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Abstract

Power systems under stress can show large voltage
angle differences between areas that can be monitored
by wide area phasor measurements. One way to make
this idea more specific is to choose a cutset of transmis-
sion lines that separates two power system areas and
then define an angle difference across the cutset that is
a suitable combination of the angle differences across
lines of the cutset. We suggest that monitoring this cut-
set angle yields useful and specific information about
power system stress.

1 Introduction

The voltage phasor angle difference between two
ends of a transmission line becomes large when the line
power flow is large or the line impedance is large. Sim-
ilar relationships are expected to apply to the angle dif-
ference between two buses in different areas of a power
grid. That is, a large angle difference indicates, in some
general sense, a stressed power system with large power
flows or increased impedance between the areas. Sim-
ulations of the grid before the August 2003 Northeast-
ern blackout show increasing angle differences between
Cleveland and West Michigan, suggesting that large an-
gle differences could be a blackout risk precursor [2].
Wide area nomograms involving linear combinations of
phasor angles have been suggested for monitoring of se-
curity boundaries [5]. A recent simulation study [7] of
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potential phasor measurements on the 39 bus New Eng-
land test system shows that, of several phasor measure-
ments, angle differences were the best in discriminating
alert and emergency states. The increasing deployment
of wide area measurement of phasor angles [3] spurs in-
terest in finding ways to implement the general idea of
using phasor angles to determine system stress.

Picking one bus in each of two areas and monitoring
their angle difference has a problem that, although the
angle difference is generally expected to increase with
system stress, many factors influence the angle differ-
ence, including which two buses are chosen and the local
power flows within each area. It is then harder to give
a specific meaning to the angle difference and specify
threshold values that indicate when the angle difference
becomes dangerously large. This paper shows a way to
combine multiple angle difference measurements to ob-
tain a cutset angle that has a more specific meaning.

In section 2 we assume a DC load flow model of the
power system and define the angle across a given cutset.
Then the monitoring of this cutset angle from measure-
ments is explained and illustrated. Section 3 expresses
the cutset angle in terms of standard network matrices.
Since the previous sections have assumed phasor mea-
surements available at all buses, section 4 shows how the
monitoring may be done in a network with fewer phasor
measurements by using a standard network reduction.
Section 5 tests the method on simulated measurements
obtained from an AC model of the New England 39 bus
test system. Section 6 shows the connections to classical
circuit theory and section 7 concludes the paper.

2 Angle across a cutset

This section defines the angle across the cutset and
the cutset susceptance, explains the monitoring of the
cutset angle, and considers how the monitored cutset an-
gle changes when changes occur in the grid.



2.1 Definition of cutset angle

Consider a power grid with the DC load flow approx-
imation. The structure and impedances of the base case
grid are assumed to be known. First we assume that the
voltage phasor angle at every bus is measured; the more
practical case of fewer measurements is considered in
section 4.

Write θi for the voltage angle at bus number i and
θ̂j for the angle difference across line number j. The
susceptance of line number j is bj .

Choose a cutset of lines c that divides the network
into area 1 and area 2. The cutset c need not be a min-
imal cutset. Any cutset c can be chosen but the cutset
is fixed throughout the following discussion. The power
flowing from area 1 to area 2 along line j of the cutset
is bj θ̂j . Here, it is convenient initially to assume that the
angle difference θ̂j on line j is defined so that θ̂j is pos-
itive for positive power flowing on line j from area 1 to
area 2. The power Pc flowing through the cutset c is the
sum of the powers flowing in each line of the cutset:

Pc =
∑
j∈c

bj θ̂j (1)

The cutset susceptance is

bc =
∑
j∈c

bj (2)

We define the angle across the cutset as

θ̂c =
∑
j∈c

bj
bc
θ̂j (3)

which is a linear combination of the cutset line angle dif-
ferences, weighted according to the line susceptances.
Then (1), (2) and (3) imply that

Pc = bcθ̂c, (4)

which expresses the power flowing through the cutset
as the product of the cutset susceptance and the angle
across the cutset.

2.2 Monitoring cutset angle

Now we discuss how we propose to monitor the angle
across the cutset. The following quantities are assumed
to be available:

• The susceptances of the lines of the cutset for a
fixed base case DC load flow model of the grid.

These line susceptances are denoted {b0j | j ∈ c}.
Then the base case cutset susceptance is

b0c =
∑
j∈c

b0j (5)

Note that the base case line susceptances {b0j | j ∈
c} may be different than the susceptances of the
lines of the cutset for the currently observed grid.

• The voltage angles of the buses incident on lines
in the cutset. (Recall that this section assumes that
all voltage angles are available from phasor mea-
surements of the currently observed grid.) Then
the voltage angles across the each of the lines in
the cutset {θ̂j | j ∈ c} can be computed from these
measurements.

Now, following (3),

θ̂m
c =

∑
j∈c

b0j
b0c
θ̂j (6)

is used to compute and monitor the angle across the cut-
set. Thus θ̂m

c is computed from the base case DC load
flow line susceptances and the voltage angles across the
each of the lines in the cutset obtained from the mea-
surements. In the case that the cutset line susceptances
remain fixed at their base case values, and so bc = b0c ,
then the monitored cutset angle θ̂m

c satisfies

Pc = bcθ̂
m
c . (7)

In fact, (7) holds under the weaker assumption that the
ratios of cutset line susceptances remain fixed.

Table 1. Cutset susceptances of base case
cutset line susceptance

14—15 46.08
16—17 112.36
26—28 21.10
26—29 16.00

b0c = 195.5

For example, consider the 39 bus New England test
system shown in Figure 1. The 4 lines in the chosen cut-
set are shown by the thicker dashed lines and their sus-
ceptances in the base case power grid model are shown
in Table 1. Adding the 4 lines susceptances gives the
base case cutset susceptance b0c = 195.5. The base case
power flow from area 1 to area 2 across the cutset is
P 0

c = −4.83 per unit. The voltage angles at buses 14,
15, 16, 17, 26, 28, 29 are measured and used to compute
the angle differences across the 4 cutset lines. Then (6)
and the susceptances in Table 1 are used to compute the
base case cutset angle θ̂0c = −1.4 degree.



Figure 1. New England 39 bus test system. Cutset
lines are shown by the thicker dashed lines. The
cutset separates area 1 (on the left) from area 2 (upper
right and lower right).

2.3 Effect of changing power injections

Now we consider how θ̂m
c computed with (6) behaves

when power injections are changed.
Consider a power injection in area 1 and an equal

load increase in area 2. Then Pc increases by the amount
of the power injection, the cutset line susceptances and
bc are unchanged, and θ̂m

c increases proportionally to
Pc. For example, in the 39 bus test system, increasing
generation at bus 39 by 2.42 and load at bus 21 by 2.42.
changes the base case power flowing across the cutset
from P 0

c = −4.83 to Pc = −2.42 so that θ̂m
c is corre-

spondingly halved from θ̂0c = −1.4 degree to become
θ̂m

c = −0.7 degree.
Now consider a power injection in area 1 and an

equal load increase in area 1. The cutset power flow
Pc is unchanged, the cutset line susceptances and bc
are unchanged, and θ̂m

c is unchanged. There is sim-
ilarly no change for power dispatched entirely within
area 2. Power redispatches entirely within a single area
can change the angles across particular lines in the cutset
but do not change θ̂m

c .

2.4 Effect of changing line susceptances

Suppose that power injections are constant but that
the susceptance of a line not in the cutset changes. The
change in line susceptance could result from change
in the circuit linearization as loading changes or from
the line tripping and the line susceptance changing to

zero. One special case occurs when the line is tripped
and islands generation or load. In this special case, θ̂m

c

changes because the effective power injection in the is-
landed area changes. This special case can be treated as
in subsection 2.3. However, if there is no such island-
ing, the area power injections and the power Pc flowing
through cutset are unchanged. The cutset line suscep-
tances and bc are also unchanged, and it follows from
(7) that θ̂m

c is unchanged.
Now we consider the case of the susceptance of a line

in the cutset changing. (We exclude the special case of
islanding.) It is convenient in order to simplify nota-
tion to suppose that the line in the cutset that changes
susceptance is line 1 of the grid. The base case line 1
susceptance is b01 and the susceptance of line 1 changes
to b1. The susceptance of all the other lines is unchanged
so that bj = b0j for j 6= 1.

The cutset angle after the susceptance of line 1
changes is

θ̂c =
∑
j∈c

bj
bc
θ̂j =

b1
bc
θ̂1 +

∑
j∈c
j 6=1

bj
bc
θ̂j (8)

The measured cutset angle after the susceptance of line
1 changes is

θ̂m
c =

∑
j∈c

b0j
b0c
θ̂j =

b01
b0c
θ̂1 +

∑
j∈c
j 6=1

bj
b0c
θ̂j (9)

Since the power flow through the cutset is unchanged,

b0c θ̂
0
c = P 0

c = Pc = bcθ̂c (10)

Combining (8), (9), and (10) yields an expression for the
change in the measured cutset angle

θ̂m
c − θ̂0c =

b01 − b1
b0c

θ̂1 (11)

The change in the measured cutset angle is proportional
to the change in admittance b01−b1 and to the final angle
across line 1.

For example, suppose that the line in the cutset join-
ing buses 14 and 15 is tripped so that its susceptance
changes from 46.08 to zero. Then the monitored cutset
angle changes from the base case value of θ̂0c = −1.4
degree to θ̂m

c = −1.0 degree. The dependence of the
cutset angle θ̂c on the cutset susceptance when the power
flows do not change shows that the cutset angle includes
information about grid impedances not detectable from
power flow information.

In summary, monitoring the cutset angle θ̂m
c detects

changes in power flow through the cutset and changes



in the cutset susceptances, but θ̂m
c is unchanged by dis-

patch or susceptance changes within one of the areas.
Thus monitoring θ̂m

c yields specific information about
changes to the grid with respect to the chosen cutset.

3 Formulation of cutset angle using net-
work matrices

It is useful to express the cutset angle, susceptance
and power flow in terms of standard network matrices.
For example, this allows the cutset angle to be computed
from the B matrix of the DC load flow. The formulation
also allows arbitrary orientation of the cutset lines.

Let θ be the vector of bus angles and P be the vector
of bus power injections. The DC load flow equations of
the base case grid are

P = Bθ (12)

where
B = AΛAT (13)

and Λ is the diagonal matrix of line susceptances

Λ = diag{b1, b2, · · · , bnline}

and A is the incidence matrix

Aij =


1 bus i is sending end of line j
−1 bus i is receiving end of line j
0 otherwise.

(14)

In the DC load flow equations (12), it is convenient not
to delete the rows of the power and angle vectors corre-
sponding to a slack bus and not to delete the correspond-
ing row and column of B [4].

The incidence matrixA relates the bus angles θ to the
line angle differences θ̂:

θ̂ = AT θ (15)

The row vector σ defines the buses in area 1 by

σi =

{
1 bus i in area 1
0 bus i in area 2.

(16)

Then the lines in the cutset c can be indicated by the row
vector

c = σA (17)

since then it follows from (14) that

cj =



1 line j in cutset has sending end
in area 1

−1 line j in cutset has receiving end
in area 1

0 line j not in cutset.

(18)

Moreover,
Pc = σP (19)

is both the sum of the powers injected in area 1 and the
power that flows from area 1 to area 2 through the cutset
c.

Applying σ to the DC load flow equations (12) gives

Pc = σP = σBθ (20)

which can be rewritten as

Pc = σAΛAT θ = cΛθ̂ (21)

which can be recognized as the matrix form of (1). Note
how the row vector cΛ contains the susceptances in the
cutset:

(cΛ)j =



bj line j in cutset has sending
end in area 1

−bj line j in cutset has receiving
end in area 1

0 line j not in cutset.

(22)

Each cutset line susceptance appears once in cΛ, with
sign depending on the orientation of the cutset line. Now
(18) and (22) imply that

cΛcT =
∑
j∈c

bj = bc (23)

Therefore the cutset impedance bc defined in (2) can be
re-expressed as

bc = cΛcT = σBσT (24)

Moreover, the cutset angle difference θ̂c defined in (3)
can be re-expressed as

θ̂c =
cΛ
bc
θ̂ (25)

or
θ̂c =

σB θ

σBσT
(26)

The derivation starting from the DC load flow equations
(12) can now be summarized: Multiply (12) on the left
by σ to obtain

Pc = σP = σBθ = σBσT σB θ

σBσT
= bcθ̂c (27)

The formula for the monitored cutset angle becomes

θ̂m
c =

σB0 θ

σB0σT
, (28)

where B0 is the matrix for the base case DC load flow
and θ contains the measured angles.



4 Fewer phasor measurements

Application of the method above to monitor the an-
gle across a given cutset requires phasor angle measure-
ments on every bus incident on a cutset line. Since this
is restrictive, we show how a standard reduction of the
network can allow the method to be applied to the prac-
tical case of a grid with phasor angle measurements on
a given subset of buses.

4.1 Method with fewer measurements

Write θm and Pm for the angle and power injected at
buses with phasor measurements and θm and Pm for the
angle and power injected at buses with no phasor mea-
surements. Order the buses so that the measured buses
come first and

θ =
(
θm

θm

)
, P =

(
Pm

Pm

)
,

and the DC load flow equations (12) become(
Pm

Pm

)
=
(
Bmm Bmm

Bmm Bmm

)(
θm

θm

)
. (29)

Eliminating θm in the usual way gives

Pm −BmmB
−1
mmPm = (Bmm −BmmB

−1
mmBmm)θm

and, letting

Peq = Pm −BmmB
−1
mmPm (30)

Beq = Bmm −BmmB
−1
mmBmm (31)

we obtain an equivalent grid connecting the buses with
measurements with the DC load flow equations

Peq = Beqθm (32)

to which the preceding computations can be applied.
In particular, we first choose a cutset c of the equiv-

alent grid by specifying the area 1 measured buses with
σeq and then monitor the following equivalent cutset an-
gle difference:

θ̂m
c =

σeqB
0
eqθm

σeqB0
eqσ

T
eq

(33)

For example, suppose for the sake of illustration that
there are phasor measurements available only at odd
numbered buses of the 39 bus New England system. Ap-
plying the network reduction yields the equivalent net-
work shown in Figure 2. The reduced grid has more
equivalent lines joining the measured nodes and corre-
spondingly large cutsets. For example, the cutset of 4

lines in the 39 bus New England system shown in Fig-
ure 1 corresponds to a cutset of 9 lines in the reduced
odd numbered bus New England system shown in Fig-
ure 2. The susceptances of the 9 lines in the cutset of the
reduced system are shown in Table 2.

Although the cutsets of the full and reduced systems
separate their respective power grids in a roughly cor-
responding way, it is important to note that that these
cutsets differ in their susceptance, the power flowing
through them, and the angle across them. This is caused
by the cutset lines of the reduced system accounting not
only for the lines of the unreduced cutset but also a por-
tion of the grid adjacent to the lines of the unreduced
cutset. Power injections at even numbered nodes near
the cutset are accounted for differently in the full and
reduced networks and this accounts for the difference in
power flow through the cutsets.

Table 2. Cutset susceptances of reduced network
cutset line susceptance

3—15 4.290
5—15 7.140

13—15 23.647
17—15 32.433
17—19 15.634
17—21 22.583
17—23 7.454
25—29 7.563
27—29 16.619

b0ceq = 137.36

4.2 Relation of reduced cutset to original grid

We know from sections 2.3 and 2.4 that the angle
across the cutset in the reduced system is a function of
the power flow across the reduced cutset and the suscep-
tances of the cutset lines in the reduced grid. But how do
the susceptances of the cutset lines in the reduced grid
depend on the susceptances of lines in the original grid?
This section shows which lines in the original grid im-
pact the susceptances of the cutset lines in the reduced
grid and hence the reduced cutset angle.

In any particular case, the lines present in a network
can easily be determined from the B matrix since

a line connects bus i to bus j ⇐⇒ Bij 6= 0.

Therefore it is straightforward to determine the lines of
the reduced grid from Beq after Beq is computed using
(31). However, we need to examine this more closely in
order to understand how the cutset lines of the reduced
grid and their susceptances depend on the the lines of
the original grid and their susceptances.



Figure 2. Reduction of the New England 39 bus test
system to the odd numbered buses. Cutset lines are
shown by the thicker dashed lines.

Consider any line of the reduced grid that connects
odd numbered bus i to odd numbered bus j, where i and
j are different. The susceptance (Beq)ij of this line in
the reduced grid arises from either or both of the two
terms in

Beq = Bmm −BmmB
−1
mmBmm (34)

In the first term, (Bmm)ij 6= 0 precisely when there is
a line joining bus i to bus j in the unreduced grid. Now
we consider when the second term of (34) has a nonzero
matrix entry.

The nonzero elements of the ith row of Bmm corre-
spond to the even numbered buses which are connected
by a line to bus i. If we call all the buses connected
to bus i by a line the neighbors of i, then the nonzero
elements of the ith row of Bmm correspond to the even
numbered neighbors of bus i. Similarly, the nonzero ele-
ments of the jth column of Bmm correspond to the even
numbered neighbors of bus j. Bmm is the B matrix
of the even numbered buses only. The even numbered
buses form a subnetwork of the grid that generally con-
sists of several connected components. Each component
consists of the even numbered buses that are connected
by lines to other even numbered buses without passing
through an odd numbered bus. It follows that B−1

mm has
a block matrix structure with the blocks corresponding
to the connected components. Each block of B−1

mm will
generically be a full matrix with no zeros. Then we can
see that the i, j element of the second term of (34) is
generally nonzero when bus i has at least one even num-

bered neighbor in the same component as an even num-
bered neighbor of bus j. That is, the i, j element of the
second term is nonzero when there is a path of multiple
lines from bus i to bus j in which all the intermediate
buses are even numbered.

The susceptance of the line in the reduced grid join-
ing i and j is the negative of (Beq)ij . This susceptance
depends on the susceptance of the line joining i and j in
the unreduced grid (if present) and the susceptances of
the lines joining i and j to their even numbered neigh-
bors and the susceptances of the lines in the component
that joins these neighbors. One consequence is that the
susceptance of the reduced grid cutset depends on not
only on the lines of the unreduced cutset but some adja-
cent lines too.

All the lines of the unreduced grid whose susceptance
contribute to the cutset susceptance are shown as thick
or thin dashed lines in Figure 3. The dashed lines can
be obtained visually starting from the cutset of the unre-
duced system by “moving” that cutset “over” any even
number buses, but not allowing the cutset to move over
any odd numbered buses. Then the dashed lines are
formed as the union of all the lines included in one of
the moving cutsets.

Figure 3. New England 39 bus test system with both
thick and thin dashed lines showing the lines that
affect the reduced grid cutset susceptance. The lines
in the original cutset are shown by the thicker dashed
lines and the additional lines affecting the reduced
grid cutset susceptance are shown with thin dashed
lines.



5 Testing on an AC system

This section tests the monitoring of cutset angle θ̂m
c

on an AC model of the New England 39 bus system. The
case considered is the same as in the case at the end of
section 4. In particular, it is assumed for purpose of il-
lustration that there are phasor measurements only at the
odd numbered buses and the same cutset of 9 lines of the
reduced system is chosen as shown in Figure 2 and Ta-
ble 2. The goal of the testing is to determine whether the
dependencies of the cutset angle on power injections and
line tripping that are exact in the DC load flow model re-
main approximately true for the monitored cutset angle
in the AC load flow model.

For each case considered, to evaluate the monitored
cutset angle θ̂m

c , the voltage angles at the odd numbered
buses are computed from the AC model of the New Eng-
land 39 bus system and used to obtain the angle differ-
ences across lines in the cutset. Then the angle differ-
ences are combined according to (33) using the cutset
line susceptances of the reduced DC network shown in
Table 2.

For the base case, the power flow through the cutset
of the reduced system is P 0

c = −3.57 per unit and the
cutset angle is θ̂m0

c = −2.60 degree. As discussed in
the preceding section, the power flow and angle for the
cutset of the reduced system are different than the power
flow and angle for the cutset of the unreduced system
that separates the grid in a roughly similar way.

5.1 Effect of changing power injections

We tested how θ̂m
c computed with (33) behaves when

power injections are changed. We confirmed in sev-
eral cases that if the power injections do not change the
power flow across the cutset of the reduced system, then
there are only very small changes in θ̂m

c . This testing
considered only power injections at odd and even num-
bered nodes that were clearly in area 1 or area 2 of the
reduced system. We do not yet understand how power
injections at the odd and even numbered buses near the
cutset should affect θ̂m

c .

5.2 Effect of changing line susceptances

We tested how θ̂m
c computed with (33) behaves when

a sample of lines were tripped. When lines were tripped
that islanded load or generation, this changes the power
flow through the cutset and hence changes θ̂m

c . When
lines that were clearly in area 1 or 2 of the reduced
system were tripped and there was no islanding, then
we confirmed that θ̂m

c remained within 0.1 degree of

θ̂m0
c = −2.60 degree. However, when lines of the unre-

duced system involved in the cutset of the reduced sys-
tem were tripped, θ̂m

c changed and generally increased.
The increase in θ̂m

c when a cutset line is tripped can be
attributed to the decreased cutset susceptance.

We conclude that, if islanding effects are excluded,
the monitored cutset angle in the AC power flow remains
nearly constant when lines not involved in the cutset of
the reduced system are tripped. The monitored cutset
angle in the AC power flow can and usually does change
when lines involved in the cutset of the reduced system
are tripped.

6 Cutset angle in classical network theory

The cutset angle θ̂c can be derived as an instance of
classical circuit theory using a nonstandard choice of ba-
sis. Wai-Kai Chen in [1] explains a generalized cutset
analysis1 of a resistive network with voltage and cur-
rent sources. Chen’s analysis has different “through”
and “across” circuit quantities than ours; that is, Chen’s
voltages correspond to our angles, Chen’s currents cor-
respond to our power flows, and Chen’s admittances cor-
respond to our susceptances. We now state Chen’s equa-
tions rewritten in terms of our quantities. Let the rows of
the matrix Q specify a basis for the cutset vector space
of the network. Write θ̂q for the (generalized) cutset an-
gles, Pq for the (generalized) cutset power flows, Bq for
the (generalized) cutset admittance matrix, and Pb for
the branch power flows. Then

θ̂ = QT θ̂q (35)
Pq = QPb (36)

Bq = QΛQT (37)

Then, in the generalized cutset coordinates,

Pq = Bq θ̂q, (38)

which is essentially Chen’s equation (2.81).
Now we make a special choice of the basis for the

cutset vector space of the network by choosing the first
row of the Q matrix to be the cutset c so that

Q =
(
c

Q⊥

)
(39)

and so that the remaining rows Q⊥ of Q are basis vec-
tors of the cutset vector space chosen orthogonal to c
in the sense that cΛQT

⊥ = 0. (It may not be possible
to choose all rows of Q⊥ to consist of vectors with en-
tries ±1 and zero corresponding to the usual cutsets, but

1in [1] a nonminimal or minimal cutset is called a cut



this causes no fundamental difficulty.) Then in the basis
(39), multiplying (35) on the left with cΛ gives

cΛθ̂ = cΛQT θ̂q = cΛcT θ̂q1 = bc θ̂q1, (40)

where θ̂q1, the first component of θ̂q , is the generalized
cutset coordinate associated with c. Comparison of (40)
with (25) shows that θ̂c = θ̂q1 is the generalized cutset
coordinate associated with c in the basis (39). Moreover,
in the basis (39),

Bq = QΛQT =
(
cΛcT 0

0 Q⊥ΛQT
⊥

)
=
(
bc 0
0 Q⊥ΛQT

⊥

)
and the first components of (36) and (38) become, re-
spectively,

Pq1 = cPb = σAPb = σP = Pc and

Pq1 = bcθ̂q1.

Hence the first component of (38) may be written as
Pc = bcθ̂c, which is (27). Thus we have found a non-
standard cutset basis (39) including c in which the cutset
angle θ̂c is the generalized cutset coordinate associated
with the basis element c.

7 Conclusion

We suggest monitoring combinations of phasor an-
gle measurements that indicate the power system stress
relative to a given cutset that separates two areas of the
power system.

We formulate a concept of cutset angle in the context
of a DC load flow model that can be calculated from the
phasor measurements of angle differences across lines
in the cutset. The cutset angle gives information about
the power flows and impedances of the cutset. In partic-
ular, the cutset angle is proportional to the power flow
between the areas and also depends on the susceptances
of cutset lines and in particular on whether cutset lines
have tripped. The cutset angle is insensitive to changes
in power flow within one of the areas or line tripping
within one of the areas.

In this paper we develop the cutset angle concept
from scratch and also show how it results from a non-
standard choice of basis in general circuit theory. The
cutset angle is simple to define and intuitive, so that it
seems that it should have been defined or applied before.
However, our searches have not yet found any reference
to cutset angle (or analogs involving other “across” vari-
ables such as cutset voltage) in the circuit literature. This
literature is vast, so we will continue to search to find out
whether cutset angle is a new concept. We would wel-
come any advice.

The approach generalizes to the practical case of
measurement of phasor angles at a subset of grid nodes
by applying the method to a reduced power grid. Ini-
tial testing on AC load flows of the 39 bus New England
IEEE test system suggests that the monitored cutset an-
gle approximately preserves its properties of giving in-
formation about the power flows and impedances of the
lines that play a role in the cutset of the reduced power
grid.

The value of monitoring the cutset angle is that
it gives specific information about power flows and
impedances related to a given cutset separating two ar-
eas of the power grid. Moreover, the fact that the cutset
angle is a meaningful quantity in circuit theory makes
it likely to be a more useful quantity to monitor than an
arbitrary combination of angles. The cutset angle aug-
ments the usual notions of power flow between two areas
with information about the cutset angle and impedance.

Monitoring the cutset angle can be compared to mon-
itoring an angle difference between two buses. Both of
these approaches monitor scalars. The cutset angle com-
putation is slightly more complicated and requires some
weights obtained from a DC load flow model. The cut-
set angle gives specific information related to the cutset
whereas the angle difference between two buses depends
on many factors.

Now we conclude the paper by briefly suggesting
some possible future directions.

We would like to test the cutset angle monitoring on
a larger, less reduced power network and find out how
well it can work on cutsets corresponding to known crit-
ical corridors. It could be beneficial to vary the choice
of cutset or add phasor measurement at a few key loca-
tions. We do not yet have strategies to choose practical
cutsets that give the most useful information.

Since the cutset angle gives specific information, it
should be easier to interpret changes in cutset angle and
determine thresholds of power system stress in terms of
cutset angle. For example, one could choose a stressed,
but operable case and determine the cutset angles cor-
responding to a contingency list of dangerous line trip-
pings in the cutset. If the contingencies are comprehen-
sive and all considered serious, then the minimum cutset
angle for these contingencies gives a plausible threshold
for an alarm.

It may also be feasible to more precisely confirm line
trippings by checking changes in the cutset angle. A
general approach to detecting line trippings from dis-
crete changes in phasor measurements such as [6] gen-
erates lines that are likely to have tripped. A cutset
containing some of these lines could be chosen and the
changes in its cutset angle could be computed. Since
there are fewer combinations of lines in and out in the



cutset than in the entire system and hence fewer possi-
ble discrete changes in the cutset angle to consider, it
should be possible to more easily confirm that the cut-
set angle change corresponds to a particular cutset line
tripping.

Monitoring the cutset angle can be compared to mon-
itoring a vector of angle differences between many pairs
of buses. The cutset angle is a scalar giving specific in-
formation related to the cutset chosen. The cutset angle
essentially condenses specific information from the vec-
tor of angle differences. There is, of course, more infor-
mation in the vector of angle differences, but it may be
harder to interpret. One interesting possibility, instead
of monitoring a vector of angle differences, is to choose
several key cutsets and monitor a vector of cutset angles
to get specific information related to these cutsets.
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