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Abstract—Market power gives certain market participants the
ability to manipulate the market to their advantage when their
product is not substitutable by competitors. Identification of gen-
erators which have the potential for market power either individu-
ally or within a small group is performed using sensitivity informa-
tion from the linear programming optimal power flow (LP OPF).
The impact of network constraints on admissible price perturba-
tions are used to group generators that have the potential to exhibit
local market power. Specific price perturbation vectors are found
that highlight a constraint-induced locational advantage for these
suppliers. In practice, this is most commonly observed in ‘“load
pockets,” for which ISO policies mitigate market power.

Index Terms—Eigenvectors, electricity markets, linear sensi-
tivity analysis, market power potential.

1. INTRODUCTION

ARKET power is referred to as the ability of a market
M participant to profitably maintain prices above a com-
petitive level for a significant period of time [1]. Numerous types
of market power can distort competition in electric markets in-
cluding vertical ownership, generation withholding, and loca-
tional market power [2]. The source of this ability to manipu-
late a market necessarily arises from some advantage a supplier
has over would-be competitors such that these other participants
cannot adequately replace, or “substitute”, for supply. An ob-
vious example is a “pivotal” supplier without whose resources
the demand cannot be met. More generally, combinations of two
or more dominant suppliers may share the property that their
combined resources may not be substitutable by others and po-
tentially they can exercise joint market power.

In an electricity market, the ability of one supplier to sub-
stitute for another depends on the structure and capacity of the
electric power grid. When the market is competitive, a generator
that unilaterally raises its price above marginal cost of produc-
tion would simply lose its customers to competitors [3]. When
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the transmission network congests, potential for “local” market
power arises.

Local market power is a major concern to ISOs. It has been
recognized by PJM, since the local market power rule proposed
in 1997, that local markets created by transmission constraints
are generally not structurally competitive. As stated by the
FERC, “In markets with very little demand elasticity, a pivotal
supplier could extract significant monopoly rents during peak
periods because customers have few, if any alternatives.” A
monopolist generating unit facing perfectly inelastic demand
will not need to rely on competitive market mechanisms to set
its price paid; thus, a regulated price must be set for its services.
Local market power mitigation is enforced to limit the amount
of market power exercised by such a pivotal unit and to prevent
it from leveraging prices earned by other units in its portfolio
[4]. Local market power mitigation is performed in PJM,
California, and New York. In PIM, the three-pivotal supplier
test is performed for every binding transmission constraint. It
determines whether excess supply is available to a subregion
and if the market is adequately competitive. When a generating
unit is found pivotal to relieving the transmission constraint,
it is deemed to possess local, structural market power and is
assessed for local market power mitigation [5].

In the PJM Interconnection, a group of state offices called the
Joint Consumer Advocates (JCA) was created by statute to rep-
resent the interest of electricity consumers. The primary interest
of consumers is reliable service at just and reasonable rates, and
the JCA has been actively involved in compensation discussions
for units located in load pockets. The JCA states many load
pockets have sufficient generation capacity to serve the load but
are subjected to the exercise of market power by dominant sup-
pliers, and under no circumstances is it reasonable to pay the
incumbent in excess of full cost for reliability must-run services
[6].

The idea of nonsubstitutability is implicitly and explicitly ap-
plied in various metrics to evaluate supplier potential for market
power. The FERC applies a market share and a pivotal supplier
screen for supplier applications for market-based rates [Order
697] [7]. A supplier with greater than 20% market share or thatis
a pivotal supplier at peak load is deemed to have market power.
The pivotal supplier test is an explicit test of supplier nonsubsti-
tutability—the peak demand cannot be met without a portion of
the supplier’s capacity. The market share test is an implicit test
of this property; a supply with greater than 20% market share
is presumed to have market power (FERC rules allows the sup-
pliers to rebut this presumption of market power). ISOs also use
these and other metrics to evaluate market competitiveness and
market power. In [5], PJM reports the highest market share and
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HHI indices. The latter is a scalar metric combining information
about the market share of all suppliers. Higher numbers indi-
cate higher concentration of supply and presumably less substi-
tutability. In real time, PJM applies a three-pivotal supplier test
for market power related to transmission constraints. This ex-
pansion of a pivotal supplier explicitly checks whether three or
fewer suppliers are needed to relieve a transmission constraint.
The combined resources of these few suppliers are not substi-
tutable for relief of the constraint.

In this paper, we present a method for identifying suppliers
with market power potential. Specifically, we examine network
constraints that allow for possible price perturbations to be iso-
lated to a small number of suppliers. The most common example
of this of concern to ISOs is the prices in load pockets. Because
the supply within the load pocket is not substitutable by outside
competitors, the suppliers within the pocket possess the ability
to raise prices.

Importantly, the pattern of possible prices is entirely gov-
erned by the network characteristics and constraints. Each
binding network constraint introduces a degree of freedom
in possible prices with a particular pattern. The possible, or
“admissible,” patterns of prices do not depend on generator
capacities, dispatch, offers, or other characteristics. The re-
alized prices, among the network-only dependent possible
set of prices, do depend on the generator characteristics. An
excellent and thorough treatment of this is found in [8]. Here
we focus on the possibility for isolated price disparities that
offer the potential for local market power. It is intended that
this approach will serve as an additional screening tool for local
market power for market monitors. Subsequent, post-screening
analysis of supplier characteristics and behavior is needed to
assess the exercise of market power. Such analysis is not the
focus of this work.

The approach we pursue here builds on prior work [3], [9],
[10] in which the sensitivity of dispatch and revenues to price
are analyzed, accounting for the impact of transmission conges-
tion. This work is also related to the market sensitivity analyses
presented in [8] that aim to capture the role of transmission
system constraints on market power potential. Locational mar-
ginal prices (LMPs) which satisfy the necessary conditions for
optimality are “admissible” LMPs and constraints confine ad-
missible LMPs to a particular subspace. A need is identified to
efficiently determine cases where zonally differentiated admis-
sible LMPs exist and clustering is used to group similar admis-
sible LMPs.

Here we note that the pattern of admissible LMPs is spanned
by vectors associated with constrained line sensitivities. This
allows for the efficient calculation of the basis for the price pat-
terns. It also enables a comparison to methods that rely on the
constrained line sensitivities, such as the PJM three-pivotal sup-
plier test.

The three-pivotal supplier test used by PJM is the closest
screen for market power in practice to the approach presented in
this paper. The three-pivotal supplier test uses system constraint
sensitivity analysis to identify suppliers with potential market
power [11]. Specifically, the analysis determines whether three
suppliers are pivotal for relieving a constraint. In practice, this is
applied to each constraint separately. In this paper, we examine
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the simultaneous effect of multiple constraints which may give
advantage to one or more suppliers in a manner that would not
be apparent in the analysis of a single constraint.

In this paper, we present algorithms to identify potential
pockets of price disparities made possible by network con-
straints. The suppliers associated with these pockets have
market power potential, if subsequent analysis confirms that
their capabilities allow them to achieve these prices.!

II. LINEAR ALGEBRA FOR IDENTIFICATION
OF LOCAL MARKET POWER POTENTIAL

The local market power potential we consider is identified
through the examination of the space of possible price pertur-
bations for instances of price vectors with a relatively small
number of concentrated entries. Associated with these entries, a
small number of suppliers may jointly share the ability to manip-
ulate prices and could potentially discover this ability through
price perturbations. In economic experiments such as those done
at Cornell University [10], pairs of suppliers with joint market
power potential always discover this ability without direct collu-
sion. However, buyers and sellers who are less favored in terms
of market power cannot overcome this disadvantage through
learning [12].

In theory, all suppliers acting together could jointly adjust
prices. However, it is expected that in practice, there will be
too many suppliers to exercise this ability without overt coor-
dination and concentration measures are useful for assessing
competitiveness. At times, network constraints can separate the
market such that a smaller number of suppliers have market
power potential as a result of reduced supplier substitutability
in those areas. In such cases, the prices in the local area can be
manipulated by the suppliers, presumably higher and to their ad-
vantage. The pattern of locally higher prices must appear in the
space of all possible prices. In this paper, we examine the space
of possible prices to identify possible price patterns.

The identification of local market power potential in this work
relies on a basis of vectors that describe patterns of network-ad-
missible prices. In prior work, a basis for these vectors was ex-
tracted from the null space of a calculated price dispatch sen-
sitivity matrix, or from properties of the first-order conditions
for optimality [5], [8], [13], [14]. We note that the same infor-
mation can be obtained from transmission constraint sensitivi-
ties. Specifically, the basis for these vectors is the same as that
of the augmented constrained line dispatch sensitivities (gen-
eration shift factors). Thus, constrained line sensitivities effi-
ciently determine a basis for admissible price perturbation vec-
tors. The main purpose of this paper is to present an algorithm
that uses this sensitivity information to highlight certain vec-
tors which show concentrated price variations in the fewest en-
tries. Suppliers associated with these entries may warrant de-
tailed scrutiny for local market power.

The constrained line sensitivities are explained in
Section II-A and the local market power potential discrim-
ination algorithm is outlined in Section II-B. To illustrate
these concepts and the algorithm, we introduce the seven-bus

Indeed, in the special case in which the price perturbations identified in this
work are used as offers, the prices could be achieved with no change in genera-
tion dispatch.
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Fig. 1. Seven-bus system—Initial LMPs and generator dispatches are shown.

example system in Fig. 1. The market power potential we
study depends on the network constraints. In this example, the
lines connecting buses (2, 6) and buses (5, 7) are constrained,
resulting in higher LMPs at buses 6 and 7.

Before leaving this section, we clarify an important point con-
cerning the price perturbations discussed in this paper. While
we focus on the price perturbations at the supply, these should
not be confused with supplier offers into a market. The price
perturbations should be interpreted as actual clearing price per-
turbations and not necessarily offers. The perturbed prices could
be achieved by matching the offers to these prices, or through
some other set of generator offers.

A. Constrained Line Sensitivities

The step to determine basis vectors for admissible LMPs, de-
noted B here, is computationally identical to determining the
tableau for a linear programming optimal power flow (LP OPF).
The LP OPF formulation is a well-known method for solving
optimal redispatch problems [15]-[17]. The objective function
and the constraints are linearized. The initial basis or tableau is
L° = [B°]AP° where L° represents the incremental flow on
lines with active limits and rows of B represent the sensitivity
of the line flow to incremental generator change. Thus, con-
strained line sensitivities are easily determined as a by-product
of the LP OPF.

Currently, the only OPF controls considered are generator
MW outputs. The extension of this model is a lengthy topic and
is thus left as a subject of future work. The current model is
sufficient to explain the ideas presented in this paper. For this
purpose, we present a DC OPF model for which the constrained
lines are specified:

rrll)ign E C;(Py;, w;) such that (1
. T P

Adiag(b)A "0 — [ g} =0 (2)
Pq

diag(bs) AT — Paow =0 3)
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where C;(P,;) is the generator cost function that depends on
the dispatch Py,;. Equation (2) represents the relation of power
injections to bus angle @ and (3) imposes the line power flow
Pgow constraints. Branch susceptances are specified in b. Sub-
script f denotes quantities associated with the constrained lines.
Unconstrained lines are below their limits and are not shown.

Matrix A is a branch-node incidence matrix that describes
the topology of the network. Each column, corresponding to a
branch, is zero except for a single +1 element and a single —1 el-
ement at rows corresponding to the terminal buses. Importantly,
each column of A is orthogonal to a vector of all ones. This
property will be exploited below. Finally, the formulation above
is independent of slack bus choice, as we have specified neither
a slack bus nor an angle reference. In fact, the above formulation
depends only on line statuses and admittances of the transmis-
sion system elements.

We start by deriving a form for the constrained-line sensitiv-
ities that relate changes in power injections to changes in line
power flow. We assume here that the demand remains constant
and we only consider changes in generator injections. This al-
lows us to consider the changes in Pg and Pd just by considering
AP,o. Then (2) may be solved for Af in terms of APgq, where
the subscript 0 indicates that the sum of its elements must equal
Zero:

Af = (Adiag(b)AT) " [(I)] APy +a.cv. (4

where a.c.v. denotes an arbitrary constant vector.2 Combining
(4) with (3), we obtain the sensitivities for the lines of interest:

0
—KAP,,. 5)

APgow = (diag(bf)AfT (Adiag(b)AT) " [ID AP,

The constrained line sensitivities are described by K. This so-
lution is exact; the a.c.v. in (4) is eliminated because it is or-
thogonal to A;r. It is important to emphasize that the sensitivity
matrix K only depends on network parameters, topology, and
binding network constraints. It is independent of generator char-
acteristics.

To satisfy power balance, the elements in AP z¢ must sum to
zero, as mentioned above. This requirement is typically satis-
fied by choosing a slack bus whose incremental injection is the
opposite of the sum of the other generator’s incremental injec-
tions. Formally, this may be represented by

AP, = RAP,. (©6)

The requirement that APz must sum to zero holds if each
column of R sums to zero. For example, if the first generator
is chosen as the slack, R is the following:

0121

_11z(n—1)
= 7
O(n—l)zl M

Lon—1)a(n-1) |

2We purposefully abuse notation slightly by indicating a matrix inverse when
the matrix enclosed is singular. When we restrict Ang to sum to zero, then
the vector of incremental power injections is orthogonal to the null space of
Adiag(b)A™ and the solution in (4) exactly satisfies (2). Alternatively, the
use of pseudoinverse notation, for example, might lead the reader to suppose
that the solution in (4) is some sort of best fit solution, when in fact it is exact.
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Then
APgow = KRAPg = KRAPg. ®)

Different slack buses can be chosen and consequently sensitivity
matrix Kgr is slack bus dependent. The elements in Kg are
often referred to as generation shift factors. The choice of slack
only adds a constant row vector to each row; the corresponding
rows of K and Kg differ only by a constant.

We use the matrix S to represent the transpose of K aug-
mented by a column of all ones:

1
KT :|. ©))
1

S =

The basis of the column space of S, Col(S), spans the same
vector space as B, the basis for admissible LMPs. To show this,
recall that LMPs can be decomposed in terms of a uniform com-
ponent and a congestion component (neglecting losses). Using
the DC OPF model here, the LMPs can be expressed as

A=[1]Ao — [(Adiag(b)AT)‘1 Afdiag(bf)} p o (10)

where ) is the vector of LMPs, ) is the uniform component
of the LMP, and . is a vector of multipliers associated with the
network constraints. A discussion of this LMP decomposition
can be found in [8] and [18]. Extracting the LMPs associated
with generators gives
A =[I 0]A=-K"'p+acuw. (11)
where [I 0] selects generator entries that without loss of gener-
ality are ordered as the initial entries in the vector and a.c.v. is
the arbitrary constant value associated with the uniform compo-
nent of the LMP. The space of network admissible LMPs and
LMP perturbations (since this is a linear model) is spanned by
B=[K" 1] (12)
which is identical to S.

The relation between the shift factors and LMPs suggests a ra-
tionale for the algorithm to follow. Large entries in S are associ-
ated with generators that most efficiently resolve network con-
straints, allowing for higher clearing prices at these locations.
Combinations of constraints in which groups of generators ap-
pear increase the potential for high clearing prices. The actual
impact on prices will depend on the capabilities of these gener-
ators. The following algorithm examines the space of potential
impacts as a screen and subsequent detailed analysis would be
needed to examine the capabilities.

B. Outline of the Two-Stage Algorithm

In the previous subsections, we discussed a basis for possible
price perturbation vectors. The remaining challenge is to de-
velop a method to determine particular vectors, among the in-
finite possibilities, that highlight concentrated entries that show
opportunity for local market power. These vectors of interest
have a particular structure: the entries are almost entirely zero,
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or near zero, except for a few relatively large entries. We con-
sider this a nontrivial problem.
For the seven-bus Fig. 1 system, S is given by (13):

Genl [ 023 —0.06 1.00
Gen?2 | 024 —0.05 1.00
S=Gend | 017 —0.11 1.00 (13)
Gen6 | —0.58 0.14 1.00
Gen7 L—0.21 050 1.00

We seek linear combinations of these vectors that result in price
perturbation vectors of the desired structure. Already we see
suggestive patterns in the initial vectors. For example, the entries
in the first three rows and last two rows have opposite signs in the
first two columns. This suggests a possible separation between
the first three generators (buses 1, 2, and 4) and the remaining
two (buses 6 and 7). Not obvious is another separation between
the last two.

We can gain insight from examination of the network
topology and constraints (Fig. 1). A load pocket situation exists
for bus 6 and bus 7. Incrementally, the load at these buses can
only be supplied by the generators at these buses due to the
constrained line between buses 2 and 6. Also, both Gen. 6 and
Gen. 7 can independently exercise market power. To see why
this is true, look at the one-line diagram and suppose Gen. 6
increases its price by $1/MWh. The load will accept this price
in order to satisfy power balance and in order not to further
overload the constrained lines. The same situation is true for
Gen. 7. Thus, we expect that Gen. 6 alone, Gen. 7 alone and
Gen. 1, 2, and 4 combined will have some amount of market
power potential.

The two-stage algorithm is detailed in the next sections. We
start with the augmented sensitivities S from the LP OPF and
compute an orthonormal basis B using singular value decompo-
sition (SVD). Briefly, SVD expresses a matrix as S = UXVx,
where X is the matrix of singular values of S. If r is the rank of
S, the first r left singular vectors or columns of U{uy,...,u,}
are an orthonormal basis B for Col(S). According to [19], com-
putation is of order O(nm?) and m is small because the number
of constraints is small. The first stage of the algorithm clusters
the rows of B to form groups of similar generators. In the second
stage of the algorithm, for each cluster, we use eigen-analysis to
maximize the entries associated with the generators in a cluster
while minimizing other entries. Additional refinement may be
performed.

III. GENERATOR GROUPING ALGORITHM

The generator grouping algorithm comprises two steps: an
initial generator clustering step followed by a price perturba-
tion refinement step. The clustering step forms sets of binary
groupings, each of which contains a candidate group of gener-
ators. The refinement step mathematically seeks a price pertur-
bation vector in the space of network-admissible vectors that
maximizes the price perturbations for the candidate generators
while minimizing the price perturbations for the other genera-
tors.

In theory, the initial clustering step would be unnecessary if
we could simply evaluate all possible combinations of candidate



1984

generators. This is a combinatorial calculation in terms of the
number of generators. Furthermore, such a brute-force approach
appears unnecessary. Work is currently in progress to investi-
gate different clustering algorithms. To date, almost any sen-
sible clustering algorithms appears to work well and a Quality
Threshold (QT) clustering algorithm and a K-Means clustering
algorithm have been implemented. An overview of these two al-
gorithms is provided below. The clustering is performed on the
rows of matrix B, as we are grouping generators.

A. Quality Threshold Algorithm

The QT algorithm can be used to cluster the rows of B.
The original algorithm was developed to cluster genes [20].
The criterion which motivated its design is the need to form
an unknown number of potentially large clusters which satisfy
a “quality guarantee,” meaning here that the cluster diameters
should not exceed a certain threshold.

A distance matrix D with elements D;; for rows ¢ and j gives
the distances between all rows of B. Any measure of distance
may be used; here we use Euclidean distance. A threshold and
optionally a maximum cluster size are specified initially. For
each row of B, we build a candidate cluster that contains all
other rows of B which are closer in distance than the threshold.
If a row of B is not within the threshold of any other rows, it
forms its own cluster. The candidate cluster with the most ele-
ments becomes a true cluster and all points already in a cluster
are removed from further consideration. The process then iter-
ates until all points belong to a cluster. The QT algorithm is
computationally intensive, O(n?) [21], as it requires a distance
metric to be computed between all points.

B. K-Means Algorithm

The K-means clustering technique is one of the oldest and
most widely used algorithms and is described in detail in [22].
The algorithm is simple and fast (polylogarithmic) in practice
[23], although in theory, it has polynomial smoothed running
time [24]. K-means is a prototype-based, partitional clustering
technique where clusters are represented by their centroids. In
prototype-based clusters, the objects in a cluster are closer to
the prototype of that cluster than to the prototype of any other
cluster. The centroid used as the prototype in the K-means algo-
rithm is typically the mean of the points in the cluster, hence the
name K-means. Partitional clustering is a division of the objects
into non-overlapping subsets, which implies that any object may
only be in one cluster.

The K-means algorithm proceeds as follows: First, k& points
are chosen as the initial cluster centroids. Then, each point is
assigned to the closest centroid and each collection of points is
a cluster. The centroids for each cluster are recomputed. The
process continues until points stop changing clusters which is
equivalent to when the centroids stop changing. A drawback is
that the K-means algorithm requires the user to specify a priori
the number of clusters, k. Another difficulty is specifying the
initial choice of clusters.
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IV. PRICE PERTURBATION ALGORITHM

The generator grouping algorithm provides us with the fol-
lowing block matrix structure:

B, Ay1
B2l o |42 (14)
Bk Ayk

where £ is the number of clusters, x is a weighting vector (to
be determined) that produces a particular network-admissible
price perturbation vector, Ay. In (14), the rows of the original
B are simply grouped together with other generators in the same
cluster.

Consider only one generator cluster at a time. For each cluster
1, we partition B into a matrix B; consisting of the rows of B
which are in 7 and a matrix B_; consisting of all other rows.
The subscript —: is used to denote generators which are not in
group ¢. This gives us &k problems of the following form:

B; Ay;
o= s
where the elements in Ay; should be much larger than those of
Ay _;. That is, for each cluster 4, we want to achieve an x so

that price perturbation vector Ay is of the desired form. This
problem may be written as follows:

15)

Maz AylAy; — AyT.Ay_;

st ||x|| = 1. (16)

The requirement that the norm of the vector x is equal to one

is imposed since otherwise, any scaling of the optimal value of

x would maximize the objective function. Substituting (15) into
(16), the objective function of (16) may be rewritten as

Maz x" (B))x
st |Ix]|=1 17
where

B, =B{B; -B",B ;. (18)
This is an eigenvalue problem and the maximum is obtained by
choosing x to be the eigenvector corresponding to the largest
eigenvalue A,y of B! for each cluster ¢. The proof follows from
the definition of eigenvalues and eigenvectors and is given in the
Appendix.

By maximizing (17), the price perturbation scenario high-
lighting the largest price increase for generators in cluster - and
smallest price change for the remaining generators is found.
This automated process helps identify candidate clusters for
local market power.

With B divided into & clusters, the objective function (17) is
executed k times, giving k price perturbation vectors. However,
it is useful to shift key rows to and from B; and B_; in order
to refine the clusters, recalculate (17), and observe additional



LESIEUTRE et al.: A SENSITIVITY APPROACH TO DETECTION OF LOCAL MARKET POWER POTENTIAL

potentially improved price perturbation vectors. If the computa-
tional power were available, we could execute (17) for all com-
binations of B;/B_; and examine all 2":

()« () e+ ()=

resulting price perturbation vectors; n being the number of gen-
erators in B. This number of computations is unfeasible; how-
ever, a complete enumeration on combinations of clusters may
be possible. Therefore, (17) can reasonably be calculated 2*
times where & < n and 2¥ < 2". Instead of executing (17)
just k times by allowing only one shift and one price perturba-
tion vector per cluster, we perform the shift and calculation for
all possible 2¢ combinations of the & number of clusters. Af-
terwards, the best set of vectors that highlight the potential for
local market power, of the 2¥ price perturbation vectors are se-
lected for final results.

19)

V. NUMERICAL EXAMPLES WITH TEST SYSTEMS

The first example presented uses the seven-bus test case. The
algorithm steps are explained in detail for this example in order
to provide insight for the interpretation of larger test systems’
results. Other examples are given for the IEEE 118-bus system
[25].

A. Seven-Bus Example

The seven-bus example follows Fig. 1. The augmented con-
strained-line sensitivities are given by S in (13). SVD is applied
to (13) and an orthonormal basis B is obtained:

Gen1l [—-0.065 0.026 —0.576
Gen 2 | —0.062 —-0.013 —0.582
B= Gend | —0.083 0.234 —0.544 (20)
Gen 6 | 0.640 0.756 0.030
Gen7 L 0.759 —0.611 —0.182

Then, we use the QT clustering algorithm with a threshold of
0.25 and identify clusters 1,2, and 3 containing buses {7}, {6},
and {1,2,4}, respectively.

For each cluster, a price perturbation vector of the desired
form is found. For example, consider cluster 3 which has the
following matrices:

[—0.065 0.026 —0.576
B3z = | -0.062 —0.013 —0.582 |,
| —0.083 0.234 —0.544
B .- [0.640 0.756  0.030
2710759 —0.611 —0.182
B; =BIB3z - BT,;B_;
[—0.970 —0.041 0.238
= | -0.041 -0.889 —0.268 1)
| 0.238  —0.268  0.932

The largest eigenvalue of (21) is 0.9635 and the corre-
sponding right eigenvector is [0.124, —0.145,1]T. The price
perturbation vector for cluster 3 is found from (15) to be
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Fig. 2. 1EEE 118-Bus system, Ex. 1 constrained lines.

[-0.577,—0.577,—0.577,0.00,0.00]T by multiplying B in
(20) by x = [0.124, —0.145, 1], To ease comparison, normal-
ization is done so that the largest component has a value of one.
Price perturbation vectors for the clusters (CL) are shown in
the following:

[Aycr#1,AycLy2, AycrLa]

CL#1 CL#2 CL#3
Genl [ 0.04 —-0.04 1.00
Gen2| 0.07 —-0.07 1.00
= Gen4| —-0.11 0.11 1.00 (22)
Gen 6| 0.02 1.00 0.00
Gen 7 \ 1.00 0.02 0.00

B. 118-Bus Examples

In the IEEE 118-bus case [25], we consider 19 online gen-
erators. An operating point is obtained where the constraints on
the following three lines are binding: (5,8), (23,32), and (65,68).
This scenario is shown in Fig. 2.

Five clusters are found a priori by the K-means clustering
algorithm, and the objective function is executed five times to
compute the price perturbation vectors shown in Table I.

This first pass provides informative results, but it can be re-
fined to better isolate a small number of suppliers. Note that
AyCL#l has a large entry at Bus 12 which is not in cluster 1,
AyCL#2 has a large entry at Bus 10 which is not in cluster 2,
and the other vectors could be refined as well. A complete com-
binatorial check of the five clusters improves results, at a modest
increase in computation. The objective function (17) is then exe-
cuted 2F = 2° = 32 times. These 32 results are finally clustered
into six column clusters to remove similar or redundant vectors
and the best performing vector is selected from each column
cluster. The refined results are shown in Table II.

Price perturbation vectors Ay cr.#1 and Ay cr.5 remain un-
changed. The other four vectors are combinations of two clus-
ters which improve the distinction between the many small en-
tries and few large entries.
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TABLE 1
118-Bus, EX. 2, 4 CLUSTERS, PRICE PERTURBATION VECTORS

Eus (;;;J ;: ST Ayeun Ayeun Aycus Aycus Ayess
10 191.68 1 1 -0.42 0.4 0.46 0.05
12 136.88 2 -0.75 1 0.24 0.28 0.03
25 190.25 4 0.01 0.02 -0.17 0.79 0.23
26 400 4 0.16 0.01 -0.02 0.68 0.17
31 0 3 0.72 0.24 1 -0.27 -0.01
46 0 4 0.14 0.05 0 0.7 0.11
49 400 4 0.14 0.05 -0.01 0.76 0.05
54 0 4 0.14 0.05 -0.02 0.83 -0.02
59 0 4 0.15 0.05 -0.03 0.9 -0.09
61 0 4 0.15 0.05 -0.04 0.93 -0.12
65 400 4 0.15 0.05 -0.05 1 -0.19
66 400 4 0.14 0.05 -0.03 0.88 -0.06
69 400 5 0.01 0.01 -0.02 0.08 0.9
80 400 5 0.02 0.01 0.01 -0.03 1
87 0 5 0.01 0.01 0 -0.01 0.99
89 400 5 0.02 0.01 0 -0.01 0.99
100 358.19 5 0.02 0.01 0 -0.02 0.99
103 0 5 0.02 0.01 0 -0.02 0.99
111 0 5 0.02 0.01 0 -0.02 0.99
TABLE II

118-Bus, EX. 2, 5 CLUSTERS, PRICE PERTURBATION VECTORS

Bus Cluster

4 4 Aycim AYCL#l,z AYCL#l,s AYCL#IA AYCL#z,s Aycrss
10 1 1 -0.6 0.59 0.79 -0.02 0.05
12 2 -0.75 1 0 0 1 0.03
25 4 0.01 0.01 -0.13 0.75 -0.12 0.23
26 4 0.16 -0.04 0.02 0.7 -0.01 0.17
31 3 0.72 0 1 0 0.99 -0.01
46 4 0.14 0 0.04 0.71 0.04 0.11
49 4 0.14 0 0.03 0.77 0.03 0.05
54 4 0.14 0 0.02 0.84 0.02 -0.02
59 4 0.15 0 0.01 0.9 0.01 -0.09
61 4 0.15 0 0.01 0.93 0.01 -0.12
65 4 0.15 0 0 1 0 -0.19
66 4 0.14 0 0.01 0.88 0.02 -0.06
69 5 0.01 0 -0.01 0.08 -0.01 0.9
80 5 0.02 0 0.01 -0.02 0.01 1

87 5 0.01 0 0 -0.01 0 0.99
89 5 0.02 0 0 -0.01 0 0.99
100 5 0.02 0 0.01 -0.01 0.01 0.99
103 5 0.02 0 0.01 -0.01 0.01 0.99
111 5 0.02 0 0.01 -0.01 0.01 0.99

Consider the same 118-bus case, except suppose that now, the
three lines with binding constraints are (5,8), (8,9), and (38,65),
as shown in Fig. 3.

This example illustrates the tendency of line constraints to
separate both generator supply and generator prices. Fig. 3
illustrates the potential local market power clusters determined
by the algorithm. The dotted lines illustrate the division of the
system caused by these binding constraints. There are three
groups with a small number of generators (CL#1-CL#3) and
one group with many generators (CL#4). The price perturbation
vectors are given in Table III.

VI. CONCLUSION

The method presented in this paper allows groups of genera-
tors with the potential for local market power to be quickly iden-
tified for a given network model and set of binding constraints.
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Fig. 3. 118-Bus system, division due to constraints.
TABLE III
118-Bus, EX. 3, PRICE PERTURBATION VECTORS
Eus (;;&/ glumr Aycim Aycum Ayciss Aycrm
10 450 3 0 0 1 0
12 85 2 0 1 0 0
25 220 1 0.92 -0.02 0 0.03
26 314 1 1 -0.05 0 -0.02
31 7 1 0.87 0.08 0 -0.01
46 19 4 0.15 0 0 0.75
49 204 4 0.09 0 0 0.81
54 48 4 0.03 0 0 0.87
59 155 4 -0.02 0 0 0.92
61 160 4 -0.05 0 0 0.94
65 391 4 -0.11 0 0 1
66 392 4 0 0 0 0.9
69 390 4 0.02 0 0 0.88
80 477 4 -0.01 0 0 0.91
87 4 4 -0.01 0 0 0.9
89 607 4 -0.01 0 0 0.9
100 252 4 -0.01 0 0 0.9
103 40 4 -0.01 0 0 0.9
111 36 4 -0.01 0 0 0.9

We show that the set of base vectors for admissible price pertur-
bations are easily computed for the LP Tableau. Our approach
searches over the space of possible prices to identify small clus-
ters of price disparities that show opportunity for local market
power.

This analysis does not necessarily conclude that certain gen-
erators are exercising market power. We also have not calcu-
lated the range over which this potential may be exercised. The
key point is that the ideas and results from this analysis should
serve as a screening tool. In situations where analysis suggests
that participants are likely to be able to exercise market power,
further analysis needs to be done to investigate under what con-
ditions such suppliers would prefer to behave competitively.

The approach presented in this paper focuses on supply and
presently ignores elasticity in demand. The mathematics can be
extended to include demand participation and will be part of
our future work. Presently the supplier focus of the screening
tool is consistent with the application of other market power
metrics discussed in the introduction, that also rely on supplier
concentrations and supplier ability to relieve constraints.
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The algorithm presented in this paper relies on sensitivity
information related to certain distribution factors relating con-
strained lines and supplier dispatch. Such distribution factors are
also employed in the PJM three pivotal supplier test [11]. In the
three pivotal supplier test, each constraint is examined individ-
ually to determine whether three suppliers are jointly pivotal to
relieve a constraint. PJM asserts that this approach is more ac-
curate than concentration and market share measures [11]. The
underlying mathematical sensitivities in our work are identical
to those used in the three-pivotal supplier test. Our algorithm
differs in that it predominantly focuses on the simultaneous ef-
fect of multiple constraints, whereas the three-pivotal supplier
test examines each constraint separately. This is a significant
addition, as the presence of multiple constraints could accen-
tuate a supplier’s potential for market power, or offer patterns
of market power potential not evident in the analysis of a single
constraint.

The next stage of our work will focus more on the compu-
tational issues associated with finding the orthonormal basis B
and with the grouping of generators as discussed in Section III.
Ensuring that the algorithm is as efficient as possible is impor-
tant for the practicality of its real-time use on large systems, as
utilities will be the ultimate users.

APPENDIX

Proof of the Price Perturbation Algorithm: If x is an eigen-
vector of B{, then B{x = Ax and (17) becomes
xTBix =xTAx = A|x]|* = A (23)
where we used the fact that A is a scalar and the norm of x equals
1. Thus, from (23), it is clear that if x is an eigenvector of B!,
the maximum of (17) is obtained when x is the eigenvector cor-
responding to A = A5, Where A,y is the largest eigenvalue
of Bi.

All that is left is to show that the optimal x is in fact an eigen-
vector of B;. To do this, we consider x which is not an eigen-
vector of B{. Then, we show that any such xTB;x is less than
the xTB;x given by x = eigenvector corresponding to A ax.

If x is not an eigenvector of B;, then it is some linear combi-
nation of the eigenvectors of B

n
2
X=c1Vi+ -+ cpVn, § c; =1 (24
i=1
where vy, ..., Vv, are normalized eigenvectors of B!. Since B}

is real-valued and symmetric (by construction), the eigenvalues
are real and the eigenvectors are orthogonal. The squared coef-
ficients must sum to 1. This necessarily implies that the magni-
tudes of the individual coefficients are less than or equal to 1.
Then

Bix = B! (c1vi + -+ cpvn) (25)
so pre-multiplying with x gives the following:
xBix =xB! (c1v1 + -+ + cyVn) (26)

= (clvl 4+ -4 CnVn) Bi (61V1 4+ -4 CnVn) (27)

1987
=M val® + -+ llval® llvill =1 Vi
(28)
Sy Y=t 9)
=1 =1
S Amax- (30)

The last line (30) above can be understood from the fact that
we are essentially adding fractions of eigenvalues in (29). If we
add a fraction of Apax to a fraction of A(# Apax), this will
always be less than adding only fractions of Apax. If ¢; = 1
corresponds to \; = Anax and all other ¢; are zero, then the last
line in (30) is equality. Thus, to achieve the maximum, x must
be the eigenvector corresponding to Apax-
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