels have flipped relative to the input. This process is not 

necessary in neural network implementations. Instead, many neural network algorithms implement 

a related function called as cross-correlation, which has a similar process with convolution but 

without flipping the kernels. Cross-Correlation operation has been described in eq. (5.1) for a 1-

dimensional input. 

 

(𝐼𝑛𝑝𝑢𝑡 ∗ 𝐾𝑒𝑟𝑛𝑒𝑙)(𝑖) =∑𝐼𝑛𝑝𝑢𝑡(𝑖 + 𝑚)𝐾𝑒𝑟𝑛𝑒𝑙(𝑚)

𝑚

           (5.1) 

5.2.2 Rectified Linear Unit (ReLU) 

In the standard way of modeling, neuron’s output in a neural network can be described with either 

tangent hyperbolic function (tanh) or sigmoid function (sigm). In terms of training time with 

gradient descend these saturating nonlinearity functions consume much more time when compared 

to non-saturating nonlinearity function, ReLU. This function can be replaced with previous 

functions used for increasing the nonlinear properties of the decision function without affecting 

the receptive fields of the convolution layer significantly. Usage of ReLU is also helpful to 

alleviate the vanishing gradient problem, which is the issue where the lower layers of the network 

train very slowly because the gradient decreases exponentially through the layers [46]. ReLU 

function is described in eq (5.2). 
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5.2.3 Pooling Layer  

Pooling is an important concept used in CNNs. Although classification can be achieved without 

implementing any pooling, this process is commonly used in CNNs. The pooling layer is useful in 

reducing the number of parameters and amount of computation in the network. Briefly a pooling 

layer is summarizing the outputs of neighboring groups of neurons in the same kernel map. This 

process is usually done by using one of the several non-linear functions. Max pooling function 

which is the most common function used in pooling, is chosen in this study. 

 

5.2.4 Dropout Technique 

Deep neural networks are strong classification tools though those architectures, especially the ones 

consisting of large number of parameters, suffer from a serious problem called overfitting. 

Overfitting describes an incorrect optimization problem for an artificial intelligence model, where 

the weights are too closely trained for a set of data, and this may result in false positive 

characterization. Combining the predictions of many different neural nets is a very successful way 

to handle this problem but this solution could become very expensive in terms of computational 

effort. The technique called as “dropout” is proposed to deal with this problem by combining 

different models in a very efficient way which only costs about a factor of two during training. 

The main idea in this technique is randomly dropping neurons from the neural network during 

training stage with a probability of 0.5. Dropped neurons do not participate in the forward and 

back-propagation stages. So, every time an input is processed, the neural network basically 

samples a different architecture, but all architectures share weights. In the test stage, all neurons 

are used but their outputs multiplied by 0.5, which is a reasonable approximation of geometric 

mean of the predictive distributions produced by dropout technique.  In this way, expected value 

of an output neuron can be in same range as in the training stages [47]. 

 

5.2.5 Fully Connected Layer 

 

Neurons in a fully connected layer have connections to all activations in the previous layer, as seen 

in regular neural networks. Their activations can hence be computed with a matrix multiplication 

followed by a bias offset. 

 

5.3 Implementation of CNN in Composite System Reliability Evaluation 

 

In this section, a new approach based on CNNs and MCS is presented for evaluating composite 

power system reliability indices. The main motivation in this study is designing a new 

methodology for reducing computation time of traditional MCS for evaluation of composite power 

system reliability indices using either AC or DC power flow model and including transmission 

line failures and capacity constraints. 
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Typically, in MCS, reliability indices of a power system are computed in three main stages. First, 

states of power system components are sampled based on their probability distributions and then 

the resulting system states are characterized as system success or failure using a power flow model. 

Finally, calculation of desired reliability indices is done based on previously characterized sample 

states.   Characterization of power system states is usually done by a power flow analysis. This 

process can be considered as a linear or nonlinear programming problem depending on power flow 

model chosen for an application. Performing a power flow analysis for every sample obtained by 

MCS can create a significant computational burden especially in large composite power systems, 

especially with high reliability.   Systems with high reliability will need a significant sample size 

for converging with acceptable accuracy. 

 

The proposed method aims to reduce amount of power flow analysis by using CNN as a pre-

classifier. To achieve this a CNN is designed to characterize overall system status as success or 

failure by using the information gathered from sampled states of system components as an input. 

Then afterwards, power flow analysis is applied only for samples classified as failure states.  

 

In this study, CNN architecture is implemented to classify system status obtained from both DC 

and AC power flow analysis. To increase efficiency of classification and reduce to time spent for 

obtaining training samples a heuristic algorithm is used for generating required training samples. 

This method can create much more detailed datasets in a considerably shorter time.  

 

Non-sequential MCS approach is used to analyze performance of the proposed method because of 

simplicity of model.  However, the characterization process is the same in the sequential MC and 

therefore there is no additional difficulty in using it for sequential MC. The proposed method is 

explained in detail in three subsections.   

 

5.3.1 Creating Proper Training Datasets 

 

Creating a proper training dataset is one of the most important aspects that affects the classification 

performance of an AI based classifier. 

 

The first step in creating a training dataset is to decide its size. Optimal size of a training dataset 

for an ANN commonly depends on parameters like input data, number of classes or number of 

neurons in network and varies a lot based on the application. In power system reliability evaluation, 

AI based classifiers are generally used to increase the time efficiency of MCS. For this reason, the 

size of training dataset is determined proportional to the sample size used in MCS. 

 

One of the most common challenges in creating training dataset is called the class imbalance 

problem. This problem usually occurs when one or more target classes in a dataset are 

underrepresented (minor class) in comparison with the other classes (major class). Previous studies 

on this problem show that the negative effect of this problem in classification accuracy can be 
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significantly reduced by applying down-sampling to the major class as well as applying an over-

sampling to the minor class [48]. 

 

In a typical power system, occurrences of failure events (minor class) are much lower when 

compared to success events (major class). This feature of power systems creates a class imbalance 

problem and prevents effective training of AI based classifiers. The majority of previous studies 

using AI based classifiers for characterization of power system states were using unproportioned 

training datasets by simply reducing the amount of the success states. 

 

In this study, a three-step heuristic algorithm is used to deal with class imbalance problem in power 

system state classification. This algorithm creates a training dataset which includes failure and 

success states in an equal proportion by applying down-sampling to major class (success) and over-

sampling to the minor class (failure). It can be applied to any power system and AI based classifier 

without adding considerable computational cost. The proposed algorithm consists of three main 

steps which are described in the following.  

  

-First, size of the training dataset is determined. The most common parameter to determine 

number of samples used in MCS is coefficient of variation (COV). Typically, an acceptable value 

of the estimate of uncertainty is determined as stopping criteria before the simulation and then 

MCS is run until the stopping criteria is satisfied. Calculation of COV, presented as β is formulated 

below. 

 

               𝛽 =  
√𝑉(𝐸(𝐹))

(𝐸(𝐹))
         (5.2) 

 

In this equation 𝑉(𝐸(𝐹)) represents the variance of estimated value E(F) and its square root is 

the standard deviation.   

 

A looser stopping criterion is used in terms of COV for this purpose (e.g. 10%). Normally, power 

flow analysis is required in system characterization of each sample obtained. In this step, the 

system is failed if total active power generation is less than total active load to avoid additional 

computational burden of power flow analysis. When COV is reached to the previously described 

stopping criteria the total number of obtained samples is taken as the size of training dataset. 

 

 -In the next step, power flow analysis is performed for a small portion of determined dataset 

size (e.g. 5%). The results obtained in this step are used for calculating the proportion of classes. 

If the number of success states obtained in this process is higher than the number of failure states 

unavailability rate of all components is increased by multiplying a constant step size ∆w. The 

process is repeated until an equal amount of success and failure states obtained by considering a 

tolerance.  

 

-Finally, a training dataset is created in size calculated in the first step by using 

unavailability values obtained in previous step. 
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5.3.2 Designed CNN Architecture 

 

In this study a CNN architecture is presented for state characterization within the MCS process for 

composite power system reliability calculations. The proposed architecture is designed to consider 

all aspects of a composite power system to characterize a sampled system state as success or failure 

based on the presence of active load curtailment. Due to the different characteristics of the 

generation and transmission line a multi input CNN is preferred to extract system features more 

efficiently. Considering the correlation between active and reactive power, generation information 

is included in the network in the same branch but in different channels. Then transmission line 

capacities are added as a second input branch. 

 

Most of the current methods use DC power flow, which is often called OPF, to evaluate the 

reliability of composite power systems. OPF consists of a series of approximations in the usual 

power flow equations which reduces the problem down to a set of linear equations that would be 

normally represented by nonlinear equations. OPF can find the optimum solution for a power 

system state significantly faster when compared to AC flow model and this feature makes it very 

suitable for power system reliability analysis. However, OPF ignores the effects of the voltage and 

reactive power constraints on the reliability indices. For this reason, reliability analysis performed 

by using OPF can be considered optimistic and can be different when compared to AC flow 

analysis.  In other words, some states recognized as success states by using the OPF, may be 

characterized as failure by AC model since the failures of these states is usually because of voltage 

and reactive power limit violations. For this reason, AC flow model is also considered in state 

characterization of samples in this study. Extensive theoretical explanations and comparison for 

both models can be found in [49-50]. Details of designed CNN architecture are described in the 

following subsections.  

 

5.3.2.1 Proposed CNN Model 

 

In this subsection the designed CNN architecture is described. It is essential to form the inputs of 

neural network by considering the required information to classify patterns. Available generation 

capacity and available transmission line capacities are used to create input vectors. Since DC flow 

model considers only active power, one channel input is created with generation and demand 

information of a sampled state. For the AC flow model, reactive power information is included to 

input of classifier as an additional channel. Furthermore, transmission line information is added to 

the network in a second branch to be able to classify the system failures caused by transmission 

lines.  

The first input branch of the network is created by using the information of available generation 

and demand at each bus of composite power system. Input data representing the active generation 

is described by equation (5.4). 

 

                                    𝐼𝑛𝑝𝑢𝑡𝑖,1 = 𝐺𝑖 − 𝐷𝑖                                                            (5.3) 

 

Where, G represents maximum available generation and D for demand at bus 𝑖. 
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The second channel used for classifying the states of AC flow model contains the information of 

maximum and minimum reactive power generation that can be produced from each bus of power 

system.  The reactive power demands for that bus input data of second channel is described in 

equation (5.4). 

 

                               𝐼𝑛𝑝𝑢𝑡𝑖,2 = 𝑄𝑚𝑎𝑥𝑖−𝑄𝑚𝑖𝑛𝑖 − 𝐷𝑞𝑖                                        (5.4) 

 

where Qmax and Qmin represent maximum and minimum limits of reactive generation, and D is 

demand at bus i. Finally, the transmission capacities are included in the network as raw data in the 

second branch as a vector. After the information is prepared a min-max normalization is applied 

to all input vectors. 

 

 
Figure 5.1: Overall Diagram of Proposed CNN Structure   

 

The designed architecture consists of two main input branches for generation and transmission line 

information.  

 

Two convolutional layers following a one max-pooling layer are applied for the first branch. In 

the first convolution layer, input is extracted to low level feature maps by using 64 kernels with 

size of 9x1. Then second layers of convolution are applied to gather more detailed features by 

using 64 kernels 7x1. Following convolutional layers, a max-pooling layer is applied to the 

extracted features.  

 

As for the second branch, transmission line features are extracted by three convolutional layers 

following a one max-pooling layer. In the convolution layers input is extracted to low level feature 

maps by using 64 kernels with size of 12x1, 10x1 and 9x1 respectively. Following convolutional 

layers, a max-pooling layer is applied for reducing the sample size.  
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The obtained features are applied to two fully connected layers. Each of these layers includes 

120 neurons. One layer of dropout is used with proportion of 0.5 between fully connected layers. 

At the end a SoftMax function is used to accomplish binary classification. A diagram of designed 

CNN architectures is presented in Fig 5.1 for a clearer understanding. Moreover, application 

procedure of the proposed deep CNN and MCS combination demonstrated in a flowchart in Fig 

5.2. 

 

 
Figure 5.2: General Structure of Proposed Method 

 

 

 

5.4 Case Studies  

 

Performance of the proposed method for both AC and DC flow models is illustrated using three 

different case studies for constant peak-load level, varying load level and considering failures 

caused by insufficient transmission line capacities respectively. Case studies are described in detail 

in the following. 

 

5.4.1 Case 1 

 

In this case, the proposed method is tested on single area IEEE RTS for single load level of 2850 

MW (annual peak). There are 10 generation buses in RTS which are considered as input vector. 

To train the classifier, initial COV for training dataset creator algorithm is chosen as 10%. After 

obtaining adequate number of samples, training of the proposed CNN is completed within 100 

iterations. After the classifier is successfully trained, the proposed model is run for computing 

indices until COV reaches the stopping criterion threshold ≤ 1% for both AC and DC flow models.   

 

After the calculation phase is completed, 110826 samples are classified by DC-OPF with 101470 

successes and 9356 failure states. Similarly, 53194 samples are classified by AC-OPF with 44643 

successes and 8551 failure states. 
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Table 5.1 presents the comparative results between CMCS (Crude Monte Carlo Simulation) and 

the proposed approach for DC flow model while Table 5.2 provides results of similar analysis for 

AC flow model. Performance indices are calculated as described in eq (8-10).  

 
Table 5.1: Performance Comparison of CNN-MCS & CMCS for Constant Load  

(DC Flow Model) 

 CMCS CNN 

Success States 101470 101460 

Failure States 9356 9342 

LOLP 0.084 0.084 

Sensitivity N/A 0.99 

Specificity N/A 0.99 

Analysis Time 

(Hr) 

1.47 0.05 

 

It is clear from Table 5.1 that the proposed method shows an outstanding performance for both 

classification accuracy and reliability evaluation with significantly reduced computational effort 

for DC flow model. 

 

Table 5.2 shows the classification performance of the proposed method for AC power flow. The 

proposed CNN classifier can characterize the system states with a small error rate in terms of both 

classification accuracy and reliability evaluation. It should be noted that comparative 

computational time for AC power flow model is significantly reduced compared to DC flow model 

since this model requires nonlinear programming to solve AC flow equations. It should be noted 

that the time for AC analysis is approximately 13 hours in CMCS where as in the CNN approach 

it is less than two minutes. 

 
Table 5.2: Performance Comparison of CNN-MCS & CMCS for Constant Load 

(AC Flow Model) 

 CMCS CNN 

Success States 44643 44648 

Failure States 8551 8523 

LOLP 0.160 0.160 

Sensitivity N/A 0.99 

Specificity N/A 0.99 

Analysis Time 

(Hr) 

12.92 

 

0.031 

 

 

5.4.2 Case 2 

 

In this case, the system is tested on single area IEEE RTS for the original annual hourly load data. 

All 24 buses of RTS are considered as input vector as described in eq (6-7). To train the classifier, 

initial COV for training dataset creator algorithm is chosen as 10%. After obtaining adequate 

number of samples, training of the proposed CNN is completed in 200 iterations. After the 

classifier is successfully trained, the proposed system is run for calculation phase until COV 

reaches the limit of ≤ 1% as stopping criteria for both AC and DC flow models.  After calculation 
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phase is completed, 7466186 samples are classified by DC-OPF with 7457892 successes and 8294 

failure states. Similarly, 5701891 samples are classified by AC-OPF with 5692084 successes and 

9807 failure states. 

 

Table 5.3 presents the comparative results between CMCS and the proposed approach for DC flow 

model while Table 5.4 provides results of similar analysis for AC flow model. Performance indices 

are calculated as described in equations (8-10).  

 

It is clear from Table 5.3 that the proposed method shows very good accuracy in classification of 

system states and predict reliability indices with a small error rate. Table 5.3 also shows that 

proposed method can significantly reduce the computational effort for DC flow model. 

 
Table 5.3: Performance Comparison of CNN-MCS & CMCS in Varying Load  

(DC Flow Model) 

 CMCS CNN 

Success States 7457892 7457973 

Failure States 8294 8212 

LOLP 0.0011 0.0011 

Sensitivity N/A 0.99 

Specificity N/A 0.99 

Analysis Time 

(Hr) 

98.5 2.92 

 

Table 5.4 shows that the proposed method has an outstanding performance for both classification 

accuracy and reliability evaluation with significantly reduced computational effort in AC flow 

model. 

 

 
Table 5.4: Performance Comparison of CNN-MCS & CMCS in Varying Load  

(AC Flow Model) 

 CMCS CNN 

Success States 5692084 5692198 

Failure States 9807 9693 

LOLP 0.0017 0.0017 

Sensitivity N/A 0.99 

Specificity N/A 0.99 

Analysis Time 

(Hr) 

1599.3 2.54 

 

 

 

5.4.3 Case 3 

 

In this case study, performance of the proposed system is tested while transmission line failures 

are considered. The system load level is considered constant at 2850 MW (annual peak). After the 

classifier is successfully trained with the same method as described in previous sections, the 
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proposed system is used to compute indices until COV reaches the stopping criteria of ≤ 1% for 

both AC and DC flow models.  After testing is completed, 110452 samples are classified by DC-

OPF with 101065 successes and 9387 failure states. Similarly, 53640 samples are classified by 

AC-OPF with 44532 successes and 9108 failure states. 

 

Table 5.5 presents the comparative results between CMCS (Crude Monte Carlo Simulation) and 

the proposed approach for DC flow model while Table 5.6 provides results of similar analysis for 

AC flow model. Performance indices are calculated as described in equations (8-10).  

It is clear in Table 5.5 that the proposed method shows very good accuracy in classification of 

system states and estimate reliability indices with a small error rate and significantly reduced time. 

 
Table 5.5: Performance Comparison of CNN-MCS & CMCS for Line Failures 

(DC Flow Equation Model) 

 CMCS CNN 

Success States 101065 101079 

Failure States 9387 9354 

LOLP 0.084 0.084 

Sensitivity N/A 0.99 

Specificity N/A 0.99 

Analysis Time 

(Hr) 

1.46 0.05 

 

Table 5.6 shows that the proposed method shows high performance in classification accuracy and 

dramatically reduces computational effort for AC flow model compared to CMCS. Both tables 

clearly state that proposed multi input CNN structure shows outstanding performance in reliability 

evaluation of a complete composite system. 
 

 
Table 5.6 : Performance Comparison of CNN-MCS & CMCS for Line Failures 

(AC Flow Equation Model) 

 CMCS CNN 

Success States 44532 44546 

Failure States 9108 9064 

LOLP 0.170 0.169 

Sensitivity N/A 0.99 

Specificity N/A 0.99 

Analysis Time 

(Hr) 

12.71 

 

0.029 

 

5.5 Summary  

 

A multi input CNN structure is proposed to increase the computational efficiency of MCS for 

evaluating composite power system reliability. 

 

It is critical for any binary classification problem to create a balanced dataset. In this study, a new 

heuristic approach is proposed to create a proper dataset by applying down-sampling to success 

states as well as applying over-sampling to failure states. The proposed algorithm can be applied 

to any artificial intelligence-based method without any additional computational cost. 
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The proposed method is tested for both DC and AC flow models by using one and two channel 

CNN structure respectively. Generation and demand information of a sampled state is utilized to 

create input vector of the classifier.  

 

First two case studies are used to demonstrate the performance of the proposed MCS-CNN 

combination based on constant load and hourly load models respectively. Third case study shows 

the performance of the proposed approach on system states with transmission line failures. 

Sensitivity and Specificity parameters are used to show classification performance of CNN 

classifier while LOLP is chosen as metric to demonstrate reliability evaluation of the proposed 

method.   

 

Results show that the proposed method can accurately characterize system states for both DC and 

AC flow model for fixed peak load and varying hourly load and therefore reliability indices can 

be evaluated without significant error and with a significantly reduced simulation time.  

 

It can be seen from simulations that AC and DC models can give quite different results on the 

same test system. Computational power required for classification using AC flow model is much 

higher than DC flow model since AC flow equations requires nonlinear programming techniques 

while DC flow equations can be solved with linear techniques. It is shown that proposed approach 

reduces the simulation time to complete a reliability analysis based on AC flow model to the same 

level as OPF based analysis using DC flow.  

 

Finally, simulations show that designed multi input CNN architecture can successfully 

characterize system states with transmission line failures in order to increase computational 

efficiency even further. 

 

It should also be pointed out that deep learning here is used to replace the optimal power flow 

based on DC or AC equations. The objective is to reduce the time of characterization of a state 

since state characterization is the major part of computational burden. Although we have used the 

basic MC, this proposed method can be also used with MC and variance reduction techniques like 

Importance Sampling. The combination would obviously reduce the computational time even 

further. 
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6. Conclusions and Future Work 

6.1 Conclusions 

 

In this research, a novel method to evaluate reliability indices for composite power systems is 

introduced with combination of MLL and MCS. The proposed method is implemented for 

MLKNN and MLRBF classifiers to identify status of buses. The case studies show that the method 

significantly reduces the computational burden of MCS.  

 

Additionally, this method advances the state of the art of using machine learning in power system 

reliability evaluation from the previous methods by including computation of bus indices and the 

transmission line failures. 

 

Moreover, the work done shows that the proposed method can be combined with the well-known 

variance reduction technique of IS. The outcomes for this approach show this methodology 

improves time efficiency of MCS even further. 

 

Finally, deep learning structures are investigated to evaluate composite system reliability 

evaluation through MCS. CNN, a well-known deep learning topology, is implemented to 

characterize sampled system states for both AC and DC flow models. The results show that 

computational efficiency for classifying using AC flow model is much higher than DC flow model 

since AC flow equations require nonlinear programming techniques while DC flow equations can 

be solved with linear techniques. The results obtained show that the proposed architecture 

performs state characterization with a high accuracy with COV equal or less than .01. 

 

The importance of reducing the computational time can be understood by two examples. In Monte 

Carlo Simulation, the accuracy of convergence is very important. Convergence is measured by the 

COV, smaller COV means better convergence. Now the sample size (or computational time) is 

inversely proportional to COV or directly proportional to accuracy of convergence. The proposed 

method reduces the required time for reliability analysis considerably for the same level of 

accuracy defined by the coefficient of variation. Alternatively, for the same time this allows 

convergence to a higher level of accuracy. Another example is that for optimal planning of 

resources, reliability studies may need to be done many times. So, the reduction of computational 

time helps in optimal planning by being able to perform more studies in the same time.  

 

This study demonstrates that the application of the proposed methods on composite power system 

reliability evaluation accurately determines the states status with a substantial speed up compared 

with OPF based Monte Carlo Simulation methods.  
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6.2 Future Work 

 

This effort has focused on improving the computational efficiency of composite power system 

reliability evaluation by replacing the OPF by machine learning. The future efforts could be 

directed to: 

 

1. Using the machine learning based OPF for other applications such as operational planning. 

2. Using machine learning to enhance the process of dynamic security assessment as well as 

the OPF. Then perhaps the Time Domain Simulation could be used to train CNN to replace 

this time consuming operation. This could make the inclusion of security assessment in 

composite reliability assessment computationally efficient. 
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1. Introduction 

The Monte Carlo Simulation is one of the frequently used probabilistic methods for composite 

system reliability evaluation. One of the factors affecting the simulation time is the variance of 

the estimator. In an attempt to improve computational efficiency of MCS, several approaches 

have been used to reduce the variance of the estimators. These techniques include stratified 

sampling [8, 9], dagger sampling [10, 11], Latin Hypercube sampling [12, 13] and Importance 

sampling [14]. Of these approaches, importance sampling appears to be gaining more popularity 

recently. In this paper a Cross Entropy (CE) based Importance sampling method is investigated 

for its sensitivity range of computational efficiency. Reference [1] describes various approaches 

where CE method can be used.  

In the cross entropy Monte Carlo simulation a secondary pdf is generated using Importance 

Sampling. Generating an optimal secondary pdf is critical as the variance may not be reduced if a 

proper pdf is not generated. The secondary pdf is used to calculate importance weights. The CE 

method provides an iterative procedure to generate the secondary pdf through which we calculate 

the Importance weights which help in reducing the variance and consequently computation time. 

The CE method using non-sequential MCS has been implemented in Generation Capacity 

reliability (GCR) evaluation, where the system transmission constraints are ignored [2] and the 

method is tested using a fixed load model and a multilevel load model. A CE based Sequential 

Monte Carlo simulation method for GCR evaluation is implemented in [3], where time dependent 

systems are considered and a comparison is provided between different CE based and non-CE 

based Monte Carlo simulation algorithms. They are tested on an IEEE RTS 96 and a modified 

RTS 96 system. These papers show that CE method is a computationally improved method 

compared to simple Monte Carlo methods, as it reduces the computation time as well as the sample 

size. 

Reference [4] implements the CE method in a composite power system model using non sequential 

Monte Carlo Simulation, where the indices are calculated for both single area and multi area power 

systems. Reference [5] implements the CE method using quasi sequential Monte Carlo methods, 

where renewable energy sources are integrated in the test system. The CE method has been 

improved in [6] by assuming the load to follow a Gaussian distribution and using a truncated 

Gaussian distribution for the load in the training phase instead of having a fixed load. Here a 

different mathematical model is used for DC OPF where instead of calculating the load 

curtailment, the excess load served is calculated. These are implemented on a single and multi-

area reliability test systems. 

A three stage CE IS method is implemented in [7] for degenerate cases. Here a third stage is 

employed before the normal CE algorithm to detect the degenerate parameters. A parallel cross 

entropy optimization method has been implemented in [15].   



 

2 

 

In all the references using the CE method to calculate the reliability indices of power systems, 

there is no sensitivity analysis which explores the limits of CE method under different conditions. 

This report provides a study of how changing the system parameters affects the reliability indices 

using a new parallel computing approach to sequential simulation. 

The remaining of this part of report is organized as follows; Section 2 describes the Cross 

Entropy method, section 3 describes the CE Algorithm, section 4 discusses the parallel 

computing methodology, section 5 discusses the results, section 6 conclusion and finally 

appendices are provided at the end. 
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2. Cross Entropy Method 

2.1 Introduction 

 

Importance Sampling is a variance reduction technique, where using a secondary probability 

density g*(X), the rare events or failure events are sampled more frequently. As there is no direct 

procedure to generate the secondary probability density, an iteratively updated secondary density 

f(Xi,v) is generated by distorting the original parameters. The Cross Entropy method [1] gives an 

adaptive iterative procedure to find the distorted parameters. In Importance Sampling the 

secondary density is chosen such that the distance between the optimal secondary density and 

iteratively updated secondary density is minimum. A particular measure of distance between the 

two distributions is the Kullback-Leibler distance (Appendix A), which is termed as the Cross 

Entropy between the optimal g*(X) and f(Xi,v). The Cross Entropy based approach is an 

accelerated Monte Carlo approach which improves the computation efficiency.  

 

The system State Xi is generated as [XG,XL,Xload], which is a vector containing generator states , 

transmission states and load level. The XG and XL are calculated using the component 

unavailability vector u = [uG,uL] where uG  and uL are sub vectors for generation and transmission. 

The up/down states of generator and transmission lines are determined after generating random 

numbers for each component and comparing with its unavailability vector. The load is randomly 

generated from the load curve. The Reliability indices such as Loss of Load Probability (LOLP), 

Expected Energy not Supplied (EENS)  are used for reliability assessment. For a random sample 

X1, X2… XN generated from [uG,uL] the reliability index calculated from a Monte Carlo simulation 

is given by 

 

𝐸(𝐻)

=
1

𝑁
∑𝐻(𝑋𝑖)                                                                             (2.1)

𝑁

𝑖=1

 

 

Where H (Xi) is the test function for computing the reliability adequacy index. 

For a system using Importance Sampling where rare events are sampled more often, the reliability 

index is calculated from the samples X1,X2,….XN generated from distorted [vG, vL], with 

Likelihood ratio W  given by 

 

𝑬(𝑯)

=  
𝟏

𝑵
∑𝑯(𝑿𝒊)𝑾(𝑿𝒊; 𝒖, 𝒗)

𝑵

𝒊=𝟏

                                                    (𝟐. 𝟐) 
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2.2 Likelihood Ratio 

 

In section 2.1 the expression W (Xi;u,v) is the likelihood ratio between the two probability density 

functions and is a correction factor introduced to avoid any biased estimates. 

 

                                     𝑊(𝑋𝑖; 𝑢, 𝑣) =  
𝑓(𝑋𝑖;𝑢)

𝑓(𝑋𝑖;𝑣)
= 

∏ (1−𝑢𝑗)
𝑥𝑗(𝑢𝑗)

(1−𝑥𝑗)𝑁𝑐
𝑗=1

∏ (1−𝑣𝑗)
𝑥𝑗(𝑣𝑗)

(1−𝑥𝑗)𝑁𝑐
𝑗=1

                                 (2.3) 

 

Xi=X1, X2… XN are random samples of generating states, uj represents unit unavailability, vj 

represents distorted unavailability. xj represents availability of a component, with a value 1 if the 

component is available and 0 if not. Nc is the total number of components. 

Here 

 

  W = WG*WL                              (2.4) 

where, 

 

         𝑊𝐺 = 
∏ (1−𝑢𝐺)

𝑥𝐺(𝑢𝐺)
(1−𝑥𝐺)

𝑁𝐺
𝐺=1

∏ (1−𝑣𝑗)
𝑥𝐺(𝑣𝐺)

(1−𝑥𝐺)
𝑁𝐺
𝐺=1

                                                            (2.5) 

 

         𝑊𝐿 = 
∏ (1−𝑢𝐿)

𝑥𝐿(𝑢𝐿)
(1−𝑥𝐿)

𝑁𝐿
𝐿=1

∏ (1−𝑣𝐿)
𝑥𝐿(𝑣𝐿)

(1−𝑥𝐿)
𝑁𝐿
𝐿=1

                                                               (2.6) 

 

WG and WL are the likelihood ratios of generators and transmission lines respectively. NG, NL are 

total number of generators and transmission lines. uG, vG, uL, vL are generator and transmission 

line original and distorted unavailability. xG, xL are the Generator and Transmission Lines states 

represented by 1 if up and 0 if down. 

 

2.2.1 Distorted Parameters for the Sequential Simulation 

 

The initial undistorted unavailabilities of the power system components are given by 𝑢 =  
𝜆

(𝜆+µ)
. 

Where λ and µ are the component failure and repair rates respectively. During the Cross Entropy 

procedure, a distortion is applied to the unavailability and  new distorted unavailability parameters 

are generated. So, during the sequential simulation to calculate the residence time of each state the 

new failure and repair rates, λ* and  µ* rates generated from distorted parameters are used. The 

new distorted parameters [3] are given by, 

 

µ* = µ                                       (2.7) 

 

𝜆∗ = 
𝑣µ∗

(1−𝑣)
                                                                              (2.8)  

 

To maximize the number of failure events in a time period the distortion is applied only to the 

failure rate. 
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3. Cross Entropy Algorithm 

3.1 Training Phase 

Step1: Initialize all the parameters such as N (number of samples), ρ (multi-level parameter), α 

(smoothing parameter), Nmax (maximum sample size). Limiting Load (Ld)   

Step 2: Define V0 = u that is the initial undistorted unavailabilities of Generators and Transmission 

lines. Set t = 1 (iteration counter).  

Step 3: Generate system states X1, X2... XN from the initial unavailabilities according to the 

Bernoulli mass function. 

Step 4: Evaluate the System Performance function P (Xi) for all Xi. A DC power flow analysis is 

performed and load curtailment is calculated. If any power flow violations occur then an 

optimization algorithm based on linear programming, described in Appendix B, is solved. P (Xi) 

is the sum of capacity of all the generators. If a load curtailment occurs then P (Xi) is recalculated 

as  

 

                        P (Xi) = Lmax – load Curtailment                               

(3.1) 

 

Step 5: Sort the Calculated Performance functions P (Xi) in a descending order such as P = [P1, 

P2… PN], P1>P2>…>PN. Then calculate the (1-ρ) th quantile of performance function P [(1-ρ)*N]. 

 

Step 6: If P [(1-ρ)*N] <Ld, set L = Ld, otherwise set L = P [(1-ρ)*N]. Then evaluate the function 

H (Xi) for all Xi, such that H (Xi) = 1 if P (Xi) <L and H (Xi) = 0, otherwise. 

 

Step 7: Calculate the Likelihood ratios W (Xi, u, vt-1), where W = WG*WL. Update the new 

distorted parameters vGt, vLt. 

 

                                  𝑣𝐺𝑡𝑗 = 1 −
∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑋𝑖𝑗
𝑁
𝑖=1

∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)
𝑁
𝑖=1

                                                 (3.2) 
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                                   𝑣𝐿𝑡𝑗 = 1 −
∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑋𝑖𝑗
𝑁
𝑖=1

∑ 𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)
𝑁
𝑖=1

                                                  (3.3) 

 

Step 8: If L=Ld, then the training phase ends and go to Step 9 or else increase the iteration counter 

t and go to step 3 for next iteration. 

 

Step 9: Start the Testing Phase. 

 

3.2 Testing Phase (Sequential Simulation) 

 

The testing phase is the phase during which the reliability evaluation is finally done. For the testing 

phase of sequential simulation, the optimal distorted parameters are derived from the initial 

training phase. Here the load is taken from the hourly load curve and is not distorted. 

 

Step 1: From the distorted parameter vector v the new transition rate vectors µ* and λ* are 

generated for the generators and transmission lines. Initialize NY max (maximum simulated years 

~5000) 

 

Step 2: Generate the random sample X1 from the new distorted transition rate vectors and the 

calculate sample residence time (Tres (Xi)). Initialize Tsim (~8736 hours), T_Down, TWDown, 

T_Up, TWUp to Zero. 

 

Step 3: Evaluate the current sample likelihood ratios W (Xi;u,v).  

 

Step 4: Transition to the next system states, and sample the residence time from the chronological 

load model and the distorted transition rate vectors. Calculate the cumulative sample times Tres 

total = ΣTres (Xi). If the total residence time after the current sample is greater than Tsim, the 

residence time of the current sample is reduced and same sample is used as starting sample for the 

next year. 

 

Step 5: Once all the sample states and likelihood ratios for a simulation year is generated all the 

states are evaluated to generate each sample up time and down time. Here a parallel computing 

technique is used to calculate the sample up and down times to reduce the computational time. The 

MATLAB parallel tool box is used to reduce the computational time by evaluating all the states in 

parallel using the multi cores of the processor. Go to step 6 if down time or go to step 7 if up time.  

 

Step 6: Accumulate the Down time  
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              T_Down  =  T_Down+ti;                                    (3.4) 

 

           TWDown = TWDown+(ti*W(Xi,u,v));                                 (3.5) 

 

Step 7: Accumulate the Up time  

 

    T_Up = T_Up+ti;                                                              (3.6) 

 

     TWUp = TWUp + (ti*W(Xi,u,v))                                              (3.7) 

 

Step 8: The LOLP index for this simulation year is evaluated using a weighted mean approach. 

 

                                                           𝜔(𝑁𝑌) =  
(𝑇𝑊𝑈𝑃 + 𝑇𝑊𝐷𝑜𝑤𝑛)

𝑇𝑠𝑖𝑚
                              (3.8) 

 

                                                           𝐿𝑂𝐿𝑃(𝑁𝑌) =  
(𝑇𝑊𝐷𝑜𝑤𝑛 ∗ 𝜔(𝑁𝑌))

(𝑇𝑊𝑈𝑝 + 𝑇𝑊𝐷𝑜𝑤𝑛)
                         (3.9) 

 

Step 9: The Coefficient of Variation (β) is calculated and compared with the βmax. If it falls below 

βmax or NY>NYmax the simulation is stopped. Or else go to step 2. 

 

Step 10: Evaluate the LOLP index 

 

                                                                    𝐿𝑂𝐿𝑃 =  
∑ 𝐿𝑂𝐿𝑃(𝑖)𝑁𝑌
𝑖=1

∑ 𝜔𝑁𝑌
𝑖=1 (𝑖)

                                      (3.10) 

 

3.3 Acceleration Using Parallel Pooling 

 

Using the parallel computing capacity of any desktop or laptop for simulations helps us in 

improving the computation efficiency. An average laptop/Desktop has 4 to 8 cores. 
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Using Matlab for parallel computing [18], we need to first assign number of cores we need for 

simulation, depending on the availability of cores. Once the number of cores is specified the main 

Matlab creates the same number of worker Matlabs. Main Matlab divides the work and sends the 

data and code to the workers. The workers execute the assigned iterations and send results back to 

the main Matlab. Then main Matlab combines results and continues executing statements after 

parallel computing. This causes an extra overhead time but for a large system the parallel 

computing benefit is far higher than the overhead time. 

 

For example, if the main Matlab has to evaluate 100 samples with four cores it divides the work 

between the workers and each worker evaluates 25 samples.         
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4. Results and Discussions 

4.1 Introduction 

 

The Sequential MCS-Cross Entropy Methods are implemented on IEEE RTS 79 [16]. To show 

the sensitivity of computation time the parameters are varied and the change in computation time 

is recorded. The IEEE RTS 79 is a 24-bus system with 32 generating units and 38 transmission 

lines. The maximum generation capacity is 3405 MW with a peak load of 2850 MW. The load is 

a correlated load between the buses. All the simulations are performed on Matlab using an Intel 4 

core, 3.4GHz processor. 

 

4.2 Varying the multi core for Computational efficiency 

 

Here the number of cores or workers used for computing is varied and computational time is 

calculated. All the computations are done at system peak load of 2850 MW until a 2% convergence 

is reached. 

 

It can be observed from the Table 4.1 that as the number of cores of the computer utilized for 

evaluating the states increases the computational time decreases. As expected, the improvement 

ratios as a function of cores are about the same in Cross Entropy-Importance Sampling based MCS 

(CE-ISMC) and Simple MCS (SMC). However, the times taken can be substantially different. 

 

Table 4.1. Results with varying cores 

 Number of cores LOLP (10-3) Ny (years) Time (Secs) Improvement 

Ratio in 

Time 

 

CE-ISMC 1 1.17 182 5,753 1 

 2 1.16 177 2,893 1.98 

 4 1.18 181 1,987 2.89 

SMC 1 1.1 6990 46,498 1 

 2 1.1 6957 24,919 1.86 

 4 1.1 7061 17,130 2.71 

 

 

4.3 Varying Coefficient of Variation (COV) 

 

The COV value is varied from 5% to 1% and the change in LOLP and computation time is 

observed. This simulation is implemented at a system peak load of 2850 MW using 4 cores. 

 



 

10 

 

It can be seen that for COV of 5%, the CE IS reduces computation time by 2395 seconds whereas 

for 1% the time is reduced by 60,658 seconds. Therefore CE-IS becomes computationally more 

advantageous as value of COV is made tighter. 

 

Table 4.2. Results with varying Coefficient of variation 

 COV (β) (%) LOLP (10-3) Ny (years) Time (Secs) Time Saving 

 

CE-ISMC 5 1.1 26 335 2359 

 2 1.1 179 1,846 15,284 

 1 1.1 775 8,000 60,658 

SMC 5 1.1 1077 2,694  

 2 1.1 7061 17,130  

 1 1.1 28204 68,658  

 

4.4 Varying the System Peak Load 

 

In this case the system peak load is increased and decreased by 300 MW from the base peak load 

of 2850 MW of the chronological Load Curve. The LOLP and the computation time is evaluated 

and compared with the Simple Monte Carlo Simulation. All the values are calculated for a 2% 

convergence using 4 cores. 

 

 

Table 4.3. Results with varying system peak load 

 LOAD (MW) LOLP (10-3) Ny (years) Time (Secs) Time Saving 

 

CE-ISMC 3150 5.9 163 1,637 5101 

 2850 1.1 185 1,978 15152 

 2550 0.14 224 2,666 63098 

SMC 3150 6.0 1696 6,738  

 2850 1.1 7061 17,130  

 2550 0.14 39329 65,784  

 

As can be seen from the table III. The system takes a greater number of samples and increased 

computation time before converging as the load decreases. This is because the LOLP increases 

with higher peak load and simulation time is inversely proportional to the LOLP being estimated 

[19]. Therefore, the CE-IS MC becomes computationally more advantageous with higher 

reliability systems. 

 

4.5 Varying the System Outage Rates 

 

The component outage rates are varied and the change in LOLP and computation time are 

observed. The Forced outage rate is the component probability of failure. The forced outage rate 
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is changed uniformly for all the generating components. This is carried out at a system peak load 

of 2850 MW and 2% convergence criteria. 

 

It can be observed from the Table IV that increasing the forced outage rates increases the loss of 

load and decreases the computational time. Similar to the previous case, increase reliability leads 

to higher savings in computational time with the CE-IS use in MC. 
 

Table 4.4. Results with varying Forced Outage Rates 

 

 

Outage Rate  

(Multiplie

r) 

LOLP 

(10-3) 

NY 

(Years) 

Time 

(Secs) 

Time Saving 

 

CE-ISMC 1 1.1 194 2,099 15031 

 1.25 2.2 156 1,808 8854 

 2 9.4 85 1,058 3746 

SMC 1 1.1 7061 17,130  

 1.25 2.2 3617 10,662  

 2 9.6 989 4,804  
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5. Conclusions 

It should be noted but is often forgot that the results obtained by Monte Carlo are only estimates 

of true values and not the true values. Therefore the estimates have a variance. The estimates 

approach the true values as the variance of estimates is reduced by increasing the sample size. 

Importance sampling helps further by reducing the variance of the estimator and thus a smaller 

sample size is needed to get the same coefficient of variation. The coefficient of variance 

determines the gap between the upper and lower bounds with a given level of confidence. The 

smaller the coefficient of variation, the tighter are the bounds around the true values. The main 

advantage of using variance reduction technique of Importance sampling is the reduction in 

computational time. This paper has explored the conditions under which the computation time is 

reduced more favorably by implementation of IS and thus it becomes advantageous to use this 

variance reduction approach. In general, the conditions which lead to higher computation time for 

the straight MCS tend to favor the use of IS for relatively higher reduction of computation time by 

reducing the variance of estimates. The conditions which lead to higher computation time are either 

the ones that lead to higher reliability, i.e. , lower loss of load probability or the ones where tighter 

bounds on estimates are needed to have higher confidence in the estimated results. 
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Appendices 

Appendix A:  Derivation of v parameter using Kullback-Leibler Distance 

 

This appendix provides a detailed derivation on calculating the v parameter for IS as described in 

[1]. With samples X1, X2… XN generated from secondary density g*(X) the reliability index is 

calculated using an unbiased estimator  

 

 

                                               𝑟 =  
1

𝑁
∑𝐼{𝑃(𝑋𝑖<𝐿)}

𝑓(𝑋𝑖; 𝑢)

𝑔(𝑋𝑖)
                                                     (6.1)

𝑁

𝑖=1

 

 

The best way to estimate r is given by 

 

                                           𝑔(𝑋𝑖) =  
𝐼{𝑃(𝑋𝑖<𝐿)}𝑓(𝑋𝑖; 𝑢)

𝑟
                                                              (6.2) 

 

Using this g we will have a zero variance estimator for r and it requires only one sample. But this 

approach is unworkable because of the unknown parameter r which we want to estimate. So, the 

idea of cross entropy is to choose g from a family of densities f(.;v), i.e. to calculate the reference 

parameter v such that the distance between the densities g* and f(.;v) is minimum. This distance 

between the densities is represented by Kullback -Leibler distance or Cross Entropy. The Kullback 

- Leibler distance or Cross Entropy is defined as 

 

𝐷(𝑔∗, 𝑓) =  𝐸(𝑙𝑛 (
𝑔∗(𝑋)

𝑓(𝑋; 𝑣)
)) 

 

                               =  ∫𝑔∗(𝑋) ln(𝑔∗(𝑋)) 𝑑𝑥 −∫𝑔∗(𝑋) ln(𝑓(𝑋; 𝑣)) 𝑑𝑥                                (6.3) 

 

Minimizing Kullback-Leibler distance is equivalent to maximizing  

 

                                                        max∫𝑔∗(𝑋) ln(𝑓(𝑋; 𝑣)) 𝑑𝑥                                                    (6.4) 

 

This can be written as: 

 

                                            𝑀𝑎𝑥 𝐷(𝑣) = max𝐸 (𝐼{𝑃(𝑋<𝐿)} ln(𝑓(𝑋, 𝑣)))                                  (6.5) 
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Using Importance Sampling and a change of measure f(.;v) we can rewrite it as  

 

   Max D(v) = max E (I{P(X)<L} W(X;u,v) ln(f(X;v)))          ( 6.6) 

 

For any reference parameter v, where  

 

                                                                    𝑊(𝑋; 𝑢, 𝑣) =  
𝑓(𝑋; 𝑢)

𝑓(𝑋; 𝑣)
                                                  (6.7) 

 

The optimal solution v* can be written as 

 

v* = argmax Ew (I{P(X)<L} W(X;u,v) ln(f(X;v)))                                 (6.8) 

 

The D (v) is differential with respect to v, and the solution can be obtained by solving the following 

system of equations. 

 

                                                
1

𝑁
∑𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝛻 𝑙𝑛( 𝑓(𝑋𝑖, 𝑣)) = 0                               (6.9)

𝑁

𝑖=1

 

 

Now  

 

                                              
𝜕

𝜕𝑣𝑗
(ln(𝑓(𝑋𝑖; 𝑣))) =

−𝑥𝑖

𝑣𝑗(1 − 𝑣𝑗)
+
1

𝑣𝑗
                                         (6.10) 

 

Substituting this equation in the above equation, the jth equation becomes 

 

                                    ∑𝐼{𝑃(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)(
−𝑋𝑖𝑗

𝑣𝑗(1 − 𝑣𝑗)
+
1

𝑣𝑗
)

𝑁

𝑖=1

= 0                                 (6.11) 

 

By solving the equation (29) we get  

 

                                              𝑣𝑗 = 1 −
∑ 𝐼{𝑆(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)𝑋𝑖𝑗
𝑁
𝑖=1

∑ 𝐼{𝑆(𝑋𝑖)<𝐿}𝑊(𝑋𝑖; 𝑢, 𝑣)
𝑁
𝑖=1

                                             (6.12) 
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Appendix B: State Evaluation: Heuristic and Linear Program Using DC Power Flow 

 

This appendix describes the DC Power flow model used in the simulations. 

 

The DC power flow equation and line flow equations are 

 

Bθ+G = D                                  (6.13) 

 

b�̂�θ = F                                                        (6.14) 

 

Where; 

 

Nb = Number of buses 

Nt = Number of transmission lines 

b    = Nt x Nt primitive matrix of transmission line susceptances 

�̂� = NtxNb element node incidence matrix 

B = NbxNb augmented node susceptance matrix 

θ = Nb vector bus voltage angles 

G = Nb vector of bus Generation levels 

D = Nb vector of bus loads 

F = Nt vector of transmission line flows 

 

A computationally efficient selective approach based on DC power flow as given in [17] is first 

used to find a feasible flow. This approach consists of the following steps. 

 

Step 1: The total injection at all buses are calculated by subtracting the bus loads from available 

generations at buses. 

 

Step 2: If the sum of positive injections is greater than the sum of negative injections, the positive 

injections are scaled down proportionately so that the sum equals that of negative injections and 

vice versa if net negative injections are greater than net positive injections. 

 

Step 3: once power balance is accomplished the G vector generated from step 2 is used in DC 

Power flow equation (6.13) to calculate θ, then θ is used in line flow equation (6.14) to calculate 

the line flows. 

 

If the line flows satisfy flow constraints a feasible flow is found and if load is curtailed then the 

reliability indices are updated. If the line flows do not satisfy the flow constraints a Linear 

Programming (LP) model is implemented to calculate the optimized line flows and load 

curtailment. This LP model is described as follows: 
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Minimize              Load Curtailment = Min∑ 𝐿𝐶𝑖
𝑁
𝑖=1  

 

 

Subject to Constraints; 

 

Power balance:                Bθ + G +LC = D 

 

Generation limit:                          𝐺 ≤ 𝐺𝑚𝑎𝑥 

 

Flow Limits:              𝑏�̂�𝜃 ≤ 𝐹𝑚𝑎𝑥 

          −𝑏�̂�𝜃 ≤ 𝐹𝑚𝑎𝑥  

 

Load Limits:                            𝐿𝐶 ≤ 𝐷 

 

Boundaries:                              𝐺, 𝐿𝐶 ≥ 0       

                             θ     unrestricted 

 

where; 

 

LC = Nb vector of Load curtailments 

 

Gmax = Nb vector of maximum available bus generation levels 

 

Fmax = Nt vector of flow capacities of transmission levels 
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