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Using Transmission Line Outage Data to
Estimate Cascading Failure Propagation in
an Electric Power System

Hui Ren, Student Member, IEEE, and lan Dobson, Fellow, IEEE

Abstract—We study cascading transmission line outages
recorded over nine years in an electric power system with approx-
imately 200 lines. The average amount of propagation of the line
outages is estimated from the data. The distribution of the total
number of line outages is predicted from the propagation and the
initial outages using a Galton—Watson branching process model
of cascading failure.

Index Terms—Failure analysis, power systems, reliability, risk
analysis.

1. INTRODUCTION

ASCADING failure is the process by which initial out-

ages of electric power transmission system components
can occasionally propagate to more widespread outages and
large blackouts. The outages are dependent in that the outages
that have already occurred weaken the system and make further
outages more likely. Indeed, the empirical probability distribu-
tions of blackout size observed in several countries have approx-
imate power law regions that cannot be produced by indepen-
dent outages and are broadly consistent with cascading failure
models [1].

Cascading failures that arise in practice can be very compli-
cated chains of events and often include unanticipated interac-
tions or rare events. One reason for this is that power system
engineers work hard to mitigate the likely and anticipated cas-
cades. We suggest that any practical approach to estimation of
the overall probabilities of cascading failure must be a bulk sta-
tistical “top-down” approach that neglects some of the detail of
the cascades.

A bulk statistical approach is different from and complemen-
tary to methods of risk analysis that rely on detailed analysis
of enumerated interactions. A detailed analysis can describe the
risk of a subset of cascades, particularly some of the likely, antic-
ipated and shorter cascades so that high risk cascades can be mit-
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igated [2]. Moreover, the detailed analysis can support specific
mitigations of the interactions or component reliabilities. How-
ever, the detailed analysis cannot describe the overall risk of cas-
cading failure because it does not account for the huge number
of unlikely or complicated events, especially when the interac-
tions due to network physics are augmented with the interac-
tions due to software and human factors. The bulk statistical ap-
proach seeks to quantify the overall risk of cascading failure and
the reliability benefits of improvements to the system.

In this paper, we analyze some power industry data on trans-
mission line outages. Of course all cascading interactions, no
matter whether rare and intricate or likely and simple, are ac-
counted for in the observed data. We choose to examine out-
ages of high voltage lines because lines typically outage during
transmission system disturbances and outages of other compo-
nents or operational, planning and maintenance errors tend to
also cause line outages. In a sense we are using the line outages
to monitor the more general cascading processes.

We summarize previous work on probabilistic models for
cascading outages. Dobson and coworkers developed a proba-
bilistic model of cascading [3], approximated this model with a
branching process [4]-[6], and considered how branching pro-
cesses could model the propagation of outages in data observed
in single, large blackouts [7]. They applied Galton—Watson and
continuous state branching processes to estimate propagation
and the distributions of line outages and load shed in data pro-
duced by the OPA simulation of cascading line outages [8], [6],
[9], [10]. Chen and McCalley et al. [11] proposed an exponen-
tially accelerated cascading model for the number of line out-
ages and fit this model, a generalized Poisson model (follows
from a branching process), and a negative binomial model to
the distribution of the total number of line outages observed in
North America over 20 years [12].

In this paper, we demonstrate a way to test a bulk statistical
model of cascading line outages on industry data. The bulk sta-
tistical model is a branching process that describes initial out-
ages that then propagate in stages. We estimate the average
amount of propagation A and hence predict the probability dis-
tribution of the total number of line outages. This efficiently pre-
dicted probability distribution of the total number of line out-
ages is compared to the empirical probability distribution of
the total number of line outages to test whether the branching
process model is valid for this prediction. We show how to quan-
tify the propagation of cascading failures from observed data
and efficiently predict the effect of the propagation on the risk
of the cascade. A summary of some of the results of this paper
appears in the conference paper [9].
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II. BRANCHING PROCESS

Branching processes have long been used in a variety of ap-
plications to model cascading processes [13], [14], but their
application to the risk of cascading failure is recent [4]. The
Galton—Watson branching process gives a probabilistic model
of the number of failures. There are a random number Z; of
initial failures that then propagate randomly to produce subse-
quent failures in stages. Each failure in each stage (a “parent”
failure) independently produces a random number 0,1,2,3,. ..
of failures (“child” failures) in the next stage according to an off-
spring distribution that is a Poisson distribution of mean A. The
child failures then become parents to produce the next genera-
tion and so on. If the number of failures in a stage becomes zero,
the cascade stops. The mean number of child failures for each
parent is the parameter A. A quantifies the average tendency for
the cascade to propagate. The intent of the modeling is not that
each parent failure in some sense “causes” its child failures; the
branching process simply produces random numbers of failures
in each stage that can statistically match the outcome of cas-
cading processes.

There are general arguments supporting the choice of a
Poisson distribution for the offspring distribution [15]. The
Poisson distribution is a good approximation when each failure
propagates to a large number of components so that each parent
failure has a small, fairly uniform probability of independently
causing child failures in a large number of other components.
This assumption seems reasonable for cascades in power sys-
tems, especially in the initial portions of the cascade when there
are many unfailed components that are stressed by the failed
components.

The power system cascades are observed until there are
K nontrivial cascades. Each nontrivial cascade has a positive
number of failures in stage zero (Zp > 0) and all statistics are
conditioned on Zy > 0. The failures in the kth cascade are
written as Zék), Zlk), Zék), Zék), ... so that ZJ(»k) is the number
of outages in stage j of cascade k.

We assume an arbitrary distribution of nonzero initial failures
P[Zy = z] for z9 = 1,2,3,.... Then it is a standard result
in branching processes that the total number of failures Y is
distributed according to a mixture of Borel-Tanner distributions

e—rA
(r — zo)!
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Distribution (1) is valid! for 0 < A < 1 and shows that the

distribution of the total number of failures Y depends on the

distribution of the initial failures Zy and the propagation .
The standard Harris estimator for A is
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IDistribution (1) can be generalized to A > 1 by modeling saturation as
explained in [8].

and is an asymptotically unbiased maximum likelihood es-
timator [13], [16], [17]. Estimator (2) is intuitive: Think of
“parent” failures in each generation giving rise to “child” fail-
ures in the next generation. Then A is the average family size;
that is, the average number of child failures for each parent.
Since Zy, Z1, ... are all parent failures and Z1, Zo, ... are all
child failures, the estimator (2) is simply the total number of
children in all the cascades divided by the total number of
parents in all the cascades. A variant of (2) that accounts for
saturation effects is used in [8].

III. OUTAGE DATA

The data is from a regional electric power transmission
system with, approximately, 100 buses, 180 lines at 220 kV,
and 20 lines at 500 kV. The data is recorded over about 9 years
starting in 1997 and ending in 2006. The data for each trans-
mission line outage includes the time (to the nearest minute),
voltage level, and the auto-recloser’s action. The voltage levels
considered are 220 kV and 500 kV; outages at lower voltage
levels are not considered because of the potential number of
unrecorded cases. There are several types of line outages in
the data, including three phase and single phase and outages
with successful or unsuccessful auto-reclosing. In processing
the data, both voltage levels and all types of line outages
are regarded as the same and the detailed causes of the line
outages (line fault, busbar fault, or other fault or operations)
are neglected. Neglecting these distinctions in an initial, bulk
statistical analysis is appropriate (future work may account for
some of these distinctions). Large flashover events in the data
with approximately 260 outages over two days are neglected
because they lack time tags.

IV. GROUPING OUTAGES INTO CASCADES AND STAGES

For our analysis it is necessary to group the line outages first
into different cascades, and then into different stages within each
cascade [7]. Here we use a simple method based on outages’
timing. Since operator actions are usually completed within one
hour, we assume that successive outages separated in time by
more than one hour belong to different cascades. Since tran-
sients or auto-recloser actions are completed within one minute,
we assume that successive outages in a given cascade separated
in time by more than one minute are in different stages within
that cascade. Much of the clustering of outages in stages can be
seen in Fig. 1.

Table I is obtained by summing over all the 226 cascades the
number of outages in each stage. That is, of the 396 outages,
296 are in stage 0 of a cascade, 45 are in stage 1 of a cascade,
and so on. The initial outages are the 296 outages in stage O.
The probability distribution of the number of initial outages Z
is shown in Fig. 2(a). The distribution of Z; in Fig. 2(a) has
a peak at 6 outages that prevents it being well approximated
by a Poisson distribution. One reason for the peak is that some
cascades are initiated by a bus outage, and the relay trips off all
transmission lines connected to that bus simultaneously at the
start of the cascade.
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Fig. 1. Time since start of cascade for outages in each of the 226 cascades. The
first 75 min of each cascade are shown (3 cascades exceed 75 min). Multiple
outages at the same time are shown slightly displaced.
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Fig. 2. Probability distributions of number of outages. (a) Initial outages Z,
from data. (b) Total number of outages Y estimated using branching process
(line) and from data (dots).

TABLE I
NUMBER OF OUTAGES IN EACH STAGE SUMMED OVER THE CASCADES
stagenumber 0 1 2 3 4 567 8 9 10 11 12 13 14 15
no. of outages 296 45 18 14 10 3 1 1. 1. 1 1 1 2 1 1 O

V. ESTIMATING A\ AND DISTRIBUTION OF TOTAL
NUMBER OF OUTAGES Y

Applying estimator (2) to the line outage data in Table I yields
the equation shown at the bottom of the page. That is, each
outage produces an average of A = 0.25 outages in the next
stage. This result is insensitive to the grouping of outages into
stages (redefining the minimum time between successive out-
ages in different stages to be 2 min and recomputing A yields
A = 0.24).
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Fig. 3. Distribution of total number of outages Y~ estimated using branching
process (line) and from data (dots); this log—log plot shows a heavy tail.

The empirical distribution of Y directly obtained from the
data is

number of cascades with r outages
Pr = ’

number of cascades
r=20,1,2,.... 3)

To test how well the branching process model describes the data,
we use (1) with A = 0.25 and the distribution of initial outages
to predict the distribution of the total number of outages Y, and
compare this with the empirical distribution (3). This compar-
ison is shown in Figs. 2(b) and 3. A chi-squared goodness-of-fit
test shows that the distributions are consistent at the 5% con-
fidence level (the test groups together 5 or more outages). A
heavy tail in the distribution of the total number of line outages
is also observed in North American data in [11], but our data
has a heavier tail than [11].

VI. COMPARING ESTIMATION OF DISTRIBUTION OF Y VIA A
AND EMPIRICALLY

Suppose that the distribution of the initial failures Zy is
known using standard methods of reliability analysis. Then the
distribution of the total number of outages Y can be obtained
by first estimating A and then using the branching process
model (1), or obtained empirically directly from the observed
cascade data. We compare for these two approaches the number
of cascades that need to be observed to yield a comparable
standard deviation of the tail of the estimated distribution of Y.
In particular, we obtain a result for the tail of more than 5 line
outages. Although these tail events are rare, they can have high
impact and substantial risk. The outage of many lines is more
likely to lead to load shedding.

Observing outages for one year would yield an average of 25
cascades. To show how accurately A could be estimated from

45+ 1841441043 4+1+1+1+1+14+1424+14+14+0

=0.25

- 296 +45+18+14+10+3+1+1+1+1+1+14+2+1+1



930 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 55, NO. 9, SEPTEMBER 2008

0.15 [ ) T
[
§ "o,
S 0.01 ] m B
© ne
- oM N -
> ...
] °
© 0.001; .
9 : o
g [ J
[ J
g _
g 107%F ° 4
D ; °
o °
q
-5 L L L
10 0 5 10 15 20

number of lines outaged

Fig. 4. Standard deviation o g for estimation via the branching process with
one year of cascade data (circles) compared to the standard deviation oz for
empirical estimation with 9 years of cascade data (squares). o g < o g for more
than 5 line outages.

one year of data, we took 9 non-overlapping random samples
of 25 cascades and estimated A for each sample of 25 cascades.
A typical result is that the estimated A has a standard deviation
of 0.14. That is, assuming normality, an estimate of A from one
year of data lies within 0.14 of the true value about 68% of the
time. This accuracy could be improved by collecting data over
a longer time or over a larger region to increase the number of
observed cascades.

The branching process probability of 7 total outages P[Y =
r] depends on A according to (1) and, by linearizing (1), the
standard deviation of P[Y" = r] due to a 0.14 standard deviation
of A is

OP[Y = 1]

0.14.
oA

A=0.25

“4)

op(r) ~ ‘

That is, (4) gives the standard deviation of the estimated distri-
bution of Y for observing cascades in the 200 line power system
for one year and using the branching process model.

The standard deviation of the empirical distribution (3) of the
total number of outages for observing the 226 cascades in the
200 line power system for 9 years is

op(r) ~ p—r(l _pT).

226 ©)

Fig. 4 compares the standard deviation op for estimation via
the branching process with the standard deviation o for em-
pirical estimation. Since for more than 5 line outages, o g com-
puted from 1 year of data or 23 cascades is less than the o
computed for 9 years of data or 226 cascades, we can conclude
that estimation of the tail of the distribution via the branching
process requires an order of magnitude fewer cascades for the
same uncertainty.

For the case studied, this conclusion of efficient estimation of
the tail of the distribution via the branching process holds as-
suming that the distribution of initial failures Z is known. If it
is required to estimate the distribution of Z, empirically from
only one year of data, then the resulting uncertainty in the esti-
mated distribution of Zy would introduce significant uncertainty
into the estimate of the distribution of Y.

We now consider how the size of the network and time for
which it is observed generally affect the interpretation and ac-
curacy of A and the estimated distribution of failures. A bulk
statistical approach inherently describes cascading with some
“averaging” over space and time. In particular, estimating the
propagation A over a given part of a network yields a branching
process model for the propagation of failures in that particular
part of the network that is spatially homogeneous over that part
of the network. Similarly, estimating the propagation A\ over a
given time period yields a branching process model for the prop-
agation of failures for that particular time period that is tempo-
rally homogeneous over the time period. (Note that there could
be systematic variations in ) at a fast time scale during cascades
as well as slower time variations in A as the average network
stress changed. Variations at both the slow and fast timescales
are averaged in obtaining the branching process model that is
homogeneous over the time period.) The distributions of total
number of failures predicted using A are similarly averaged over
a particular network and a particular time period. The averaging
over space and time is routine in bulk statistical analyses, but
needs to be kept firmly in mind in choosing the extents of the
observations in space and time and in interpreting the results
obtained.

It is desirable to increase the “resolution” of the results so
that they could be obtained for and apply to smaller portions of
networks observed over shorter periods of time. But a sufficient
number of cascades need to be observed to get accurate enough
results and the number of cascades observed is proportional to
the size of the portion of the network observed and to the time
period. In particular, the standard deviation of the estimate of
A is proportional to 1/ VK where K is the number of cascades
observed. Thus, increasing the accuracy of the estimate of A by
a factor of 2 requires observation of a network four times larger
for the same time or observation of the same network for four
times the time period. Alternatively, for a given accuracy of the
estimate of )\, the time resolution can be doubled and the spatial
resolution can be halved by halving the observation time and
doubling the size of the network observed. One way to express
the thrust of this paper is to note that empirical estimation of the
tail of the probability distribution of the total number of failures
has poor resolution because of the large number of cascades
that need to observed and that much better resolution in time
or space can be obtained by estimating parameters of models of
cascading failure. In particular, assuming that the initial failure
distribution is known, the results show that estimating A\ of a
branching process model for one year can yield a more accurate
estimate of the tail of the probability distribution of the total
number of failures than observing the same network for 9 years.

VII. CONCLUSION

We consider cascading transmission line outages observed in
about 9 years of operation of a 200 line power system by de-
scribing their bulk statistical behavior rather than the details of
individual cascades. We group the line outages into cascades
and stages according to their outage times and then estimate the
average propagation \ of the outages. For this data, the empir-
ical distribution of the total number of line outages is well ap-
proximated by the initial line outages propagating according to a
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branching process with propagation parameter A. In particular,
this data supports the validity of the branching process model
for prediction of the distribution of the total number of line out-
ages. We hope that additional industry data sets will become
available to engineers and risk analysts to test and confirm this
new application of branching process models to cascading line
outages in power systems. Establishing the practical validity of
a branching process model in this way would contribute foun-
dational knowledge for the statistical analysis of blackouts and
cascading failure.

Estimating A requires much less data than directly estimating
the heavy tail of the empirical distribution, and this can enable
the distribution of the tail of the total number of line outages to
be estimated from line outage data observed over a much shorter
time. In particular, suppose that the distribution of initial line
outages is computed by standard methods of reliability analysis
and that the propagation ) has been estimated from observations
by the method of the paper. Then the branching process model
efficiently predicts the tail of the distribution of the total number
of line outages. This is a novel and practical way to compute the
consequences of propagation of outages in cascading failure.

We have demonstrated a new method to predict from industry
data the probability distribution of the size of cascading outages
when the initial outage distribution is known. The success of the
prediction for this data indicates that further testing of branching
process models of cascading failure is appropriate.
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