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Executive Summary 

This white paper focuses on aspects of computation and information hierarchy of a 
future grid. On computation architecture for smart grids, challenges and opportunities of 
having cloud computing architecture for the scalable, consistent, and secure operations of 
smart grids are examined. On information hierarchy, issues on how information should be 
partitioned in time and space are examined. The temporal characteristics of information 
hierarchy are investigated in the context of dynamic scheduling with deadline 
requirements. The spatial characteristics of information hierarchy are investigated by 
considering spatially distributed location real-time prices. Effects of data quality on 
location real-time prices and market dynamics are considered. 

This white paper proposes a set of research topics on the computation and information 
hierarchy for a future grid:  

1. Cloud architecture for future grid:  Cloud computing offers a scalable and 
unified platform to meet computation and information processing needs of a 
future grid. However, significant advance is necessary to make cloud computing 
suitable for secure and robust operations, capable of supporting large scale 
integrations of stochastic generation and a wide range of demand response 
opportunities. Research is required to quantify fundamental design tradeoffs 
among scalability, data consistency, security, and trustworthiness for emerging 
applications of smart grids. Novel cloud architectures are needed for low latency 
and trustworthy state estimation, real-time dispatch, and market operations. 
Innovations in highly reliable and efficient distributed storage, computation, and 
networking are required that take advantage of advances in network coding and 
cognitive networking technology.  
 

2. Information hierarchy for real-time operation under uncertainty:  The future 
grid must accommodate high degrees of uncertainties in generation and demand. 
There is a need to gain fundamental understandings of how information should be 
partitioned in time and space; how it should be collected, distributed, compressed, 
and aggregated. The temporal characteristics of information hierarchy can be 
investigated in a stochastic optimization framework in the forms of risk limiting 
energy dispatch and optimal energy management with deadline constraints. To 
this end, computationally tractable multi-time period robust stochastic 
optimizations are needed for large systems. The spatial characteristics of 
information hierarchy can be investigated in the context of hierarchical decision 
making with distributed incentives. Economic incentive and pricing models are 
needed to capture interactions among transmission and distribution network 
operators and consumers.  
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3. Big data analytics:  Successful operations of a future grid require sophisticated 
big data analytics that extracts hidden patterns, forecasts and tracks trends, and 
detects anomalies and cyber-attacks. Impacts of data quality on state estimation, 
real-time dispatch, and real-time locational marginal prices need to be qualified. 
Mechanisms to discover and preventing data attacks are needed. Important 
research topics include (i) structured learning techniques that capture the 
characteristics that high dimensional data are often reside in some low 
dimensional manifold; (ii) high dimensional statistical inference for situation 
awareness; (iii) high dimensional online learning that integrates learning and 
operation decisions; and (iv) data representation and visualization techniques that 
summarize actionable information.  
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1. Introduction 

The electric grid in the United States has evolved over the past century from a series 
of small independent community-based systems to one of the largest and most complex 
cyber-physical systems today. The grid consists of tens of thousands of generators and 
substations, linked by transmission and distribution networks. The system state is 
estimated continuously using remotely collected data, and power delivery is orchestrated 
by sophisticated decision and computation processes. The electricity markets are tied 
intimately to the operation of the grid. Despite practical challenges of serving electricity 
in real time to a large geographical area, the supply of electricity has been mostly reliable 
with a few well-publicized exceptions of regional blackouts. 

The established conditions that made the electric grid an engineering marvel are being 
challenged by major changes, chief among these being the global effort of mitigating 
climate change by reducing carbon emissions. The U.S. government has set a target of 
reducing the national emissions of greenhouse gases by 80% from the current level by the 
year 2050. Within the United States, the national goal of achieving energy independence 
also calls for reducing imported oil significantly. While the tremendous growth in 
domestically produced shale gas and oil makes it a realistic scenario that the US will 
likely be a major energy exporting country, the environmental and associated economic 
impact of extracting such energy sources is uncertain.  

Achieving a reduction of fossil fuel at this magnitude requires a combination of 
integrating renewable energy, developing distributed energy sources and control 
capabilities, electrification of the transportation, and much improved energy efficiency 
for buildings and appliances. Transformative and potentially disruptive changes to the 
current structure of the energy industry may be necessary. Critical technological 
innovations are required. 

The existing power grid is large and complex and its functionalities may have to be 
expanded significantly due to the need of greater integration of renewable sources, 
demand-side participations, and the prolific use of web-based information technology for 
personal energy management.  

The current grid has limited observability in space and time, but this situation is being 
changed by the deployment of Phasor Measurement Units (PMUs) for transmission 
networks and advanced meter infrastructure (AMI) for distribution networks. Smart 
sensors are being integrated in buildings and infrastructures, smart devices capable of 
communicating wirelessly are part of the new generation of appliances.  

A back-of-the-envelope calculation by Birman, Ganesh, and van Renesse [1] serves 
to illuminate the potential need of a new computation and information architecture. It is 
estimated that a fully deployed PMU infrastructure may have the aggregate data 
transmission rate of approximately 15 Gbytes/second, beyond the full capacity of a state 
of the art optical network link.  
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The proliferation of mobile personal devices makes it convenient for consumers to 
participate actively in personal energy management, creating new dynamic interactions 
between generations and consumption. For example, mobile apps have already been 
developed for home energy management that interacts with internet services such as 
weather forecasting. Such apps can easily incorporate personal lifestyle preferences, real-
time pricing signals, traffic information for scheduling the charging of electric vehicles, 
and consumption profile of local communities. Much of the computation and storage 
needs that serve the consumer are in a public infrastructure and will likely be in the 
“cloud” in the future. 

While it is not easy to foresee changes in today’s mostly centralized energy 
management paradigm, it is not unreasonable to draw an analogy with the evolutionary 
path of the computer industry, from centralized mainframe computing for large 
organizations to personal computing for individuals; from computing at offices and 
homes to mobile and embedded computing; from high performance parallel computing to 
cloud computing. Essential characteristics of this evolution are the personalization and 
localization of computing and the ubiquitous presence of networking. It may be argued 
that these same characteristics will have impacts on the development of a future grid. 

Today’s grid is based on a private computation and networking infrastructure. The 
scalability of such an approach in an era of big data is called into question. It has been 
argued in [1] that building a private network exclusively used for the future grid may not 
be an economically viable option; leveraging existing public investments in computation 
and networking infrastructure such as cloud computing and future internet technologies 
will be inevitable.  

This paper addresses several issues on the computation and information hierarchy of a 
future grid. On computation architecture for smart grids, challenges and opportunities of 
having cloud computing architecture for the scalable, consistent, and secure operations of 
smart grids are examined. On information hierarchy, issues on how information should be 
partitioned in time and space are examined. The temporal characteristics of information 
hierarchy are investigated in the context of dynamic scheduling with deadline 
requirements. The spatial characteristics of information hierarchy are investigated by 
considering spatially distributed location real-time prices. On big data analytics, effects 
of data quality on location real-time prices and market dynamics are also considered. 
Mechanisms of detecting and preventing malicious data attack are considered. 
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2. Cloud Architecture for a Future Smart Grid 

We discuss in this section merits of developing a cloud computing architecture for 
computation and operation needs of a future grid. It may be argued that cloud computing 
has the greatest potential to be the information and computation foundation for a future 
grid [1], [2], and the cloud is a unifying architecture not only for independent generators, 
ISOs/RTOs, and distribution utilities but also for consumers and communities that are 
part of the greater social network. 

A limiting factor for efficient and reliable operation of today’s power grid is the lack 
of computation power. To this end, cloud computing provides a scalable and economic 
solution. The current SCADA systems and control centers relies on the architecture of 
high performance computing (HPC). Such architecture is limited by the so-called 
checkpoint barrier [3]. In particular, because computation nodes for HPC may fail, check 
points are needed to ensure continual execution during failures. As the number of 
computation nodes increases for larger and more complex SCADA operations, the 
number of required check points increases dramatically, which becomes a fundamental 
barrier to large scale computation. 

The cloud architectures, in contrasts, are supported by multiple data centers, each 
having a large number of simple and inexpensive servers. Despite that nodes and storage 
may fail, the redundancy and distributed nature of the cloud make the cloud architecture 
more reliable for smart grid operations and with greater computation speed and elasticity. 
A particularly relevant development is the recent advances in applying information 
theoretic and coding techniques [4]-[6] that mitigate disk failures and other anomalies to 
improve operation reliability and efficiency.  

There have been growing activities on the use of cloud architecture for smart grid 
applications (see, e.g., [1], [7], [8]). Although the economy of scale favors a cloud 
architecture, cloud computing was not and has not been designed for power grid 
operations. Here we outline a few important challenges that must be addressed should 
cloud architecture become the computation and information backbone for smart grids. 

2.1 Consistency, availability, and reliability 

The information and computation infrastructure for a future grid need to be available, 
responsive, fault tolerant, and resilience to attacks. Data essential for operational 
decisions need to be consistent in the sense that the asynchronous arrival of information 
and updates at data centers should not lead to inconsistent decisions. This last property is 
especially important because the power grid covers a large geographical area, and 
distributed data collection and storage lead to discrepancies. Thus making decision 
policies robust to data inconsistency is crucial. 
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Data consistency and real-time guarantees are known to be at odds in distributed 
systems. What makes today’s cloud architecture scalable is the notion of weak 
consistency, which does not enforce all data at different servers have the same level of 
accuracy and freshness. The outcome of a search at one location may actually be 
somewhat different from that obtained at a different location. Nonetheless, for many 
applications, “pretty good answers” are considered good enough, and weak consistency is 
deemed adequate. For real-time operation of the grid, however, weak consistency, 
especially one without quantifiable measure, is insufficient; a much stronger guarantee 
for consistency is necessary. 

It is essential to characterize fundamental tradeoffs among consistency, time 
criticality, and scalability. To this end, Brewer conjectured in [9] that that consistency, 
availability, and partition tolerance (CAP) cannot be satisfied simultaneously. By 
consistency it means that distributed processors should have access to the same data at 
the same time. Availability in a distributed system means that every request receives a 
valid response. Partition tolerance means that the system continues to function despite 
arbitrary message loss. Gilbert and Lynch later introduced a formal model and 
established a set of impossibility results [10]. The models considered in [10] are specific 
asynchronous models for read-write operations uncommon in grid operations. 

The strict notion of CAP is not useful in practical power system; the power grid cannot 
operate with arbitrary partitions, nor will SCADA systems across wide areas can be 
perfectly synchronized. While CAP properties represent exceedingly strong theoretical 
requirements, they have natural practical interpretations in specific applications. It is 
more relevant to obtain a practically significant measure of CAP. To this end, it is useful 
to introduce tolerance levels in the three CAP attributes, replacing strict CAP by a 
deterministic or a probabilistic counterpart.  

For example, we may be willing to scale back strict consistency by the probabilistic 
consistency. Specifically, we may want to require the system achieve consistency with 
probability (1- ε). We may replace anytime availability to a more realistic measure of 
availability with high probability, requiring that data outage probability be lower than ε.   
Instead of considering arbitrary partition of the network, we may consider a weaker 
notion of reliability similar to that of N-1 contingency requirements.  

Characterizing fundamental tradeoffs among consistency, availability, and reliability is 
a critical step toward addressing architectural issues for a future grid. Once the strict 
notion of CAP is replaced by the more practical measures of consistency, availability, 
and reliability, the Brewer conjecture focusing on the achievability of three extreme CAP 
objectives simultaneously should be replaced by the characterization of the set of 
achievable objectives that are ε−deviate from the extreme CAP points, as illustrated in 
Figure 1. 

4 



 

 
Figure 1. An illustration of the set (shaded area) of practically achievable  

conflicting objectives on consistency, availability, and reliability. 
  

2.2 Reliability, security, and trustworthiness 

Today’s cloud technology does not provide the level of reliability necessary for real-
time operations. Data inconsistency and other anomalies due to data center and network 
outages may have detrimental effects on the reliability of the future grid. The increasing 
reliance on cyber-infrastructure to manage complex grids comes also with the risk of 
cyber-attacks by adversaries around the globe. If the future grid is to be managed by a 
combination of public and private cloud platforms, the risk of attacks will only increase. 

Existing cloud computing platforms have weak security and privacy guarantees, which 
makes them vulnerable to internal and external attacks. The notion of “trustworthiness” 
goes beyond security. Because data are replicated in the cloud, and it is impractical to 
refresh them at an arbitrarily fast rate, it is possible that outdated data are used in critical 
decisions. 

A natural approach to reliability and consistency is introducing redundancy in the 
cloud system. A naive solution is to duplicate storage units so that, in events of disk 
failures, essential data are not lost. Such a solution, however, is flawed because 
duplicating data necessarily increases data traffic and the chance of data inconsistency. 

A more promising approach is to introduce redundancy in a more intelligently. The 
idea of coded storage [11] and more recent development of network coding techniques 
for distributed storage [5], [6] provide possibilities of achieving tradeoffs among 
reliability, efficiency, and security. As an application of error control techniques in 
communications to data center storage, sophisticated error detection and correction 
techniques are being developed by taking into account the need of frequent updates, 
possibilities of disk failure, and potentially malicious actions [12]. These ideas open new 
avenues toward cloud architecture suitable for real-time and secure operations in a future 
grid. 
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2.3. Estimation and control in the cloud 

The “state” of the power grid is defined by the voltage phasors at all buses. The state 
variable captures the operating condition of the grid and contains sufficient statistics for 
operational decisions. Prior to the advent of PMU technology, state variables cannot be 
measured directly, and states have been estimated from data collected by the SCADA 
system. State estimation is implemented in all control centers based largely on the 
original ideas of Schweppe [13]. The deployment of PMUs greatly enhances the quality 
and resolution of state estimates [14]–[16]. With faster and synchronized sampling, state 
estimation will play a greater role in real time operation and control of the future grid. 

What happens when state estimation is executed on a cloud platform? What are the 
impacts of conflicting, bad, or missing samples on state estimation and operations using 
state estimates as input of operational decisions? How trustworthy are state estimates on a 
cloud system? Works on estimation and control with intermittent packet drops are 
particularly relevant (see [17], [18] and their included references). Information theory and 
coding techniques have also been considered in dealing with imperfections introduced 
when data sensor data are communicated to the control center [19]. 

Classical state estimation incorporates practical bad data detection as a way to 
eliminate outliers or mistakes in data collection [20]–[22]. These techniques, however, 
are not effective in dealing with complex situations arising in a cloud platform and the 
possibilities of external or internal (Byzantine) attacks. There have been recent efforts in 
characterizing effects of bad or malicious data on state estimation and on real-time 
location marginal price (LMP) (see [23]–[25]). 
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3. Information Hierarchy in Time 

To achieve large scale integration from wind and solar sources that are stochastic and 
time varying, existing modus operandi based on day-ahead planning and worst case 
contingencies may have to be changed. Because uncertainty increases with planning 
horizon, day ahead forecast of generation levels from renewable sources can at best be 
used to characterize the ensemble behavior. If a high percentage of renewable generation 
is integrated into a future grid, operation decisions have to be made with a shorter time 
horizon such that they can be made more adaptive to changing operating conditions. To 
this end, it is necessary to view randomness in supply and demand not as minor 
perturbations from some deterministic norm but as fundamental characteristics of energy 
management in a future grid. 

Information hierarchy in time addresses the problem of what kind of information is 
required and by what time decisions have to be made. The information structure for real-
time decisions can be modeled as a nested sequence of observed events—an information 
filtration. Conditioned on the sequential arrivals of information, the control center takes 
actions based on cost/profit considerations, constraints, contingencies, and operation 
deadlines. The general framework for these types of problems is a multistage decision 
process. 

We present below two types of scheduling problems that are particularly relevant; one 
follows a robust formulation by considering worst case scenarios, the other a stochastic 
formulation with average performance measure. In both cases, the decision problems 
involve explicitly deadline constraints. 

3.1. Real-time scheduling with deadlines 

Deadline scheduling is a classical and fundamental problem where jobs arrive at a 
control center with different processing needs and deadlines of completion. Such 
problems arise naturally in home energy management where a controller schedules loads 
with different characteristics, some with firm deadlines of completion and others with 
deadlines on the starting time. 

For example, a residential consumer may require that an electric vehicle be charged 
by 7 AM or that a washer/dryer be started no later than 8 PM. Yet other jobs may have 
deadlines that are not firm, deadlines that may be specified in a probabilistic setting in 
terms of average time of completion or the probability of completion. 
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Figure 2. Arrivals of jobs with deadlines 
 

In a generic form, a job J = (r, p, d, v) is defined by a quadruple: the arrival time 

r, the required processing time p, the deadline d, and v the utility of completing the job. 
Figure 2 illustrates a particular scenario of the arrivals of jobs with deadlines. The 
problem of deadline scheduling is to determine, at any time, which jobs are to be served 
subject to certain processing capacity constraints. 

Deadline problems can be formulated in a deterministic or a stochastic setting. The 
latter often requires knowledge of joint probability distributions of arrival time, job sizes, 
processing time, and deadlines. Such prior knowledge, however, may be difficult to have 
in practice. An alternative is the framework of competitive scheduling based on a 
deterministic formulation. In such a setting, all variables are modeled as deterministic 
quantities, and the performance of any online scheduling algorithm can be compared with 
the optimal offline algorithm. 

The competitive ratio C(π) of an online policy π is defined as the ratio of the 

reward accrued by the online policy π over that by the optimal offline policy for the 
worst possible job arrival scenarios. The optimal online policy is then defined as the one 
that achieves the supremum of competitive ratio among all online policies. Scheduling 
under deadlines are well known challenging problems with many new applications. It 
was shown by Karp [26] that optimal off scheduling for problem of deadline scheduling 
is NP-complete. Thus no polynomial time solution is known to exist. On the other hand, 
simple online scheduling algorithms that achieve the best competitive ratio do exist. For 
example, the earliest deadline first (EDF) algorithm works on the job with the earliest 
deadline, and it switches to a newly arrived job if the new arrival has an earlier deadline. 
It is known that such a simple scheduling algorithm is optimal when the traffic load is 
light. See in particular the seminal work of Liu and Layland [27], the work of Mok [28], 
Locke [29], recent applications in scheduling jobs for cloud systems [30] and the large 
scale EV charging [31] 

As an application, consider the problem of charging electric vehicles (EVs) at a 
parking lot or a garage. The customers arrive with different charging needs and required 
deadlines for completion. Suppose that the chargers are powered by a mixed of 
(inexpensive and locally generated) renewable source and expensive electricity purchased 
from the grid. Given varying level of available renewable sources, an operator wishes to 
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have a scheduling policy that maximizes its operating profit by optimizing its charging 
schedule. 

The energy management system for the large scale charging of EVs faces multiple 
challenges. The service provider has to deal with uncertainties associate with the arrivals 
of jobs (demand) as well uncertainties associated with the varying price of electricity. 
Given a fixed pricing scheme, the service provider optimizes its profit by exploiting 
flexibilities associated with specified deadlines. 

The problem of pricing EV charging services is nontrivial. For instance, it is 
reasonable to charge a consumer a higher price when a submitted job has a tight deadline. 
Therefore, a service differentiated pricing may be appropriate, which makes jobs with 
tight deadlines higher priority and more profitable. On the other hand, a consumer may 
respond to pricing schemes by either reducing consumption or turn to competing service 
providers. A main challenge is to optimize jointly deadline scheduling and pricing in a 
competitive market. 

3.2. Multistage decision and risk-limiting dispatch 

The objective of unit commitment and economic dispatch in the electric power 
system is to schedule generators and reserves to meet the demand in the presence of 
uncertainties and random contingencies. The decision process in the current power 
system is a two-stage optimization involving day ahead planning and real-time 
adjustments. The decisions at the two stages are only loosely coupled. When there is a 
high degree of uncertainty, reliability considerations based on worst case scenarios lead 
to over provision and inefficiency. When the generation portfolio includes a high 
percentage of renewable sources, the cost of over-provision of reserve offsets the benefits 
of renewable integration. 

The key idea of risk limiting dispatch articulated by Varaiya, Wu, and Bialek [32] is 
to exploit the fact that uncertainties associated with random generation decreases as the 
decision horizon reduces. To take advantage of real-time measurements that help to 
improve forecast accuracies, risk limiting dispatch reduces the decision horizon by 
increasing the number of stages in the stochastic optimization. As time gets closer to the 
scheduled actions, increasingly tighter limits on risks are imposed. 
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Figure 3. Decision epochs of risk limiting dispatch [32] 

 
Figure 3 illustrates a sequence of decision epochs that influence the actual actions 

(power generated or consumed) at the decision deadline t = to. Three types of decisions 
are made based on available information from time 0 up to time t: the scheduling decision 
uσ at to − Tσ; the recourse decision at to −Tρ, and the emergency decision (if necessary) 
taken at time to – Te.  

The formulation of such decision processes requires an abstraction of information and 
decision structure, reliability/ security constraints, and constrained optimizations. The 
underlying optimization in risk limited dispatch is nontrivial, but structured solutions may 
exist under certain conditions (see [33], [34]). 
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4. Information Hierarchy in Space 

Information hierarchy in space addresses the problem of collecting and disseminating 
information to a large geographical area and issues related to networking requirements, 
data resolution, and latency. We discuss in this section the significance of investigating 
spatial aspects of information hierarchy, focusing on economic aspects of the electricity 
market for future smart grids. We then outline research topics—the use of distributed 
incentives and Location Real-Time Pricing (LRTP)—that are rooted in and give a new 
context for Schweppe’s vision of user participation in a deregulated electricity market. 

4.1 Impacts of data inconsistency on Location Real-Time Price  

The real time location marginal price (RT-LMP) has been the main mechanism to 
settle day-ahead and real-time markets [35], [36]. If the cloud is to be a backbone for the 
computation and information management of the smart grid, the issue of data quality has 
to be addressed. We have already discussed earlier that the current cloud assumes merely 
weak data consistency. Furthermore, there are always possibilities that adversaries 
(potentially insiders of the energy industry) can covertly manipulate data to affect real 
time prices. 

The impact of data inconsistency on RT-LMP is not well understood. If demand 
response is one of the main characteristics of a future grid, one has to consider impacts of 
data quality on the volatility and stability of the electricity market. 

In a recent work [37] has shown that the manipulating data from unprotected meters 
can result in a significant change of RT-LMP [37]. Indeed, data attacks on one location 
can change significantly prices far away. Indeed, because the RT-LMP is a solution of a 
linear program from a linearized incremental optimal power flow, RT-LMPs are 
computed from vertices of a certain polytope determined by congestion conditions of the 
network. Inconsistencies or data anomalies can result in the congestion pattern deviating 
from the reality, causing significantly changed RT-LMP values. 

To understand data inconsistency in the smart grid electricity markets, we need to 
characterize both analytically and through numerical study effects of data inconsistency 
on LRTP. How much does network latency or using incorrect or outdated data change 
LRTP? Since the condition of transmission network congestion is estimated through state 
estimation, does the information network congestion causes significant real-time price 
changes throughout the network or is it localized? Second, market monitoring algorithms 
that provide detections, localizations, and warnings for irregular price changes are 
needed.  
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4.2 Demand response, hierarchical control, and location real time price  

The electric grid covers a large geographic area and the information available and 
collected for processing has spatial significance. The information flow, however, is not 
bidirectional; the customers have traditionally been considered as passive loads that can 
be “shed” in emergencies caused by supply-demand imbalances. Such a “master-slave” 
relationship is beginning to change and will definitely not be appropriate for a future 
smart grid. 

The technological barriers for obtaining and distributing information have largely 
been removed, although capacity constraints may still be significant. A customer 
equipped with dynamic pricing information and the ability to manage their demand over 
time would benefit from LRTP of the electricity purchased. Indeed, providing LRTP to 
customers ultimately benefits the network operators because these customers are likely to 
shift their demand from peak to off-peak periods, and as a result, the installed capacity of 
the peaking units needed to maintain reliability can be reduced significantly [38]. 

Full demand-side participation in a future smart grid is, however, likely to require 
some form of hierarchical control to manage devices on distribution networks [39,40]. It 
is essential for such a control hierarchy to have a spatial information hierarchy that 
manages the collection and distribution of information and provides the correct economic 
incentives to influence customer behavior. While the role of real-time pricing has been 
studied extensively [38], the spatial aspect of LRTP is less known but this is an essential 
issue for mitigating the variability of generation from renewable sources that are also 
spatially distributed on the grid. 

The use and impact of distributed incentives on demand-side behavior by customers 
who wish to minimize their net payments for purchasing electricity from the electric grid 
and compare the performance of the grid with a system in which all devices are 
controlled centrally.  

Such incentives will allow individual customers to make local decisions on the timing 
and quantity their purchases of electricity. This paradigm of distributed decisions that 
respond to real-time distributed incentives is potentially of particular significance for the 
producers of electricity from renewable sources. These sources are becoming an 
increasingly important component of generation and integrating them into the electric 
grid has already caused operating and financial challenges in some regions. Some related 
recent work can be found in [41,42]  
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5. Big Data Analytics in Real Time 

Information processing in a future grid faces big data challenges in multiple fronts. 
Previous sections discussed computation and storage aspects of dealing with a large 
amount of wide area data collected in real-time. In this section, we focus on real-time 
data analytics that addresses algorithmic challenges. 

Data analytics in a future grid can be broadly characterized as algorithms that 
discover hidden patterns from large data sets, track and stochastic processes and random 
phenomena in the system, and learn acquire consumer behavior model. The data sets 
include meter measurements from transmission and distribution networks, generation and 
consumption history data, day ahead and real-time location marginal prices, weather data, 
and social network data relevant to consumer behavior.  

The real-time location marginal price, for example, is a vector process of over 10,000 
dimensions and computed at the rate of once every 5 minutes. This means that the 
available data in each day represent merely 3% of the data dimension. Applying 
conventional techniques to estimate correlations among LMPs with any reasonable 
accuracy would have require at least one year of data, assuming (unreasonably) that the 
underlying process is a stationary. This example is one instance of many challenges in 
big data analytics in a future grid.  

There is an expanding body of literature on data analytics from the machine learning, 
signal processing, and computer science communities. The developed theory and 
techniques, however, are inadequate to tackle unique challenges in a future grid in which 
big data problems have several important characteristics:  

• The real-time operation with instantaneous balance of power delivery demands 
that data analytics provides on-line actionable intelligence.  

• Real-time measurements in a power grid are nonstationary, non-Gaussian, and in 
general cannot be accurately be modeled by traditional time series models. 

• Data in power systems often involve multiple time scales: PMU data in sub-
second time scale, SCADA data in sub-minute time scale, load forecasts are in 
hourly and day ahead time scales.  

• Big data in a power grid have both the data poor and data rich regimes. Analytics 
for real-time operation has to cope with very high dimensional data but with 
limited samples such as the cases of real-time LMP processes and state estimates. 
In other situations, the amount of data available for processing exceeds 
computation and storage capacities. The real-time feed of PMU data, for 
example, provides the level of details and resolutions that make extracting 
actionable information difficult.  
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Investments in research and development in key areas of data analytics will help to 
usher new generations of big data analytics tools for the future grid.  

• Structured learning and graphical model techniques that capture the 
characteristics that high dimensional data are often reside in some low 
dimensional manifold;  

• High dimensional statistical inference for situation awareness. This includes 
distributed detection of anomalies and attacks, transient detections, change point 
detections for early warning of catastrophic events, and techniques dealing with a 
large number of dynamically evolving hypotheses.  

• High dimensional online learning algorithms that integrate learning and operation 
decisions; such techniques need to capture uncertainties and dynamics of the 
system, capable of reacting emerging events.  

• Data representation and visualization techniques that summarizes actionable 
information.  
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6. Conclusions 

This paper addresses aspects of computation and information hierarchy for a future 
grid. Our underlying premises are that the future grid needs to integrate a much higher 
percentage of stochastic (renewable) generations and that the consumers will participate 
much more actively in demand response programs. Of course, neither of these premises is 
guaranteed to be realized in the near future. But if they do become reality at some point in 
the future, significant changes on how information is collected, stored, and processed are 
necessary.  

There are also technological drivers and innovations that make a compelling case for 
considering alternative paradigms of computation and information processing. 
Specifically, cloud computing, despite its imperfections and lack of guarantees in 
privacy, security, and robustness, is likely to be the dominant mode of computation in the 
future. As cloud overcomes its shortcomings over time and scales up, it is likely to 
replace the status quo approach. 

The prolific use of wireless devices will likely enable a new generation of consumers 
who find it comfortable, in fact, natural to manage their energy usage. The 
personalization of energy management may have dramatic impacts on future energy 
generation, delivery, and consumption. 

The topics covered in this white paper are limited in scope and depth. The issues 
addressed, however, are fundamental and require considerable and sustained research 
efforts at both the theoretical and applied levels. In many ways, the problems considered 
here are classic distributed computation and decision theory problems, except that the 
scale of the problems is much larger, and the underlying physical system is a critical 
infrastructure that on which new algorithms and techniques cannot be easily tested.  
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