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Executive Summary 

Deployment of synchrophasor infrastructure is occurring at an exceptionally fast rate in the US 
power grid; especially at the transmission and the sub-transmission networks. The world’s first 
three-phase phasor measurement unit (PMU)-only linear state estimator has been developed and 
is running successfully at Dominion Virginia Power. However, the data obtained from PMUs has 
been primarily used for forensics analysis in the past; i.e., after an undesirable event has occurred. 
This PSERC S-74 project is a step towards the utilization of PMU data in near-real-time 
environment. The main focus of this project is to develop algorithms that can distinguish normal 
system operations from anomalous system behavior using synchrophasor data; and consequently, 
enhance situational awareness for operational decision making. In this research, following 
applications of PMU data have been considered: 
(a) Power system monitoring application: faster islanding detection and robust power system asset 

health monitoring; 
(b) Power system cyber-protection application: evaluating the efficacy of PMUs to combat cyber-

attacks on the SCADA system and developing data analytics algorithm using synchrophasor 
data to enhance resiliency against cyber-attacks;  

(c) Power system control application: Predicting system stability in presence of renewable 
generation. 

To be able to produce the research deliverables with respect to the three above-mentioned 
applications of synchrophasor technology, the tasks were distributed among the three researchers 
in the following way: Task 1- power system monitoring application (led by Anamitra Pal and his 
students, and supported by Lalitha Sankar and her students), Task 2- power system cyber-
protection application (led by Lalitha Sankar and her students, and supported by Anamitra Pal and 
his students), and Task 3- power system control application (led by Christopher DeMarco and his 
students, and supported by Anamitra Pal and his students).  

The first sub-task (Task 1.1) of the monitoring application of this project was power system 
islanding detection. Synchrophasor measurement based wide-area power system islanding 
detection has mostly relied on voltage phase angle differences between two buses across the 
islanded systems. However, noise due to instrument transformers can severely degrade the 
measurement quality and in turn alter the accuracy of the detection technique. The errors in the 
voltage angles could be as high as ±4° with respect to existing standards. Such high errors in the 
PMU data due to the instrumentation channel errors, could result in considerable misclassification 
in islanding detection. Therefore, a new PMU-based passive islanding detection technique is 
proposed which is immune to instrumentation channel errors. The proposed islanding detection 
technique monitors the voltage phase angle difference trajectory measured from the same PMU 
as a means to counter the instrumentation channel errors. The voltage phase angle difference is 
accumulated over a window of PMU samples to minimize misclassification. This approach is 
termed “cumulated sum of voltage phase angle difference (CUSPAD)”.  

The second sub-task (Task 1.2) of the monitoring application of this project was power system 
asset health monitoring. One of the biggest challenges faced by the electric power industry is the 
successful management of its aging infrastructure. Untimely loss of a power system’s critical 
equipment, e.g., large power transformer (LPT) could be catastrophic to the grid operations. Power 
system equipment provide information about their health through the sensors that monitor them. 
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The data captured by these sensors is a treasure-house of knowledge because it contains 
information about actual as well as potential failures. The sensors for LPTs include online 
dissolved gas analyzers (DGAs), power quality (PQ) meters, potential discharge (PD) testers, and 
bushing monitors, amongst others. However, the output generated by many of these sensors are 
not monitored continuously. It is only when they generate an alarm that their outputs are considered 
for decision-making. Now, it is possible that the sensors generate alarms when the device is very 
close to an imminent failure, and no possible intervention (at that stage) can prevent the failure 
and/or subsequent disruption from occurring. PMUs provide time-synchronized measurements of 
voltage and current phasors at the timescale of 30 to 60 samples per second. The main research 
question being explored in this sub-task is as follows: could PMU measurements capture the 
deteriorating health of an LPT?  The research done in the course of this sub-task has found that 
the signal-to-noise ratio (SNR) of PMU measurements is a robust metric that can quantify 
transformer health in real-time. SNR is a statistical measure of the strength of the desirable 
components to that of undesirable components present in a signal. When an equipment is 
malfunctioning and is close to failure, noise component in the signal tends to increase, resulting in 
a wider SNR bandwidth. The asset health monitoring scheme proposed in this research utilizes 
data-driven methods to monitor the SNR bandwidth obtained from PMU measurements for real-
time assessment of equipment health.  

One of the sub-tasks (Task 2.1) of the power system cyber-protection application was to create a 
realistic synthetic test system that can be used to verify the performance of different PMU-based 
applications as well as to test cyber-attacks and countermeasures. A crucial aspect in designing a 
testbed that can be used to observe system behaviors at PMU sampling speeds is to accurately 
model the behavior of the system loads. In fact, not considering faults or other such unpredictable 
events, the dynamics of the system are mostly governed by the variation of loads over time and 
how the generators respond to such changes. The power system cyber-protection application of 
this project proposed a new data-driven algorithm for the generation of synthetic bus-level time 
series load data at 30 samples per second that can be applied to any system model. The proposed 
data-driven algorithm is unique because it can learn the spatial and temporal correlation from a 
dataset of real system loads and use the learnt model to generate new synthetic data that retains 
the same characteristics. A utility in the Western Interconnection (WI), which is also a part of 
PSERC provided the data that was used to investigate the spatio-temporal correlation in the utility 
scale PMU data. We have used singular value decomposition (SVD) to screen out the dominant 
load patterns in the real PMU data and proposed a generalized scheme to create synthetic data in 
a test system that retains the spatio-temporal attributes of real PMU data.  

The second sub-task (Task 2.2) of the power system cyber-protection application was to 
investigate the vulnerability of PMUs to cyber-attacks. One of the simplest ways in which PMU 
data can be compromised by a cyber-attacker is via false data injection (FDI). FDI attacks involve 
an intelligent attacker who replaces a subset of measurements with counterfeits. Prior research had 
shown that a sub-class of cyber-attacks can bypass the conventional bad data detector, that does 
not consider the temporal correlation in PMU measurements to detect an anomaly. This PSERC 
project was the first effort to investigate if predictive-filters could be used to identify a cyber-
attack. Predictive filters study the temporal correlations in PMU measurements from prior data to 
predict the future measurements. If the predicted measurements do not correspond to the actual 
measurements, it indicates an anomaly. Two types of cyber-attacks have been investigated in this 
research: sudden attack and ramping attack. A sudden cyber-attack refers to the situation when an 
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attacker injects false measurements suddenly at a specific time. A ramping cyber-attack refers to 
the scenario, when the attacker injects the false measurements slowly over a period of time. Our 
research findings have shown that the sudden cyber-attacks could be detected by predictive filters. 
However, it is more challenging to detect an intelligently designed ramping cyber-attack.  

The power system control application (Task 3) of this project involved analysis of power system 
voltage stability using synchrophasor data. Major power system outages take place when a range 
of different phenomena occur in quick succession. However, it has often been found that the loss 
of voltage stability, and ultimately voltage collapse are the immediate precursors of the outage. In 
current utility practice, operational measures of vulnerability to voltage instability are based on the 
state estimator that uses a network model to compute the steady state operating point of the grid, 
with typical update rates in the order of several minutes. The dependence on accurate knowledge 
of network parameters and topology, and relatively infrequent update rate may be viewed as 
shortcomings of the existing practice. Among advances that can support new approaches has been 
a proliferation of vastly improved measurement technology in the grid. In the bulk transmission 
system, these improved measurements have predominantly taken the form of synchrophasor 
measurements via PMUs. Typical reporting rates for such measurements are 30 or 60 samples per 
second (25 or 50 for 50 Hz-based networks). The much higher reporting rate from PMUs suggests 
the value of developing efficient PMU-based metrics of system performance, which may be 
computed in near real-time. The metric employed here was based on SVD, alternately known as 
Karhunen-Loeve decomposition, principal component analysis (PCA), or proper orthogonal 
decomposition (POD). In power system engineering, SVD has been employed in the context of 
“full-model-based” analysis to assess voltage stability by examination of the smallest singular 
value of the power flow Jacobian. Most of the research on voltage stability had relied on full 
dynamic models. On the contrary, the work presented here could be viewed as an evolution of a 
model-free approach for voltage stability assessment; which pre-dominantly relies on PMU data. 
The proposed work also involved precise identification of “noise dominated” measurement 
channels that contributes no useful information to the SVD calculation and are therefore 
considered good candidates for removal from the measurements set.      
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1. Introduction 

1.1 Potential benefits 

The reliability of the electric power system often depends on the presence-of-mind of the operator; 
a correct decision made by the operator at the time of need can be crucial for the survival of the 
system. The proposed work is intended to enhance the system’s resiliency by providing appropriate 
tools to operators so that they can make judicious decisions. At the same time, modern technology 
is often thrust upon operators without taking their apprehensions into considerations. Since 
misunderstanding of a technology may have seriously negative outcomes, operator-industry 
acknowledgement is very important during the technology development and transfer process. This 
PSERC S-74 project is an effort to aid the operators in operational decision making during critical 
situations. The research pursued in this project demonstrates how to take decisions using real-time 
phasor measurement unit (PMU) data.  

Benefits to RTOs/ISOs:  RTOs and ISOs have to integrate a diverse mix of energy resources into 
the electric grid in a reliable manner to match generation and demand. In order to do this, they also 
have to analyze a variety of contingency scenarios. The results of this research can help the 
RTOs/ISOs to perform enhanced power system reliability studies to facilitate integration of 
renewable generation in a judicious manner that will not incur violations with regards to power 
system security and resiliency. 

Benefits to vendors: The complexity and the cost of updating energy management systems (EMSs) 
make it essential to explore methods that evaluate and improve power system resiliency without 
interfering with existing architectures. The proposed work can aid vendors by working in parallel 
with existing EMS software to provide information regarding equipment health and knowledge of 
impending failures.  

Benefits to power utilities/non-market entities: A PMU-based online asset health monitoring tool 
realized as an outcome of this project will be very useful for power utilities. Another outcome of 
this project will be a synchrophasor data-based cyber-attack-resilient detection and control 
algorithm that can be implemented in real-time. Since the proposed tools will minimize the 
susceptibility of the electric power system to component failures and cyber-attacks, it will be of 
significant benefit to power utilities as well as non-market entities.  

To summarize, the potential benefits of this PSERC S-74 project are as follows: 
• A robust tool for detecting island formation as well as monitoring health of critical power 

system assets in real-time 
• A cyber-attack-resilient detection and control algorithm that overlays existing EMS 

architectures 
• A robust model-free approach for voltage stability assessment using synchrophasor 

measurements considering system uncertainty 
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1.2 Key challenges addressed in different tasks  

As described in the Executive Summary, this PSERC S-74 project encompasses (i) power system 
monitoring application, (ii) power system cyber-protection application, and (iii) power system 
control application. Fig. 1.1 provides a schematic overview of this project. The power system 
monitoring application is aimed towards best utilization of synchrophasor measurements for robust 
islanding detection and online asset health monitoring. The power system cyber-protection 
application is aimed towards improving the power system resiliency against cyber-attacks. Finally, 
the power system control application makes use of PMU data for real-time prediction of voltage 
stability in stochastic systems.  

 
Fig. 1.1: Different components of the PSERC project S-74 

The key challenges that this project addressed with regards to each of these three applications are 
enumerated below: 

(i) Power system monitoring application:  

a. Synchrophasor-based power system islanding detection: During un-intentional power 
system islanding the voltage angle spread across different islands of the power system 
becomes very large. PMUs installed at different locations of the transmission network 
could be utilized to observe the relative voltage angle spread across different islands to 
detect un-intentional separation of the system. However, noise content in the PMU data 
due to the instrumentation channel errors can severely degrade the measurement quality 
and in turn affect the accuracy of the islanding detection technique. As per the existing 
synchrophasor standards [1], due to instrumentation channel errors, the errors in 
voltage angles can be as high as ±4°. The key challenge here is to perform robust 
islanding detection even in the presence of such high errors. The proposed research 
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circumvented this problem by proposing a new islanding detection technique that is 
immune to the instrumentation errors present in the synchrophasor measurements. 

b. Power system asset health monitoring: Successful maintenance of the aging 
infrastructure of the electric power industry is a challenging task. Untimely loss of a 
power system’s critical infrastructure; e.g., large power transformer (LPT) could be 
catastrophic to grid operations. The sensors that monitor an LPT are online dissolved 
gas analyzers (DGAs), power quality (PQ) meters, potential discharge (PD) testers, 
bushing monitors, etc. In practice, the outputs generated by many of these sensors are 
not monitored continuously. Only when such sensors generate an alarm, their outputs 
are considered for decision making. It may happen that when the sensors generate an 
alarm, it is already too late for the corrective actions to be initiated. The research 
conducted in this project proposed a new data-driven analysis based on PMU data 
which can assess the health of the equipment in real-time and generate warnings before 
the “point of no-return” is reached. 

(ii) Power system cyber-protection application:  

a. Real-time load monitoring using PMUs: It has been shown in prior research [2] that 
when cyber attackers have knowledge of a small sub-network, they can change 
supervisory control and data acquisition (SCADA) measurements for that sub-network 
in a way that causes physical damage to the system. For example, a cyber-attacker can 
create an apparent overload in a line (that was previously congested). Such types of 
cyber-attacks are achieved by manipulating the SCADA data to a credible state, so as 
to make it appear to the security constrained economic dispatch (SCED) that there is a 
change in load distribution in the network. It would lead to a new dispatch and therefore 
result in an overload of a transmission asset. An enhanced real-time load monitoring 
system would have the capability to identify anomalous load changes. However, the 
key challenge here is that such an option is not feasible in present generation energy 
management systems (EMSs). Therefore, this PSERC project exploited the finer 
granularity of PMU data to learn load patterns at PMU timescales for enhanced real-
time load monitoring algorithms.   

b. Vulnerability of PMUs to cyber-attacks: With the largescale deployment of PMUs at 
the transmission level, it is also important to investigate the vulnerability of PMUs to 
cyber-attacks. Prior research [2] has shown that FDIs can be mounted on PMU 
measurements. However, temporal correlations in the PMU measurements have not 
been investigated in the past to detect cyber-attacks in PMU measurements. In this 
project we exploited the use of predictive filters to analyze the temporal correlation in 
synchrophasor measurements to detect an anomaly.  

(iii) Power system control application:  

Voltage stability and ultimately voltage collapse played a major role in multiple power system 
outages [3]. In current utility practice, operational measures of vulnerability to voltage 
instability are based on the state estimator that uses a network model to compute the steady 
state operating point of the grid, with typical update rates in the order of several minutes. Most 
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of the prior work [4], [5] on voltage stability had primarily relied on full dynamic models of 
the power system. The dependence on accurate knowledge of network parameters and 
topology, and relatively infrequent update rate may be viewed as a practical limitation. To 
circumvent this limitation, this PSERC project aimed for a measurement-based metric for 
power system voltage stability assessment. The work presented here is an evolution of a model-
free approach for power system voltage stability assessment.  

1.3 Report organization 

This report is structured as follows.  

Chapter 2 presents the research conducted in the synchrophasor based power system monitoring 
applications. Research findings in the context of power system islanding detection and power 
system asset health monitoring are documented in Chapter 2.  

Chapter 3 documents the research outcomes for the power system cyber-protection application. 
The algorithm for real-time power system load monitoring and the research findings in the context 
of vulnerability of PMUs to cyber-attacks are documented in Chapter 3. 

Chapter 4 presents the research conducted in the domain of synchrophasor-based power system 
control applications; the focus was on assessing voltage stability. It describes a measurement-based 
approach for power system voltage stability assessment.  

Chapter 5 summarizes the outcomes of this project and describes the scope of future work. 
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2. PMU based power system monitoring applications 

 
2.1 Task 1.1: Power system islanding detection 

Un-intentional power system islanding refers to an uncontrolled separation of a portion of the 
electrical network from the rest of the system. It can occur due to power system disturbances (such 
as faults), natural events (such as hurricanes), or human mis-operation [6]-[8]. Fast and accurate 
detection of an island when it has formed is essential for the prompt restoration of the system. The 
role of PMUs in detecting, identifying, maintaining, and eventually restoring the system after the 
2008 Hurricane Gustav has been described in [7], [8]. Frequency measurements from PMUs 
obtained during Hurricane Gustav helped operators monitor the island’s load generation balance 
by adjusting governor controls, which prevented system collapse. 

PMUs provide time-synchronized information of complex voltage and current phasors, frequency, 
and rate-of-change-of-frequency. References [9] and [10] have used frequency differences and 
voltage phase angle differences for islanding detection, respectively. Principal component analysis 
(PCA) on voltage magnitudes, phase angles, and frequency measurements were investigated for 
reliable islanding detection in [10], [11]. Data mining techniques such as support vector machine 
(SVM) and decision trees (DTs) were applied for islanding detection in [12] and [13], respectively. 
In [14], a comparative study revealed that DT based classifiers were most dependable for passive 
islanding detection. Additionally, Tokyo Electric Power Company (TEPCO) Inc. compared 
different PMU attributes for islanding detection and acknowledged that phase angle difference was 
the most reliable method for detecting un-intentional islanding [15].  

However, PMU measurements are susceptible to both device errors as well as instrumentation 
channel errors. Fig. 2.1 shows a schematic representation of how the voltage and current 
transformers are connected with a PMU inside a substation. The voltage and current transformers 
measure the bus voltage and current phasors, which are then passed through a burden and an 
attenuator, before the input signals are sent to the PMU device. As per [16], PMU device error 
expressed as a total vector error (TVE) is typically less than 1%. However, the errors introduced 
by the instrumentation channel may cause a phase-shift that can be as high as ±4° [1]. Thus, 
reliable and fast detection of un-intentional islanding in the presence of instrumentation channel 
errors in PMU measurements can be a major challenge [17]. Considering the recent advancements 
made in renewable energy generation technology, the contribution of inverter-based generation 
(IBG) such as wind and solar in the transmission network is expected to increase significantly in 
the near-future. Additionally, during transient phenomena, high renewable energy penetration may 
have a substantial impact on system stability [18]. Prior research on islanding detection 
considering renewable energy penetration has primarily focused on the distribution grid [19], [20]. 
Islanding detection with high penetration of IBG is important because when a renewable rich sub-
system gets isolated from the bulk power system, power quality issues such as frequency deviation, 
voltage fluctuation, and power system harmonics manifest as critical problems in the power 
system. In addition, if the islanded operation is continued there could be serious concerns about 
physical injuries because of inspection or people coming in contact with live parts [20]. Therefore, 
it is important to detect un-intentional islanding quickly and initiate immediate corrective actions 
(such as fast tripping of isolated IBG). The research problem explored in this project in the domain 
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of power system islanding detection is stated as follows: accurately detect un-intentional islanding 
in the transmission grid in presence of IBG and additive instrumentation channel errors in the 
PMU measurements.  
 

 
Fig. 2.1: PMU installation depicting locations of instrument transformers 

2.1.1 Proposed islanding detection methodology 

This section introduces the need for a new PMU-based islanding detection scheme. The reason 
why the proposed technique is immune to additive instrumentation channel errors is explained 
next. The methodology followed for modeling wind energy penetration using a positive sequence 
simulation software is described afterwards. Finally, this section concludes by describing a 
supervised learning scheme using DTs as well as the methodology that was employed for placing 
the PMUs. 

2.1.1.1 Need for a new islanding detection scheme 

Let the true bus voltage angles at any two buses 𝑖𝑖 and 𝑗𝑗 at time instant 𝑡𝑡 be given by 𝜃𝜃𝑖𝑖
𝑡𝑡 and 𝜃𝜃𝑗𝑗

𝑡𝑡, 
respectively. The traditional angle difference (AD) approach for islanding detection computes the 
difference between 𝜃𝜃𝑖𝑖

𝑡𝑡 and 𝜃𝜃𝑗𝑗
𝑡𝑡 [21] as shown below: 

      ∆𝜽𝜽𝒕𝒕 = 𝜽𝜽𝒊𝒊
𝒕𝒕 − 𝜽𝜽𝒋𝒋

𝒕𝒕                                                                                      (𝟏𝟏) 
When the calculated voltage angle difference,  ∆𝜃𝜃𝑡𝑡, exceeds a pre-determined threshold, 𝜏𝜏, the AD 
approach concludes that an island has formed. It is worth mentioning here that 𝜏𝜏 is often obtained 
from offline analyses which do not account for the actual errors present in the system. Consider 
that the PMU errors associated with the PMUs at buses 𝑖𝑖 and 𝑗𝑗 are 𝑒𝑒𝑖𝑖

𝑃𝑃 and 𝑒𝑒𝑗𝑗
𝑃𝑃, respectively, and 

the instrumentation channel errors associated with the PMUs at buses 𝑖𝑖 and 𝑗𝑗 are 𝑒𝑒𝑖𝑖
𝐼𝐼 and 𝑒𝑒𝑗𝑗

𝐼𝐼, 
respectively. Therefore, the total error at the PMU at bus 𝑖𝑖 is 𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑖𝑖

𝑃𝑃 + 𝑒𝑒𝑖𝑖
𝐼𝐼 and the total error at 

the PMU at bus 𝑗𝑗 is 𝑒𝑒𝑗𝑗 = 𝑒𝑒𝑗𝑗
𝑃𝑃 + 𝑒𝑒𝑗𝑗

𝐼𝐼. Now, the PMU errors (𝑒𝑒𝑖𝑖
𝑃𝑃 and 𝑒𝑒𝑗𝑗

𝑃𝑃) are typically within a total 
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vector error (TVE) of 1% [16], while the instrumentation channel errors (𝑒𝑒𝑖𝑖
𝐼𝐼 and 𝑒𝑒𝑗𝑗

𝐼𝐼) may introduce 
a phase-shift as high as ±4° [1]. Since, the PMU errors are tiny compared to the instrumentation 
channel errors, the PMU errors can be ignored with respect to the instrumentation errors; i.e., 𝑒𝑒𝑖𝑖 ≈
𝑒𝑒𝑖𝑖

𝐼𝐼 and 𝑒𝑒𝑗𝑗 ≈ 𝑒𝑒𝑗𝑗
𝐼𝐼.  

Therefore, the measured voltage phase angle differences at buses 𝑖𝑖 and 𝑗𝑗 are given by 𝜃𝜃𝑖𝑖
𝑚𝑚 = 𝜃𝜃𝑖𝑖

𝑡𝑡 +
𝑒𝑒𝑖𝑖 and 𝜃𝜃𝑗𝑗

𝑚𝑚 = 𝜃𝜃𝑗𝑗
𝑡𝑡 + 𝑒𝑒𝑗𝑗, respectively. Consequently, the measured voltage phase angle difference 

between buses 𝑖𝑖 and 𝑗𝑗, can be written as: 
∆𝜃𝜃𝑚𝑚 = 𝜃𝜃𝑖𝑖

𝑚𝑚 − 𝜃𝜃𝑗𝑗
𝑚𝑚 = (𝜃𝜃𝑖𝑖

𝑡𝑡 + 𝑒𝑒𝑖𝑖) − (𝜃𝜃𝑗𝑗
𝑡𝑡 + 𝑒𝑒𝑗𝑗) = ∆𝜃𝜃𝑡𝑡 + (𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑗𝑗)        (2) 

Due to the error, 𝑒𝑒𝑖𝑖 − 𝑒𝑒𝑗𝑗, in the measured voltage angle ∆𝜃𝜃𝑚𝑚, the following situations may occur:  
a) ∆𝜽𝜽𝒕𝒕 > 𝝉𝝉, but ∆𝜽𝜽𝒎𝒎 < 𝝉𝝉: In this scenario, an un-intentional islanding may not be detected. 
b) ∆𝜽𝜽𝒕𝒕 < 𝝉𝝉, but ∆𝜽𝜽𝒎𝒎 > 𝝉𝝉: In this scenario, a non-islanding contingency may be misclassified as 

an un-intentional islanding. 
In light of the two scenarios mentioned above, it is clear that the accuracy of the conventional AD 
approach would decrease in presence of large instrumentation channel error. 

2.1.1.2 Input feature for islanding detection 

As described in Section 2.1.1.1, conventional AD approach for islanding detection may not be 
reliable for detecting un-intentional islanding in presence of large instrumentation channel errors. 
The major contribution of this research is the development of a pre-processing technique on the 
input feature set that makes the islanding detection methodology immune to fixed additive 
instrumentation errors. In our case, the input features are the voltage phase angles obtained from 
PMUs. We do this by first stating (and proving) the following lemma. 

Lemma 1: Cumulative sum of change in voltage phase angle computed with respect to a pre-
contingency reference angle obtained from the same PMU device over a given time-period is 
immune to instrumentation channel errors. 

Proof:  Let 𝜃𝜃𝑥𝑥
𝑡𝑡 and 𝜃𝜃𝑥𝑥

𝑚𝑚 denote the true voltage angle and the measured voltage angle, respectively, 
i.e. 𝜃𝜃𝑥𝑥

𝑚𝑚 = 𝜃𝜃𝑥𝑥
𝑡𝑡 + 𝑒𝑒𝑥𝑥 holds true for every time instant, where 𝑒𝑒𝑥𝑥 denotes the fixed but unknown 

instrumentation error [22]. Now, let a contingency occurs at 𝑡𝑡 = 𝑡𝑡𝑐𝑐 that causes the voltage angles 
to change in the manner shown in Fig. 2.2. Note that the pre-contingency voltage angle is the 
reference voltage angle, denoted by 𝜃𝜃𝑥𝑥

𝑡𝑡(𝑡𝑡𝑐𝑐
−) for the true angle and 𝜃𝜃𝑥𝑥

𝑚𝑚(𝑡𝑡𝑐𝑐
−) for the measured angle, 

respectively, where 𝜃𝜃𝑥𝑥
𝑚𝑚(𝑡𝑡𝑐𝑐

−) = 𝜃𝜃𝑥𝑥
𝑡𝑡(𝑡𝑡𝑐𝑐

−) + 𝑒𝑒𝑥𝑥. The cumulative sum of change in voltage phase 
angles for the true angle and the measured angle are denoted by the green and the blue shaded 
regions (see Fig. 2.2) and can be mathematically written as: 

𝑆𝑆𝑥𝑥
𝑡𝑡 = �     

𝑤𝑤

𝑛𝑛=1

|𝜃𝜃𝑥𝑥
𝑡𝑡(𝑡𝑡𝑐𝑐 + 𝑛𝑛) − 𝜃𝜃𝑥𝑥

𝑡𝑡(𝑡𝑡𝑐𝑐
−)|     

𝑆𝑆𝑥𝑥
𝑚𝑚 = �     

𝑤𝑤

𝑛𝑛=1

|𝜃𝜃𝑥𝑥
𝑚𝑚(𝑡𝑡𝑐𝑐 + 𝑛𝑛) − 𝜃𝜃𝑥𝑥

𝑚𝑚(𝑡𝑡𝑐𝑐
−)|

⎭
⎪
⎬

⎪
⎫

                                    (3) 

Now, as the additive instrumentation error is an unknown but fixed quantity, they will cancel out 
at every time instant of 𝑆𝑆𝑥𝑥

𝑚𝑚 making it equal to 𝑆𝑆𝑥𝑥
𝑡𝑡. Therefore, although the true and the measured 
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voltage phase angles are numerically different (the blue and green curves have different intercepts 
on the Y-axis), the area under the curve between the post-contingency voltage angle and the 
reference voltage angle (over a window of w samples) for both true and measured voltage angles 
will be the same. In other words, the following holds true:  

 𝜃𝜃𝑥𝑥
𝑚𝑚 ≠ 𝜃𝜃𝑥𝑥

𝑡𝑡

𝑆𝑆𝑥𝑥
𝑚𝑚 = 𝑆𝑆𝑥𝑥

𝑡𝑡 �                                                                                        (4) 

From (4), it can be concluded that the cumulated sum of change in voltage phase angle obtained 
from a specific PMU over a time trajectory does not get affected by instrumentation channel errors. 
This proves Lemma 1. 

 
Fig. 2.2: Schematic diagram depicting immunity of CUSPAD to additive instrumentation errors 

The traditional approach for detecting islands used the raw angle differences between two buses, 
say, 𝑥𝑥 and 𝑦𝑦, given by 𝜃𝜃𝑥𝑥

𝑚𝑚 − 𝜃𝜃𝑦𝑦
𝑚𝑚, as input feature for decision-making. Considering Lemma 1, in 

this research, the following methodology is devised for selecting the input feature. If a contingency 
occurs at 𝑡𝑡 = 𝑡𝑡𝑐𝑐, the cumulative sum of change in voltage phase angles for buses 𝑥𝑥 and 𝑦𝑦, denoted 
by 𝑆𝑆𝑥𝑥

𝑚𝑚 and 𝑆𝑆𝑦𝑦
𝑚𝑚 is computed based on the relation shown in (3). Since 𝑆𝑆𝑥𝑥

𝑚𝑚 and 𝑆𝑆𝑦𝑦
𝑚𝑚 are immune to 

instrumentation channel errors, the input feature for islanding detection is chosen to be the 
cumulative sum of change in voltage phase angle difference (CUSPAD) between buses x and y, 
which is mathematically described by:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑥𝑥 = 𝑆𝑆𝑥𝑥
𝑚𝑚 − 𝑆𝑆𝑦𝑦

𝑚𝑚                                                               (5) 

For real-time applications, the determination of the pre-contingency reference voltage angle 
𝜃𝜃𝑥𝑥(𝑡𝑡𝑐𝑐

−) and 𝜃𝜃𝑦𝑦(𝑡𝑡𝑐𝑐
−) in real-time is a major concern. This problem can be resolved by using the 

three-sample based quadratic prediction algorithm (TSQPA) proposed by Gao et al. in [23], and 
extended to multiple load models in [24]. TSQPA states that for a linear change in load (which is 
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a valid assumption to make considering the fast output rates of PMUs), the relationship between 
successive voltages is given by: 

𝑉𝑉(𝑛𝑛|𝑛𝑛 − 1) = 3𝑉𝑉(𝑛𝑛 − 1) − 3𝑉𝑉(𝑛𝑛 − 2) + 𝑉𝑉(𝑛𝑛 − 3)            (6) 

where, 𝑉𝑉(𝑛𝑛|𝑛𝑛 − 1) denotes the predicted value of complex voltage at time instant 𝑛𝑛, when the 
voltages at time instants 𝑛𝑛 − 3 through 𝑛𝑛 − 1 are known. From the predicted value of the complex 
voltage, 𝑉𝑉(𝑛𝑛|𝑛𝑛 − 1), the predicted voltage phase angle, 𝜃𝜃(𝑛𝑛|𝑛𝑛 − 1), can be obtained. Knowing 
the predicted phase angle, 𝜃𝜃(𝑛𝑛|𝑛𝑛 − 1), and the measured phase angle, 𝜃𝜃(𝑛𝑛), an observation 
residual, 𝑟𝑟(𝑛𝑛), can be computed as follows: 

                                 𝑟𝑟(𝑛𝑛) = 𝜃𝜃(𝑛𝑛|𝑛𝑛 − 1) − 𝜃𝜃(𝑛𝑛)                                                         (7)       

When the observation residual, 𝑟𝑟(𝑛𝑛), manifests a sudden change, it means a contingency has 
occurred at time instant 𝑛𝑛 and the reference voltage angle for CUSPAD calculation must be the 
angle just before that time instant, i.e., 𝜃𝜃(𝑛𝑛 − 1). Based on the analysis done above, the main 
conclusion is described by the following theorem.  

Theorem 1: For islanding detection in presence of additive instrumentation channel errors, a 
CUSPAD-based approach has higher accuracy than the conventional angle difference (AD)-based 
approach. 

Proof: Section 2.1.1.1 demonstrates how islanding detection accuracy of the conventional AD 
approach would deteriorate in presence of additive instrumentation channel errors. Lemma 1 
proves how CUSPAD computed with respect to a pre-contingency reference angle becomes 
immune to additive instrumentation channel errors. By combining the two arguments it can be 
concluded that CUSPAD will provide better performance in comparison to the conventional AD 
approach for islanding detection in presence of large instrumentation channel errors. This proves 
Theorem 1.    

2.1.1.3 Wind energy modeling 

A wind farm is a collective group of interconnected wind turbines that are tied to a point of 
common coupling (PCC) before the power is fed to the grid. In accordance with the WECC Wind 
Plant Power Flow Modeling Guide, wind power plants must be represented by an equivalent 
generator, generator transformer, collector system, and substation transformer [25]. The 
characteristic features of the wind farm used in this study are described below.  

A wind farm containing several wind turbines is modeled as an equivalent generator as depicted 
in Fig. 2.3. An individual wind turbine is typically rated for capacities 1-4 MW at around 690 V. 
A pad mounted generator step-up transformer usually steps up the generation voltage of 600-690 
V to 34.5 kV by the transformer between buses 4 and 5. Multiple wind turbine models are 
connected at the 34.5 kV collector bus between buses 3 and 4. The operating voltage at the 
collector bus is further stepped up at the interconnection to the transmission voltage level at 132 
kV or 230 kV via a substation transformer between buses 2 and 3. The representation in Fig. 2.3 
is considered adequate for positive sequence dynamic simulations [25]. Type 4 wind energy 
generator (Wt4g), turbine (Wt4t) and exciter models (Wt4e) are used to represent the wind energy 
penetration. The power system simulator used to carry out dynamic simulations is GE PSLF. 



10 

 
Fig. 2.3: Single line diagram of wind turbine [25] 

2.1.1.4 Supervised learning for islanding detection 

Supervised learning techniques such as DTs and Random Forest (RFs) have often been used for 
islanding detection. DT is a supervised learning-based data mining technique which infers hidden 
relationships from the data and classifies it based on binary partitioning through if-else statements 
[26]. RF fits a number of decision tree classifiers on various sub-samples of the dataset and uses 
averaging to improve predictive accuracy and control overfitting [27]. In this research, a 
Classification and Regression Tree (CART)-based DT and RF is trained offline with the help of a 
training database and a mapping is developed by finding correlations between the input and the 
output. In [14], [26]-[29] it is observed that DT based classifiers detect island formation accurately 
and reliably. As such, DTs and RFs were used to evaluate the performance of the proposed 
methodology. 

To create a robust dataset for accurate islanding detection, islanding and non-islanding scenarios 
were created and simulated in accordance with the following methodology. 

1. Generation of simulation cases: For non-islanding scenarios, some extreme cases such as line 
trips, faults, and generator trips were simulated, and the measurement of voltage phase angle 
for these cases recorded from GE PSLF. For creating island in large test systems 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 5 
transmission lines were removed at different instants of time using the community-based 
partitioning scheme developed in [30]. 

2. Measurement of voltage phase angle: For each case, the voltage phase angle measurements 
required for calculating CUSPAD values are obtained using the model ametr in GE PSLF. It 
is assumed that PMUs are installed on multiple locations in the system under study and the bus 
voltage angle measurements are provided by them; see Section 2.1.1.5 for the PMU placement 
methodology that was employed in this research. 

3. Calculation of CUSPAD: Dynamic simulations were run in GE PSLF to record the phase angle 
measurements at the rate of 30 samples per second to emulate PMU data reporting rate. 
CUSPAD is computed based on the methodology described in Section 2.1.1.2.  

4. Training Data: After the CUSPAD values for every simulation is obtained, they are fed as 
inputs to CART and RF. Every case in the training dataset is identified as an islanding case or 
a non-islanding case by labeling it as 0 or 1 [26]. This serves as the training database for the 
DT and RF. 
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5. Testing Data: To test the supervised learning model built in the previous step, realistic 
measurements are replicated through introduction of measurement errors in the training 
database. The error model used is additive and includes both PMU and instrumentation channel 
errors: 

i. PMU errors in voltage phase angles are assumed to be a Gaussian distribution with zero 
mean and standard deviation of 0.104° [1].   

ii. Instrumentation channel errors in voltage phase angle are assumed to follow a uniform 
distribution that lies in the range of ±1°, ±2°, or ± 4° for the different case studies 
considered. Good quality measurements (for example, revenue quality instrument 
transformers) are also considered for testing purpose. They are assumed to introduce an 
angle error of the order of 0.1° [1]. 

The resultant voltage phase angles after incorporation of additive PMU and instrumentation 
channel errors is given by [31]: 

 𝜃𝜃𝑉𝑉
𝑚𝑚 =  𝜃𝜃𝑉𝑉

𝑡𝑡 + 𝛼𝛼𝑉𝑉𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                                     (8) 

where 𝜃𝜃𝑉𝑉
𝑚𝑚 is the measured voltage phase angle and 𝜃𝜃𝑉𝑉

𝑡𝑡  is the true voltage phase angle. The 
instrumentation channel errors are denoted by  𝛼𝛼𝑉𝑉𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 while the PMU errors are denoted by 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

A schematic diagram describing the different steps that were followed for training and testing the 
DT-based islanding detection classifier is shown in Fig. 2.4. 

 
Fig. 2.4: Flowchart for the proposed CUSPAD approach 

2.1.1.5 PMU placement 

When PMUs are placed in a network, the primary objective is to ensure observability, i.e. the 
PMUs should have the ability to directly or indirectly observe all the bus voltages of the network. 
In addition to ensuring topological observability, the PMU placement scheme proposed in [32] 
takes into consideration PMU redundancy for critical buses as well as the cost of disrupting a 
substation for PMU installation. Accordingly, the core concept of [32] was employed here for 
determining the locations where PMUs must be placed. 
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Let the power network be denoted by an undirected graph 𝐺𝐺(𝑉𝑉, 𝐸𝐸) such that 𝑉𝑉 is the set of nodes 
(buses) and 𝐸𝐸 is the set of edges (transmission lines or transformers). The buses are grouped into 
substations, 𝑆𝑆, using the rationale that buses connected by transformers will lie inside the same 
substation. It is assumed in this study that all PMUs are of the dual-use line relay (DULR)-type. 
For each substation 𝑆𝑆𝑖𝑖 ∈ 𝑆𝑆, a binary variable 𝑥𝑥𝑖𝑖 is used such that the following holds true: 

𝑥𝑥𝑖𝑖 = �1,   if Substation Si is distrupted
0,                                     otherwise                                                     (9) 

Each edge 𝑒𝑒 ∈ 𝐸𝐸 is associated with two binary variables 𝑤𝑤𝑒𝑒
𝑙𝑙 and 𝑤𝑤𝑒𝑒

ℎ such that following holds true: 

𝑤𝑤𝑒𝑒
𝑙𝑙 = �1, if DULR is placed at the low end of edge e

0,                                otherwise                                                          (10) 

𝑤𝑤𝑒𝑒
ℎ = �1,               if DULR is placed at the high end of edge e

0,                                    otherwise                                                     (11) 

The objective is to minimize the total cost of PMU installations which involve cost of PMU devices 
as well as the cost of disrupting a substation. This objective function is mathematically described 
by:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �� 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 +  ∆ 
𝑘𝑘

𝑖𝑖=1

�{𝑤𝑤𝑒𝑒
ℎ +  𝑤𝑤𝑒𝑒

𝑙𝑙}
𝑒𝑒∈𝐸𝐸

�                                              (12) 

where, 𝑐𝑐𝑖𝑖 is the cost of disrupting a substation, ∆ is the cost of a DULR, and 𝑘𝑘 = |𝑆𝑆|. If 𝐸𝐸𝑣𝑣 denotes 
all outgoing phases from a vertex 𝑣𝑣, the constraint for phase observability is given by: 

� {𝑤𝑤𝑒𝑒
ℎ + 𝑤𝑤𝑒𝑒

𝑙𝑙} ≥ 1           
𝑒𝑒∈𝐸𝐸𝑣𝑣

                                                                            (13) 

2.1.2 Simulation results 

In this section, the efficiency of CUSPAD in islanding detection is compared with that of the 
conventional AD approach. For the AD approach, pairs of voltage phase angle differences are 
calculated through instantaneous combinations of PMU measurements. The test systems 
comprised of a modified version of the 18-bus system available in the GE PSLF library and the 
IEEE 118-bus system. Measurement errors consisting of both PMU and instrumentation channel 
errors were included in the test data. The error model used for the two error types can be found in 
Section 2.1.1.4. The simulations were repeated 50 times and accuracy with a 95% confidence 
interval was computed for the test data. 

2.1.2.1 Modified 18-bus test case 

The original 18-bus system is modified to include wind energy penetration in the network by 
replacing one of the conventional generators with an equivalent capacity wind farm connected at 
the 230-kV voltage level. The number of PMUs required for complete observability of the 18-bus 
system was 5 and they were located at buses 1, 11, 14, 23, and 31. Total cases simulated were 467, 
out of which 200 were islanding cases and 267 were non-islanding cases. For the 18-bus test case, 
we have used DT based supervised learning scheme for islanding detection. To determine a 
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suitable window length for calculating CUSPAD, the DT accuracies obtained with various window 
sizes are presented in Fig. 2.5. We observe that the relative increase in DT accuracy corresponding 
to the window size between 30 and 40 samples is lesser as compared to that obtained for window 
sizes between 20 and 30 samples. A larger window size would however negatively influence the 
detection time (by adding more delay). As with any islanding detection algorithm, a lower 
detection time is preferred and therefore a compromise between DT accuracy and window size 
must be made. In the literature, a time delay of 100-150 ms was considered in [17] to prevent 
misclassifications. Islanding detection time as high as 2-3 seconds is discussed in [9]. Taking all 
this into account, we believe that for the proposed study, a window size of 30 samples would be 
appropriate. Comparing accuracies in Table 2.1, it can be concluded that for the 18-bus system, 
for a window-size of 30 samples, the CUSPAD approach was not affected by increasing amounts 
of additive measurement errors while the performance of the conventional AD approach 
deteriorated considerably as the errors increase in the measurements.  

 
Fig. 2.5: Selection of window size for CUSPAD calculation 

Table 2.1: Accuracy comparison of DT models for modified 18-bus system (16% wind 
penetration) 

Error AD CUSPAD 
Instrumentation 
Channel Error 

PMU 
Error 

Accuracy 
(95%) Depth Accuracy 

(95%) Depth 

0° 

0 
Mean 
±0.10
4° SD 

99.79 5 98.29 5 
-0.1° ≤ 𝛼𝛼𝑉𝑉𝑉𝑉

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
≤0.1°  99.37 5 98.01 5 

-1° ≤ 𝛼𝛼𝑉𝑉𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

≤1°  96.85 5 98.06 5 

-2° ≤ 𝛼𝛼𝑉𝑉𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

≤2°  94.66 5 98.08 5 

-4° ≤ 𝛼𝛼𝑉𝑉𝑉𝑉
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

≤4°  93.04 5 97.97 5 
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2.1.2.2 IEEE 118-bus test case 

The original IEEE 118-bus system was modified to include variable percentages of wind energy 
penetration in the network by replacing some of the conventional generators with equivalent 
capacity wind farms connected at the 132kV voltage level. The number of PMUs required for 
complete observability of this system was 38. They were placed on buses 3, 5, 8, 9, 12, 15, 17, 21, 
23, 28, 30, 36, 40, 43, 45, 49, 52, 56, 59, 63, 65, 66, 68, 69, 71, 75, 77, 80, 85, 86, 84, 91, 94, 101, 
105, 110, 114, and 116. To create islands in the IEEE 118-bus system, the community-based 
partitioning logic developed in [30] was used. It identifies the minimum number of edges that must 
be lost for islands of a given size to form. In total, 2,000 cases were simulated for three levels of 
wind energy penetration, namely, 10%, 20%, and 30%. Of these 2,000 cases, 1,000 were islanding 
cases and 1,000 were non-islanding cases. The 30-sample window size was again selected for 
computing the CUSPAD accuracy for the 118-bus system. For the IEEE 118-bus test system two 
supervised learning techniques were tried for islanding detection, namely, CART-based DT and 
RF. Table 2.2 compares the accuracy for AD and CUSPAD for the IEEE 118-bus test system using 
DTs. The most interesting observation here is that with increased instrumentation channel errors 
the accuracy for islanding detection with simple angle-difference as an attribute monotonically 
decreases. However, the proposed CUSPAD accuracy remains approximately constant at 85%, 
thereby proving that it is immune to the percentage of instrumentation channel errors added to the 
measurements.  For a fair comparison all the DTs were pruned till a depth level of 6.  

Table 2.2: Accuracy comparison with Decision Trees (DTs) for 118-bus system 

Error AD CUSPAD 
Instrumentation 
Channel Error 

PMU Error AD 
Accuracy 

(95%) 

Depth CUSPAD 
Accuracy 

(95%) 

Depth 

0 0 Mean 
±0.104 SD 

85.50 6 85.50 6 
-1 80.50 6 83.50 6 
-2 73.00 6 84.00 6 
-4 55.50 6 85.00 6 

Table 2.3: Accuracy comparison with Random Forest (RF) for 118-bus system 

Error AD CUSPAD 
Instrumentation 
Channel Error 

PMU Error AD 
Accuracy 

(95%) 

Depth CUSPAD 
Accuracy 

(95%) 

Depth 

0 0 Mean 
±0.104 SD 

93.02 6 91.44 6 
-1 85.05 6 91.03 6 
-2 82.36 6 91.98 6 
-4 78.99 6 92.04 6 

Table 2.3 compares the islanding detection accuracy for AD and CUSPAD using RF as the 
supervised learning technique. From the RF results, we observe that the CUSPAD accuracies are 
immune to the instrumentation channel errors, while the AD accuracy with DTs monotonically 
decreases. Another observation from Table 2.2 and Table 2.3 is that the accuracy of islanding 



15 

detection using RF is relatively more compared to DTs. This is expected, because of the following: 
DTs use a single tree to train the data, while RFs operate by training a multitude of trees during 
training time and outputs a mean prediction by taking attributes from multiple trees during the 
testing [26], [27]. Therefore, RFs are observed to perform better against DTs on the same dataset.  

2.1.2.3 Summary of the findings 

A PMU-based passive islanding detection technique was proposed in this sub-task, which is 
immune to additive instrumentation channel errors present in the PMU measurements. The 
cumulated sum of voltage phase angle difference (CUSPAD) obtained from a specific PMU device 
over a given time-period successfully cancels the effect of instrumentation channel errors present 
in the PMU measurements. This is the underlying reason behind the increased islanding detection 
accuracy and its immunity to instrumentation channel errors. The proposed approach was tested 
on an 18-bus system using DT based CART classifier. The results indicate that in the presence of 
instrumentation channel errors the proposed CUSPAD technique was superior to conventional AD 
approach. The performance of this technique is further evaluated for the IEEE 118-bus system 
where 10%, 20%, and 30% wind penetration was modeled by replacing corresponding 
conventional generation. The performance of the CUSPAD approach was also found to be superior 
for the 118-bus system in presence of increasing amounts of instrumentation channel errors when 
compared with that of the AD approach using both DTs and RFs. We can therefore conclude that 
islanding detection in renewable rich systems using CUSPAD is more reliable than AD in presence 
of additive instrumentation channel errors.   
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2.2 Task 1.2: Power system online-asset health monitoring 

The power grid is the most important of all critical infrastructures as it has the highest degree of 
influence over other critical infrastructures [33]. Some of the most important equipment of the 
bulk power system (BPS) are generators, transmission lines and large power transformers (LPTs). 
LPTs are typically located in open-air switchyards, where they are at the mercy of elements of 
nature, and more recently, trigger-happy humans [34]. An untimely loss of an LPT can be 
catastrophic for not only the electric power grid, but also the other critical infrastructures that 
depend on it for normal operations [33].  

One of the biggest challenges faced by the electric power industry is the successful management 
of its aging infrastructure [33]. Some of the equipment being worth millions of dollars, power 
utilities want to achieve maximum return of investment (ROI) on the purchase of their equipment. 
At the same time, a failure of the power system’s critical assets at a crucial time-period may be 
catastrophic for the reliable operation of the grid. Therefore, the way forward is to create an asset 
health monitoring and management system that can not only continuously track the condition of 
critical power system equipment, but also generate alarms sufficiently in advance so that necessary 
interventions can be made. The motivation for doing this research came from an actual LPT failure 
that took place at the Avondale substation of Salt River Project (SRP), a power utility located in 
Arizona, USA on June 1, 2016. During the early morning hours of that day, a large power 
transformer at the 500/230 kV substation in Avondale, Arizona caught fire, leading to the burning 
of 27,000 gallons of mineral oil [35]. Such an untimely loss of an LPT could be catastrophic for 
the electric power grid [36].  

Different types of sensors are placed in the power network to monitor the health of its critical 
equipment. The sensors for LPTs include online DGAs, PQ meters, PD testers and bushing 
monitors. However, the output generated by most of these sensors are not monitored continuously. 
It is only when they generate an alarm that their outputs are considered for decision-making. Now, 
it is quite possible that these sensors generate alarms when the device is very close to an imminent 
failure, and no possible intervention (at that stage) can prevent the failure and/or subsequent 
disruption from occurring. PMUs are becoming popular in the US power grid. As per the NASPI 
report [37], 2,800 PMUs have already been installed in North America by 2014. The numbers will 
be much higher now. PMUs provide time-synchronized measurements of voltage and current 
phasors at the time-scale of 30 to 60 samples per second [38]. The use of intelligent electronic 
devices (IEDs) in monitoring the health of power system equipment was first demonstrated by 
Jones et al. in [39]. The IEDs used for that analysis were PMUs, which provide voltage and current 
measurements at the locations where they are placed. Most prior research work on health 
monitoring carried out using PMUs has been directed towards improving the security/stability of 
the BPS [40]-[42]. A sudden failure of LPTs may considerably worsen power system 
security/stability; therefore, real-time health monitoring of LPTs is a task worth undertaking. The 
main question that is asked in this task of the PSERC project is as follows: can PMU measurements 
capture the deteriorating health of an LPT in advance? To answer this question, we need to first 
address the following issues: 

• Since PMUs provide both magnitude and angle information, it is not clear how inferences 
drawn from voltage magnitudes in Volts/kilo Volts or current magnitudes in Amperes/kilo 
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Amperes can be compared with those drawn from angles in degrees/radians. Thus, there is a need 
of a metric which is independent of the unit of the measured quantity.   

• PMU data quality can be affected by equipment lying in the vicinity of the PMU. Therefore, 
one needs to identify the equipment which is the unique cause for PMU-data quality degradation. 
To circumvent this problem, we have used a mathematical technique called Discriminating Code, 
which is a modification of the more well-known Identifying Code concept [43], [44]. 

The proposed research addressed all the above-mentioned needs. The salient contributions of this 
research are: (1) first documented research exploiting role of PMU measurements in LPT health 
assessment; (2) first time use of Discriminating Code to solve a power system engineering 
problem; (3) validating proposed algorithm with field data.  

2.2.1 Background of Avondale LPT failure 

During the early morning hours of June 1, 2016, a large power transformer at the 500/230 kV 
substation in Avondale, Arizona, caught fire, leading to the burning of 27,000-gallons of mineral 
oil [35]. Due to system redundancy as well as low load conditions, no power outage occurred. For 
the analysis done here, SRP provided real PMU data for a two-year period for the 500-kV and 
230-kV substations located close to the Avondale substation. The primary objective of the analysis 
was to investigate whether PMU measurements obtained from locations near to a power 
transformer could be utilized to make accurate predictions about any degradation in the health of 
the transformer before the failure actually happened.  

2.2.2 Robust metric for asset health indicator 

Most equipment failures build-up slowly over time; hence signs of an impending failure may be 
observable days before the actual failure occurs [39]. PMUs can act as sensors for LPT health 
monitoring, only if a suitable indicator/metric is found. Signal-to-noise (SNR) ratio is a classical 
statistical measure of the strength of the desirable components to the undesirable components 
present in a signal. Mathematically, SNR can be expressed as shown below.  

                                                𝑆𝑆𝑆𝑆𝑆𝑆 =  10𝑙𝑙𝑙𝑙𝑙𝑙 �𝜇𝜇
𝜎𝜎

�                                                                               (13) 

where, 𝜇𝜇 represents the mean and 𝜎𝜎 denotes the standard deviation of the signal. It must be noted 
that SNR is a relative metric. This is the reason why SNR can be applied to magnitude and angle 
signals independently. It was also observed in [39], that the variations in SNRs were better 
indicators of deteriorating equipment health than actual PMU measurements. Thus, in this research 
SNR of PMU measurements was considered for LPT health assessment and not raw 
measurements.  

The analysis done in this research is based on the real PMU data provided by SRP. PMU 
measurements from 10 substations located (S1-S10) up to an electrical distance of six hops from 
Z0 (Avondale substation) were collected. Three scenarios were considered to validate our 
hypothesis that the SNR of PMU measurements is a good indicator of equipment health, as 
described below: Scenario I: One year away from failure, Scenario II: One month away from 
failure, and Scenario III: On the day of failure. For each of the above scenarios, the SNR of the 
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PMU measurements from a substation that was close to the LPT of the Avondale substation was 
obtained. In our study, we refer that specific substation as 𝑆𝑆2. Fig. 2.6, Fig. 2.7, and Fig. 2.8 depict 
the variation of SNRs of the voltage magnitude obtained from the PMU at substation 𝑆𝑆2, for 
scenarios I, II, and III respectively. 

 
Fig. 2.6: SNR variations of PMU measurements (1 year away from failure) 

 
Fig. 2.7: SNR variations of PMU measurements (1 month away from failure) 

 
Fig. 2.8: SNR variations of PMU measurements (on the day of failure) 
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To analyze the rate of increase of the SNR bandwidth obtained from PMU measurements, it is 
important to quantify and compare the SNR bandwidth at different time-periods before the actual 
failure. In this research, we calculated the standard deviation of SNR over a given time window, 
for investigating how the SNR profile changes as an equipment moves toward an impending 
failure. Fig. 2.9 indicates that the standard deviation starts to increase from approximately 75 hours 
before failure. The standard deviation increases from 5 dB to 25 dB by the time of failure. In the 
figure, “𝑉𝑉𝑚𝑚𝑎𝑎”, “𝑉𝑉𝑚𝑚𝑏𝑏” and “𝑉𝑉𝑚𝑚𝑐𝑐” refers to the voltage magnitude for phases A, B, and C, 
respectively. The consistent increase of the SNR is an indication of the degradation of the 
equipment health. Moreover, (a) as all the three phases show a similar trend in their SNRs, the 
phenomenon is a three-phase event and not a single-phase event, and (b) as the SNR trends are 
consistent over a time-period ranging in hours (and not seconds or minutes), the phenomenon 
being captured is not a transient event.   

 
Fig. 2.9: Variations in the standard deviation of SNR (before a failure) at a substation which is two hops 

away from Avondale 

Fig. 2.10 plots the standard deviation of the SNR band after the failure had occurred. It is 
interesting to observe that as soon as the transformer at the Avondale substation had tripped, the 
standard deviation of the SNR band fell to its normal operating range. This observation provides 
additional justification that the SNR computed from the PMU measurements is a robust metric that 
can identify malfunctioning of a power system equipment. 

Next, it was investigated how the increase in the electrical distance (termed hop in this research) 
between a substation and the monitored equipment affects the standard deviation of the SNR 
variations. For this study, a time-period between 12:00 AM and 5 AM on June 1, 2016 was 
selected. It can be observed from Fig. 2.11 that for all three phases, a monotonic decrease in the 
standard deviation of SNR band of real component of current occurred with increasing distance 
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from the transformer that failed. Fig. 2.11 also indicates that the measurements obtained within 
three hops of the failing transformer (Z0) were better indicators than the substations that are further 
away. This is an important observation, because it confirms that the problem is located in the 
vicinity of Z0 and is not a system-wide event. 

 
Fig. 2.10: Variations in standard deviations of SNR (after failure) at a substation which is two hops away 

from Avondale substation 

 

 
Fig. 2.11: Variation in standard deviation of SNR band with electrical distance for real component of 

current on the day of transformer failure 
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2.2.3 Optimal sensor selection using Discriminating Code 

2.2.3.1 Theoretical background 

A given PMU device may be affected by different equipment lying in its vicinity. Therefore, 
research must be done to uniquely identify the equipment which is the primary cause of 
degradation in the quality of the PMU measurements. In other words, all the important power 
system equipment must be associated with a unique signature.  Identifying code is a mathematical 
abstraction that enables the unique detection of one or more objects of interest, by generating 
exclusive signatures for those objects [43]. The concept of Identifying Code would enable us to 
uniquely monitor every LPT.   

The simplest definition of the Identifying Code set problem is as follows: for any graph 𝐺𝐺 =
(𝑽𝑽, 𝑬𝑬), a vertex set 𝑽𝑽′ ⊆ 𝑽𝑽 is defined as the Identifying Code set (ICS) for the vertex set 𝑽𝑽, if ∀ 𝑣𝑣 ∈
𝑽𝑽, 𝑵𝑵+(𝑣𝑣) ∩ 𝑽𝑽′, is unique where, 𝑵𝑵+(𝑣𝑣) = 𝑣𝑣 ∪ 𝑵𝑵(𝑣𝑣), and 𝑵𝑵(𝑣𝑣) represents the set of nodes 
adjacent to 𝑣𝑣 in 𝐺𝐺 = (𝑽𝑽, 𝑬𝑬). The minimum Identifying Code set (MICS) problem finds the 
identifying code set of smallest cardinality. The Identifying Code set becomes useful if the 
objective is to uniquely monitor all the nodes in a graph. However, as our goal here is to uniquely 
monitor the health of LPTs only, the formulation of Identifying Code set problem must be 
modified. We now provide a definition of the modified version of the Identifying Code that is 
known as the Discriminating Code. Given a bipartite graph 𝐺𝐺 = (𝑽𝑽1 ∪ 𝑽𝑽2, 𝑬𝑬), for any vertex 𝑣𝑣 ∈
𝑽𝑽1, a subset 𝑽𝑽2

′ ⊆ 𝑽𝑽2 is called the Discriminating Code of 𝐺𝐺, if  ∀𝑣𝑣 ∈ 𝑽𝑽1, 𝑵𝑵(𝑣𝑣) ∩ 𝑽𝑽2
′is unique. 

This is explained with an example. For the power system we consider that the set 𝑽𝑽1 contain the 
transformers and the set 𝑽𝑽2 contain the buses. 𝑽𝑽2

′  is the subset of the set 𝑽𝑽2 where the sensors are 
to be placed, such that all the transformers contained in the set 𝑽𝑽1 are uniquely observed. The set 
𝑵𝑵(𝑣𝑣) ∩ 𝑽𝑽2

′refer to the set of PMUs observing any transformer 𝑣𝑣 ∈ 𝑽𝑽1. The objective of the 
Discriminating Code problem is to find the minimum set of vertices 𝑽𝑽2

′  for which 𝑵𝑵(𝑣𝑣) ∩ 𝑽𝑽2
′is 

unique for any transformer 𝑣𝑣 contained in the set 𝑽𝑽1. The mathematical formulation of the 
Discriminating Code set problem and its application to the LPT health monitoring is described as 
follows. 

2.2.3.2 Mathematical formulation 

Monitoring of critical equipment (MCE) problem: For the power system graph, let 𝑽𝑽𝟏𝟏 denotes the 
set of critical equipment (namely, LPTs) and 𝑽𝑽𝟐𝟐 denotes the set of buses. 𝑽𝑽𝟐𝟐

′  is the subset of set 
𝑽𝑽𝟐𝟐, where sensors must be placed, such that all the critical equipment contained in 𝑽𝑽𝟏𝟏 are uniquely 
observed. Further, 𝑵𝑵(𝒗𝒗) ∩ 𝑽𝑽𝟐𝟐

′  refers to the set of PMUs observing any critical equipment 𝒗𝒗 ∈ 𝑽𝑽𝟏𝟏. 
Then, the objective of the monitoring of critical equipment (MCE) problem is to find out the 
minimum set of vertices, 𝑽𝑽𝟐𝟐

′ , for which 𝑵𝑵(𝒗𝒗) ∩ 𝑽𝑽𝟐𝟐
′  is unique for any critical equipment 𝒗𝒗 ∈ 𝑽𝑽𝟏𝟏. 

An ILP formulation to solve the MCE problem is now described.  

Let a binary variable 𝑥𝑥𝑖𝑖 be associated with every node 𝑣𝑣𝑖𝑖 ∈ 𝑽𝑽2, such that,  

                                                   𝑥𝑥𝑖𝑖 = � 1,       if a PMU is placed at node vi
    0,                  otherwise                                                     (14) 
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The objective function is formulated as shown below: 

                                                     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑥𝑥𝑖𝑖
∀𝑣𝑣𝑖𝑖∈𝑽𝑽2

                                                                        (15) 

The observability and the unique observability constraints are obtained from the two equations 
shown below respectively. 

                                          � 𝑥𝑥𝑖𝑖 ≥ 1
𝑣𝑣𝑖𝑖∈𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗�

 ∀𝑣𝑣𝑗𝑗 ∈ 𝑽𝑽1                                                                        (16) 

                                         � 𝑥𝑥𝑖𝑖 ≥ 1
𝑣𝑣𝑖𝑖∈{𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗�⨁𝑵𝑵𝒌𝒌(𝑣𝑣𝑙𝑙)}

         ∀𝑣𝑣𝑗𝑗 ≠ 𝑣𝑣𝑙𝑙  ∈ 𝑽𝑽1                                            (17) 

In equations (16) and (17),  𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗� denotes the neighborhood of bus 𝑣𝑣𝑗𝑗  within an electrical 
distance of 𝑘𝑘 hops. In (17), 𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗�⨁𝑵𝑵𝒌𝒌(𝑣𝑣𝑙𝑙) denotes the symmetric difference operation of the 
node sets 𝑵𝑵𝒌𝒌(𝑣𝑣𝑗𝑗) and 𝑵𝑵𝒌𝒌(𝑣𝑣𝑙𝑙). It may be noted that the objective function ensures that the fewest 
number of nodes in 𝑽𝑽2 are installed with a PMU. The observability constraint ensures that every 
node in 𝑽𝑽1 receives at least one signature via the PMUs installed in 𝑽𝑽2. A consequence of the 
observability constraint is that a node in 𝑽𝑽1 may receive more than one signature from the PMUs 
installed at the nodes in 𝑽𝑽2. The unique observability constraint ensures that, for every pair of 
nodes (𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑙𝑙) in 𝑽𝑽1, at least one node in the node set 𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗�⨁𝑵𝑵𝒌𝒌(𝑣𝑣𝑙𝑙) ⊆ 𝑽𝑽2 is associated with a 
PMU. This guarantees that 𝑣𝑣𝑗𝑗  and 𝑣𝑣𝑙𝑙 will not have same identifying signature. 

Augmented monitoring of critical equipment (AMCE) problem: It must be noted that the MCE 
problem determined the locations where the sensors can be placed for unique monitoring of the 
LPTs, assuming that no sensors were initially present in the system. We now propose an enhanced 
variant of the MCE problem, called the augmented monitoring of critical equipment (AMCE) 
problem, which accounts for the presence of pre-existing sensors (or PMUs) in the network. It can 
be formally stated as follows. Given a bipartite graph 𝐺𝐺 = (𝑽𝑽1 ∪ 𝑽𝑽2, 𝑬𝑬) and a set 𝑽𝑽2

′ ⊆ 𝑽𝑽2, 
determine the smallest subset 𝑽𝑽2

′′ ⊆ 𝑽𝑽2, such that, ∀𝑣𝑣 ∈ 𝑽𝑽1, 𝑁𝑁𝑘𝑘(𝑣𝑣) ∩ 𝑽𝑽2
′′′ is unique; where 𝑵𝑵𝑘𝑘(𝑣𝑣) 

represents the 𝑘𝑘-hop neighbors of 𝑣𝑣, and 𝑽𝑽2
′′′ = 𝑽𝑽2

′ ∪ 𝑽𝑽2
′′. In the AMCE problem, we consider that 

a certain number of PMUs, present in 𝑽𝑽2
′ , have been pre-installed at some of the buses in the 

system. Our goal is to determine the smallest subset of 𝑽𝑽2, which when augmented with 𝑽𝑽2
′ , can 

uniquely monitor the nodes in 𝑽𝑽1. An ILP formulation to solve the AMCE problem is now 
described. 

Let a binary variable 𝑥𝑥𝑖𝑖 be associated with every node 𝑣𝑣𝑖𝑖 ∈ 𝑽𝑽2, such that, 

                                                   𝑥𝑥𝑖𝑖 = � 1,       if a PMU is placed at node vi
    0,                  otherwise                                                     (18) 

The objective function is stated as follows: 

                                                       𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � 𝑥𝑥𝑖𝑖
∀𝑣𝑣𝑖𝑖∈𝑽𝑽2

                                                                     (19) 

The observability, unique-observability and the pre-installed sensor location constraints are 
obtained from (20), (21) and (22). 
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                                         � 𝑥𝑥𝑖𝑖 ≥ 1
𝑣𝑣𝑖𝑖∈𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗�

 ∀𝑣𝑣𝑗𝑗 ∈ 𝑽𝑽1                                                                               (20) 

                                         � 𝑥𝑥𝑖𝑖 ≥ 1
𝑣𝑣𝑖𝑖∈{𝑵𝑵𝒌𝒌�𝑣𝑣𝑗𝑗�⨁𝑵𝑵𝒌𝒌(𝑣𝑣𝑙𝑙)}

         ∀𝑣𝑣𝑗𝑗 ≠ 𝑣𝑣𝑙𝑙  ∈ 𝑽𝑽1                                             (21) 

                                            ∀𝑥𝑥𝑖𝑖 ∈ 𝑽𝑽2
′ , 𝑥𝑥𝑖𝑖 = 1                                                                                             (22) 

The constraints with (20) and (21) are the same as those in the MCE problem. The constraint 
specified in (22) accounts for the sensors already placed in the network. 

2.2.3.3 Performance evaluation of Discriminating Code 

This section presents the results of the Discriminating Code set problem on the IEEE standard test 
systems (IEEE 14, 30 and 118-bus systems), and very large power systems (2,383-bus Polish, 
2,603-bus SRP, and 22,978-bus Western Electricity Coordinating Council (WECC) systems). 
Studies were conducted for 𝑘𝑘 = 1,2,3. The application of the Discriminating Code set problem to 
the power system is described in detail using the IEEE 14-bus test system shown in Fig. 2.12. There 
were 5 LPTs and 40 potential sensor locations. This is based on the assumption that the PMUs are 
of the dual-use line relay (DULR) type, which are placed on buses and monitor either ends of the 
branches of the power network [32]. It is found that for 𝑘𝑘 = 3, the 5 LPTs can be monitored by 3 
sensors. In Fig. 2.12, for 𝑘𝑘 = 3 if the 3 selected sensors are located at nodes B6, B8, and B11 (or, 
three colors 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶 are injected at these nodes), transformers T1 through T5 will receive unique 
signatures 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐵𝐵, and 𝐵𝐵𝐵𝐵, respectively. The fact that every transformer of the IEEE 14-
bus system receives a unique signature, is of great practical significance, because in such a case 
the degrading quality of every LPT could be uniquely determined by the sensors monitoring them.  

 
Fig. 2.12: Discriminating code result of the IEEE 14 bus system 
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The sensor selection results for the IEEE test-systems and the three large power systems are shown 
in Table 3.1,  for the MCE problem. For all the systems, it is observed that the number of sensors 
(𝑆𝑆) required to monitor all the LPTs is less than or equal to the number of LPTs. Fig. 2.11 showed 
that there is minimal difference between the nature of variations of standard deviations of the SNR 
bands at substations S3 and S4, which are two and three-hops away, respectively from Z0. 
Therefore, it is suitable to consider 𝑘𝑘 = 3 in the proposed formulation for the selection of sensors, 
which results in a significant reduction in the number of sensors required. For example, with 𝑘𝑘 =
3, for the WECC system, the number of sensors required to monitor all the LPTs is approximately 
40% lesser than that required for 𝑘𝑘 = 1. GUROBI for python was used to solve the mathematical 
formulation described in Section 3 for the six power networks. An Intel Core i5-6300HQ CPU 
with 2.30 GHz and 32 GB RAM was used for performing the different simulations. The time taken 
to solve the MCE problem was 0.17 seconds for the smallest test systems (14-bus system, 𝑘𝑘 = 1) 
and 392 seconds for the largest test system (22,978-bus system, 𝑘𝑘 = 3). The results indicate that 
the proposed formulation can be successfully applied to real-world power systems. 

Table 2.5 shows the results obtained for the AMCE problem. Pre-existing PMUs were assumed to 
be placed on the highest voltage buses of the system that were also close to the large generators. 
The results can be explained as follows: for the 22,978-bus system, for 𝑘𝑘 = 3, the minimum 
number of additional sensors (AS) required to uniquely monitor all the LPTs is 4,397; the 
corresponding CPU time was also reasonable (=457 seconds).  

Table 2.4:  Results for the MCE problem 

System #Transformer 𝑺𝑺𝒌𝒌=𝟏𝟏 𝑺𝑺𝒌𝒌=𝟐𝟐 𝑺𝑺𝒌𝒌=𝟑𝟑 
IEEE 14-bus 5 4 3 3 
IEEE 30-bus 7 6 4 4 
IEEE 118-bus 9 9 5 5 

Polish 2383-bus 155 155 106 76 
SRP 2603-bus 1145 1145 756 595 

WECC 22978-bus 8999 8999 6020 5127 
 

Table 2.5: Results for the AMCE problem 

System #Transformer 𝑨𝑨𝑨𝑨𝒌𝒌=𝟏𝟏 𝑨𝑨𝑺𝑺𝒌𝒌=𝟐𝟐 𝑨𝑨𝑨𝑨𝒌𝒌=𝟑𝟑 
IEEE 14-bus 5 4 2 2 
IEEE 30-bus 7 6 4 2 
IEEE 118-bus 9 6 2 3 

Polish 2383-bus 155 139 95 66 
SRP 2603-bus 1145 664 478 393 

WECC 22978-bus 8999 7189 5289 4397 
 

2.2.3.4 Summary of the findings 

A novel approach for monitoring and predicting the health of LPTs by utilizing PMU 
measurements from substations was proposed. The studies were based on an actual power 
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transformer failure that occurred in the transmission network of a large power utility in the US 
Southwest. By enhancing an existing sensor selection approach, a new technique called the 
Discriminating Code technique was developed to appropriately select and augment the sensors 
which might be already deployed in the network to uniquely monitor the health of LPTs. In the 
future, we plan to investigate whether, (i) the proposed approach can be used to classify the health 
status of critical equipment into normal, alert, or alarm categories, (ii) one can perform 
identification of events when one or more sensors are malfunctioning, and (iii) inferences obtained 
from PMU measurements compare favorably with those obtained from other sensors.  



26 

3. PMU based power system cyber-protection applications 

3.1 Task 2.1: PMU-based load prediction and monitoring 

One of the goals of this project is to create a realistic synthetic test system that can be used to 
verify the performance of the proposed PMU-based applications as well as to test cyber-attacks 
and countermeasures. One of the crucial aspects in designing a testbed that can be used to observe 
system behaviors at PMU sampling speeds is to accurately model the behavior of the system loads. 
In fact, not considering faults or other such unpredictable events, the dynamics of a system are 
governed by the variation of loads over time and how the generators respond to such changes. In 
this section we describe a data-driven algorithm for the generation of synthetic, bus-level, time-
series load data at 30 samples per second that can be used on any system model. The approach we 
adopted in this section is mainly based on the work described in [44]. In that paper, we have 
presented a data-driven algorithm that can be used to learn the spatial and temporal correlation 
from a dataset of real system loads and use the learnt model to generate new synthetic data that 
retains the same characteristics. Fig. 3.1 presents a diagram illustrating the main blocks of the 
algorithm and the required input data. Given real time-series load data, a matrix factorization 
technique called singular value decomposition (SVD) is used to identify and extract typical load 
patterns from the data, each describing different load behaviors over time. Moreover, based on the 
system topology, it is possible to study how the relationship between different loads is influenced 
by their geographical location. After learning these characteristics from the real data, synthetic but 
realistic load profiles can be generated for a new system taking into consideration its topology. 
The time series data for each new bus is created by taking combinations of the typical patterns 
learnt from the real loads and adjusting them to reflect the same spatial correlation observed in the 
real system. 

 
Fig. 3.1: Synthetic load generation scheme 
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In [44], this approach is demonstrated on SCADA based hourly load data. In this report, we provide 
the details on how this technique was used on PMU data at 30 samples per second. Salt River 
Project (SRP), a power utility in Arizona, provided us with one-week worth of PMU data for a 
group of neighboring substations. As illustrated in Fig. 3.2, from the voltage and current 
measurements of each bus and line, it is possible to compute the net load of a substation. From the 
data available to us, we were able to calculate the loads of two different substations, one at the 
500-kV level and one at 230-kV level. 
 

 
Fig. 3.2: Estimating a load from a PMU 

Each of the two data streams (230-kV load and 500-kV load) were analyzed independently in 
accordance with the following six-step procedure: 

1)  The time-series load data for one consecutive week is broken into segments of length of 
10 minutes; this results in around 1,008 segments. Each segment contains: 30 samples/sec×60 
sec/min×10 min=18,000 samples. The segments are then stacked to form the load matrix 𝑷𝑷 ∈
ℝ𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏×𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏. 

2) The load matrix 𝑷𝑷 is factorized using singular value decomposition: 𝑷𝑷 = 𝑼𝑼𝚺𝚺𝑽𝑽𝑻𝑻. The rows 
of 𝑽𝑽𝑻𝑻, which are vector of size 1×18,000 samples, correspond to archetypal temporal profiles. 
Each element of the diagonal matrix 𝚺𝚺, called a singular value, represents a scale factor which 
multiplies each corresponding temporal profile. Moreover, because the singular values are ordered 
by magnitude, they give an indication of the relative importance of each temporal profile. The 
synthetic loads are generated by taking linear combinations of the first rows of 𝑽𝑽𝑻𝑻 (load basis). 

3) To determine the number of basis (or temporal profiles) to be used in the generative model 
it is useful to look at approximations of 𝑷𝑷, defined as 𝑷𝑷� = 𝑼𝑼𝒇𝒇 𝜮𝜮𝒇𝒇 𝑽𝑽𝒇𝒇𝑻𝑻, where 𝑼𝑼𝒇𝒇 indicates the first 
𝒇𝒇 columns of 𝑼𝑼, 𝚺𝚺𝒇𝒇 first 𝒇𝒇 columns and 𝒇𝒇 rows of 𝚺𝚺, and 𝑽𝑽𝒇𝒇 first 𝒇𝒇 columns of 𝑽𝑽. By varying the 
value of 𝒇𝒇 (corresponding to the number of basis to be used) in steps of 1 and measuring the root 
mean square error (RMSE) between 𝑷𝑷 and 𝑷𝑷� we have determined an appropriate number of base 
temporal profiles to be used by the generative model. In Fig. 3.3 the error is plotted as a function 
of the number of basis used. It can be seen that the error decreases rapidly up to 𝒇𝒇=10 and then it 
slowly reaches zero when all the basis are used. For this reason, we used the first 10 temporal 
profiles in our generative model.  
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4) Having identified some typical temporal load patterns, a new load profile can be created 
by generating a vector of coefficients and multiplying it by the set of base profiles contained in 𝑽𝑽. 
To compute these new coefficients, we need to learn the distribution of the coefficients in the 
original data (e.g. the first 10 columns of 𝑼𝑼). Using the MATLAB distribution fitter app, a 
Gaussian distribution if fitted to each column of 𝑼𝑼. 

5) A new matrix of load profiles for 𝒏𝒏 buses is generated as: 𝑷𝑷𝒏𝒏𝒏𝒏𝒏𝒏 = 𝑼𝑼𝒏𝒏𝒏𝒏𝒏𝒏
𝟏𝟏𝟏𝟏  𝜮𝜮𝟏𝟏𝟏𝟏 𝑽𝑽𝟏𝟏𝟏𝟏𝑻𝑻, where 

𝑷𝑷𝐧𝐧𝐧𝐧𝐧𝐧 is a n×18,000, 𝑼𝑼𝒏𝒏𝒏𝒏𝒏𝒏
𝟏𝟏𝟏𝟏  is a n×10 matrix of coefficients randomly sampled from the distributions 

learnt in step 4, 𝜮𝜮𝟏𝟏𝟏𝟏 and  𝑽𝑽𝟏𝟏𝟏𝟏𝑻𝑻 represent the first 10 singular values and first 10 temporal profiles 
respectively. 

6) To account for the spatial correlation which exists between neighboring loads, the model 
is modified as 𝑷𝑷𝒏𝒏𝒏𝒏𝒏𝒏 = (𝑫𝑫𝑼𝑼𝒏𝒏𝒏𝒏𝒏𝒏)𝜮𝜮𝑽𝑽𝑻𝑻 = 𝑼𝑼𝐧𝐧𝐧𝐧𝐧𝐧

′ 𝜮𝜮𝑽𝑽𝑻𝑻, where each entry 𝒅𝒅𝒊𝒊,𝒋𝒋 of 𝑫𝑫 is as follows: 

                         𝒅𝒅𝒊𝒊,𝒋𝒋 = �
𝟏𝟏,                       𝐢𝐢𝐢𝐢  𝐢𝐢 = 𝐣𝐣                              
𝒆𝒆−𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝒕𝒕𝒊𝒊,𝒋𝒋 ,         𝐢𝐢𝐢𝐢 𝐝𝐝𝐝𝐝𝐝𝐝𝐭𝐭𝐢𝐢,𝐣𝐣 ≤ 𝟑𝟑 𝐚𝐚𝐚𝐚𝐚𝐚   𝐢𝐢 ≠ 𝐣𝐣 
𝟎𝟎,                      𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨                        

              (𝟐𝟐𝟐𝟐) 

Where, 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑖𝑖,𝑗𝑗 is the distance in hops between bus 𝑖𝑖 and bus 𝑗𝑗. Overall, this relation was 
experimentally determined in [44] and was adapted to the system for which we designed the 
synthetic loads. This step ensures that neighboring buses have higher correlation compared to loads 
which are further apart. Fig. 3.3 shows the results of applying this correction factor to the 
generative model. In particular, these plots represent the average and percentiles of the correlation 
coefficient as a function of the distance between buses. The plot on the left shows these statistics 
for the real data: as expected, the closer two buses (small distance) the more similar the load 
profiles are (correlation coefficient close to 1). The center and right plots represent the correlation 
in the synthetic data we generated with and without applying the correction factor 𝑫𝑫; when the 
spatial correlation is not considered, the distance-dependence is lost.  

The process described above was used to generate individual load profiles for 10 minutes for the 
loads in the IEEE 118-bus system. Fig. 3.4 depicts the synthetic load profiles generated for two 
adjacent loads (at buses 93 and 94). It can be seen that they show a similar pattern over a period 
of 10 minutes, due to strong spatial correlation. Fig. 3.5 depicts a sample load profile at bus 15 
which is far away from the buses 93 and 94. As expected, due to weaker spatial correlation between 
far away buses, the load profile at bus 15 is very different from the load profiles at buses 93 or 94.   

 
Fig. 3.3: Statistics of the correlation coefficients between load profiles as a function of the distance 

between buses 
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Fig. 3.4: Example load profiles for two neighboring buses 

 
Fig. 3.5: Example of load profile at a bus which is far away from buses 93 and 94 
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3.2 Assessing vulnerability of PMUs to cyber-attacks 

3.2.1 False data injection (FDI) attacks and low rank detector 

PMUs have been widely deployed in the electric power system to directly measure the bus voltages 
and phase angles. Due to their high sampling rate and accuracy, PMUs have the potential to play 
a significant role in real-time power system state estimation (SE), dynamic security assessment, 
system protection, and system awareness. Several incidents have demonstrated that the cyber layer 
of power system is vulnerable to cyberattacks that impact the system operation status and lead to 
serious physical consequences. As increasingly important monitoring devices, PMUs are also 
prone to cyber-attacks. Therefore, it is crucial to evaluate the vulnerability of PMUs to potential 
cyber-attacks.  

False data injection (FDI) attacks are a type of cyber-attacks which involve an intelligent attacker 
who replaces a subset of measurements with counterfeits. We focus on the sub-class of 
unobservable attacks which render the false data unobservable to the operator. PMU data collected 
at each time instance is given by 𝒛𝒛 = 𝑯𝑯𝑯𝑯 + 𝒆𝒆, where 𝒛𝒛 is the PMU measurement vector consisting 
of the complex voltage measurements at PMU buses and current measurements on all branches 
connected to these buses, H is the measurement state dependency matrix, and 𝒆𝒆 is the PMU 
measurement error vector. As the PMU measurements are all linearly related to the states, the least 
square solution to this problem is given by 𝒙𝒙� = 𝑯𝑯+𝑧𝑧, where 𝑯𝑯+ is the pseudo-inverse of 𝑯𝑯. A 
conventional residual-based bad data detector (BDD) performs 𝜒𝜒2-test on the measurement 
residual 𝒓𝒓 = 𝒛𝒛 − 𝑯𝑯𝒙𝒙� to detect bad data. In an FDI attack, an attacker may replace 𝒛𝒛 with   𝒛𝒛� = 𝒛𝒛 +
𝒂𝒂 = 𝑯𝑯(𝒙𝒙� + 𝒄𝒄), where 𝒂𝒂 and 𝒄𝒄 are measurement and state attack vectors, respectively, so that the 
resulting residual matrix remains unchanged, and the attack is undetected. 

However, by representing PMU time-series data as matrix 𝒁𝒁 whose rows are PMU measurements 
(voltage and current) at each time instant and given the high data rate of PMUs (typically 30 
samples/sec), 𝒁𝒁 is low rank. The low-rank nature of such a measurement matrix allows for a new 
detection mechanism. The authors in [46]-[48] propose a new attack detection scheme based on 
low-rank decomposition (LD) to detect and identify column sparse FDI attacks on PMU data. 
Assuming an attacker can change the output of a subset of all PMUs in the system, it can launch 
an attack 𝒁𝒁� = 𝒁𝒁 + 𝑫𝑫 where 𝑫𝑫 is column sparse. One natural way to form a column sparse 
measurement matrix is through a column sparse state (complex voltage) matrix 𝑪𝑪 such that 𝒁𝒁� =
𝒁𝒁 + 𝑫𝑫 = (𝑿𝑿 + 𝑪𝑪)𝑯𝑯𝑻𝑻, where 𝑿𝑿 is the state matrix. 

The proposed LD detector uses an optimization problem to identify the attack matrix as shown in  
Fig. 3.6. In particular, given a measurement matrix 𝒁𝒁�(𝐿𝐿𝐿𝐿) and the attack-free measurement matrix 
𝒁𝒁(𝐿𝐿𝐿𝐿), the attack matrix 𝑪𝑪(𝐿𝐿𝐿𝐿) can be found by solving the following convex optimization problem: 

min
𝒁𝒁(𝐿𝐿𝐿𝐿) ∈ ℂ𝑁𝑁×𝑛𝑛𝑧𝑧 , 𝑪𝑪(𝐿𝐿𝐿𝐿) ∈ ℂ𝑁𝑁×𝑛𝑛𝑏𝑏  

�𝒁𝒁(𝐿𝐿𝐿𝐿)�
∗

+ 𝜆𝜆�𝑪𝑪(𝐿𝐿𝐿𝐿)�
1,2

                                         (24) 

subject to 𝒁𝒁�(𝐿𝐿𝐿𝐿) = 𝒁𝒁(𝐿𝐿𝐿𝐿) + 𝑪𝑪(𝐿𝐿𝐿𝐿)𝑯𝑯� 𝑇𝑇         (25) 
where �𝒁𝒁(𝐿𝐿𝐿𝐿)�

∗
 is the nuclear norm of 𝒁𝒁(𝐿𝐿𝐿𝐿); �𝑪𝑪(𝐿𝐿𝐿𝐿)�

1,2
 is the 𝑙𝑙1,2-norm of 𝑪𝑪(𝐿𝐿𝐿𝐿), i.e., the sum of 

𝑙𝑙2-norm of columns of 𝑪𝑪(𝐿𝐿𝐿𝐿); 𝜆𝜆 is a weight factor; and 𝑯𝑯�  is the normalized dependency matrix, 
where for each row vector 𝑯𝑯𝑖𝑖, 𝑯𝑯� 𝑖𝑖 = 𝑯𝑯𝑖𝑖/‖𝑯𝑯𝑖𝑖‖. The objective is to minimize the rank 
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of 𝒁𝒁∗(𝐿𝐿𝐿𝐿) (captured by its nuclear norm) and the column sparsity of 𝑪𝑪∗(𝐿𝐿𝐿𝐿) (captured by its 𝑙𝑙1,2-
norm). After obtaining the optimal solution, �𝒁𝒁∗(𝐿𝐿𝐿𝐿), 𝑪𝑪∗(𝐿𝐿𝐿𝐿)�, the set of attacked measurements 
and states, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑪𝑪∗(𝐿𝐿𝐿𝐿)𝑯𝑯� 𝑇𝑇� and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑪𝑪∗(𝐿𝐿𝐿𝐿)�, respectively, can be identified as the column 
support of 𝑪𝑪∗(𝐿𝐿𝐿𝐿)𝑯𝑯� 𝑇𝑇 and 𝑪𝑪∗(𝐿𝐿𝐿𝐿). Assume there exists unobservable attacks in 𝒁𝒁�(𝐿𝐿𝐿𝐿), such that 
𝒁𝒁�(𝐿𝐿𝐿𝐿) = 𝒁𝒁 + 𝑪𝑪𝑯𝑯� 𝑇𝑇. The authors prove that for a specific range of 𝜆𝜆, the optimization in (24), (25) 
can successfully identify 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑪𝑪), i.e.,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑪𝑪∗(𝐿𝐿𝐿𝐿)� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑪𝑪), under the assumption that 
every nonzero column of 𝑪𝑪𝑯𝑯� 𝑇𝑇 does not lie in the column space of 𝒁𝒁. In the next sections we 
introduce two new classes of FDI attacks that cannot be detected by the LD detector and we prove 
that the LD detector can either detect no attack, or incorrectly identify attacked states. 

 
Fig. 3.6: The low-rank decomposition detector 

3.2.2 FDI attacks exploiting low-rank property of PMU measurement matrix 

In this section, we describe a convex optimization problem that allows an attacker with knowledge 
of the time correlation of the PMU data to design FDI attacks that can bypass the LD detector. We 
assume that the attacker has the following knowledge and capabilities: 

1) The attacker has full system topology information 
2) The attacker can perfectly predict the measurements in the following N instances 
3) The attacker has control of the measurements in a subset 𝑆𝑆 of the network 

Given a PMU measurement matrix 𝒁𝒁 and the potential attacked states 𝓘𝓘, we propose the following 
optimization problem to design FDI attacks: 

                                                    subject to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑪𝑪) ⊆ 𝓘𝓘                                                                    (26) 

where ‖∙‖∗ denotes the nuclear norm. For optimal solution 𝑪𝑪∗, the optimal post-attack 
measurement matrix denoted as 𝒁𝒁�∗ can be written as 

𝒁𝒁�∗ = 𝒁𝒁 + 𝑪𝑪∗𝑯𝑯� 𝑇𝑇         (27) 
The goal of the attacker is to ensure that the attacked measurement matrix 𝒁𝒁�∗ is low-rank when 𝒁𝒁 
is low-rank. This can be approximated by minimizing the nuclear norm of 𝒁𝒁�∗ as in (26). Constraint 
(27) ensures that the attacker can only attack states in 𝓘𝓘, i.e., 𝑪𝑪∗ is a column-sparse matrix. 
Moreover, we prove that either 𝒁𝒁�∗ bypasses the LD detector, or the LD detector identifies at least 
one measurement as corrupted which is actually not corrupt. This can be described by the following 
theorem. 
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Theorem 2: Assume the attack-free measurement matrix 𝒁𝒁 can bypass the LD detector, i.e., for 
𝒁𝒁�(𝐿𝐿𝐿𝐿) = 𝒁𝒁, �𝒁𝒁∗(𝐿𝐿𝐿𝐿), 𝑪𝑪∗(𝐿𝐿𝐿𝐿)� = (𝒁𝒁, 0). Assume the solution 𝑪𝑪∗of (26)-(27) is non-zero. Then, using 
𝒁𝒁�∗in the LD detector, the resulting 𝑪𝑪∗(𝐿𝐿𝐿𝐿) satisfies that either 𝑪𝑪∗(𝐿𝐿𝐿𝐿) = 0, or 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑪𝑪∗(𝐿𝐿𝐿𝐿)� ⊈
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑪𝑪∗). 
 
The efficacy of this attack model is verified by designing unobservable FDI attacks using the 
proposed optimization problem and verifying that they are not detected by the LD detector. The 
test systems used are the IEEE 24-bus reliability test system (RTS) and the IEEE 118-bus system. 
For testing purposes, we generated synthetic PMU-data over 5 seconds in each test system and 
modeled a sudden load increase to simulate a disturbance. The resulting synthetic measurements 
are illustrated in Fig. 3.7.  

 
Fig. 3.7 Current magnitudes of synthetic PMU data 

For every attack that we tested, the LD detector is completely bypassed; the statistic results are 
summarized in Fig. 3.8 and Table 3.1 for the IEEE 24-bus system. From these results, it can be 
seen that for every attack we tested, ‖𝒁𝒁�∗‖∗ ≤  ‖𝒁𝒁‖∗ always holds. Additionally, in Fig. 3.8 we also 
find that for the IEEE 24-bus system, ‖𝒁𝒁�∗‖∗ gradually decreases as the number of attacked states 
increases.  
 
In conclusion, we showed that an intelligently designed attack can bypass the LD detector, if the 
attacker captures the temporal correlation of the measurement matrix 𝒁𝒁. Assuming an attacker can 
predict the measurements in a certain length of time, it can design an attack optimization problem 
that minimizes the rank of the post-attack measurement matrix, while fixing the column support 
of the attack matrix 𝑪𝑪. 
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Fig. 3.8: Statistic results of ‖𝒁𝒁�∗‖∗ in the IEEE 24-bus system 

Table 3.1: Statistic results of ‖𝒁𝒁�∗‖∗ in the IEEE 24-bus system 

 

3.2.3 Rank preserving multiplicative attacks that can bypass the LD detector 

The underlying assumption for LD detector to work is that an attack will violate the low-rank 
nature of the PMU measurement matrix 𝒁𝒁. Therefore, attacks that preserves the rank of 𝒁𝒁 can 
potentially avoid detection by the LD detector. To this end, we introduce a class of rank preserving 
multiplicative FDI attack. The false measurement matrix resulting from this class of attack is given 
by 

                                                      𝒁𝒁� = 𝑿𝑿𝑿𝑿𝑯𝑯𝑻𝑻 = 𝑿𝑿𝑯𝑯𝑻𝑻 + 𝑪𝑪𝑯𝑯𝑻𝑻                                                         (28) 
and the resulting additive attack matrix is given by  

                                                   𝑪𝑪 = 𝑿𝑿(𝑭𝑭 − 𝑰𝑰)                                                                                   (29) 
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Note that multiplicative attacks do not change the rank of 𝒁𝒁, but the resulting nuclear norm may 
change. Thus, theoretically LD detector is still possible to detect these attacks as it uses the nuclear 
norm as a proxy for rank.  

We now illustrate the efficacy of the multiplicative FDI attacks by applying the LD detector on 
the false measurement matrix 𝒁𝒁�. We assume that the LD detector selects 5 seconds worth of PMU 
measurement data, while the attacker continuously injects bad data. 𝜆𝜆 is chosen to be 1.05 in the 
LD detector. The test system is the IEEE RTS-24-bus system. An optimal PMU placement 
problem as introduced in [49] is solved to ensure the system is fully observable with PMUs. The 
details of the PMU placement scheme and available measurements are illustrated in Fig. 3.9. Buses 
in red are buses with PMUs. We generate synthetic PMU data over 5 seconds in the test system. 
A base case of the system operating status is obtained by solving an AC optimal power flow 
problem. To model realistic data with a disturbance, at the first time instant 𝑡𝑡 after 1 second, we 
change the load at each bus by adding a random value 𝑑𝑑 to the base load. We then solve an AC 
power flow to obtain the measured phasors of bus voltage and branch current as measurements at 
time instant 𝑡𝑡. The singular values for the synthetic measurement matrices are illustrated in Fig. 
3.10. It can be seen that these synthetic measurements have the same low-rank property as the 
actual PMU data as illustrated in [47]. Furthermore, we assume noiseless measurements.  

 
Fig. 3.9: PMU placement scheme in IEEE RTS 24-bus system 
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Fig. 3.10: Singular values of the synthetic PMU data matrix in decreasing order 

We focus on unobservable 1-sparse multiplicative attacks and illustrate our results using two 
specific cases. One case illustrates that no attacks are detected, and the other case illustrates that 
attacks are detected at incorrect buses. To change the state at bus 𝑏𝑏, the entries of the attack matrix 
𝑭𝑭 are set to be, 

                                                𝐹𝐹𝑖𝑖𝑖𝑖 = �
1, 𝑖𝑖 = 𝑗𝑗 ≠ 𝑏𝑏
𝑐𝑐, 𝑖𝑖 = 𝑗𝑗 = 𝑏𝑏
0,                𝑖𝑖 ≠ 𝑗𝑗

                                                                          (30) 

Clearly, 𝑭𝑭 is a diagonal matrix, and hence has full rank.  
Fig. 3.11(a) illustrates the detection result when there is no attack. Fig. 3.11(b) illustrates the attack 
detection result for an attack on bus 4. 𝑭𝑭 is constructed with 𝑏𝑏 = 4 and 𝑐𝑐 = 𝑒𝑒𝑗𝑗0.2. Compare these 
two subfigures, we conclude that the LD detector fails to detect the attack at bus 4. Fig. 3.11(c) 
illustrates the attack detection result for an attack on bus 16. 𝑭𝑭 is constructed with 𝑏𝑏 = 16 and 𝑐𝑐 =
𝑒𝑒𝑗𝑗0.3. The LD detector incorrectly detects that buses 18, 21, and 22 are under attack. 
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Fig. 3.11: Normalized 𝑙𝑙2-norm of each column of 𝐶̂𝐶∗ under (a) no attack; (b) attack at bus 4; (c) attack at 

bus 16 

A comparison of the 𝑙𝑙1,2-norm of 𝑪𝑪�∗ with no attack and with the attack at bus 4 for 𝜆𝜆 = [1.05, 1.5] 
is illustrated in Fig. 3.12. It can be seen that the ||𝑪𝑪�∗||1,2 with and without this attack are very 
similar. Intuitively, this attack cannot be detected by the LD detector, and our result in Fig. 3.11(b) 
supports such intuition.  
 

 
Fig. 3.12: 𝑙𝑙1,2-norm of 𝐶̂𝐶∗ under no attack and attack at bus 4 for different 𝜆𝜆 
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3.2.4 Predictive filters to capture temporal correlation of the PMU measurements 

As shown in the previous section, FDI attacks can be created to be unobservable to the residual 
based BDD. However, given the high sampling rate of PMUs, one would expect the PMU 
measurements to be highly correlated in time, because the power system is unlikely to have 
dramatic changes in such short time period under normal operating conditions. Therefore, a 
detector that takes into consideration the temporal correlations of the PMU measurements may be 
able to detect such “unobservable” FDI attacks. One way to do this is to have a predictive filter 
that accurately predicts the PMU measurements. This filter flags anomaly if the difference between 
measured value and predicted value is larger than a threshold, which is often the case when an FDI 
attack is launched. The authors of [23] investigated the temporal correlation in the PMU data to 
find the relationship between consecutive measurements. They proved that for loads changing at 
a constant power factor, the real and imaginary components of the voltage phasor follow a 
quadratic trajectory. Under this condition, voltage at a future step can be predicted using the 
present and the past states as shown in (31). 

                                       𝑉𝑉𝑥𝑥,𝑦𝑦
′ (𝑛𝑛 + 1) = 3𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛) − 3𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 − 1) + 𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 − 2)                                       (31) 

In (31), 𝑉𝑉𝑥𝑥,𝑦𝑦 denotes the actual value of complex voltage, 𝑉𝑉𝑥𝑥,𝑦𝑦
′  denotes the predicted value of the 

complex voltage at the future time instant (𝑛𝑛 + 1). The present and past states are denoted by  𝑛𝑛 −
𝑖𝑖, ∀𝑖𝑖 ∈ {0,1,2}. Since the future state is predicted by utilizing the knowledge of the three prior 
states, the algorithm was named “three-sample quadratic prediction algorithm (TSQPA)”. 
Considering that  𝑉𝑉𝑥𝑥,𝑦𝑦

′(𝑛𝑛 + 1) and 𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 + 1)  are the predicted and actual value of the voltage 
phasor at the (𝑛𝑛 + 1)𝑡𝑡ℎ time instant, an observation residual (𝑅𝑅𝑥𝑥,𝑦𝑦) in real and imaginary 
components can be obtained as follows: 

                                          𝑅𝑅𝑥𝑥,𝑦𝑦(𝑛𝑛 + 1) = 𝑉𝑉𝑥𝑥,𝑦𝑦
′(𝑛𝑛 + 1) − 𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 + 1)                                              (32) 

A change in the observation residual 𝑅𝑅 would be considered an anomaly due to a cyber-attack. 
This prediction technique is actually a third order FIR filter and can be used as an anomaly detector 
to detect unobservable FDI attacks that are suddenly injected in PMU measurements. 
Data-driven five-sample predictive (FSP) filter: Based on the real PMU measurements, a moving 
window linear regression is performed to learn the best coefficients of a five-sample predictive 
filter. This predictive filter is given by 

𝑉𝑉𝑥𝑥,𝑦𝑦
′(𝑛𝑛 + 1) = 0.9186𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛) + 0.0196𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 − 1) + 0.0438𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 − 2) 

                                                     +0.0058𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 − 3) + 0.0122𝑉𝑉𝑥𝑥,𝑦𝑦(𝑛𝑛 − 4)                        (33) 

3.2.5 Gradually ramping unobservable FDI attacks 

Sudden attacks may be easily detected by predictive filters because the attack magnitude often has 
to be sufficiently large, in order to cause severe consequences on the system. Thus, to avoid 
detection by predictive filters, the attacker may gradually increase the attack magnitude, so that at 
each time step, the increase in PMU measurements is sufficiently small. Consequently, the 
differences between the predicted measurements and the attacked measurements are also small.  
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Assume that the power system performs DC optimal power flow (OPF) every five minutes, using 
the states estimated by PMU-based linear state estimation (LSE) at that time. A malicious attacker 
can inject intelligently designed unobservable FDI attacks into the system, to spoof the LSE to 
estimate fake states, and subsequently, fake loads. The generation re-dispatch (which might occur 
in 5 minutes intervals) based on the fake loads can cause overflows in the physical system. The 
attacker can either inject the false measurements at 𝑡𝑡 = 5 minutes, or gradually increase the attack 
magnitude from 𝑡𝑡 = 0 to 𝑡𝑡 = 5 minutes, so that the false measurements at 𝑡𝑡 = 5 minutes are the 
same under these two scenarios. 

The aim of the attacker is to cause physical overflows in the system. A bi-level optimization 
problem can be formulated to maximize the physical power flow on a target line, wherein the first 
level models the attacker’s capabilities and limitations, while the second level models the system 
response to the attack via DC OPF [50]. The output of this attack optimization problem is the state 
attack vector 𝒄𝒄. To create false measurements, it is assumed that the attacker has control of PMUs 
in a subgraph of the whole system, which can be constructed as described in [51]. The attacker 
first estimates the states in the subgraph and adds the attack vector 𝒄𝒄 to the voltage angles. Then, 
to ensure the estimated loads are zero at non-load buses, the attacker solves for the false states in 
the subgraph via Newton-Raphson method. Finally, the attacker computes the measurement attack 
vector 𝒂𝒂 in the subgraph based-on the false states and adds 𝒂𝒂 to the true measurements.  

In a sudden attack, the attacker injects the attack vector 𝒂𝒂 at any time instance between 𝑡𝑡 = 0 and 
𝑡𝑡 = 5 minutes. Such an attack may be easily detected by the aforementioned predictive filter, as 
there will be a big change between the two measurement values, so that the difference between 
predicted value and measurement value is large. Alternatively, the attacker may gradually ramp 
up the attack magnitude to avoid detection by predictive filters. Assume that at 𝑡𝑡 = 0, the attacker 
computes 𝒂𝒂, and it keeps increasing the measurement attack vector injected at each sample to reach 
the desired attack magnitude at 𝑡𝑡 = 5 minutes (sample number 9,000). Mathematically, the 
measurement attack vector at the PMU time sample 𝑛𝑛 is given by 𝑎𝑎𝑛𝑛 = 𝑛𝑛

9000
× 𝑎𝑎, 𝑛𝑛 =

1,2,3, … ,9000. Since the change caused by the attack between two consecutive samples are small, 
this attack can avoid detection by a predictive filter. 

3.2.6 Attack detection using predictive filters 

In this research, two types of cyber-attacks were designed: “sudden attacks” and “ramping 
attacks”. In the “sudden attack” situation, the voltage measurements were changed suddenly at the 
fifth minute. On the other hand, in the “ramping attack” case, the PMU measurements were 
changed gradually over a period of time. In this section, we investigate if such type of attacks can 
be detected by predictive filters, which investigates the temporal correlation of the PMU data to 
identify an anomaly.  

False measurements resulting from sudden and ramping attack, as well as attack-free 
measurements at two buses of the IEEE 118-bus system are illustrated in Fig. 3.13. It can be seen 
that the measurements of both attack strategies were identical after 5 minutes (9,000 samples). Fig. 
3.13(a) shows a relatively large attack, where the attack magnitude on the real part of the voltage 
at bus 8 at the fifth minute was 0.0141 per unit, while Fig. 3.13(b) shows a small attack at bus 40 
where the attack magnitude to the real part of the voltage was merely 0.0017 per unit. 
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Fig. 3.13: Examples of false measurements at (a) bus 8, and (b) bus 40 

 
Fig. 3.14: Examples of false measurements at (a) bus 8, and (b) bus 40 
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Fig. 3.14 demonstrates the observation residues when applying the predictive filters on 
measurements with sudden attack. Both TSQPA and FSP gave a large residue at the fifth minute 
when the attack is injected, indicating that they were both able to detect sudden attacks. Moreover, 
they could detect both the attacks at bus 8 and at bus 40, even though the attack magnitude at bus 
40 was much smaller. Fig. 3.15 illustrates the observation residues obtained by applying predictive 
filters on measurements with ramping attack. The residues did not increase because the attack 
magnitude at each time instant was too small. These observations indicate that gradually ramping 
attacks can avoid detection by the selected predictive filters. Fig. 3.16 illustrates the observation 
residues obtained by applying predictive filters on measurements with ramping attack. The 
residues did not increase because the attack magnitude at each time instant was too small. These 
observations indicate that gradually ramping attacks can avoid detection by the selected predictive 
filter. 

 

 
Fig. 3.15: Sudden attack detected by predictive filters 
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Fig. 3.16: Ramping attack undetected by predictive filters 
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4. Task 3: PMU based power system control application 

4.1 Background: PMU based voltage stability assessment for stochastic systems 

The power flow equations define the instantaneous, equilibrium operating condition for a 
synchronous electric power grid, in terms of sinusoidal bus (node) voltages in phasor form. 
Derivation of these equations begins from basic, linear KCL current balance constraints imposed 
at each bus. However, they become nonlinear when current conservation is modified to power 
conservation, and generation and load demands are modeled as fixed power injections into or 
withdrawals from the network. Looking at the evolution of the equilibrium operating point, time 
varying changes in power demand and generator injections drive the system; the bus voltages 
evolve in response to these changes. Other electrical quantities such as branch currents are then 
simple linear functions of the bus voltages. Provided the quasi-static, near-equilibrium assumption 
remains valid, the power system can be viewed abstractly as a power flow solution engine, taking 
power injection variations as inputs, and “computing” bus voltage phasors as outputs.  
 
In its standard formulation, the power flow is a square mapping, with an equal number of input 
arguments (the power injections) and output results (in polar form, the magnitudes and angles of 
bus voltage phasors). A key assumption in our formulation is a separation of time scales in the 
driving inputs to this system. We view the load power variation at any bus as being decomposable 
into a sum of two parts. The first component represents the slowly varying bulk consumption, 
evolving on a time scale of 10’s of minutes to hours, and typically displaying nearly periodic 
behavior on the daily 24-hour cycle of human behavior. This relatively slowly varying component 
is dominant and has long been the focus of utility studies of time behavior of load. Indeed, in most 
utility operations, this slower evolution of load is very accurately predicted hours or days in 
advance of real-time operations and is referred to as the “load cycle.” However, both first 
principles and more detailed electrical measurements suggest that load demand must inevitably 
display faster time scale behavior also. Load demand at a bulk distribution bus aggregates the 
individual behavior of hundreds of thousands of individual power consuming devices, most of 
which display individual on-off behavior governed by human users or by control systems 
responding to very local environments. As a result, one may expect the fast behavior of load (time 
scale seconds or less) to display small magnitude random jump behavior, largely uncorrelated 
between locations, and smoothed by filtering inherently present in the electrical characteristics of 
transformers and other equipment in the distribution system. This random component of load is 
typically small in magnitude, with variance at a given bus no more than a few percent of the total 
bulk load at that location. However, a key premise in this project’s work emerges from this 
viewpoint: that the vector of driving inputs contains both a large signal component, that slowly 
move the operating point, and small-signal, randomly varying components, that persistently excite 
the system about its operating point.  
 
As is traditional in many branches of circuit analysis, this split of large-signal component and small 
signal component suggests the usefulness of linearized approximations. The nominal operating 
point is set by the large signal component, and the impact of the small signal component is analyzed 
via linearization about this (slowly varying) operating point. The power flow conditioning to be 
evaluated can then be interpreted as the conditioning of the linearization about the operating point, 
and this will in turn be slowly varying as the operating point evolves in time. In this context, the 
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linearization of interest will be represented by the familiar Jacobian of the power flow. To be 
precise, the proposed approach here will not seek to estimate the condition number of the power 
flow Jacobian, but rather a measure of its nearness to singularity, as reflected in the largest singular 
value of its inverse. 
 
Goal of the proposed method will be to consider the impact of such random load variations as 
driving terms in power balance equations for the electric grid. The “forward” power flow 
equations, linearized about an operating point can be written as shown in (34). Viewing the 
physical power system as a power flow solver, it is useful to invert this forward form, treating 
loads and power injections as inputs, and the output response being phasor angles and voltage 
magnitudes (as measured by PMUs). Rearranging (34) leads us to (35), which provides the desired 
input-output relationship. If the smallest singular value approaches zero, small variations in power 
have the potential to yield large response in bus voltage magnitude and angle variations; as noted 
earlier, such high sensitivity behavior is recognized as a precursor to voltage instability problems. 
Indeed, the smallest singular value of Jacobian matrix has been specifically proposed as an index 
of vulnerability voltage collapse [4], [5], [52], [53], [54], [55], [56]. 
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Traditional methods of power flow analysis often seek to exploit approximate decoupling between 
angle-active power, versus voltage magnitude-reactive power. Such decoupling approximation 
might suggest that with a goal of considering voltage stability, one might focus exclusively on the 
block of the Jacobian that characterizes sensitivity of reactive power to voltage magnitude. 
However, such a decoupling approximation has not been considered here, in part because systems 
under highly stressed operating conditions, for which risk of voltage instability may be most 
severe, are precisely those for which decoupling approximations may be least accurate. 

4.2 Model-free estimation of the power flow Jacobian’s smallest singular value 

In this project, a “model-free” method was considered, and practical aspects that impact the method 
were considered, such as base state selection, PMU data scaling, time window, and measurement 
noise removal and filtering using different algorithms. The fundamental concept of the proposed 
approach is to identify ill-conditioned operating conditions, which may serve as an indicator of 
vulnerability to voltage collapse. Since proposed algorithm seeks a model-free analysis, the 
available information will primarily be limited to voltage magnitudes and phase angles as could 
be measured via PMUs from the buses in the power system. Practical PMU measurement sets may 
also include bus power injections and demands, which can possibly be included. Under the 
simplified assumption of measurements, the goal of the proposed algorithm is simple: Estimate 
the major axis of the "ellipse” formed by the set of measurements and track how this quantity 
evolves in response to variations in grid operating conditions or network topology changes. The 
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algorithm employed to estimate the major axis is also quite simple, and is closely analogous to the 
use of SVD tools in other streaming data applications [56]: after subtracting a base state from the 
measured PMU data, and possible filtering/bad-data-correction, one constructs a sliding 
windowed array of the streaming data, up to the most recent measurement. For this array, one 
computes the largest (or several largest) singular value(s) and left singular vector(s) and assess 
voltage stability of the system and detect topology change in the system with this information. 
Investigation of base state, PMU data scaling, time window and computation efficiency are 
essential factors to make the proposed method feasible to our application. 

4.3 Jacobian conditioning and voltage stability assessment via PMU data 

The concepts described above suggest desirable features in an algorithm to identify ill-conditioned 
operating conditions, which in turn may serve as an indicator of vulnerability to voltage collapse. 
First, because we seek a “model free” analysis, we will limit the information available to the 
algorithm to be that of the output measurements only; i.e., the measured bus voltage phasor 
magnitudes and angles. In practice, this is likely restrictive, because practical PMU measurement 
sets may include some bus power injections and demands (inputs) also. These are not considered 
in the project work here. With the simplifying assumption of output measurements only, our 
conceptual goal is straightforward: estimate the length of the major axis of the “output” quantities 
of the inverse power flow (i.e., the voltage magnitudes and angles, in response to the input of active 
and reactive load variation), and track how this quantity changes in time. However, a number of 
implementation questions follow: (i) what is the “base case,” nominal point about which variation 
is being measured? (ii) how many sample output points are necessary to form an accurate estimate 
of the ellipse’s major axis? (iii) given a desired number/density of measurement points, how are 
they sampled in time? (iv) if one has the flexibility to select different possible measurement 
locations in the network, how should the measurement points be selected in “space” (i.e., which 
bus locations)? 
 
The algorithm developed here makes practical choices in regard to the questions above. First, with 
regard to selection of a base case about which variation is measured, our choice is dictated in part 
by the synthetic load cycle constructed for study. For each of the standard test power systems to 
follow, publicly available datasets specify a single vector of generation and load injections. Our 
approach was to treat such values as one “snapshot” in time along a 24-hour interval, and to 
synthesize for every bus a plausible 24-hour curve of power injection/load behavior. Clearly, the 
family of load curves that might be judged “plausible” is very large, and our selection reflects a 
highly subjective judgment as to what represented an interesting study case. However, once this 
vector valued time function (over the 24-hour interval) is selected, our choice of base case was 
quite simple: it was simply the power flow solution associated with the time point at which total 
load demand was minimum for power flow conditioning estimation, while it was the power flow 
solution with the predicted load demands at a given time point for topology change detection. 
 
In regard to questions (ii) and (iii) above, the choices made for the algorithm here are also 
influenced by specifics of the synthetic datasets generated to test the algorithm. Because of our 
focus on the evolution of the system toward operating conditions in which it may be vulnerable to 
voltage instability, rather than the final "collapse" of system with system state rapidly diverging 
from acceptable operation, the time scale of interest starts at seconds, rather than the 30 or 60 Hz 
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sampling rate of the PMUs. Therefore, for the synthetic computational studies to follow, we 
considered a number of scenarios in which measurements are down sampled to once per 10 
seconds (i.e., a 1/10th Hz rate). The output array of interest is then constructed as a sliding window, 
with each column representing a vector of reported measurements, running backward from the 
present (or from the “clock time” in the simulation), over an 8 minute and 40 second window (8 
minutes and 40 seconds representing 52 samples at 10 second intervals). Each one of these 
measurement vectors represents a set of deviations in bus voltage phase angles (in radians) and 
voltage magnitude (in per unit). As described above, the deviations are taken relative to a nominal 
set of angles and voltage magnitudes associated with a low load operating point for power flow 
conditioning estimation and predicted operating point for topology detection. Reflected in choice 
of the length of time interval, and correspondingly the number of sample measurements, are two 
competing requirements. From the geometric standpoint, one might like a very large number of 
measurements, to densely “fill” the output space ellipse whose major axis we are trying to estimate. 
However, weighing against too large a number of samples is the issue of time scale separation. 
One wants the time window interval to be sufficiently short, relative to the underlying 24-hour, 
“slow” variation of average load. Different samples (columns) within the window should reflect 
only random variation about an operating point, and hence, that operating point should remain 
nearly constant throughout the window interval. Finally, the point (iv) above represents, in 
practical terms, the selection of substation locations from which measurements are collected, in 
order to construct the sliding window data array described above. In the illustrative test cases to 
follow, we make a range of possible selections, from full measurement availability at every bus 
(unlikely in present-day implementations), to a more realistic selections of subsets representing 
much smaller percentage penetration of measurements.  
 
The proposed time varying, scalar measure of power flow conditioning is then obtained in a very 
simple fashion: it is computed as the largest singular value of the windowed array. For each step 
forward in time, the array is updated with one new column of measurements, the oldest column 
discarded, and the new largest singular value computed. Note that this computation was 
implemented by a power-method-like Lanzcos algorithm [57], [58], [59], [60]. Further 
computational efficiency may be gained by exploiting the rank one nature of the update at each 
time-step. The figure below shows the graphical description of sliding windowed PMU data 
matrix. The quantities ∆δ and ∆|V| denote the voltage phase angles and magnitudes after 
subtracting the base state and the subscript 𝑘𝑘 correspond to the 𝑘𝑘𝑡𝑡ℎ time point. The largest singular 
value of the PMU data array with time points from 1 to 𝑘𝑘𝑡𝑡ℎ instant is proposed as a means to 
estimate the largest singular value of the inverse power flow Jacobian corresponding to the 
operating point at the 𝑘𝑘𝑡𝑡ℎ time instant, and is therefore, also a measure of vulnerability to voltage 
instability at that time point. A premise of this work is that the time series of the largest singular 
values from PMU data matrix should be closely related to the time series of the largest singular 
value of the power flow Jacobian inverse matrix, as loads and injections change in time. As 
mentioned previously, the smallest singular value of the power flow Jacobian has been utilized as 
an indicator of vulnerability of a system to voltage collapse. If the smallest singular value of the 
power flow Jacobian can be reliably estimated from the PMU data matrix, this provides a real-
time indicator of system stress without the need of network parameter values or state estimator 
results. 
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Fig. 4.1: Construction of PMU Data Matrix (from which singular values of interest are computed) 

To verify the hypothesized relationship of largest singular value of the analytic inverse Jacobian 
matrix (as might be computed in off-line studies) and that of PMU data matrix, a simple least 
square error is used.  In test cases to follow, for which system data is available to compute the 
operating point and the power flow Jacobian, its inverse can be computed with full knowledge of 
power system model, load demands, and power injections. One can then compute the classic 
voltage stability index of smallest singular value of the power flow Jacobian directly. This can 
then be benchmarked against the measurement-based estimate computed “model free,” from the 
PMU data matrix. For this comparison, system states at each bus are also computed with the full 
knowledge of power system model, load demands, and power injections and the computed states 
can be used as synthetic PMU measurements. The new voltage stability index, the largest singular 
value of PMU data array, computed from only the synthetic PMU measurements, can then be 
compared to the voltage stability index from the analytically computed power flow Jacobian 
inverse. 
 
PMU data matrix should be closely related to the time series of the largest singular value of the 
power flow Jacobian inverse matrix, as loads and injections change in time. As mentioned 
previously, the smallest singular value of the power flow Jacobian has been utilized as an indicator 
of vulnerability of a system to voltage collapse. If the smallest singular value of the power flow 
Jacobian can be reliably estimated from the PMU data matrix, this provides a real-time indicator 
of system stress without the need of network parameter values or state estimator results. 

To quantify the relationship of largest singular value of the analytic inverse Jacobian matrix (as 
might be computed in off-line studies) and that of PMU data matrix, a simple least square error 
LSE over an affine fit is used. In test cases for which system data is available to compute the 
operating point and the power flow Jacobian, its inverse can be computed with full knowledge of 
power system model, load demands, and power injections. The Jacobian matrix is able to provide 
voltage stability index as discussed previously. We then can benchmark the largest singular value 
of power flow Jacobian inverse and singular vectors associated with the largest singular values as 
the accurate voltage stability index under the full knowledge of power system model, load 
demands, and power injections. For this comparison, system states at each bus are also computed 
with the full knowledge of power system model, load demands, and power injections and the 
computed states can be used as “pseudo-PMU measurements”. The new voltage stability index, 
which is the largest singular value of PMU data array, will be compared with the voltage stability 
index from the analytically computed power flow Jacobian inverse. 
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Fig. 4.2 and Fig. 4.3 below provide this benchmark comparison for numerical computations 
performed using data from the IEEE 14-bus and IEEE 300-bus test systems. To understand the 
plots provided, it is first important to understand that a synthetic 24-hour load curve is considered 
for each test system, with load and operating point updated every 10 seconds across the 24-hour 
study period (hence the horizontal time axis represents 8,640 operating points).  For IEEE 14-bus 
system, system loads were varied from the operating point provided as the standard base case, 
using a uniform scaling to create a peak load 1.6 times the base.  Generation is likewise uniformly 
scaled to follow load, with a distributed slack allocating increase in system losses across multiple 
generators. For the IEEE 300-bus system, where the base case load was judged to represent a 
relatively more heavily loaded condition, the synthetic load curve uniformly varied system loads 
and generation over a range from a minimum of 0.25 times base-case, to a peak of 1.05 times the 
base case.  We wish to stress our judgment that the exact degree of “realism” in the synthetic load 
curve is not critical in this test, as long as the system is exercised across a significant range of 
system “stress” at each operating point. The “true” largest singular value of the power flow 
Jacobian inverse is computed next. The measurement-based voltage stability metric, which is the 
largest singular values computed from the synthetic PMU data matrix, is allowed two degrees of 
freedom for data fit.  In particular, we use a small number of training points, out of the 8,640 points 
of the day, the reader may think of it as a short training period shortly after 12 am to identify two 
parameters.  These are a dc-offset, and a normalization/scaling factor, between the true Jacobian 
based largest singular value, and the measurement based largest singular value.  The graphs 
illustrate the two quantities over the 8,640 operating points of the 24-hour day.  The “full system 
information” Jacobian-based singular values, and the PMU measurement-based singular values 
behave nearly identically in the 14-bus test system (see Fig. 4.2) and show very good agreement in 
the 300-bus test system (see Fig. 4.3). 

 
Fig. 4.2: Quality of fit between Inverse Jacobian-based largest singular value versus PMU measurement-

based largest singular value, IEEE 14-bus test case 
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Fig. 4.3: Quality of fit between inverse Jacobian-based largest singular value versus PMU measurement-

based largest singular value, IEEE 300 bus test case 

4.4 Selection of window length for the PMU data matrix 

The length of time window employed in the SVD calculation here may be considered from two 
perspectives, if one allows for the possibility of different PMU reporting rates (or down sampling, 
as was done for our prior numerical examples): one may consider either the “absolute” time-period 
spanned by the window, in physical units of seconds, or simply the number of time points in the 
window; i.e. the number of samples. Choice of the time window length for the SVD calculation 
presents natural trade-offs. A long window length may be expected to provide more dependable 
estimation of the “major axis” of the PMU measurements, when these are viewed as output data 
from the power systems mapping from input of load variation. However, a long window, with 
commensurate larger matrix dimension, imposes higher computational cost for the SVD. For 
sufficiently large matrices, with limited computational resources, this computation time delay 
might impede near-real-time display of system vulnerability to voltage instability (which is, of 
course, the whole point of this method). However, the method assumes that the load “inputs” 
randomly vary around an operating point to excite the system. Therefore, too small a window 
length may fail to excite the system response adequately, over a range of input directions, and 
thereby fail to capture the maximum singular value direction.  
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An attractive method to consider the issue of “sufficient excitation” is to consider the dimension 
of the space spanned by the columns of the PMU data matrix; i.e., the PMU data matrix rank.  This 
rank must ultimately saturate once a sufficient number of columns are included. One may 
hypothesize that for any dominant phenomenon of interest the rank of the PMU-data matrix is 
reasonably low. This low-rank property of the PMU-data matrix would saturate the inclusion of a 
modest number of columns, yielding a computationally tractable SVD computation. From the 
perspective of the voltage instability measure, our premise would be that after some number of 
measurement samples are included, additional samples do not add significant new information to 
estimate the voltage instability metric. This class of problem is widely recognized in the literature, 
and determining threshold of interest (here, the number of columns that impact the rank) is often 
termed the “main dimension.” One approach to characterizing the main dimension computes the 
least number of components of normalized left singular vector such that the sum of squares of 
these components is greater than a predetermined threshold value, say 𝜇𝜇. In keeping with our 
hypothesis above, for the numerical examples examined here, the main dimension proves to be 
relatively small relative to the overall dimension of the measurement vector; i.e., many 
components of the normalized left singular vectors are essentially zero.  Fig. 4.4, Fig. 4.5, and Fig. 
4.6 below display numeric results of the PMU-data matrix rank versus length of time window, 
plotted with four different choices of numeric threshold in the rank test (the horizontal axes show 
number of time sample points, and hence number of columns in the data matrix).  

 
Fig. 4.4: Synthetic PMU Data Matrix rank versus window length, IEEE 14 bus example 

(note: 26 measurements considered, and hence rank is upper bounded by 26) 
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Fig. 4.5: Synthetic PMU Data Matrix rank versus window length, IEEE 118 bus example 

(note: 234 measurements considered, and hence rank is upper bounded by 234) 

 
Fig. 4.6: Synthetic PMU Data Matrix rank versus window length, IEEE 300-bus example (note: 598 

measurements considered, and hence rank is upper bounded by 598) 
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Interestingly, in our numerical experiments in this project using data from the IEEE 14, 118, and 
300-bus systems, a larger number of components of the singular vector associated with voltage 
phase-angle is intended to play a role in the main dimension, relative to those components 
associated with voltage magnitude. We hypothesize that this is in keeping with voltage-reactive 
behavior being more localized in power systems, and hence fewer voltage magnitude components 
of the singular vector contribute to the main dimension. Also, our numerical experience indicates 
that the main dimension remains largely invariant over families of operating points, with load 
varying over a wide range. This observation further reinforces the premise that the main dimension 
identifies a useful intrinsic property in PMU datasets. 

The main dimension computation is closely related to a problem that has been considered in other 
researchers work on PMU datasets, that of identifying core subspaces. In [60] the authors 
examined the 𝒎𝒎 principal components of covariance matrix of PMU data, where 𝒎𝒎 preserves the 
cumulative covariance. Both the work of [60] and the research conducted in this project indicate 
that the significant information content in PMU-data is relatively sparse. The threshold measuring 
significant information-content is set relatively “loosely” (i.e., one does not set the numeric 
threshold for rank too small). 

4.5 Computational experiments using a measurement-based voltage stability metric 

As mentioned above, the benchmark against which the method is compared is the established 
voltage stability metric of the largest singular value of the power flow Jacobian inverse, or 
equivalently, the inverse of the smallest singular value of the Jacobian.  The numerical experiments 
reported below provide further experience using the comparisons described earlier; i.e., we employ 
synthetic examples in which the full network information is known and compute a large number 
of quasi-steady state operating point over some time window using synthetic load curves. The 
quality of the PMU measurement-based computation is judged by the accuracy with which it 
matches the singular value computed from full system information, using the power-flow Jacobian. 
 
The load curves for studies here are constructed as the sum of two processes: slowly varying 
deterministic process and fast stochastic process. Even though the slowly varying load demand is 
not truly deterministic, utilities are typically able to accurately estimate the slowly varying load 
demands due to daily, seasonal, or annual cycles of human activity. Fast stochastic process in the 
load demands is from the millions of customer devices, switching on and off. Here, Ornstein-
Uhlenbeck process has been used to model the load demand over 24- hour period; slowly varying 
deterministic process in the load demand is simply represented as peak at noon and lowest at 
midnight. For the stochastic process, the parameters, mean reverting rate and volatility, from the 
literature [61],[62],[63] are used with some modifications according to time-scale of interest.  

The IEEE 118-bus system is considered first; from the base case data associated with this test case, 
variations in its load curve are hypothesized for each bus over a 24-hour period, with corresponding 
generation redispatch, and the pseudo-PMU data is generated over this time interval. As discussed 
previously, the exact hours of the day at which the load curve reaches minimum and maximum are 
not relevant for the test being performed here; hence for simplicity, the slowly varying 
deterministic process is assumed to have its peak at noon, and its minimum at midnight. The 
random process parameters, the mean reverting rate and the volatility, in Ornstein-Uhlenbeck 
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process that represent stochastic process follow [61],[64]. The window size for the PMU data array 
in IEEE 118-bus system is 52 data samples, whose time interval is 8 minutes 40 seconds using a 
0.1 Hz data sampling rate. From the pseudo-PMU data, the largest singular value of a windowed 
array of the data is computed and compared to the largest singular value of the inverse power flow 
Jacobian at each time step/operating point. The first set of results are displayed in Fig. 4.7 below, 
for a load curve representing a relatively lightly loaded case. Again, applying a fixed offset and 
scaling, the data derived measure and the power flow Jacobian inverse-based measure show very 
close agreement.   

 
Fig. 4.7: Largest Singular Value: Inverse Jacobian-based versus PMU Measurement-Based 

IEEE 118 Bus System, Lightly Loaded Case 

A second analysis is performed in the IEEE 118-bus example, but with a load curve that represents 
considerably more heavily loaded operating conditions. When system is very heavily loaded, the 
correlation between largest singular values from PMU data array and power flow Jacobian inverse 
does degrade slightly. Fig. 4.8 below shows that the accuracy of the proposed measure is slightly 
degraded in heavily loaded IEEE 118-bus system (i.e., the load curve employed for this example 
has higher values at each hour than that employed in the prior example). Although the correlation 
is not as exact as the system with lightly loaded condition, there still exist very strong correlations 
between the two measures. Because of the strong correlation of largest singular value of the 
Jacobian inverse, and that of the measurement array, both off-line system study and simpler 
engineering judgment can offer insight into selection of a voltage instability threshold. For IEEE 
118-bus system case shown in Fig. 4.8, the system loses its steady-state solution (to within the 
computational accuracy of a full Newton-Raphson power flow computation) at a loading level one 
step beyond which the largest singular value of the power flow Jacobian inverse is equal to 7.402. 
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The corresponding largest singular value of PMU data array is 48.11, and the loading level is 2.514 
times that of the nominal operating point. This type of off-line study provides a method for 
selecting an appropriate threshold for our proposed measure. This observation confirms that even 
the method here will not be completely “model free” some limited amount of off-line, model-based 
study to perform the affine fit between the largest singular value of the power flow Jacobian 
inverse, and the largest singular value of the PMU data matrix. However, once that affine fit is 
established, on-line computation of the largest singular value of the PMU data matrix then provides 
an estimate for the largest singular value for the power flow Jacobian inverse, without any on-line 
calculation of that Jacobian. 

 
Fig. 4.8: Largest Singular Value: Inverse Jacobian-based versus PMU Measurement-Based 

IEEE 118 Bus System, Heavily Loaded Case 

As an alternative method to select a maximum acceptable threshold below which the system is to 
be judged secure against voltage instability, recall the interpretation of largest singular value as 
approximating the maximum 2-norm gain of the power flow solution operator. Suppose one 
identifies a maximum credible deviation of load (∆P, ∆Q) (as measured in 2-norm), and a 
maximum acceptable deviation in the power flow solution quantities (∆δ, ∆V) (again, as measured 
in 2-norm). The ratio between these determines a worst-case allowable sensitivity of the power 
flow solution to changes in load; the largest singular value of the power flow Jacobian inverse is 
precisely this worst-case sensitivity. For the illustrative example in the IEEE 118-bus system here, 
our selection of a threshold of 6 has the engineering interpretation as a bound on the maximum 
ratio allowed between the load variation (in per unit) and power solution variation (in radian angle 
and per unit voltage magnitude). Again, the reader is reminded that the actual quantity calculated 
on-line will be the “model-free” PMU data matrix’s largest singular value, which in this example 
would have a corresponding threshold of 40. 
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As a somewhat larger study case, analogous computations were applied to a time sequence of 
operating points generated over hypothetical 24-hour pattern of load and generation variation for 
the IEEE 300-bus system. The window size for the PMU data array is 52 data samples, whose time 
interval is 8 minutes 40 seconds using 0.1 Hz data sampling rate. The outcome is displayed in the 
Fig. 4.9 below. In IEEE 300-bus system, the data fit is less exact that in the previous cases. We 
hypothesize that some of the differences is inherent to comparing the linearized information of the 
Jacobian inverse to the full nonlinear behavior of the power flow. In particular, the 300-bus test 
case had the property that a number of generators reach reactive power limits at high load levels. 
In typical power flow studies, this represents a change in the constitutive relations for the 
generator’s reactive power/voltage magnitude behavior, which would imply a discontinuity in 
some terms of the power flow Jacobian as discussed previously. For the studies here, we adopted 
a smoothed approximation to avoid the discontinuity in the Jacobian. None-the-less, in the vicinity 
of operating points at which some generators encounter reactive limits, it is reasonable to assume 
that the linearized approximation to the power flow becomes less accurate and may account for 
some of the discrepancy between the pseudo-measurement-based singular value result, versus that 
based on the Jacobian inverse. While the researchers do not claim that the results here are 
comprehensive enough to verify this premise, one might argue that the measurement-based 
measure could prove a better indication of the conditioning of an operating point. 

 
Fig. 4.9: Largest Singular Value: Inverse Jacobian-based versus PMU Measurement-Based 

IEEE 300 Bus System 
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Fig. 4.10: Impact of PMU Data Down-Sampling on Singular Value Estimate 

4.6 Cleaning PMU measurements for voltage stability applications 

One drawback of the studies above, because they are performed on synthetic system data, is their 
inability to consider non-ideal, real-world effects of PMU data quality. The quality of PMU 
measurement data is an important factor in the performance of various applications relying on the 
data and may have significant impact on resulting stability measures such as the voltage stability 
index considered here. Raw PMU data may contain high-frequency noise and other artifacts due 
to bad data and data dropouts that can adversely affect the performance of compression algorithms. 
An in-depth look at the possible sources of data corruption and their implications can be found in 
[4]. It has been widely reported in literature that filtering out high frequency noise and correcting 
for bad and missing data is either a necessity or a preferred step in many applications. The specific 
quality requirements and the approaches for achieving those will vary based on the application. 
For the voltage stability analysis proposed in this work, the following schemes are being employed: 
(a) eliminating high frequency noise using a low-pass filter, and (b) discarding measurements with 
very high noise content. These schemes are designed by first analyzing the spectral properties of 
noise present in real PMU data. 

4.7 Characterizing noise in PMU measurement data 

To effectively identify and eliminate noise, it is important to recognize the nature and quantum of 
noise in a given measurement. While majority of the literature assumes noise in PMU data to be 
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Gaussian distributed [52], the authors of  [5] argue by analyzing real PMU measurements that the 
noise is unlikely to follow Gaussian distribution. Regardless of its distribution, it is useful to 
characterize noise in terms of its spectral content. shows the spectral characteristics of a noise 
signal using a periodogram. The noise signal is extracted from a real PMU voltage measurement 
by subtracting a filtered version of itself. From Fig. 4.11, it can be noted that the noise is 
characterized by a nearly flat profile in the power spectral density diagram. This knowledge is used 
to identify the range of noise frequencies while designing the low-pass filter. 

 
Fig. 4.11: Periodogram of noise in a voltage measurement 

4.8 Low-pass filtering of PMU data 

Designing a low-pass noise removal filter for voltage stability applications is an important task. 
Adequate care should be exercised to ensure that important information required for accurate 
detection by the algorithm are not eliminated or distorted by filtering. PMU measurements may 
contain a wide range of frequency information pertaining to disturbances caused by events in the 
power system. Fig. 4.12 shows the frequency ranges of different events and disturbances that can 
affect measurements. 
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Fig. 4.12: Frequencies of events and disturbances [53] 

High-frequency non-sinusoidal events are removed in the PMU itself by the anti-aliasing filter 
which limits the bandwidth of input signal. Furthermore, the PMU cannot accurately track the 
signals during the high-frequency transients. This is because the phasor estimation is performed 
on band-limited signals under the assumption of a quasi-steady-state, wherein the frequency is 
assumed to be at its nominal value. This non-trivial assumption significantly affects the accuracy 
of the PMU measurements during transients. The events that can be faithfully captured by the 
PMU are of fairly low frequency, like power swings. Inspecting the spectral properties of real 
PMU measurements also confirm that the noise content is of significantly higher frequency as 
compared to the phenomena of interest. This observation allows one to choose the cut-off 
frequency (𝑓𝑓𝑐𝑐) to be in the range of 2 - 10 Hz based on the nature of the data and the applications. 
 
In this work, the low-pass filter is implemented as a 30th order Hamming window-based filter 
with 𝑓𝑓𝑐𝑐  =  2 Hz, after examining the spectral properties of real PMU data used in the study. The 
information about important system dynamics are preserved while the noise is eliminated. Fig. 
4.13 shows the frequency response of the filter. The frequency response is characterized by 
reduced side-lobe magnitudes, which is a desirable feature for frequency-selective analysis. Fig. 
4.14 shows the application of the low-pass filter to a typical voltage measurement with noise. The 
spectral content of these signals is quantified using a periodogram. An inspection of the filtered 
signal and its periodogram confirms that the filtering has not altered dynamics of interest either in 
time-domain or frequency-domain. The filtering process may introduce additional artefacts like 
delays and spikes. It is assumed that their effects on compression are negligible and are not 
corrected for in this work. 

 
Fig. 4.13: Frequency response of a Hamming filter with 𝑓𝑓𝑐𝑐  =  2 Hz 
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Fig. 4.14: Filtering the noisy signal with low-pass filter (𝑓𝑓𝑐𝑐  =  2 Hz). Each periodogram corresponds to 

the signal above it 

4.9 Removing measurements with high noise content 

Real PMU measurements can sometimes be highly corrupted and noisy. This can occur due to 
faulty measuring apparatus, interference in the communication channel, etc. When a measured 
quantity has magnitude near zero, the noise can dominate the signal of interest. For example, active 
and reactive power measurements from a PMU monitoring a line carrying negligible power may 
be dominated by noise. In such cases, the filtering approach described above cannot satisfactorily 
remove the noise content. Tests performed using real PMU data show that the presence of such 
measurements adversely affect the SVD-based tests for voltage stability margin and may raise 
“false alarms”. Since the magnitude of the measurement is zero (or near zero) for the period of 
interest, the measurement can be temporarily removed from the dataset while performing the 
calculations. For this, it is required to quantify the noise in the signals and identify those 
measurements which are highly corrupted by noise.  
 
A long-standing approach for quantifying noise in signals examines the autocorrelation in the noisy 
signal. Autocorrelation of a random process quantifies the correlation between its values at 
different points in time as a function of the time difference. For a discrete signal 𝑥𝑥 of finite length 
𝑇𝑇, the autocorrelation coefficient 𝑅𝑅(𝜏𝜏) can be defined as a function of the delay 𝜏𝜏 as 
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                                        𝑅𝑅(𝜏𝜏)  =  
1
𝑇𝑇 ∑ (𝑥𝑥𝑡𝑡  −  𝑥̅𝑥)(𝑥𝑥𝑡𝑡+𝜏𝜏  −  𝑥̅𝑥)𝑇𝑇−𝜏𝜏

𝑡𝑡=1

𝜎𝜎𝑥𝑥
2                                                          (36) 

where 𝑥̅𝑥 and 𝜎𝜎𝑥𝑥
2 are the sample mean and sample variance of 𝑥𝑥, respectively. The autocorrelation 

coefficients have the following important properties: 
1. The autocorrelation function in (36) is an even function 
2. A maximum value of 𝑅𝑅(𝜏𝜏) occurs at 𝜏𝜏 =  0 
3. If 𝑥𝑥 is non-periodic and has zero mean, then lim

𝜏𝜏→∞
𝑅𝑅(𝜏𝜏)  =  0 

The last property can be exploited to quantify the noise content in signals. It can be observed that 
the rate at which 𝑅𝑅(𝜏𝜏) decays as 𝜏𝜏 → ∞ increases with higher noise content in the signal. This rate 
may be characterized by defining the half-life of autocorrelation as follows: 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≜  𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝜏𝜏 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑅𝑅(𝜏𝜏)
≤ 𝑅𝑅(0)                                                                                                                               (37) 

Fig. 4.15 shows an active power measurement for 10 minutes and its autocorrelation coefficients. 
The coefficients decay as 𝜏𝜏 increases. For this signal, the half-life can be identified as 297.95 
seconds (corresponding to 𝜏𝜏 =  17877). Fig. 4.16 shows an example of how the half-life can be 
used to identify measurements with high noise content. In the first signal, the magnitude of the 
measurement is nearly zero for the entire window considered. The autocorrelation coefficients 
reduce to small values very quickly, yielding a half-life of 0.05 seconds (corresponding to 𝜏𝜏 = 3). 
In the other two signals, despite the presence of noise, the half-life is much larger as compared to 
0.05 seconds. This significant separation in the half-life of signals can be used to identify and 
remove measurements with high noise content. 

 
Fig. 4.15: Autocorrelation coefficients of an active power measurement from real PMU data. The dashed 

lines identify the half-life 
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Fig. 4.16: Power measurements from different locations and the corresponding autocorrelation 

coefficients. The measurements are from real PMU data. 

A possible concern regarding the noise quantification procedure described in this manner is of 
ensuring that signals with electro-mechanical oscillations of interest are not being wrongly 
classified as noise. Dynamic data generated by simulating various transient events like series and 
shunt faults, and load drops has been examined and the half-life of their autocorrelations computed. 
The decay of 𝑅𝑅(𝜏𝜏) observed was very slow as compared to noisy signals in all studied cases. This 
is illustrated in Fig. 4.17 for the IEEE 39-bus test system. From the analysis performed, it is seen 
that the half-life test is able to discriminate between signals with high noise content and 
measurements corresponding to transients with large excursions in signal magnitude. 

 
Fig. 4.17: Autocorrelation coefficients of active power measurements from different buses. The 

measurements are synthesized by simulating a line outage in the IEEE 39-bus system. 
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5. Conclusions 

5.1 Research outcomes 

With respect to the synchrophasor based power system monitoring applications, this research has 
made unique contributions to power system islanding detection and online power system asset 
health monitoring scheme. The instrumentation channel errors present in PMU data can deteriorate 
the islanding detection accuracy significantly. The research has proposed a novel wide-area 
measurement-based power-system islanding detection scheme which is immune to 
instrumentation channel errors contained in practical PMU measurements. The unique research 
finding in this context is as follows: the cumulated sum of voltage phase angle difference 
(CUSPAD) obtained from a specific PMU device over a given time period cancels the effect of 
instrumentation channel errors present in PMU measurements. In the context of online-power 
system asset health monitoring scheme, this project has proposed a new PMU based real-time 
power system asset health monitoring algorithm. The research has found out that the signal-to-
noise (SNR) of PMU measurements is a robust metric to quantify equipment health. The bigger 
challenge was to identify the equipment (in the neighborhood of a PMU device) which is the cause 
of degradation in the quality of PMU measurements. Therefore, this research has also proposed an 
algorithm called the Discriminating Code to identify the equipment which is the unique cause of 
degradation of the measurement quality.   

The power system cyber-protection application of this project proposed a new data-driven 
algorithm for the generation of synthetic bus-level time series load data at 30 samples per second 
that can be used on any system model. The proposed data-driven model is unique in its way 
because it can be used to learn spatial and temporal correlations from a dataset of real system loads 
and use the learnt models to generate new synthetic data that retains the same characteristics. In 
addition, the vulnerability of PMUs to cyber-attacks has been thoroughly investigated in this 
project. It has been observed that predictive filters that exploit the temporal correlations in the 
PMU measurements can be used to detect a sudden cyber-attack launched on PMU data, that would 
previously remain undetected by conventional bad data detectors. However, a more intelligently 
designed ramping cyber-attack is more challenging to detect.  

With respect to the power system-based control application, the research conducted in this PSERC 
project proposed a measurement-based approach for power system voltage stability assessment.  
The metric employed was based on singular value decomposition (SVD). The research reviewed 
the underlying modeling assumptions for SVD-based voltage stability metric and described the 
data structure employed to organize the PMU measurements for computation of this metric. 
However, such measurement-based techniques can be largely affected by noise present in PMU 
data. Therefore, the research also focused on measurement filtering techniques adapted to this 
application. It described a novel method to identify “noise dominated” measurement channels that 
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contributed no useful information to the SVD calculation and are therefore candidates for removal 
from the measurement set.     

5.2 Future scope of work 

The following two future scopes of work have been identified for the research done in the course 
of this project. 

• PMU data is at times characterized by bad data (data dropouts, stale data) due to loss of GPS 
synchronization. In the presence of such biased PMU measurements, it becomes more 
challenging to detect the malfunctioning of an equipment from the measurements. As a scope 
of future work, such practical constraints will be addressed.  It is known that the PMU data has 
high spatio-temporal correlation. Machine learning techniques will be explored in the future 
research to learn the spatial and temporal correlation in PMU measurements for robust health 
prediction of power system equipment even in the presence of biased measurements. 

• This project has demonstrated that PMU devices are susceptible to cyber-attacks, especially 
when the attack is an intelligently ramping cyber-attack. Therefore, it extremely important to 
detect such type of cyber-attacks to improve the resiliency of the PMUs. Future research will 
be directed towards a robust detection algorithm for such type of cyber-attacks on PMU 
measurements. Application of machine learning techniques for detecting anomalies in PMU 
measurements will also be explored as a future scope of research.  
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6. Appendix 

6.1 Dynamic data of the Type-IV wind turbine generator in GE-PSLF 

The dynamic data that was used for the Type-IV wind turbine generator used in the GE-PSLF 

software is given as follows: 

• wt4g      Bus no.   "Bus name"    0.6  "1 " : #9  MVA  1.0000 10.000 0.9000/ 0.4000 1.2200 

1.2000 0.8000 0.4000 -1.300 0.7000  

• wt4e      Bus no.   "Bus name"    0.6  "1 " : #9 1.0000 0.1000 20.00 1.1000 / 

0.900  4000 -0.4000 0.0200 0.150 18.000 5.000 1.0000 0.0500 0.0500 1.2400 / 

0.901 1.2500 0.0000 1.700 1.600  

• wt4t     Bus no.   "Bus name"    0.6 "1 " : #9  0.0500 0.0800 0.1000 0.0800 / 

0.0 0.1000 -0.1000 

The controller gains for the wind turbine models are as below: 

• Controller gains for Wt4g:  

Kpp 0.08 PI controller proportional gain, p.u. 

Kip 0.10 PI controller integral gain, p.u 

• Controller gains for Wt4e:  

Kqi 0.1 Q control integral gain  

Kvi 12. V control integral gain 
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6.2 Modified 118-bus system with 10% wind penetration 

Bus data 

Bus Type V (p.u.) V(deg.) Bus Type V (p.u.) V(deg.) 
1 2 0.9705 -17.31 37 1 0.9919 -16.21 
2 1 0.9773 -16.64 38 1 0.9619 -11.05 
3 1 0.979 -16.37 39 1 0.9704 -19.59 
4 2 1.01 -12.7 40 2 0.97 -20.67 
5 1 1.0101 -12.21 41 1 0.9668 -21.12 
6 2 0.99 -14.79 42 2 0.985 -19.54 
7 1 0.9893 -15.23 43 1 0.9785 -16.73 
8 2 1.015 -7.2 44 1 0.985 -14.27 
9 1 1.0049 0.49 45 1 0.9867 -12.45 
10 2 0.9763 9.11 46 2 1.005 -9.65 
11 1 0.9887 -15.12 47 1 1.017 -7.43 
12 2 0.99 -15.58 48 1 1.0206 -8.21 
13 1 0.9711 -16.5 49 2 1.025 -7.21 
14 1 0.9836 -16.32 50 1 1.0213 -9.54 
15 2 0.97 -16.69 51 1 1.0153 -12.44 
16 1 0.9839 -15.92 52 1 1.0137 -13.46 
17 1 0.9951 -14.19 53 1 1.0253 -14.6 
18 2 0.973 -16.4 54 2 1.049 -14.01 
19 2 0.9631 -16.88 55 2 1.0346 -14.09 
20 1 0.956 -16.04 56 2 1.0368 -13.95 
21 1 0.9553 -14.47 57 1 1.0273 -12.48 
22 1 0.965 -11.93 58 1 1.0223 -13.36 
23 1 0.9927 -7 59 2 0.9862 -8.79 
24 2 0.992 -7.24 60 1 0.9932 -4.97 
25 2 1.027 0.23 61 2 0.995 -4.07 
26 2 1.015 1.97 62 2 0.998 -4.7 
27 2 0.968 -12.77 63 1 0.9692 -5.37 
28 1 0.9616 -14.46 64 1 0.9839 -3.58 
29 1 0.9632 -15.43 65 2 1.005 -0.38 
30 1 0.9854 -9.13 66 2 1.039 -0.51 
31 2 0.967 -15.3 67 1 1.0137 -3.23 
32 2 0.963 -13.28 68 1 1.0005 -0.47 
33 1 0.9715 -17.31 69 0 1.035 1.8 
34 2 0.9858 -16.67 70 2 1.0115 -5.94 
35 1 0.9807 -17.1 71 1 1.0008 -6.16 
36 2 0.98 -17.09 72 2 0.98 -7.14 
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Bus  Type V (p.u.) V(deg.) Bus Type V (p.u.) V(deg.) 
73  2 0.991 -6.22 113 2 0.993 -14.21 
74  2 1.0322 -7.65 114 1 0.9601 -13.63 
75  1 1.0072 -5.96 115 1 0.96 -13.64 
76  2 0.9701 -6.95 116 2 1.005 -0.92 
77  2 0.9853 -1.46 117 1 0.9738 -17.12 
78  1 0.9783 -1.71 118 1 0.9836 -6.85 
79  1 0.9757 -1.29     
80  1 0.9841 1.44     
280  1 0.9841 14.75     
380  2 1.04 27.34     
81  1 0.9749 0.31     
82  1 0.9709 -0.93     
83  1 0.972 0.21     
84  1 0.9757 2.63     
85  2 0.985 4.11     
86  1 0.9867 2.74     
87  2 1.015 3     
88  1 0.9874 7.25     
89  2 1.005 11.32     
90  2 0.985 4.91     
91  2 0.98 4.92     
92  2 0.99 5.46     
93  1 0.9803 2.51     
94  1 0.9802 0.4     
95  1 0.9647 -0.5     
96  1 0.9696 -0.54     
97  1 0.9719 0.05     
98  1 0.988 -0.55     
99  2 1.01 -1.35     
100  2 1.017 -0.38     
101  1 0.9914 1.22     
102  1 0.9891 3.94     
103  2 1.0007 -3.97     
104  2 0.971 -6.72     
105  2 0.966 -7.84     
106  1 0.9618 -8.09     
107  2 0.952 -10.88     
108  1 0.9668 -9.03     
109  1 0.9675 -9.48     
110  2 0.973 -10.32     
111  2 0.98 -8.67     
112  2 0.975 -13.42     
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Line Data 
 

From To R(p.u.) X(p.u.) B(p.u.) 
1 2 0.0303 0.0999 0.0254 
1 3 0.0129 0.0424 0.0108 
2 12 0.0187 0.0616 0.0157 
3 5 0.0241 0.108 0.0284 
3 12 0.0484 0.16 0.0406 
4 5 0.0018 0.008 0.0021 
4 11 0.0209 0.0688 0.0175 
5 6 0.0119 0.054 0.0143 
5 11 0.0203 0.0682 0.0174 
6 7 0.0046 0.0208 0.0055 
7 12 0.0086 0.034 0.0087 
8 9 0.0024 0.0305 1.162 
8 30 0.0043 0.0504 0.514 
9 10 0.0026 0.0322 1.23 
11 12 0.006 0.0196 0.005 
11 13 0.0223 0.0731 0.0188 
12 14 0.0215 0.0707 0.0182 
12 16 0.0212 0.0834 0.0214 
12 117 0.0329 0.14 0.0358 
13 15 0.0744 0.2444 0.0627 
14 15 0.0595 0.195 0.0502 
15 17 0.0132 0.0437 0.0444 
15 19 0.012 0.0394 0.0101 
15 33 0.038 0.1244 0.0319 
16 17 0.0454 0.1801 0.0466 
17 18 0.0123 0.0505 0.013 
17 31 0.0474 0.1563 0.0399 
17 113 0.0091 0.0301 0.0077 
18 19 0.0112 0.0493 0.0114 
19 20 0.0252 0.117 0.0298 
19 34 0.0752 0.247 0.0632 
20 21 0.0183 0.0849 0.0216 
21 22 0.0209 0.097 0.0246 
22 23 0.0342 0.159 0.0404 
23 24 0.0135 0.0492 0.0498 
23 25 0.0156 0.08 0.0864 
23 32 0.0317 0.1153 0.1173 
24 70 0.0022 0.4115 0.102 
24 72 0.0488 0.196 0.0488 
25 27 0.0318 0.163 0.1764 
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From To R(p.u.) X(p.u.) B(p.u.) 
26 30 0.008 0.086 0.908 
27 28 0.0191 0.0855 0.0216 
27 32 0.0229 0.0755 0.0193 
27 115 0.0164 0.0741 0.0197 
28 29 0.0237 0.0943 0.0238 
29 31 0.0108 0.0331 0.0083 
30 38 0.0046 0.054 0.422 
31 32 0.0298 0.0985 0.0251 
32 113 0.0615 0.203 0.0518 
32 114 0.0135 0.0612 0.0163 
33 37 0.0415 0.142 0.0366 
34 36 0.0087 0.0268 0.0057 
34 37 0.0026 0.0094 0.0098 
34 43 0.0413 0.1681 0.0423 
35 36 0.0022 0.0102 0.0027 
35 37 0.011 0.0497 0.0132 
37 39 0.0321 0.106 0.027 
37 40 0.0593 0.168 0.042 
38 65 0.009 0.0986 1.046 
39 40 0.0184 0.0605 0.0155 
40 41 0.0145 0.0487 0.0122 
40 42 0.0555 0.183 0.0466 
41 42 0.041 0.135 0.0344 
42 49 0.0715 0.323 0.086 
42 49 0.0715 0.323 0.086 
43 44 0.0608 0.2454 0.0607 
44 45 0.0224 0.0901 0.0224 
45 46 0.04 0.1356 0.0332 
45 49 0.0684 0.186 0.0444 
46 47 0.038 0.127 0.0316 
46 48 0.0601 0.189 0.0472 
47 49 0.0191 0.0625 0.016 
47 69 0.0844 0.2778 0.0709 
48 49 0.0179 0.0505 0.0126 
49 50 0.0267 0.0752 0.0187 
49 51 0.0486 0.137 0.0342 
49 54 0.0869 0.291 0.073 
49 54 0.073 0.289 0.0738 
49 66 0.018 0.0919 0.0248 
49 66 0.018 0.0919 0.0248 
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From To R(p.u.) X(p.u.) B(p.u.) 

49 69 0.0985 0.324 0.0828 
50 57 0.0474 0.134 0.0332 
51 52 0.0203 0.0588 0.014 
51 58 0.0255 0.0719 0.0179 
52 53 0.0405 0.1635 0.0406 
53 54 0.0263 0.122 0.031 
54 55 0.0169 0.0707 0.0202 
54 56 0.0027 0.0095 0.0073 
54 59 0.0503 0.2293 0.0598 
55 56 0.0049 0.0151 0.0037 
55 59 0.0474 0.2158 0.0565 
56 57 0.0343 0.0966 0.0242 
56 58 0.0343 0.0966 0.0242 
56 59 0.0803 0.239 0.0536 
56 59 0.0825 0.251 0.0569 
59 60 0.0317 0.145 0.0376 
59 61 0.0328 0.15 0.0388 
60 61 0.0026 0.0135 0.0146 
60 62 0.0123 0.0561 0.0147 
61 62 0.0082 0.0376 0.0098 
62 66 0.0482 0.218 0.0578 
62 67 0.0258 0.117 0.031 
63 64 0.0017 0.02 0.216 
64 65 0.0027 0.0302 0.38 
65 68 0.0014 0.016 0.638 
66 67 0.0224 0.1015 0.0268 
68 81 0.0018 0.0202 0.808 
68 116 0.0003 0.0041 0.164 
69 70 0.03 0.127 0.122 
69 75 0.0405 0.122 0.124 
69 77 0.0309 0.101 0.1038 
70 71 0.0088 0.0355 0.0088 
70 74 0.0401 0.1323 0.0337 
70 75 0.0428 0.141 0.036 
71 72 0.0446 0.18 0.0444 
71 73 0.0087 0.0454 0.0118 
74 75 0.0123 0.0406 0.0103 
75 77 0.0601 0.1999 0.0498 
75 118 0.0145 0.0481 0.012 
76 77 0.0444 0.148 0.0368 
76 118 0.0164 0.0544 0.0136 
77 78 0.0038 0.0124 0.0126 
77 80 0.0294 0.105 0.0228 
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From To R(p.u.) X(p.u.) B(p.u.) 

77 80 0.017 0.0485 0.0472 
77 82 0.0298 0.0853 0.0817 
78 79 0.0055 0.0244 0.0065 
79 80 0.0156 0.0704 0.0187 
80 96 0.0356 0.182 0.0494 
80 97 0.0183 0.0934 0.0254 
80 98 0.0238 0.108 0.0286 
80 99 0.0454 0.206 0.0546 
82 83 0.0112 0.0366 0.038 
82 96 0.0162 0.053 0.0544 
83 84 0.0625 0.132 0.0258 
83 85 0.043 0.148 0.0348 
84 85 0.0302 0.0641 0.0123 
85 86 0.035 0.123 0.0276 
85 88 0.02 0.102 0.0276 
85 89 0.0239 0.173 0.047 
86 87 0.0283 0.2074 0.0445 
88 89 0.0139 0.0712 0.0193 
89 90 0.0518 0.188 0.0528 
89 90 0.0238 0.0997 0.106 
89 92 0.0393 0.1581 0.0414 
89 92 0.0099 0.0505 0.0548 
90 91 0.0254 0.0836 0.0214 
91 92 0.0387 0.1272 0.0327 
92 93 0.0258 0.0848 0.0218 
92 94 0.0481 0.158 0.0406 
92 100 0.0648 0.295 0.0472 
92 102 0.0123 0.0559 0.0146 
93 94 0.0223 0.0732 0.0188 
94 95 0.0132 0.0434 0.0111 
94 96 0.0269 0.0869 0.023 
94 100 0.0178 0.058 0.0604 
95 96 0.0171 0.0547 0.0147 
96 97 0.0173 0.0885 0.024 
98 100 0.0397 0.179 0.0476 
99 100 0.018 0.0813 0.0216 
100 101 0.0277 0.1262 0.0328 
100 103 0.016 0.0525 0.0536 
100 104 0.0451 0.204 0.0541 
100 106 0.0605 0.229 0.062 
101 102 0.0246 0.112 0.0294 
103 104 0.0466 0.1584 0.0407 
103 105 0.0535 0.1625 0.0408 
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From To R(p.u.) X(p.u.) B(p.u.) 
103 110 0.0391 0.1813 0.0461 
104 105 0.0099 0.0378 0.0099 
105 106 0.014 0.0547 0.0143 
105 107 0.053 0.183 0.0472 
105 108 0.0261 0.0703 0.0184 
106 107 0.053 0.183 0.0472 
108 109 0.0105 0.0288 0.0076 
109 110 0.0278 0.0762 0.0202 
110 111 0.022 0.0755 0.02 
110 112 0.0247 0.064 0.062 
114 115 0.0023 0.0104 0.0028 

 
Transformer Data 

From To MVA R(p.u.) X(p.u.) 
8 5 100 0 0.0267 
26 25 100 0 0.0382 
30 17 100 0 0.0388 
38 37 100 0 0.0375 
63 59 100 0 0.0386 
64 61 100 0 0.0268 
65 66 100 0 0.037 
68 69 100 0 0.037 
81 80 100 0 0.037 
80 280 100 0 0.05 
280 380 100 0 0.05 

 
Generator Data 

Bus Pg(MW) Qg(MVar) Bus Pg(MW) Qg(MVar) 
1 0 15 36 0 -1.1 
4 0 46.4 40 0 27 
6 0 0.9 42 0 41 
8 0 160.6 46 19 -5.2 
10 450 -147 49 204 13.8 
12 85 56.8 54 48 262.8 
15 0 2.7 55 0 23 
18 0 26.2 56 0 -8 
19 0 -8 59 155 -60 
24 0 -7.8 61 160 -42.6 
25 220 -47 62 0 11.3 
26 314 74.1 65 391 130 
27 0 18.4 66 392 -67 
31 7 32.6 69 518.2 -110.4 
32 0 -10.5 70 0 32 
34 0 -8 72 0 -18.7 
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Bus Pg(MW) Qg(MVar) 
73 0 -20.8 
74 0 9 
76 0 23 
77 0 70 
380 477 26.6 
85 0 8.4 
87 4 11 
89 607 -5.9 
90 0 59.3 
91 0 -13.1 
92 0 -2.1 
99 0 10.2 
100 252 150 
103 40 40 
104 0 5.7 
105 0 -8 
107 0 5.7 
110 0 4.9 
111 36 -1.8 
112 0 41.5 
113 0 6.6 
116 0 120.8 

 
 
Shunt Data 
 

Bus G(pu) B(pu) 
5 0 -0.4 
34 0 0.14 
37 0 -0.25 
44 0 0.1 
45 0 0.1 
46 0 0.1 
48 0 0.15 
74 0 1.1 
79 0 0.2 
82 0 0.2 
83 0 0.1 
105 0 0.2 
107 0 0.06 
110 0 0.06 

 
 



72 

 
Load Data 

Bus Pload Qload Bus Pload Qload Bus Pload Qload 
1 51 27 49 87 30 99 42 0 
2 20 9 50 17 4 100 37 18 
3 39 10 51 17 8 101 22 15 
4 39 12 52 18 5 102 5 3 
6 52 22 53 23 11 103 23 16 
7 19 2 54 113 32 104 38 25 
8 28 0 55 63 22 105 31 26 
11 70 23 56 84 18 106 43 16 
12 47 10 57 12 3 107 50 12 
13 34 16 58 12 3 108 2 1 
14 14 1 59 277 113 109 8 3 
15 90 30 60 78 3 110 39 30 
16 25 10 62 77 14 112 68 13 
17 11 3 66 39 18 113 6 0 
18 60 34 67 28 7 114 8 3 
19 45 25 70 66 20 115 22 7 
20 18 3 72 12 0 116 184 0 
21 14 8 73 6 0 117 20 8 
22 10 5 74 68 27 118 33 15 
23 7 3 75 47 11    
24 13 0 76 68 36    
27 71 13 77 61 28    
28 17 7 78 71 26    
29 24 4 79 39 32    
31 43 27 80 130 26    
32 59 23 82 54 27    
33 23 9 83 20 10    
34 59 26 84 11 7    
35 33 9 85 24 15    
36 31 17 86 21 10    
39 27 11 88 48 10    
40 66 23 90 163 42    
41 37 10 91 10 0    
42 96 23 92 65 10    
43 18 7 93 12 7    
44 16 8 94 30 16    
45 53 22 95 42 31    
46 28 10 96 38 15    
47 34 0 97 15 9    
48 20 11 98 34 8    
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6.3 Modified 118-bus system with 20% wind penetration 

Bus data 

Bus Type V (p.u.) V(deg.) Bus Type V (p.u.) V(deg.) 
1 2 0.9561 -17.3 35 1 0.9807 -17.2 
2 1 0.9587 -16.53 36 2 0.98 -17.2 
3 1 0.9666 -16.36 37 1 0.9919 -16.31 
4 2 1.01 -12.8 38 1 0.9617 -11.14 
5 1 1.0086 -12.29 39 1 0.9704 -19.71 
6 2 0.99 -14.89 40 2 0.97 -20.8 
7 1 0.9814 -15.22 41 1 0.9668 -21.26 
8 2 1.015 -7.28 42 2 0.985 -19.69 
9 1 1.0049 0.41 43 1 0.9785 -16.86 
10 2 0.9763 9.04 44 1 0.9851 -14.44 
11 1 0.9756 -15.04 45 1 0.9867 -12.63 
12 1 0.9691 -15.38 46 2 1.005 -9.83 
212 1 1.0166 -13.07 47 1 1.017 -7.6 
312 2 1.0702 -10.97 48 1 1.0206 -8.41 
13 1 0.9608 -16.49 49 2 1.025 -7.42 
14 1 0.9681 -16.23 50 1 1.0208 -9.79 
15 2 0.97 -16.81 51 1 1.0145 -12.75 
16 1 0.9692 -15.83 52 1 1.013 -13.78 
17 1 0.9943 -14.28 53 1 1.025 -14.97 
18 2 0.973 -16.51 54 2 1.049 -14.41 
19 2 0.9631 -17 55 2 1.0321 -14.46 
20 1 0.956 -16.15 56 2 1.035 -14.33 
21 1 0.9553 -14.57 57 1 1.026 -12.81 
22 1 0.9649 -12.02 58 1 1.0211 -13.7 
23 1 0.9927 -7.08 59 1 0.966 -8.91 
24 2 0.992 -7.31 259 1 0.9981 -4.6 
25 2 1.027 0.15 359 2 1.04 -0.6 
26 2 1.015 1.89 60 1 0.9651 -4.93 
27 2 0.968 -12.86 61 1 0.965 -3.97 
28 1 0.9616 -14.56 261 1 0.9748 0.59 
29 1 0.9632 -15.52 361 2 0.995 5.02 
30 1 0.9851 -9.21 62 2 0.9747 -4.7 
31 2 0.967 -15.39 63 1 0.9515 -5.36 
32 2 0.963 -13.37 64 1 0.9673 -3.51 
33 1 0.9715 -17.43 65 2 1.005 -0.41 
34 2 0.9858 -16.77 66 2 1.0354 -0.6 
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Bus 

 
 
 

Type 

 
 
 

V (p.u.) 

 
 
 

V(deg.) 

 
 
 

Bus 

 
 
 

Type 

 
 
 

V (p.u.) 

 
 
 
V(deg.) 

67 1 1.0008 -3.28 101 1 0.9914 1.21 
68 1 1.0005 -0.48 102 1 0.9891 3.93 
69 0 1.035 1.8 103 2 1.0007 -3.98 
70 2 1.0115 -5.95 104 2 0.971 -6.73 
71 1 1.0008 -6.18 105 2 0.966 -7.85 
72 2 0.98 -7.18 106 1 0.9618 -8.1 
73 2 0.991 -6.24 107 2 0.952 -10.89 
74 2 1.0321 -7.66 108 1 0.9668 -9.04 
75 1 1.0072 -5.97 109 1 0.9675 -9.49 
76 2 0.9701 -6.96 110 2 0.973 -10.33 
77 2 0.9853 -1.47 111 2 0.98 -8.68 
78 1 0.9783 -1.71 112 2 0.975 -13.43 
79 1 0.9757 -1.3 113 2 0.993 -14.32 
80 1 0.984 1.43 114 1 0.9601 -13.72 
280 1 0.9841 14.74 115 1 0.96 -13.73 
380 2 1.04 27.33 116 2 1.005 -0.93 
81 1 0.9749 0.3 117 1 0.9524 -16.99 
82 1 0.9709 -0.94 118 1 0.9836 -6.86 
83 1 0.972 0.2     
84 1 0.9757 2.62     
85 2 0.985 4.1     
86 1 0.9867 2.73     
87 2 1.015 2.99     
88 1 0.9874 7.24     
89 2 1.005 11.31     
90 2 0.985 4.9     
91 2 0.98 4.91     
92 2 0.99 5.45     
93 1 0.9803 2.5     
94 1 0.9802 0.39     
95 1 0.9647 -0.51     
96 1 0.9695 -0.55     
97 1 0.9719 0.04     
98 1 0.988 -0.56     
99 2 1.01 -1.37     
100 2 1.017 -0.39     
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Line Data 
 

From To R(p.u.) X(p.u.) B(p.u.) 
1 2 0.0303 0.0999 0.0254 
1 3 0.0129 0.0424 0.0108 
2 12 0.0187 0.0616 0.0157 
3 5 0.0241 0.108 0.0284 
3 12 0.0484 0.16 0.0406 
4 5 0.0018 0.008 0.0021 
4 11 0.0209 0.0688 0.0175 
5 6 0.0119 0.054 0.0143 
5 11 0.0203 0.0682 0.0174 
6 7 0.0046 0.0208 0.0055 
7 12 0.0086 0.034 0.0087 
8 9 0.0024 0.0305 1.162 
8 30 0.0043 0.0504 0.514 
9 10 0.0026 0.0322 1.23 
11 12 0.006 0.0196 0.005 
11 13 0.0223 0.0731 0.0188 
12 14 0.0215 0.0707 0.0182 
12 16 0.0212 0.0834 0.0214 
12 117 0.0329 0.14 0.0358 
13 15 0.0744 0.2444 0.0627 
14 15 0.0595 0.195 0.0502 
15 17 0.0132 0.0437 0.0444 
15 19 0.012 0.0394 0.0101 
15 33 0.038 0.1244 0.0319 
16 17 0.0454 0.1801 0.0466 
17 18 0.0123 0.0505 0.013 
17 31 0.0474 0.1563 0.0399 
17 113 0.0091 0.0301 0.0077 
18 19 0.0112 0.0493 0.0114 
19 20 0.0252 0.117 0.0298 
19 34 0.0752 0.247 0.0632 
20 21 0.0183 0.0849 0.0216 
21 22 0.0209 0.097 0.0246 
22 23 0.0342 0.159 0.0404 
23 24 0.0135 0.0492 0.0498 
23 25 0.0156 0.08 0.0864 
23 32 0.0317 0.1153 0.1173 
24 70 0.0022 0.4115 0.102 
24 72 0.0488 0.196 0.0488 
25 27 0.0318 0.163 0.1764 
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From To R(p.u.) X(p.u.) B(p.u.) 

26 30 0.008 0.086 0.908 
27 28 0.0191 0.0855 0.0216 
27 32 0.0229 0.0755 0.0193 
27 115 0.0164 0.0741 0.0197 
28 29 0.0237 0.0943 0.0238 
29 31 0.0108 0.0331 0.0083 
30 38 0.0046 0.054 0.422 
31 32 0.0298 0.0985 0.0251 
32 113 0.0615 0.203 0.0518 
32 114 0.0135 0.0612 0.0163 
33 37 0.0415 0.142 0.0366 
34 36 0.0087 0.0268 0.0057 
34 37 0.0026 0.0094 0.0098 
34 43 0.0413 0.1681 0.0423 
35 36 0.0022 0.0102 0.0027 
35 37 0.011 0.0497 0.0132 
37 39 0.0321 0.106 0.027 
37 40 0.0593 0.168 0.042 
38 65 0.009 0.0986 1.046 
39 40 0.0184 0.0605 0.0155 
40 41 0.0145 0.0487 0.0122 
40 42 0.0555 0.183 0.0466 
41 42 0.041 0.135 0.0344 
42 49 0.0715 0.323 0.086 
42 49 0.0715 0.323 0.086 
43 44 0.0608 0.2454 0.0607 
44 45 0.0224 0.0901 0.0224 
45 46 0.04 0.1356 0.0332 
45 49 0.0684 0.186 0.0444 
46 47 0.038 0.127 0.0316 
46 48 0.0601 0.189 0.0472 
47 49 0.0191 0.0625 0.016 
47 69 0.0844 0.2778 0.0709 
48 49 0.0179 0.0505 0.0126 
49 50 0.0267 0.0752 0.0187 
49 51 0.0486 0.137 0.0342 
49 54 0.0869 0.291 0.073 
49 54 0.073 0.289 0.0738 
49 66 0.018 0.0919 0.0248 
49 66 0.018 0.0919 0.0248 
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From To R(p.u.) X(p.u.) B(p.u.) 

49 69 0.0985 0.324 0.0828 
50 57 0.0474 0.134 0.0332 
51 52 0.0203 0.0588 0.014 
51 58 0.0255 0.0719 0.0179 
52 53 0.0405 0.1635 0.0406 
53 54 0.0263 0.122 0.031 
54 55 0.0169 0.0707 0.0202 
54 56 0.0027 0.0095 0.0073 
54 59 0.0503 0.2293 0.0598 
55 56 0.0049 0.0151 0.0037 
55 59 0.0474 0.2158 0.0565 
56 57 0.0343 0.0966 0.0242 
56 58 0.0343 0.0966 0.0242 
56 59 0.0803 0.239 0.0536 
56 59 0.0825 0.251 0.0569 
59 60 0.0317 0.145 0.0376 
59 61 0.0328 0.15 0.0388 
60 61 0.0026 0.0135 0.0146 
60 62 0.0123 0.0561 0.0147 
61 62 0.0082 0.0376 0.0098 
62 66 0.0482 0.218 0.0578 
62 67 0.0258 0.117 0.031 
63 64 0.0017 0.02 0.216 
64 65 0.0027 0.0302 0.38 
65 68 0.0014 0.016 0.638 
66 67 0.0224 0.1015 0.0268 
68 81 0.0018 0.0202 0.808 
68 116 0.0003 0.0041 0.164 
69 70 0.03 0.127 0.122 
69 75 0.0405 0.122 0.124 
69 77 0.0309 0.101 0.1038 
70 71 0.0088 0.0355 0.0088 
70 74 0.0401 0.1323 0.0337 
70 75 0.0428 0.141 0.036 
71 72 0.0446 0.18 0.0444 
71 73 0.0087 0.0454 0.0118 
74 75 0.0123 0.0406 0.0103 
75 77 0.0601 0.1999 0.0498 
75 118 0.0145 0.0481 0.012 
76 77 0.0444 0.148 0.0368 
76 118 0.0164 0.0544 0.0136 
77 78 0.0038 0.0124 0.0126 
77 80 0.0294 0.105 0.0228 
77 80 0.017 0.0485 0.0472 
     



78 

 
From To R(p.u.) X(p.u.) B(p.u.) 

77 82 0.0298 0.0853 0.0817 
78 79 0.0055 0.0244 0.0065 
79 80 0.0156 0.0704 0.0187 
80 96 0.0356 0.182 0.0494 
80 97 0.0183 0.0934 0.0254 
80 98 0.0238 0.108 0.0286 
80 99 0.0454 0.206 0.0546 
82 83 0.0112 0.0366 0.038 
82 96 0.0162 0.053 0.0544 
83 84 0.0625 0.132 0.0258 
83 85 0.043 0.148 0.0348 
84 85 0.0302 0.0641 0.0123 
85 86 0.035 0.123 0.0276 
85 88 0.02 0.102 0.0276 
85 89 0.0239 0.173 0.047 
86 87 0.0283 0.2074 0.0445 
88 89 0.0139 0.0712 0.0193 
89 90 0.0518 0.188 0.0528 
89 90 0.0238 0.0997 0.106 
89 92 0.0393 0.1581 0.0414 
89 92 0.0099 0.0505 0.0548 
90 91 0.0254 0.0836 0.0214 
91 92 0.0387 0.1272 0.0327 
92 93 0.0258 0.0848 0.0218 
92 94 0.0481 0.158 0.0406 
92 100 0.0648 0.295 0.0472 
92 102 0.0123 0.0559 0.0146 
93 94 0.0223 0.0732 0.0188 
94 95 0.0132 0.0434 0.0111 
94 96 0.0269 0.0869 0.023 
94 100 0.0178 0.058 0.0604 
95 96 0.0171 0.0547 0.0147 
96 97 0.0173 0.0885 0.024 
98 100 0.0397 0.179 0.0476 
99 100 0.018 0.0813 0.0216 
100 101 0.0277 0.1262 0.0328 
100 103 0.016 0.0525 0.0536 
100 104 0.0451 0.204 0.0541 
100 106 0.0605 0.229 0.062 
101 102 0.0246 0.112 0.0294 
103 104 0.0466 0.1584 0.0407 
103 105 0.0535 0.1625 0.0408 
103 110 0.0391 0.1813 0.0461 
104 105 0.0099 0.0378 0.0099 
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From To R(p.u.) X(p.u.) B(p.u.) 
105 106 0.014 0.0547 0.0143 
105 107 0.053 0.183 0.0472 
105 108 0.0261 0.0703 0.0184 
106 107 0.053 0.183 0.0472 
108 109 0.0105 0.0288 0.0076 
109 110 0.0278 0.0762 0.0202 
110 111 0.022 0.0755 0.02 
110 112 0.0247 0.064 0.062 
114 115 0.0023 0.0104 0.0028 

 
Transformer Data 

From To MVA R(p.u.) X(p.u.) 
8 5 100 0 0.0267 
26 25 100 0 0.0382 
30 17 100 0 0.0388 
38 37 100 0 0.0375 
63 59 100 0 0.0386 
64 61 100 0 0.0268 
65 66 100 0 0.037 
68 69 100 0 0.037 
81 80 100 0 0.037 
12 212 100 0 0.05 
59 259 100 0 0.05 
61 261 100 0 0.05 
80 280 100 0 0.05 
212 312 100 0 0.05 
259 359 100 0 0.05 
261 361 100 0 0.05 
280 380 100 0 0.05 

 
Generator Data 
 

Bus Pg(MW) Qg(MVar) Bus Pg(MW) Qg(MVar) 
1 0 15 65 391 130 
4 0 46.4 66 392 -67 
6 0 0.9 69 518.2 -110.4 
8 0 160.6 70 0 32 
10 450 -147 72 0 -18.7 
12 85 56.8 73 0 -20.8 
15 0 2.7 74 0 9 
18 0 26.2 76 0 23 
19 0 -8 77 0 70 
24 0 -7.8 380 477 26.6 
25 220 -47 85 0 8.4 
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Bus Pg(MW) Qg(MVar) Bus Pg(MW) Qg(MVar) 
27 0 18.4 89 607 -5.9 
31 7 32.6 90 0 59.3 
32 0 -10.5 91 0 -13.1 
34 0 -8 92 0 -2.1 
36 0 -1.1 99 0 10.2 
40 0 27 100 252 150 
42 0 41 103 40 40 
46 19 -5.2 104 0 5.7 
49 204 13.8 105 0 -8 
54 48 262.8 107 0 5.7 
55 0 23 110 0 4.9 
56 0 -8 111 36 -1.8 
59 155 -60 112 0 41.5 
61 160 -42.6 113 0 6.6 
62 0 11.3 116 0 120.8 

 
 
Load Data 
 

Bus Pload Qload Bus Pload Qload Bus Pload Qload 
1 51 27 49 87 30 99 42 0 
2 20 9 50 17 4 100 37 18 
3 39 10 51 17 8 101 22 15 
4 39 12 52 18 5 102 5 3 
6 52 22 53 23 11 103 23 16 
7 19 2 54 113 32 104 38 25 
8 28 0 55 63 22 105 31 26 
11 70 23 56 84 18 106 43 16 
12 47 10 57 12 3 107 50 12 
13 34 16 58 12 3 108 2 1 
14 14 1 59 277 113 109 8 3 
15 90 30 60 78 3 110 39 30 
16 25 10 62 77 14 112 68 13 
17 11 3 66 39 18 113 6 0 
18 60 34 67 28 7 114 8 3 
19 45 25 70 66 20 115 22 7 
20 18 3 72 12 0 116 184 0 
21 14 8 73 6 0 117 20 8 
22 10 5 74 68 27 118 33 15 
23 7 3 75 47 11    
24 13 0 76 68 36    
27 71 13 77 61 28    
28 17 7 78 71 26    
29 24 4 79 39 32    
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Bus Pload Qload Bus Pload Qload    
32 59 23 82 54 27    
33 23 9 83 20 10    
34 59 26 84 11 7    
35 33 9 85 24 15    
36 31 17 86 21 10    
39 27 11 88 48 10    
40 66 23 90 163 42    
41 37 10 91 10 0    
42 96 23 92 65 10    
43 18 7 93 12 7    
44 16 8 94 30 16    
45 53 22 95 42 31    
46 28 10 96 38 15    
47 34 0 97 15 9    
48 20 11 98 34 8    

 
Shunt Data 
 

Bus G(pu) B(pu) 
5 0 -0.4 
34 0 0.14 
37 0 -0.25 
44 0 0.1 
45 0 0.1 
46 0 0.1 
48 0 0.15 
74 0 1.1 
79 0 0.2 
82 0 0.2 
83 0 0.1 
105 0 0.2 
107 0 0.06 
110 0 0.06 
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6.4 Modified 118-bus system with 30% wind penetration 

Bus data 

Bus Type V (p.u.) V(deg.) Bus Type V (p.u.) V(deg.) 
1 2 0.9561 -17.78 35 1 0.9806 -17.67 
2 1 0.9587 -17.01 36 2 0.98 -17.67 
3 1 0.9666 -16.85 37 1 0.9917 -16.78 
4 2 1.01 -13.28 38 1 0.9612 -11.59 
5 1 1.0086 -12.77 39 1 0.9703 -20.18 
6 2 0.99 -15.37 40 2 0.97 -21.28 
7 1 0.9814 -15.71 41 1 0.9668 -21.74 
8 2 1.015 -7.76 42 2 0.985 -20.18 
9 1 1.0049 -0.08 43 1 0.9784 -17.35 
10 2 0.9763 8.55 44 1 0.9851 -14.95 
11 1 0.9756 -15.52 45 1 0.9867 -13.15 
12 1 0.9691 -15.87 46 2 1.005 -10.37 
212 1 1.0166 -13.55 47 1 1.0124 -8.09 
312 2 1.0702 -11.46 48 1 1.0206 -8.92 
13 1 0.9608 -16.97 49 2 1.025 -7.92 
14 1 0.9681 -16.71 50 1 1.0208 -10.28 
15 2 0.97 -17.3 51 1 1.0145 -13.23 
16 1 0.9692 -16.32 52 1 1.013 -14.26 
17 1 0.9943 -14.77 53 1 1.025 -15.44 
18 2 0.973 -17 54 2 1.049 -14.87 
19 2 0.9631 -17.49 55 2 1.032 -14.92 
20 1 0.956 -16.65 56 2 1.035 -14.79 
21 1 0.9554 -15.09 57 1 1.0259 -13.28 
22 1 0.965 -12.55 58 1 1.0211 -14.17 
23 1 0.9927 -7.63 59 1 0.9655 -9.33 
24 2 0.992 -7.89 259 1 0.9978 -5.01 
25 2 1.027 -0.37 359 2 1.04 -1.01 
26 2 1.015 1.38 60 1 0.9642 -5.32 
27 2 0.968 -13.37 61 1 0.9642 -4.35 
28 1 0.9616 -15.07 261 1 0.9744 0.21 
29 1 0.9632 -16.03 361 2 0.995 4.64 
30 1 0.9849 -9.7 62 2 0.9738 -5.09 
31 2 0.967 -15.9 63 1 0.9505 -5.75 
32 2 0.963 -13.89 64 1 0.9661 -3.88 
33 1 0.9715 -17.9 65 2 1.0031 -0.75 
34 2 0.9857 -17.24 66 2 1.0343 -0.99 
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Bus Type V (p.u.) V(deg.) Bus Type V (p.u.) V(deg.) 
67 1 0.9998 -3.68 99 2 1.01 -1.89 
68 1 0.9971 -0.76 100 2 1.0168 -0.92 
69 1 1.0017 1.8 101 1 0.9913 0.67 
269 1 0.9855 16.14 102 1 0.9891 3.39 
369 0 1.035 30 103 2 1.0006 -4.51 
70 2 0.9967 -6.55 104 2 0.971 -7.26 
71 1 0.9933 -6.87 105 2 0.966 -8.38 
72 2 0.98 -7.88 106 1 0.9617 -8.63 
73 2 0.991 -7 107 2 0.952 -11.42 
74 2 1.0117 -8.23 108 1 0.9668 -9.57 
75 1 0.9863 -6.49 109 1 0.9674 -10.02 
76 2 0.9518 -7.52 110 2 0.973 -10.86 
77 2 0.9726 -1.86 111 2 0.98 -9.22 
78 1 0.9661 -2.12 112 2 0.975 -13.96 
79 1 0.9647 -1.7 113 2 0.993 -14.81 
80 1 0.9769 1.04 114 1 0.9601 -14.24 
280 1 0.9802 14.51 115 1 0.96 -14.25 
380 2 1.04 27.15 116 2 1.005 -1.23 
81 1 0.9703 -0.02 117 1 0.9524 -17.47 
82 1 0.9646 -1.41 118 1 0.9638 -7.41 
83 1 0.9676 -0.28     
84 1 0.9743 2.09     
85 2 0.985 3.55     
86 1 0.9867 2.18     
87 2 1.015 2.44     
88 1 0.9874 6.7     
89 2 1.005 10.77     
90 2 0.985 4.36     
91 2 0.98 4.37     
92 2 0.99 4.91     
93 1 0.9792 1.98     
94 1 0.9781 -0.12     
95 1 0.9614 -1     
96 1 0.9648 -1.02     
97 1 0.966 -0.39     
98 1 0.9834 -1.02     
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Line Data 
 

From To R(p.u.) X(p.u.) B(p.u.) 
1 2 0.0303 0.0999 0.0254 
1 3 0.0129 0.0424 0.0108 
2 12 0.0187 0.0616 0.0157 
3 5 0.0241 0.108 0.0284 
3 12 0.0484 0.16 0.0406 
4 5 0.0018 0.008 0.0021 
4 11 0.0209 0.0688 0.0175 
5 6 0.0119 0.054 0.0143 
5 11 0.0203 0.0682 0.0174 
6 7 0.0046 0.0208 0.0055 
7 12 0.0086 0.034 0.0087 
8 9 0.0024 0.0305 1.162 
8 30 0.0043 0.0504 0.514 
9 10 0.0026 0.0322 1.23 
11 12 0.006 0.0196 0.005 
11 13 0.0223 0.0731 0.0188 
12 14 0.0215 0.0707 0.0182 
12 16 0.0212 0.0834 0.0214 
12 117 0.0329 0.14 0.0358 
13 15 0.0744 0.2444 0.0627 
14 15 0.0595 0.195 0.0502 
15 17 0.0132 0.0437 0.0444 
15 19 0.012 0.0394 0.0101 
15 33 0.038 0.1244 0.0319 
16 17 0.0454 0.1801 0.0466 
17 18 0.0123 0.0505 0.013 
17 31 0.0474 0.1563 0.0399 
17 113 0.0091 0.0301 0.0077 
18 19 0.0112 0.0493 0.0114 
19 20 0.0252 0.117 0.0298 
19 34 0.0752 0.247 0.0632 
20 21 0.0183 0.0849 0.0216 
21 22 0.0209 0.097 0.0246 
22 23 0.0342 0.159 0.0404 
23 24 0.0135 0.0492 0.0498 
23 25 0.0156 0.08 0.0864 
23 32 0.0317 0.1153 0.1173 
24 70 0.0022 0.4115 0.102 
24 72 0.0488 0.196 0.0488 
25 27 0.0318 0.163 0.1764 
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From To R(p.u.) X(p.u.) B(p.u.) 

26 30 0.008 0.086 0.908 
27 28 0.0191 0.0855 0.0216 
27 32 0.0229 0.0755 0.0193 
27 115 0.0164 0.0741 0.0197 
28 29 0.0237 0.0943 0.0238 
29 31 0.0108 0.0331 0.0083 
30 38 0.0046 0.054 0.422 
31 32 0.0298 0.0985 0.0251 
32 113 0.0615 0.203 0.0518 
32 114 0.0135 0.0612 0.0163 
33 37 0.0415 0.142 0.0366 
34 36 0.0087 0.0268 0.0057 
34 37 0.0026 0.0094 0.0098 
34 43 0.0413 0.1681 0.0423 
35 36 0.0022 0.0102 0.0027 
35 37 0.011 0.0497 0.0132 
37 39 0.0321 0.106 0.027 
37 40 0.0593 0.168 0.042 
38 65 0.009 0.0986 1.046 
39 40 0.0184 0.0605 0.0155 
40 41 0.0145 0.0487 0.0122 
40 42 0.0555 0.183 0.0466 
41 42 0.041 0.135 0.0344 
42 49 0.0715 0.323 0.086 
42 49 0.0715 0.323 0.086 
43 44 0.0608 0.2454 0.0607 
44 45 0.0224 0.0901 0.0224 
45 46 0.04 0.1356 0.0332 
45 49 0.0684 0.186 0.0444 
46 47 0.038 0.127 0.0316 
46 48 0.0601 0.189 0.0472 
47 49 0.0191 0.0625 0.016 
47 69 0.0844 0.2778 0.0709 
48 49 0.0179 0.0505 0.0126 
49 50 0.0267 0.0752 0.0187 
49 51 0.0486 0.137 0.0342 
49 54 0.0869 0.291 0.073 
49 54 0.073 0.289 0.0738 
49 66 0.018 0.0919 0.0248 
49 66 0.018 0.0919 0.0248 
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From To R(p.u.) X(p.u.) B(p.u.) 

49 69 0.0985 0.324 0.0828 
50 57 0.0474 0.134 0.0332 
51 52 0.0203 0.0588 0.014 
51 58 0.0255 0.0719 0.0179 
52 53 0.0405 0.1635 0.0406 
53 54 0.0263 0.122 0.031 
54 55 0.0169 0.0707 0.0202 
54 56 0.0027 0.0095 0.0073 
54 59 0.0503 0.2293 0.0598 
55 56 0.0049 0.0151 0.0037 
55 59 0.0474 0.2158 0.0565 
56 57 0.0343 0.0966 0.0242 
56 58 0.0343 0.0966 0.0242 
56 59 0.0803 0.239 0.0536 
56 59 0.0825 0.251 0.0569 
59 60 0.0317 0.145 0.0376 
59 61 0.0328 0.15 0.0388 
60 61 0.0026 0.0135 0.0146 
60 62 0.0123 0.0561 0.0147 
61 62 0.0082 0.0376 0.0098 
62 66 0.0482 0.218 0.0578 
62 67 0.0258 0.117 0.031 
63 64 0.0017 0.02 0.216 
64 65 0.0027 0.0302 0.38 
65 68 0.0014 0.016 0.638 
66 67 0.0224 0.1015 0.0268 
68 81 0.0018 0.0202 0.808 
68 116 0.0003 0.0041 0.164 
69 70 0.03 0.127 0.122 
69 75 0.0405 0.122 0.124 
69 77 0.0309 0.101 0.1038 
70 71 0.0088 0.0355 0.0088 
70 74 0.0401 0.1323 0.0337 
70 75 0.0428 0.141 0.036 
71 72 0.0446 0.18 0.0444 
71 73 0.0087 0.0454 0.0118 
74 75 0.0123 0.0406 0.0103 
75 77 0.0601 0.1999 0.0498 
75 118 0.0145 0.0481 0.012 
76 77 0.0444 0.148 0.0368 
76 118 0.0164 0.0544 0.0136 
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From To R(p.u.) X(p.u.) B(p.u.) 

76 118 0.0164 0.0544 0.0136 
77 78 0.0038 0.0124 0.0126 
77 80 0.0294 0.105 0.0228 
77 80 0.017 0.0485 0.0472 
77 82 0.0298 0.0853 0.0817 
78 79 0.0055 0.0244 0.0065 
79 80 0.0156 0.0704 0.0187 
80 96 0.0356 0.182 0.0494 
80 97 0.0183 0.0934 0.0254 
80 98 0.0238 0.108 0.0286 
80 99 0.0454 0.206 0.0546 
82 83 0.0112 0.0366 0.038 
82 96 0.0162 0.053 0.0544 
83 84 0.0625 0.132 0.0258 
83 85 0.043 0.148 0.0348 
84 85 0.0302 0.0641 0.0123 
85 86 0.035 0.123 0.0276 
85 88 0.02 0.102 0.0276 
85 89 0.0239 0.173 0.047 
86 87 0.0283 0.2074 0.0445 
88 89 0.0139 0.0712 0.0193 
89 90 0.0518 0.188 0.0528 
89 90 0.0238 0.0997 0.106 
89 92 0.0393 0.1581 0.0414 
89 92 0.0099 0.0505 0.0548 
90 91 0.0254 0.0836 0.0214 
91 92 0.0387 0.1272 0.0327 
92 93 0.0258 0.0848 0.0218 
92 94 0.0481 0.158 0.0406 
92 100 0.0648 0.295 0.0472 
92 102 0.0123 0.0559 0.0146 
93 94 0.0223 0.0732 0.0188 
94 95 0.0132 0.0434 0.0111 
94 96 0.0269 0.0869 0.023 
94 100 0.0178 0.058 0.0604 
95 96 0.0171 0.0547 0.0147 
96 97 0.0173 0.0885 0.024 
98 100 0.0397 0.179 0.0476 
99 100 0.018 0.0813 0.0216 
100 101 0.0277 0.1262 0.0328 
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From To R(p.u.) X(p.u.) B(p.u.) 
100 103 0.016 0.0525 0.0536 
100 104 0.0451 0.204 0.0541 
100 106 0.0605 0.229 0.062 
101 102 0.0246 0.112 0.0294 
103 104 0.0466 0.1584 0.0407 
103 105 0.0535 0.1625 0.0408 
103 110 0.0391 0.1813 0.0461 
104 105 0.0099 0.0378 0.0099 
105 106 0.014 0.0547 0.0143 
105 107 0.053 0.183 0.0472 
105 108 0.0261 0.0703 0.0184 
106 107 0.053 0.183 0.0472 
108 109 0.0105 0.0288 0.0076 
109 110 0.0278 0.0762 0.0202 
110 111 0.022 0.0755 0.02 
110 112 0.0247 0.064 0.062 
114 115 0.0023 0.0104 0.0028 

 
 
Transformer Data 
 

8 5 100 0 0.0267 
26 25 100 0 0.0382 
30 17 100 0 0.0388 
38 37 100 0 0.0375 
63 59 100 0 0.0386 
64 61 100 0 0.0268 
65 66 100 0 0.037 
68 69 100 0 0.037 
81 80 100 0 0.037 
12 212 100 0 0.05 
59 259 100 0 0.05 
61 261 100 0 0.05 
69 269 100 0 0.05 
80 280 100 0 0.05 
212 312 100 0 0.05 
259 359 100 0 0.05 
261 361 100 0 0.05 
269 369 100 0 0.05 
280 380 100 0 0.05 
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Generator Data 

Bus Pg(MW) Qg(MVar) Bus Pg(MW) Qg(MVar) 
1 0 15 15 0 16.5 
4 0 84.2 18 0 27.8 
6 0 41.3 19 0 -8 
8 0 167.2 24 0 -4.2 
10 450 -147 25 220 -47 
312 85 -35 26 314 74.6 

 
 
 

Bus Pg(MW) Qg(MVar) 
27 0 18.4 
31 7 33.1 
32 0 -10.5 
34 0 -8 
36 0 -0.9 
40 0 27 
42 0 40.9 
46 19 -5.2 
49 204 24.1 
54 48 296.5 
55 0 23 
56 0 -8 
359 155 -51.8 
361 160 -88.5 
62 0 20 
65 391 196.3 
66 392 -67 
369 522.7 24.3 
70 0 32 
72 0 -14.6 
73 0 -4.4 
74 0 9 
76 0 23 
77 0 70 
380 477 35.4 
85 0 13.4 
87 4 11 
89 607 -5.9 
90 0 59.3 
91 0 -13.1 
92 0 0.5 
99 0 14 
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Bus Pg(MW) Qg(MVar) 
103 40 40 
104 0 5.9 
105 0 -8 
107 0 5.7 
110 0 4.9 
111 36 -1.8 
112 0 41.5 
113 0 9.3 
116 0 204.2 

 

   
Shunt Data 
 

Bus G(pu) B(pu) 
5 0 -0.4 
34 0 0.14 
37 0 -0.25 
44 0 0.1 
45 0 0.1 
46 0 0.1 
48 0 0.15 
74 0 1.1 
79 0 0.2 
82 0 0.2 
83 0 0.1 
105 0 0.2 
107 0 0.06 
110 0 0.06 
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Load Data 
 

Bus Pload Qload Bus Pload Qload 
1 51 27 43 18 7 
2 20 9 44 16 8 
3 39 10 45 53 22 
4 39 12 46 28 10 
6 52 22 47 34 0 
7 19 2 48 20 11 
8 28 0 49 87 30 
11 70 23 50 17 4 
12 47 10 51 17 8 
13 34 16 52 18 5 
14 14 1 53 23 11 
15 90 30 54 113 32 
16 25 10 55 63 22 
17 11 3 56 84 18 
18 60 34 57 12 3 
19 45 25 58 12 3 
20 18 3 59 277 113 
21 14 8 60 78 3 
22 10 5 62 77 14 
23 7 3 66 39 18 
24 13 0 67 28 7 
27 71 13 70 66 20 
28 17 7 72 12 0 
29 24 4 73 6 0 
31 43 27 74 68 27 
32 59 23 75 47 11 
33 23 9 76 68 36 
34 59 26 77 61 28 
35 33 9 78 71 26 
36 31 17 79 39 32 
39 27 11 80 130 26 
40 66 23 82 54 27 
41 37 10 83 20 10 
42 96 23 84 11 7 

 
 
 

 

     



92 

Bus Pload Qload 
85 24 15 
86 21 10 
88 48 10 
90 163 42 
91 10 0 
92 65 10 
93 12 7 
94 30 16 
95 42 31 
96 38 15 
97 15 9 
98 34 8 
99 42 0 
100 37 18 
101 22 15 
102 5 3 
103 23 16 
104 38 25 
105 31 26 
106 43 16 
107 50 12 
108 2 1 
109 8 3 
110 39 30 
112 68 13 
113 6 0 
114 8 3 
115 22 7 
116 184 0 
117 20 8 
118 33 15 
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