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Acceptability of Four Transformer Top-Oil
Thermal Models—Part I: Defining Metrics
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Abstract—Eventually, the prediction of transformer thermal
performance for dynamic loading will be made using models
distilled from measured data, rather than models derived from
transformer heat-run tests. Which model(s) will be used for this
purpose remains unclear. In this paper, we introduce metrics for
measuring the acceptability of transformer thermal models. For
a model to be acceptable, it must have the qualities of adequacy,
accuracy, and consistency. We assess model adequacy using
the metrics: prediction � and plot of residuals against fitted
values. To assess model consistency, we use the variance inflation
factor (which measures multicollinearity), condition number,
eigenstructure, parameter sensitivity, and the standard deviation
of model parameters and predicted maximum steady-state load
��������. To assess model accuracy, we use the comparison of
model parameters with nominal values and error duration curves.
Other metrics of interest are also introduced. In a companion
paper, these metrics are applied to the four models defined in this
paper and a relative ranking of the acceptability of these models is
presented.

Index Terms—ANSI C5791, top-oil temperature, transformer,
transformer thermal modeling.

I. INTRODUCTION

ALL transformers of distribution-class capacity or higher
will eventually be dynamically loaded using thermal

models derived from field data. These models are not only
more accurate, but also support derivation of the statistics
of the model’s accuracy [4]. These statistics can be used in
probabilistic transformer loading. The traditional ANSI/IEEE
(Clause 7) top-oil rise model [1] is known to perform poorly
compared to top-oil models trained with measured data [2],
[3], [5]. (For a more detailed discussion of the limitations of
the Clause 7 model, see [5].) Models trained using measured
data are superior because they naturally account for many
undetected phenomena in operating transformers, such as
fouled heat exchangers, inoperative pumps/fans, etc., that the
nominal Clause 7 model does not. The inability to account for
undetected faults and to detect erroneous test report parameters
is likewise a limitation of the IEEE/ANSI Appendix G model
[1]. Using the Appendix G model also requires parameters that
most utilities do not have.

There is a need in this field of research to define measures
of acceptability of “model and method,” that can be used by
researchers and model users alike. When used by researchers,
these measures should allow evaluation of the model’s struc-
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ture. For model users, these measures should give assessments
of model consistency and accuracy.

One goal of this paper is to identify models—from the many
available [1]–[13]—that require only parameters available from
heat-run data and need only measurements utilities routinely
monitor. We express these models using a common notation
that allows their similarities and difference to be assessed easily.
Our second goal is to define metrics to quantitatively measure
adequacy, consistency, and accuracy, and then, in a companion
paper, apply these metrics to rank models according to their
acceptability.

Of the potential first and higher order, linear, and nonlinear
models [1]–[13], we selected four top-oil models.

• The linearized Clause 7 model [2], [4].
• The (nonlinear) Clause 7 top-oil-rise model [1] corrected

for ambient temperature variation.
• The (nonlinear) model of G. Swift et al. [6], [7].
• The (nonlinear) model of D. Susa et al. [8].

II. MODEL DESCRIPTION

A. ANSI/IEEE Clause 7 Top-Oil Rise Model Corrected for
Ambient Temperature also Known as Nonlinear Top-Oil Model

The traditional ANSI top-oil rise (Clause 7) model [1] is gov-
erned by the differential equation

(1)

where

(2)

(3)

and

top-oil rise over ambient temperature ;
ultimate top-oil rise for load ;
initial top-oil rise for ;
top-oil rise over ambient temperature at rated load ;

time constant ;
thermal capacity ;
total loss at rated load ;

oil exponent—(an empirically derived coefficient
selected for each cooling mode to approximately
account for change in resistance with load);

ratio of load to rated load;
ratio of load loss to no-load loss at rated load.
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To correct this for ambient temperature variation, recognize
that the time rate of change in top-oil temperature is driven by
the difference between existing top-oil temperature and ultimate
top-oil temperature

(4)

where

ambient air temperature .

Discretizing this model using the backward Euler rule be-
cause of its stability properties

(5)

and then suppressing the in the argument of , substituting
(5) and (2) into (4), and rearranging gives

(6)

where

NOFAor FOFA Nondirected
Directed

(7)

B. Linearized Top-Oil Model [3], [2]

Assuming , the above model is simplified to

(8)

Since this is a linear model in terms of , , and , we
rewrite this model substituting ’s for the constant coefficients

(9)

(Note the backward Euler method used in [2]–[5] is misla-
beled as the forward Euler method.)

C. Swift Model (Modified-Convection Top-Oil Model [6], [7])

Swift et al. derive a model from first principals that changes
placement of the ad-hoc oil exponent in the Clause 7 model

(10)

where the revised value

(11)

is no longer an ultimate top-oil rise, but a modified value needed
for equality in (10) at the rated load. Swift et al. do not give any
values for since they obtain through training of their model;
however, they do give typical values of

typical
typical

(12)

In [6] and [7], it is not clear which discretization technique
the authors use. We presume they use the implicit backward
Euler method. (From our experimentation, using the explicit for-
ward Euler method with their model yields similar results, but
results that differ by 10%-15%.) After discretization, (10) and
(11) become

(13)

Because of the form of the nonlinearity in (10), ap-
pears implicitly on both sides of the equation, which makes
training the model more difficult.

D. Susa et al. [8] Model (Modified-Convection Top-Oil Model
With Nonlinear Permeability)

The authors of this model start with first principles to derive
a top-oil model that shows a similar exponential behavior to the
Swift et al. [6], [7] model; however, in this model, Susa et al. [8]
retain oil viscosity as a parameter. Their governing differential
equation becomes

(14)

where

(15)

(16)

The values of for different cooling modes are shown in (17)
at the bottom of the next page.

After discretizing with backward Euler, (14) becomes

(18)

As with the Swift et al. [6], [7] model, (18) must be solved
implicitly to perform simulations.

III. SIMPLE MODEL COMPARISON

One obvious question that arises is: Are these models really
very different? First observe that when , all of the models
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TABLE I
MODEL COMPARISONS

are identical; however, in general, there is not one cooling condi-
tion for which all are the same. For NOFA conditions, we com-
pare the time rate of change in , [in (6), (9), (13),
and (18)] due to a step increase in load to , assuming

Except for the Susa et al. [8] model (Table I), these models
appear very similar in their time rate of change performance.
Since our goal is to match measured data within a 2–3 C error
bound, even the half-degree difference between the Swift et al.
and the (nonlinear) Clause 7 model may accumulate through
time and lead to errors that exceed our self-impose bound.

All, or possibly none, of these models may perform ade-
quately when using parameters from the transformer test report.
(We have found test report data that do not match measured
transformer performance well.) However, all models will likely
perform adequately when their parameters are selected to opti-
mally fit measure data. Our goal is define a set of metrics for
quantitatively assessing the acceptability of these four models.

IV. EQUIVALENCE OF METRICS FOR THE LINEAR AND

NONLINEAR MODELS

Much work has been done to develop metrics for linear re-
gression. We show in this section that these metrics are also valid
for assessing nonlinear model performance.

A. Linear Modeling

To explain the metrics that will be applied for model accept-
ability testing, we first establish our notation. For the sake of
simplicity in notation, we define to be the measured value
of . A multiple regression model that describes the re-
lationship between the process output and regressor values
is

(19)

where the parameter and are called the true
regression coefficients, are regression variables (in the linear
model case , , and, as a lagged regressor ). In vector
form, the regression variables are written as . The error term

is assumed to have zero mean and variance . The residuals
are assumed to be uncorrelated and normally distributed.

In vector form, this equation can be written

(20)

where , , , is an vector of outputs,
is an matrix of sampled regressor variables, is a
vector of the regression coefficients (for the linear model, ,

), is an vector of constant scalar values, , (for
the linear model, ) and is an vector of random
errors.

Since we do not have outputs, , but instead measured
values, , we can never know the true value of , but can
estimate the values as

(21)

Using these estimated and measured values, we may write our
best approximation to (20) as

(22)

where is an vector of residuals, is an
vector of constant scalar values, and is the mean of the sam-
pled values of . The predicted values are given by

(23)

where is an .

B. Nonlinear Modeling

The nonlinear problem is

(24)

where the vector function defines the nonlinear relationship
between regressors (which are functions of measured driving
variable , , and, as a lagged regressor, ) and param-
eter .

The optimal values of , which minimize the square error in
(24), (assuming all measurements have equal weights) obey

(25)

Init. Oil Speed (All Cooling Modes, Xfmr under load)
Init. Oil Speed NOFA FOFA(Cold Start)

Init. Oil Speed NONA(Cold Start)
(17)
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The optimal values of may be found by taking the derivative
of (25) with respect to , and setting it to zero. Suppressing the

in (25) gives

(26)

where

To solve (26), we expand it into a linear form using a Taylor
series. This defines the iterative scheme for finding given by

(28)
where is the vector the sampled outputs of the transformer
thermal model , . To solve (28), we use a
Gauss–Newton scheme and the Armijo rule [19]: the Newton

step direction is scaled by a scalar multiplier
so that the step length is optimized.

Comparing (28) to (21), we recognize that at each iteration,
we are solving the linear least-squares problem for a linearized

version of with , representing the measured
values; hence, at the solution point—or any point—the metrics
we derive for assessing acceptability of the linear model will be
valid for the nonlinear model.

V. DEFINING METRICS

In this section, we define metrics for assessing adequacy, con-
sistency, and accuracy.

A. Adequacy

Adequacy measures whether the model has the appropriate
structure to capture the features of the process being mod-
eled. Defining which metrics are appropriate for adequacy
checking is neither well defined nor standard. Researchers
may, in good faith, quibble with our selection for any of our
categories. Regardless of one’s persuasion, the metrics we
choose—residual plots and prediction —are important
measures of acceptability.

1) The Pred Metric: A typical metric used for assessing
model accuracy (not adequacy) is . The metric measures
how well the predicted values (i.e., ) capture the variation
of measured values

(29)
where is the sum of squares of the residuals and measures
the explained variation of predicted values. The variable is
the total variation of the measured variables. Values of close
to 1.0 indicate the predicted values of the model closely match
those that are measured.

A similar and more informative metric uses the prediction
residual to measure the ability of a model to predict values that

Fig. 1. Patterns for residual plots.

are not in the training data set. The prediction residual is the th
measured data point , which is the difference between the th
measured value, , and the th predicted value based on a model
omitting and fitted to the remaining sample points .
Then, the prediction error sum of squares (PRESS) is defined as

(30)

PRESS measures the ability of the model, absent one data point,
to accurately predict that data point. And the is then de-
fined as

(31)
2) Plot of Residuals Versus Fitted Values: A plot of residuals
versus the fitted values is helpful for detecting common

types of model inadequacies. Violations of model assumptions
are more likely to occur at remote points, and the violation may
be hard to detect from the inspection of the ordinary residuals
or the standardized residuals. A preferred form of scaled resid-
uals is the studentized residuals, because the residual is di-
vided by the exact standard deviation of the th residual [15]

(32)

where

(33)

where is the th diagonal element of the hat matrix
and is the number of model parameters

being determined and is the number of degrees of
freedom in the model [15].

Fig. 1 shows typical layouts of residuals versus fitted values.
If the plot looks similar to Fig. 1(a) (residuals are contained in
a horizontal band), there are no obvious model defects. Plots
resembling Fig. 1(b) indicate nonlinearity. This could mean that
other regressor variables are needed, for instance, for a squared
term.

3) Other Residual for Adequacy Checking: Other metrics
we have used [16] are , normal probability plots (to check
that the normality assumption is not violated), a plot of resid-
uals against regressor. These will not be reported here because
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the conclusions drawn from these metrics support the conclu-
sion drawn from the metrics and residuals-against-fitted-
values plots. The normality assumption is not violated by any of
our data.

B. Consistency

Consistency is a quantitative measure of the ability of a model
and solution method (e.g., nonlinear least-squares regression) to
produce the same model parameters when trained using similar
data sets. (We define similar data sets as data sets with the same
number of data points, taken from the same transformer on sim-
ilar days (e.g., weekday, weekend) under the same cooling mode
(e.g., NONA, NOFA, FOFA) and from the same season). Con-
sistency measures the model and solution method. If the model’s
structure is inappropriate, then the parameter results will be in-
consistent. This inconsistency is often an artifact of numerical
problems in the solution procedure. The consistency metrics we
use are eigenstructure, condition number, parameter sensitivity,
and standard deviation (STD) of and STD of model
parameters.

1) Eigenvalues: One method of solving (28) is to invert the
matrix . The eigenvalues of this symmetric matrix have
the form

(34)

where is a diagonal matrix with Eigenvalues
, assuming is a 4 4 matrix, which corresponds to a

four-parameter model.
2) Condition Number: The condition number of a matrix is

a measure of how close the matrix is to singular or, in the ter-
minology of linear regression, how severe the multicollinearity
problem is. For symmetric matrices (assuming an L2 norm), the
condition number is given by

(35)

The condition number is based on the exact solution of two
slightly different set of equations; hence, it is independent of
the method used to arrive at the solution.

3) Parameter Sensitivity Values: For the linear regression
problem, the sensitivity of parameters to changes in the mea-
sure values is given by [16] (assuming parameters and
sampled outputs)

...
. . .

... (36)

For a particular parameter , the sensitivity to a change in the
input data has an norm

(37)

For sensitive parameters, small changes in the input data can
lead to large changes in solved parameter values. Since all mea-
sured data have noise, large sensitivities will generally lead to
inconsistency between two models built from similar data.

4) Variance Inflation Factor (VIF): In linear regression, the
variance of a parameter is a measure of uncertainty in the
parameter and is given by

(38)

where is the variance of the residuals. This definition is true
provided all of the regressors are orthogonal. Orthogonality oc-
curs if regressing each regressor against all other regressors

produces a value of zero. If this re-
gression yields a nonzero value, then is more uncertain and

is inflated

(39)

where is the coefficient of the regression. The corre-
sponding variance inflation factor is

(40)

where is the th diagonal element of . If is
nearly orthogonal to the remaining regressors, is small and

is close to unity, while if is nearly dependent on some
subset of the remaining regressors, is near to unity and
is large. One or more VIFs larger than 10 indicates that the asso-
ciated regression coefficients are poorly estimated. Model mis-
specification and overdefining a model are sources of large VIFs
[15].

Multicollinearity—another term used for the linear depen-
dence among the regressors—occurs in the linear case because
summer load is nearly in phase with the ambient temperature

and nearly in phase with the lagged regressor . There
is little that can be done about this. For the nonlinear model, the
derivatives are functions of these same variables and depend on
the model’s nonlinear form.

5) Variation of and Model Coefficients: Performing
dynamic loading is one important use of transformer thermal
models. It was observed, for the case of a linear model [18], that
the consistency of the maximum steady-state load
highly correlated with the consistency of the dynamic load pre-
dicted by the model; hence, we define the coefficient of varia-
tion of the as a consistency metric. Given samples of

, calculated from -independent but similar data sets,
the standard deviation is defined as

(41)

where is the sample mean. may be calculated
for each model by setting

and ( for Phoenix) and
solving each discretized model for . Checking the variation
of coefficients that make up the models is also important. The
STD of these is given by an equation similar to (41).
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C. Accuracy

We define three metrics for testing accuracy: 1) comparison
of optimized parameters with nominal values; 2) error duration
curve; and 3) extrapolated load values.

1) Parameter Comparison With Nominal Values: A rough,
but useful metric is the comparison of parameters identified
from measured data with those measured during heat-run tests.

2) Residual Duration Curve: The residual duration curve
functions as an interpretation similar to the load duration curve.
The residuals are arranged in monotonically decreasing order

and plotted against the normalized index.
Unlike error-versus-time plots, this allows us to succinctly vi-
sualize the residuals for a larger time span.

3) Other Residual for Adequacy Checking: To test the ability
of a model to extrapolated (rather than interpolate), the
obtained for light loads can be compared with the extrapolated

under more heavily loaded conditions. If the model and
method are acceptable, the two values of should be
comparable. While this is an important metric, the transformer
loads in our dataset were not near their maximum values; hence,
we could not compare the maximum load predicted with the ac-
tual maximum loads.

VI. SUMMARY

Four top-oil models found in the literature have been defined
using a common notation. All but one of these are nonlinear
models. In the companion paper, these metrics will be applied
to the models introduced here, and a relative ranking of the ac-
ceptability of these models will be presented. Algorithms for
identifying the parameters of these models have been proposed.
Metrics for assessing model adequacy, consistency, and accu-
racy have been proposed. It has been shown that metrics defined
for linear regression may also be used in the nonlinear case.
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