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Abstract

We define the voltage angle across an area of a power sys-
tem to measure the area stress. The voltage angle across
the area is a weighted combination of the voltage angles at
all the buses along the border of an area. The area angle
can be divided into two parts; one part is internal stress
caused by power injections inside the area and the other
part is external stress caused by power flows from other
areas. The area angle can be monitored using voltage syn-
chrophasor measurements at the border buses. If the cur-
rents or powers flowing into the area at the border buses
are also measured, then the internal stress angle can also
be monitored. The internal stress angle changes when lines
inside the area outage or when there is redispatch of power
within the area. The internal stress angle does not change
when lines outage outside the area or power is redispatched
outside the area. This makes the internal stress angle use-
ful for detecting and monitoring changes inside the area. If
it is known which line inside the area is outaged, the an-
gle across the line after the outage can be computed from
the change in the internal stress angle. The analysis uses a
DC load flow model of the power system and exploits the
recently discovered cutset angle.

1 Introduction

Synchronized phasor measurements [7, 5, 3] are becoming
more widespread and are opening further opportunities for
power transmission system monitoring and control. Here
we show how to combine phasor measurements at the bor-
der buses of an area of the power system to measure the
area stress with three new angles. The total area stress can
be divided into an internal stress due to power injections
inside the area and an external stress due to power flows
from other areas. The new angles obey circuit laws and of-
fer specific information about the chosen area. We expect
that the new angles will be easy to implement and will help
provide actionable information for engineers and operators.

Cutset area angles are another new way to combine to-
gether phasor angle measurements to extract more specific
information about power grid stress inside a particular area
of the power system. Cutset area angles were invented in
2009, developed from first principles in [1], and illustrated

in [2]. Here we significantly extend this previous work and
generalize the angles across cutset areas to angles across
more general areas of the power system that need not be
cutset areas.

The new angles are informally explained and illustrated in
Section 2. Section 3 summarizes previous literature. Sec-
tion 4 derives the new angles and section 5 analyzes how the
angles change when lines outage or power is redispatched.
Section 6 concludes the paper.

In order to define and analyze the new angles, we assume
a DC load flow model of the power system throughout the
paper.

2 Area angles overview

This section informally introduces and illustrates the new
area angles.

2.1 Reduction of the area

Consider the area of the power system R shown in Figure 1.
The buses at the border of R are shown as black dots in
Figure 1. These border buses are at the ends of all tie lines
joining area R to the rest of the network. That is, removing
the border buses would island the area R. The border buses
are divided into buses in Ma and buses in Mb. The goal
is to define an area angle θ̂ab, area susceptance bab, and
area power flow Pab between Ma and Mb. This is done by
reducing the area R to a single line equivalent as shown in
Figure 1. Then the area quantities θ̂ab, bab, and Pab are
the corresponding quantities for the single line equivalent
shown in Figure 2.

The reduction process shown in Figure 1 starts by replacing
the tie lines joining area R to the rest of the network by
the power flows P into along these tie lines. Then a standard
network reduction removes all the buses inside area R and
replaces them with equivalent lines joining the border buses
to each other. All the power injections inside R are replaced
by equivalent power injections PR at the border buses. The
total power injections at border buses are now P into + PR.
P into accounts for the external powers flowing into area R
from other areas and PR accounts for the internal powers
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Fig. 1: Reduction of area R to a single line equivalent that describes the electrical characteristics between the set of
border buses Ma and the set of border buses Mb. Angle across area R from Ma to Mb is the angle θ̂ab across the single
line from a to b. Power flow through area R from Ma to Mb is the single line power flow Pab. Area R susceptance is the
single line susceptance bab.

injections inside R. The reduced network is the same as
the area R with respect to the border buses, so there is no
change in the electrical properties.

In the reduced network, the border buses Ma are connected
to the border buses Mb by equivalent lines. Since removing
these equivalent lines separates the buses Ma from the Mb,
these equivalent lines form a cutset of the reduced network,
and we can apply the cutset angle concept of [1] to define
the angle θ̂ab across the cutset. The cutset angle θ̂ab obeys
circuit laws and can be understood as the angle across an
equivalent single line joining bus a to bus b. Bus a corre-
sponds to the set of buses Ma and bus b corresponds to the
set of buses Mb. Following through this reduction process
in Figure 1, we see that the angle θ̂ab is the angle across
the area R from the Ma buses to the Mb buses. We can
also use the equivalent quantities of the single line to de-
fine the susceptance bab of the area R and the equivalent
power flow Pab through the area R. Since circuit laws apply
throughout the reduction, we have

Pab = babθ̂ab. (1)

Therefore the area angle θ̂ab is proportional to the effec-
tive power passing through the area R and to the area sus-
ceptance bab. The area angle θ̂ab gives stress information
specific to area R.

We also have

Pab = P into
a + PR

a = −P into
b − PR

b (2)

where P into
a +PR

a is the total equivalent power injected into
the buses Ma and P into

b + PR
b is the total equivalent power

injected into the buses Mb. Here P into
a is the total power

entering into the area R along the external tie lines attached
to the border buses in Ma.

It follows from (2) that

Pab = 1
2

[
(P into

a + PR
a )− (P into

b + PR
b )
]

(3)

= 1
2 (P into

a − P into
b ) + 1

2 (PR
a − PR

b ) (4)

Equation (3) relates Pab to the difference of the power flows
injected at buses Ma and Mb. Equation (4) splits Pab into
two parts. One part is related to the difference of the ex-
ternal power flows injected at buses Ma and Mb. The other
part is related to the difference of the power flows equivalent
to the power flows internal to area R.

P into
a +PR

a

P into
b + PR

b

a

b

θ̂ab is angle across line.

bab is line susceptance.

Pab is power flow from a to b.

Fig. 2: Single line quantities.

2.2 Angles across the area

Suppose there are nb border buses. Write the phasor angles
at the border buses in the vector

θm =


θm1

θm2

.

.
θmnb

 (5)



Table 1: Area angles and power flows

θ̂ab θ̂into
ab θ̂Rab P into

a PR
a Pab P into

b PR
b from bus to bus

base case 10.85 9.776 1.070 5257 -3523 1734 2131 -3865
transfer 100 MW inside R 11.10 9.765 1.330 5256 -3482 1774 2133 -3907 SYLMARS IMPRLVLY

transfer 100 MW outside R 11.45 10.38 1.070 5353 -3523 1830 2035 -3865 TRACY NAVAJO

line outage inside R 13.36 9.660 3.702 5239 -3102 2137 2150 -4286 DEVERS VALLEY

line outage outside R 11.23 10.16 1.070 5319 -3523 1796 2070 -3865 LOSBANOS MIDWAY

angles in degrees powers in MW
bab = 91.62 per unit on 100 MW base

The area angle θ̂ab is a weighted linear combination of the
border bus angles θm:

θ̂ab = w θm = w1θm1 + w2θm2 + · · ·+ wnbθmnb. (6)

The weights in the row vector w are determined by the
susceptances of lines in service in R using a DC load flow
model of R (see (48)). Therefore, if we place phasor angle
measurements at all the border buses of R and know the
status of lines in R, we can easily determine the angle θ̂ab

across the area R. The area susceptance bab is also easy to
evaluate given the DC load flow model of R and the status
of the lines.

Combining (1) and (3) gives

θ̂ab =
1

2bab

[
(P into

a + PR
a )− (P into

b + PR
b )
]

(7)

That is, the area angle θ̂ab results from the difference in
the powers injected at the Ma border buses and the powers
injected at the Mb border buses. In terms of the single line
equivalent shown in Figure 2, θ̂ab arises from the difference
in the powers injected at the a bus and the powers injected
at the b bus.

Combining (1) and (4) gives

θ̂ab =
P into

a − P into
b

2bab
+
PR

a − PR
b

2bab
(8)

= θ̂into
ab + θ̂Rab (9)

where

θ̂into
ab =

P into
a − P into

b

2bab
(10)

and

θ̂Rab =
PR

a − PR
b

2bab
. (11)

The angle θ̂into
ab is caused by differences in the powers enter-

ing into the area at Ma and Mb and measures the external
stress on area R. The angle θ̂Rab is caused by differences at
Ma and Mb of the powers equivalent to the powers gener-
ated or consumed inside area R and measures the internal

stress on area R. In particular, θ̂Rab only depends on the
power injections inside area R and the lines in service in-
side R.

Now we discuss how the internal stress angle θ̂Rab can be
obtained from phasor measurements. We assume that the
lines in service inside R are known so that the area sus-
ceptance bab can be calculated. The power flowing into a
bus can be determined from phasor measurements if the
currents in the tie lines and the bus voltage are both mea-
sured. If the external tie line power entering each bus in Ma

is known from these measurements, these can be summed
to obtain the total power P into

a entering into the area R
through Ma. The total power P into

b entering into the area
R through Mb can be obtained similarly. Then we can de-
termine θ̂into

ab using (10) and then determine θ̂Rab using

θ̂Rab = θ̂ab − θ̂into
ab . (12)

Changes ∆θ̂Rab in the internal stress angle can be related to
changes inside the area R such as line outages. In particu-
lar, ∆θ̂Rab is proportional to the pre-outage power flow and
angle on the line. If it is known by other methods which
line inside R has outaged, then the angle across the line
after the line is outaged is given by

θ̂afterk =
bab

bk ρR
abrs

∆θ̂Rab. (13)

Here bk is the susceptance of the outaged line and ρR
abrs is

a power transfer outage distribution factor computed from
the DC load flow model of area R.

We note why it is better to measure stress with angles
rather than power flows. Consider the easy case of only
two buses a and b joined by two equal lines. In this case
the reduction to a single line is clear: θ̂ab = θa − θb, bab is
the sum of the line susceptances and Pab is the sum of the
line power flows. It can be argued that θ̂ab measures the
line stress better than Pab, because if one of the double line
outages, then the power flow Pab (now only on the remain-
ing line remaining in service) does not change but the line
susceptance halves and θ̂ab doubles.
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VINCENT

PALOVRDE

R

Fig. 3: Area R shown as the black buses for a 225 bus
model of the Western USA. Gray buses are outside area
R. The border buses with phasor measurements are the
labelled black triangles.

2.3 A simple example of an area and its angles

We illustrate the concepts using the model of the WECC
system shown in Figure 3. The model has 225 buses and
is a reduced representation of the higher voltage WECC
transmission system. The network layout is roughly geo-
graphic so that Canadian buses are at the top, Southern
California is at the bottom left and New Mexico is at the
lower right.

We choose the area R that includes the black buses
shown in Figure 3 as a simple example. The three
border buses labelled by black triangles are Ma =
{ELDORADO, PALOVRDE} and Mb = {VINCENT}. For
the purpose of illustration, we assume phasor measurements
at the three border buses.

-100MW

-100MW

+100MW

+100MW

line to outage

line to outage

Fig. 4: Area R showing the power transfer and the line to
outage inside R (in the black buses) and the power transfer
and the line to outage outside R (in the gray buses).

The angle θ̂ab across the area R is defined as a weighted
combination of the phasor angles at the border buses:

θ̂ab = 0.79875 θELDORADO + 0.20125 θPALOVRDE − θVINCENT

(14)

Various angles and flows are shown in Table 1 for the base
case and for some examples of transfers and line outages.
The transfers and line outages are shown in Figure 4. The
base case area stress is θ̂ab = 10.85 degree and the equiva-
lent power flow west through the area is Pab = 1734 MW.
The area susceptance is bab = 91.62 per unit on a 100 MW
base. The transfer inside area R increases the westward
power flow and increases the stress θ̂ab. The transfer out-
side area R also increases the westward power flow and the
stress θ̂ab. Both of the line outages also increase the overall
stress on area R.

The area stress can be decomposed into external and inter-
nal stress as θ̂ab = θ̂into

ab + θ̂Rab. All the changes affect the
power flows into area R and the external stress θ̂into

ab . How-
ever, it can be seen from Table 1 that the internal stress
θ̂Rab only changes when the transfer or line outage is inside
area R.

When the line inside area R outages, the internal stress
angle θ̂Rab increases from 1.070 degrees to 3.702 degrees, so
that ∆θ̂Rab = 2.632 degrees. Then evaluating (13) shows
that the angle across the outaged line after the outage is
θ̂afterk = 21.49 degrees. This information is useful in deter-
mining whether the line can be safely reclosed.
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Fig. 5: Reduction of a three area power system to a three node equivalent

2.4 Multiple areas

Area angles can be applied to several areas in a power sys-
tem. For example, consider the power system with the
three areas R1, R2, R3 shown in the left hand of Figure 5.
Border buses are shown as black dots. Areas R1 and R2

have border buses Mb in common, areas R2 and R3 have
border buses Mc in common, and areas R3 and R1 have
border buses Ma in common. Although two border buses
are shown in Figure 5 for each common border, there could
be any number of border buses on each common border.

We can proceed with the network reduction process for all
three areas at once. The first step is to replace each area by
an equivalent network joining the border buses and with ad-
ditional power injections at each border bus that are equiv-
alent to the power injections inside the area. The result
of the first step is shown in the middle of Figure 5. The
second step is to apply the cutset angle concept to each of
the equivalent subnetworks to define the area angles θ̂ab,
θ̂bc, θ̂ca, the area susceptances bab, bbc, bca, and the power
flows Pab, Pbc, Pca. The effect is to reduce the three area
power system to the three bus power system shown in the
right hand of Figure 5.

Area angles are applied to multiple cutset areas of a power
system in [2].

3 Previous work

In [1], we develop from scratch a concept of angle across
a cutset of lines and extend the concept to a cutset area
angle by considering a reduced network. The new concepts
are derived as a non-standard instance of general circuit
theory. In [2], we further develop and illustrate the cutset
area and the monitoring of the cutset area angle. Although
the cutset angle and cutset area angle concepts are simple,
we have not yet found any previous literature defining or
using these concepts. This paper significantly generalizes
the cutset area of [1, 2], particularly in not requiring the

area to separate the power system.

Tate and Overbye [9] give an algorithm for detecting which
lines have outaged using phasor measurements. Their anal-
ysis also exploits, among other methods, the standard net-
work reduction of DC load flow and participation factors
to represent line outages. Tate and Overbye [9] should also
be read for more information about the signal processing of
the phasor measurements and the practical availability of
the DC load flow models since these useful topics are not
treated in this paper.

Previous work by others on monitoring power system stress
with phasor measurements has focused on the angle differ-
ence between two buses. Simulations of the grid before the
August 2003 Northeastern blackout show increasing angle
differences between Cleveland and West Michigan, suggest-
ing that large angle differences could be a blackout risk pre-
cursor [4]. A recent simulation study [8] of potential pha-
sor measurements on the 39 bus New England test system
shows that, of several phasor measurements, angle differ-
ences were the best in discriminating alert and emergency
states. A large angle difference between two buses does
indicate, in some general sense, a stressed power system.
However, this angle difference it is generally affected by
changes throughout the entire grid, and it is difficult to in-
terpret the reason for changes in the angle difference or set
thresholds. The angle across an area is a generalization of
the angle difference between two buses (see subsection 5.5)
and gives specific information about the area.

There has been some previous work that combines pha-
sor measurements at several buses. A weighted average of
voltage magnitudes or reactive powers derived from WECC
phasor measurements is discussed in [10]. The weighted av-
erages provide robust control signals that are the basis for
wide area control schemes for transient and voltage stabil-
ity. The weights are established by location and sensitivity
considerations. Reference [10] also discusses weighting pha-
sor voltage angles to calculate a center of inertia angle for
an area. Wide area nomograms involving linear combina-



tions of phasor angles have been suggested for monitoring
of security boundaries [6].

4 Area angles

This section derives the new area angles.

4.1 Notation and definitions

This subsection specifies notation and definitions for some
basic network quantities.

We recall standard definitions1 of cutsets of buses and
transmission lines:

A nodal cutset is a set of buses that cuts the net-
work into separate networks when that set of buses
is removed from the network.

A cutset of lines is a set of lines that cuts the
network into separate networks when that set of
lines is removed from the network.

Let θ be the vector of bus angles and P be the vector of
bus power injections. The DC load flow equations of the
base case grid are

P = Bθ (15)

where
B = AΛAT (16)

and Λ is the diagonal matrix of line susceptances

Λ = diag{b1, b2, · · · , bnline}

and A is the incidence matrix

Aij =


1 bus i is sending bus of line j
−1 bus i is receiving bus of line j
0 otherwise.

(17)

The transpose of the incidence matrix A relates the bus
angles θ to the line angle differences θ̂:

θ̂ = AT θ (18)

To streamline the notation, we often do not indicate the
length of a row or column vector and this length must be
deduced from the context.

4.2 Angle across a cutset

We derive the angle across a cutset in an example to briefly
explain the concept and establish notation. A more thor-
ough explanation of cutset angle can be found in [1].

1Some authors define a cutset to be a minimal set of buses or lines
that separate the network, but we do not require this here.
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Fig. 6: Cutset angle example: Buses 1,2,3 in Ma are sepa-
rated from buses 4,5 in Mb by the cutset of lines 1,2,3,4,5,6.
The cutset is indicated by the dashed line.

Consider the example network in Figure 6 with buses 1,2,3
in Ma and buses 4,5 in Mb. The buses in Ma are separated
from the buses in Mb by the cutset of lines 1,2,3,4,5,6 that
is indicated by the dashed line. Write θi for the voltage
angle at bus number i and θ̂j for the angle difference across
line number j. The susceptance of line number j is bj .

The power flowing from Ma to Mb along line j of the cutset
is bj θ̂j . For this illustration, it is convenient to assume that
the angle difference θ̂j on line j is defined so that θ̂j is
positive for positive power flowing on line j from Ma to
Mb. The power Pab flowing through the cutset is the sum
of the powers flowing in each line of the cutset:

Pab = b1θ̂1 + b2θ̂2 + b3θ̂3 + b4θ̂4 + b5θ̂5 + b6θ̂6. (19)

The cutset susceptance is

bab = b1 + b2 + b3 + b4 + b5 + b6. (20)

Following [1], we define the angle across the cutset as

θ̂ab =
b1
bab

θ̂1 +
b2
bab

θ̂2 +
b3
bab

θ̂3 +
b4
bab

θ̂4 +
b5
bab

θ̂5 +
b6
bab

θ̂6, (21)

which is a linear combination of the cutset line angle differ-
ences, weighted according to the line susceptances. Then
(19), (20), and (21) imply that

Pab = babθ̂ab, (22)

which expresses the power flowing through the cutset as the
product of the cutset susceptance and the angle across the
cutset. Equation (21) can be rewritten in terms of the bus
angles as

θ̂ab =
b1 + b2
bab

θ1 +
b3 + b4
bab

θ2 +
b5 + b6
bab

θ3

− b1 + b3 + b5
bab

θ4 −
b2 + b4 + b6

bab
θ5 (23)



For practical calculations, it is better to use vector and
matrix notation. The buses 1,2,3 in Ma are defined by the
ones in

σa = (1, 1, 1, 0, 0) (24)

The bus angles are

θm = (θ1, θ2, θ3, θ4, θ5)T (25)

Let Beq
mm be the 5 × 5 susceptance matrix of the network

in Figure 6. The entries of the first 3 rows of Beq
mm are

b1 + b2 + b7 −b7 0 −b1 −b2
−b7 b3 + b4 + b7 + b8 −b8 −b3 −b4

0 −b8 b5 + b6 + b8 −b5 −b6
. . . . .
. . . . .


Now it can be easily verified that (20) can be written as

bab = σaB
eq
mmσ

T
a (26)

and (23) can be written as

θ̂ab =
σaB

eq
mmθm

bab
. (27)

4.3 Angle between sets of buses and across an area

We explain how to obtain the angle θ̂ab between a set of
buses Ma and set of buses Mb and across an area or region
R of the network. We will also define the power flow Pab

from Ma to Mb through the area and the susceptance bab of
the area from Ma to Mb. The sets Ma and Mb are assumed
to have no buses in common. We write M = Ma

⋃
Mb. M

will be the border buses of area R.

We assume that the border buses M are a nodal cutset.

This assumption formalizes the concept that the M is all
the buses along the border of the area R to be chosen below.
The assumption that M is a nodal cutset holds throughout
the paper, except that section 5.5 briefly considers the case
that M is not a nodal cutset. Since M is a nodal cutset,
if the buses in M are removed from network, then the re-
maining network has several connected components, each
of which is a proper subset of the network. One of these
connected components N is chosen and augmented with the
buses in M to form the area or subnetwork R = M

⋃
N .

The buses in M are called the border buses for the area
R, and the buses in N are called the interior buses of R.
The quantities θ̂ab, Pab, and bab will be defined across or
through the area R from the border buses Ma to the border
buses Mb.

For a given area R with border buses M , there are usually
multiple ways to divide the border buses into the buses
Ma and Mb. Each choice of Ma and Mb gives different
quantities θab, Pab, and bab. For example, it is reasonable

that a “North to South” angle across an area is different
than an “East to West” angle across the area.

We will assume phasor measurements at all the border
buses M . Some of the buses in N may also have phasor
measurements, but we will not make use of them.

The row vector σr defines the buses in R by

σri =

{
1 bus i in R
0 bus i not in R.

(28)

Then the lines that join R to the rest of the network are
indicated by the row vector

cr = σrA (29)

Since R is a proper subnetwork, the lines joining R to the
rest of the network form a cutset. And

crj =


1 line j in cutset has sending bus in R
−1 line j in cutset has receiving bus in R
0 line j not in cutset.

(30)

Write Am for the rows of A corresponding to the buses in
M . Define the matrix τ by

τmr = Am ⊗ |cr| (31)

where ⊗ is element by element multiplication of each row
of Am with the row vector |cr|. |cr| is the row vector of
absolute values of the components of cr.

Then

τmrij =



1 bus i in M is the sending bus of line j
joining bus i to a bus not in R

−1 bus i in M is the receiving bus of line j
joining bus i to a bus not in R

0 bus i in M not joined by line j
to a bus not in R

(32)

Each bus i that is a border bus in M has lines not in R
entering bus i. We write P into

i for the total power entering
into bus i along all the lines not in R. We write P into

m =
{P into

i , i ∈ M} for the column vector of powers entering
into buses in M along the lines not in R. Then

P into
m = −τmrΛAT θ. (33)

We write Pm for the vector of powers injected at the buses
in M due to load or generation at these buses. Then the
combined effect of the lines outside R and any load or gener-
ation at the border buses in M is given by power injections
of P into

m + Pm at the border buses.

It is now convenient to focus on the subnetwork R. The
power injections P into

m at the border buses account for the
effect of the rest of the network on area R.



The next step is to reduce area R to an equivalent network.
The border buses M are retained and the interior buses N
are equivalenced out. Write column vectors θm and Pm for
the angle and power injected at the border buses and θn

and Pn for the angle and power injected at buses N inside
the area R. Order the buses in R so that the border buses
come first. Then

θr =
(
θm

θn

)
and Pr =

(
P into

m + Pm

Pn

)
.

Then the DC load flow equations for area R are(
P into

m + Pm

Pn

)
= BR

(
θm

θn

)
=
(
BR

mm Bmn

Bnm Bnn

)(
θm

θn

)
.

(34)
Here BR is the susceptance matrix for the subnetwork R.
(Note that BR is not identical to the submatrix Brr of the
susceptance matrix B for the entire network. BR

mm is the
submatrix of BR corresponding to the buses in M . The
diagonal entries of BR

mm are different than the submatrix
Bmm of the susceptance matrix B for the entire network,
because they do not include the susceptances of the lines
outside R that are joined to buses in M .)

Eliminating θn from (34) in the usual way gives

P into
m + Pm −BmnB

−1
nnPn = (BR

mm −BmnB
−1
nnBnm) θm

and, letting

P eq
m = P into

m + Pm −BmnB
−1
nnPn (35)

and

Beq
mm = BR

mm −BmnB
−1
nnBnm, (36)

we obtain a reduced grid electrically equivalent to R with
the DC load flow equations

P eq
m = Beq

mmθm. (37)

The reduced grid electrically equivalent to R is the border
buses M joined by equivalent transmission lines and with
additional power injections.

From (35), the equivalent power injections P eq
m at buses in

M have two parts

P eq
m = P into

m + PR
m , (38)

where P into
m is the external powers entering into buses in M

from lines outside R and

PR
m = Pm −BmnB

−1
nnPn (39)

is the internal powers entering into buses in M that account
for power injections in buses at R.

The reduced network has the border buses Ma separated
from the border buses Mb by a cutset of equivalent lines.

The angle across the cutset will be the area angle, the sus-
ceptance of the cutset will be the area susceptance and
the power flow through the cutset will be the power flow
through the area from Ma to Mb. This applies the cutset
angle concept indicated in section 4.2.

The row vector σa defines the buses in Ma by

σai =

{
1 bus i in Ma

0 otherwise
(40)

Define the equivalent power flow Pab through area R from
Ma to Mb as the cutset power flow

Pab = σaP
eq
m = σa(P into

m + PR
m) = P into

a + PR
a , (41)

where the total power flowing into Ma from lines outside R
is

P into
a = σaP

into
m (42)

and the total power injected into Ma that accounts for
power injections in buses of R is

PR
a = σaP

R
m (43)

Define the susceptance bab of area R from Ma to Mb as the
cutset susceptance

bab = σaB
eq
mmσ

T
a (44)

Define the angle θ̂ab across area R from Ma to Mb as the
the cutset angle

θ̂ab =
σaB

eq
mm θm

σaB
eq
mmσT

a

(45)

=
σaB

eq
mm θm

bab
(46)

= w θm, (47)

where the row vector of weights is

w =
σaB

eq
mm

bab
. (48)

Then

Pab = σaP
eq
m = σaB

eq
mmθm = bab

σaB
eq
mm θm

bab
= babθ̂ab (49)

It is important to note that Bnn only depends on the net-
work in the interior of R. Bnm = BT

mn only depends on the
lines connecting M to the interior of R. Therefore Beq

mm

only depends on lines in R. It follows that bab only depends
on the lines in service in R and that θ̂ab only depends on
the lines in service in R and the border bus angles θm.

Given the status of lines within R, one can compute the
susceptance bab of R. If the border bus angles θm are also
measured, then one can compute the angle θ̂ab across R.



4.4 Internal and external area power flows and angles

The total power entering into R through the buses in Ma

is
P into

a = σaP
into
m = −σaτmrΛAT θ (50)

Another way to express the total power P into
a entering into

R through the buses in Ma is to define the lines entering R
through buses in Ma with a row vector ca with

caj =



1 line j has sending bus in Ma

and receiving bus not in R
−1 line j has receiving bus in Ma

and sending bus not in R
0 line j does not have a bus in Ma

or line j has one bus in N .

(51)

Then

ca = σaτmr (52)

and

P into
a = −caΛAT θ (53)

The row vector σb defines the buses in Mb by

σbi =

{
1 bus i in Mb

0 otherwise
(54)

Then
Pba = σbP

eq
m (55)

Write 1 for a row vector of all ones, and with varying length
as needed by the context. Then σb = 1− σa and

Pab + Pba = 1P eq
m = 1P into

m + 1PR
m (56)

1P eq
m = 0 because M is a nodal cutset. This follows since

1P eq
m is the power entering the reduced area R and there

are no sources or sinks of power within the reduced area R.
Therefore

Pba = −Pab (57)

We state several formulas for the total power P into entering
into area R. By definition,

P into = 1P into
m = (σa + σb)P into

m = P into
a + P into

b (58)

Moreover, since M is a nodal cutset, the total power P into

entering into area R is also the total power consumed inside
R:

P into = −1
(
Pm

Pn

)
(59)

The standard property 1BR = 0 implies 1Bmn+1Bnn = 0.
Therefore

1PR
m = 1(Pm −BmnB

−1
nnPn) = 1Pm + 1Pn = −P into.

(60)

Hence

P into = −1PR
m = −(σa + σb)PR

m = −PR
a − PR

b . (61)

In summary,

P into = P into
a + P into

b = −PR
a − PR

b . (62)

From (41), and using (62),

Pab = P into
a + PR

a

= 1
2 (P into

a − P into
b ) + 1

2 (P into
a + P into

b )

+ 1
2 (PR

a − PR
b ) + 1

2 (PR
a + PR

b )

= 1
2 (P into

a − P into
b ) + 1

2 (PR
a − PR

b ) (63)

Defining

θ̂into
ab =

P into
a − P into

b

2bab
(64)

and

θ̂Rab =
PR

a − PR
b

2bab
, (65)

and dividing (63) by bab, we obtain the splitting of the area
stress angle θ̂ab into internal and external angles as

θ̂ab = θ̂into
ab + θ̂Rab (66)

5 Changes in area angles

This section analyzes how area angles change when lines
outage or power is redispatched.

5.1 Standard line outage and distribution factors

We recall, based on [11], the modeling of line outages with
power injections and the standard line outage distribution
factors. It is convenient to write ek for the column vector of
all zeros except that the kth component is one. The length
of the vector ek varies with context.

The power transfer distribution factor ρkrs is the increase
in power flow in line k joining u to v due to a unit injection
of power at bus r and a unit decrement of power injected
at bus s:

ρkrs = eT
k ΛATB−1(er − es)

= bk(eT
u − eT

v )B−1(er − es) (67)



Suppose line k joining bus r to bus s has power flow P line
k .

Assume that the outage of line k does not island the net-
work. Then the effect of outage of line k on the rest of the
network is equivalent to preserving the network structure
and injecting power P outage

k at bus r and injecting −P outage
k

at bus s, where

P outage
k =

P line
k

1− ρkrs
(68)

The power flow on the line k after the power injections is
P line

k +ρkrsP
outage
k = P outage

k , and it is this fact that implies
that the injections have the same effect on the rest of the
network as outaging line k [11]. It also follows that the
angle across line k after it is outaged is

θ̂afterk =
P outage

k

bk
=

θ̂k

1− ρkrs
, (69)

where θ̂k is the angle across line k before it outaged.

5.2 Effect of power transfers on area angle

Consider the power transfer in which power P inject is in-
jected at bus r and −P inject is injected at bus s. This power
transfer may be an actual power transfer or may represent
the effect of a line outage.

It is useful to generalize power transfer distribution fac-
tors to the incremental effect of the transfer on the internal
power flow 1

2 (PR
a − PR

b ) across the area (see (63)). In par-
ticular, define the power transfer distribution factor ρR

abrs

to be the change in 1
2 (PR

a − PR
b ) due to a unit injection of

power at bus r and a unit decrement of power injected at
bus s. Let ∆P into

a and ∆P into
b be the respective changes in

P into
a and P into

b due to the transfer. Then

∆Pab = 1
2 (∆P into

a −∆P into
b ) + ρR

abrsP
inject (70)

We consider the cases in which either buses r and s are both
in R or are both outside R. Then the total power entering
into R does not change, so that ∆P into = 0. It follows from
(62) that

∆P into
a = −∆P into

b (71)

and

∆PR
a = −∆PR

b . (72)

Then

∆Pab = ∆P into
a + ∆PR

a = ∆P into
a + ρR

abrsP
inject (73)

A formula for ∆P into
a is

∆P into
a = −caΛATB−1(er − es)P inject, (74)

but our intention is to determine ∆P into
a from phasor mea-

surements. Moreover, since 1
2 (∆PR

a −∆PR
b ) = ∆PR

a , ρR
abrs

can be computed as the change in PR
a due to a unit in-

jection of power at bus r and a unit decrement of power
injected at bus s. That is, from (43) and (39),

ρR
abrs = f(r)− f(s) (75)

where

f(r) =


−σaBmnB

−1
nner, bus r in N

1 bus r in Ma

0 bus r in Mb

0 bus r not in R

(76)

ρR
abrs only depends on the area R.

The case of islanding and the case in which one of the buses
r and s is in R and the other bus is not in R are not treated
here.

5.3 Monitoring line outages

The objective is to monitor line outages by changes in the
angles across area R and changes in power P into

a entering
into area R. It is necessary that the status of lines in R
before the line outage is known. (The line status is required
so that Beq

mm can be evaluated.)

There is an important choice to be made when using area
angles to monitor line outages. When the line outage occurs
inside area R, the bus angles and line power flows change
throughout the network and the line status changes inside
R. The change in line status implies that the definitions of
area angles, susceptances, power flows, and power transfer
distribution factors all change. That is, when the line out-
age occurs, both the bus angles and line power flows change
and the definitions of the area quantities we are using to
monitor the system change. One can either monitor the
system after the line outage using the old area quantities
that apply before the line outage, or one can update the def-
initions of the area quantities and monitor the system using
the new area quantities after the line outage. A disadvan-
tage of updating the definitions of the area quantities when
the line outage occurs is that one needs to know which line
outaged to calculate the new definitions. In this paper we
choose to monitor the system after the line outage occurs
using the old area quantities that were defined before the
line outage. (In a more developed application of the area
angles, one could make this same choice retaining the old
area quantities just after the line outage occurs for the pur-
pose of detecting and quantifying the line outage, and then
update the definitions to reflect the line outage after the
line outaged is identified in order to be better positioned
for further line outages.)

We make phasor measurements at the border buses in M
of the angles θm and the powers P into

m entering into the
border buses. Then, given a DC load flow model of R, we



can compute θ̂ab, bab, P into
a , and P into

b . We monitor the
changes in these quantities and compute the change in the
internal area angle

∆θ̂Rab = ∆θ̂ab −
∆P into

a −∆P into
b

2bab
(77)

and monitor the changes ∆θ̂Rab. In some cases, only one of
∆P into

a and ∆P into
b need be monitored.

Suppose that the power system is not islanded by the line
outage. In this case, the effect of the outage of line k is
equivalent to retaining the current line statuses and inject-
ing powers ±P outage

k determined by (68) at the ends of the
line. Then, if the outaged line has no buses in R, the power
injections inside R do not change and

∆θ̂Rab = 0. (78)

On the other hand, if the outaged line is within R, then

∆θ̂Rab =
∆PR

a

bab
(79)

=
ρR

abrsP
outage
k

bab
(80)

=
ρR

abrs

bab(1− ρkrs)
P line

k (81)

=
bk ρ

R
abrs

bab(1− ρkrs)
θ̂k (82)

=
bk ρ

R
abrs

bab
θ̂afterk (83)

Equations (81) and (82) show that θ̂Rab is proportional to
the power flow P line

k through the line before the outage and
the angle θ̂k across the line before the outage. Equation
(83) shows that θ̂Rab is proportional to angle θ̂afterk across
the line after the outage. Rearranging (83) gives

θ̂afterk =
bab

bk ρR
abrs

∆θ̂Rab (84)

If it is known which line outaged so that bk ρR
abrs can be

calculated, (84) determines the angle θ̂afterk across the line
after the outage from the phasor measurements.

In this section, we analyze the simplest case of line outages
in which the line buses are either both in R or both not in R
and in which the line outage does not cause islanding. If the
line outage islands the power system, any power redispatch
caused by the islanding should be taken into account. We
expect that the methods of the paper can be extended to
this case as long as the redispatch of the power imbalance
caused by the islanding is specified. It is not essential to
analyze the case of line trips in which one of the line buses
is a border bus and the other bus is outside area R. Our
proposed monitoring already measures the current or power
flowing in such lines and the line outage can be directly
detected from these measurements.

5.4 Cutset areas and areas with Ma or Mb a cutset

A useful special case is that the buses in M contain two
nodal cutsets and in particular that the buses Ma is one
nodal cutset and Mb is another nodal cutset. Then the
area between Ma and Mb is called a cutset area [2]. In this
subsection, we consider a case slightly more general than a
cutset area in which at least one of Ma or Mb is a nodal
cutset. Without loss of generality, suppose that Ma is a
nodal cutset. We continue to assume that M is a nodal
cutset.

If Ma is a nodal cutset, there is a nice simplification for
monitoring line outages. Suppose that the line buses are
both in R or are both outside R. Then the equal and op-
posite power injections representing the effect of the line
outage do not change total power entering into R, so that
∆P into = 0. Moreover, since Ma is a nodal cutset, the total
power entering Ma does not change so that ∆P into

a = 0.
Then we can use (62) and ∆P into = 0 to deduce that
∆P into

b = 0. Thus ∆P into
a = ∆P into

b = ∆P into = 0 and the
change in the external area stress always vanishes. Then
the phasor measurements of the current or powers entering
the area are not needed to monitor the line outages with
changes in the stress angle. Several examples of monitoring
a cutset area in this way are given in [2].

5.5 Border buses not a cutset

All of the paper, except this subsection, assumes that the
border buses M are a nodal cutset. If the border buses M
are not a nodal cutset, then Section 4 applies with minor
modifications and in particular one can still define the angle
between Ma and Mb across the area R. However, following
the procedure in subsection 4.3, the area R is necessarily
the entire network. There are no external powers entering
the network, so θ̂into

ab = 0 and θ̂ab = θ̂Rab. We speculate
that having the area R be the entire network does not seem
advantageous for applications to large power grids because
the specificity of the area is lost.

One extreme example of both a cutset area (see [2]) and a
case with M not a nodal cutset can often arise in the case of
Ma a single bus and Mb a single bus. In this case, the angle
θ̂ab across the entire network is simply the angle difference
between the two buses.

5.6 Area angles with other network variables

The ingredients required to get area angles, power flows,
and susceptances to work are an “across” circuit quantity
(angle difference), a “through” circuit quantity (power flow)
and an admittance-like quantity (susceptance), that are re-
lated together by an Ohm’s law such as (1). For developing
applications of area angles such as model reduction, it is
important to note that one can substitute into the circuit



theory derivations of this paper any three corresponding
across, through and admittance network quantities and all
the statements remain valid.

For example, let the “across” circuit quantity be the com-
plex phasor voltage difference V , the “through” circuit
quantity be complex current I, and the admittance-like
quantity be complex admittance Y . The DC load flow equa-
tions (15) are rewritten as I = Y V . Then, in an exactly
similar way as (14) we can define the complex voltage pha-
sor V̂ab across area R as a weighted average of the complex
phasor voltages at the border buses:

V̂ab =
y1
yab

VELDORADO +
y2
yab

VPALOVRDE − VVINCENT

where y1 and y2 are the complex admittances of the 2 lines
in the cutset separating Ma = {ELDORADO, PALOVRDE}
from Mb = {VINCENT} in the reduced network of the 3
border buses. The complex admittance of the area is yab =
y1 + y2. Moreover,

Iab = yabV̂ab, (85)

where Iab is the effective phasor current through the area.

6 Conclusions

We define new angles across a power system area to be able
to monitor the total stress of the area, as well as the parts
of the stress that are related to the power flows internal
and external to the area. The new angles can be easily cal-
culated from phasor measurements at all the buses along
the border of the area using a DC load flow model of the
area and knowledge of which lines in the area are in service.
The new angles generalize the cutset area angles of [1, 2]
and their calculation uses the new cutset angle concept in-
troduced in [1].

Previous approaches to measuring stress with phasor mea-
surements have used the difference of angles at two buses or
searched for patterns in angles from many buses. The new
area angles have some advantages over these approaches.
The area angles give stress information specific to an area
of the power system. This corresponds with the way large
power systems are operated, and information that describes
specific properties of a specific area of a large power system
is more actionable. Since the new area angles obey circuit
laws, they are more meaningful than an arbitrary combina-
tion of angles and should provide quantities summarizing
the power system condition that will behave in ways con-
sistent with the intuition of operators and engineers about
power flows.

The area angles may also be useful in summarizing and
communicating the state of large power systems when the
angles and power flows are known from state estimation.
The area angles could also be applied to problems of model

reduction. It is easy to define other circuit quantities re-
lated to areas such as the complex phasor voltage across
an area and the complex admittance of an area since the
theory is exactly parallel and can be obtained by simply
substituting corresponding variables.

One disadvantage of the area angles is that a DC load flow
model of the area and a knowledge or assumption of the
line status in the area is required. The DC load flow ap-
proximation is expected to be practical, but has only been
tested against AC load flow results for the special case of
cutset area angles [2]. It is an open question what level of
network detail in the DC load flow model is needed. It is
possible that measurements at border buses only connected
to high impedance or low voltage lines may be neglected,
but this has not yet been determined.

The area angles respond to line outages and larger changes
in area angles correspond to outages of lines with larger
power flows in accordance with circuit laws. The area an-
gles also respond proportionally to power redispatches. It
is useful that the internal area stress angle does not re-
spond to line outages and power redispatches outside the
area. Changes in the internal stress angle across the area
can detect line outages inside the area. If, in addition, it is
known which line is outaged, then the angle across the out-
aged line after it outages can be computed from the change
in the internal stress angle. This could be helpful in as-
sessing whether it safe to reclose the line. We suggest that
the method of Tate and Overbye [9] could be used to de-
termine which line in the area is outaged. The monitoring
of line outages in an area simplifies if the area is a cutset
area, because then only the border bus voltages, and not
any currents, need to be monitored.

The paper shows the valuable information about an area
that can be obtained by placing phasor measurements at
all the buses along the border of the area. It is natural
to have already placed phasor measurements at major area
tie lines, so these could be systematically augmented to ob-
tain phasor measurements at all the buses along the border.
More generally, the method of the paper suggests that pha-
sor measurements be placed along nodal cutsets. Instead
of fixing the areas and asking where phasor measurements
should be added, one can ask what areas are implied by the
current or planned phasor measurement locations. All the
possible areas can be obtained by considering the network
formed by removing all the buses with phasor measure-
ments. Then the possible areas are all the islands (compo-
nents) of this network, or combinations of these islands.

The new area angles are very promising quantities for mon-
itoring area stress and extracting more value from phasor
measurements. We look forward to finding and developing
their practical applications.
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