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Acceptability of Four Transformer Top-Oil Thermal
Models—Part II: Comparing Metrics

Lida Jauregui-Rivera, Member, IEEE, and Daniel J. Tylavsky, Senior Member, IEEE

Abstract—The acceptability of four transformer top-oil thermal
models is examined vis-a-vis training with measured data. Accept-
ability is defined as having the qualities of adequacy, consistency,
and accuracy. Metrics are used to characterize the likely deficien-
cies of these models. It is shown that the classical IEEE/ANSI stan-
dard model is unacceptable for model identification purposes. The
linear top-oil model is acceptable for FOFA transformers but not
NOFA. The models by Susa et al. [7] and Swift et al. [5], [6], may
be useful for FOFA transformers and NOFA transformers. Further
research with larger training data sets is warranted.

Index Terms—ANSI C57.91, system identification, top-oil tem-
perature, transformer, transformer thermal modeling.

I. INTRODUCTION

I N a companion paper, we defined four different transformer
top-oil models and metrics to determine the acceptability

of these models [2]. In this paper, we apply these metrics to
models constructed for two different transformers: one is rated
at 167 MVA (FOFA) and the other is at 28 MVA (NOFA).
We chose transformers with very different ratings and cooling
modes to see how the various models will handle a wider range
of conditions. The heat-run values and basic data for these
transformers are provided in the Appendix.

II. DATA COLLECTION

Top-oil temperature (TOT), load, and ambient temperature
were sampled every 15 min. The data were filtered to eliminate
bad data and divided into separate data files for each of the three
different cooling modes as described in [4]. The models built in
this work use only the highest cooling mode—NOFA or FOFA.
The data sets for training each model included 30 effective days
of data, that is, 2880 data points.

III. CONSTRUCTING THE MATRIX

For the linear model, the matrix contains measured values
of , , and, as a lagged regressor , as shown in (1),
where corresponds to in the companion paper. For the
nonlinear problem, the iteration procedure is defined by (2),
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where is a 4 1 vector of the regres-
sion coefficients (model parameters.) The matrix for the non-
linear problem is that given by (3). The derivatives for all models
are too lengthy to include here but may be found in [9]
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...
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(1)

(2)
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...

(3)

IV. CONSISTENCY METRICS

The first metrics we look at are the consistency metrics, those
measures that tell us how reliably we will be able to obtain
the same model parameters from similar data. If a model and
method yield inconsistent results, then there is little use in pur-
suing that model further.

A. Eigenvalues and Singular Values

We are interested in two different sets of eigenvalues and
condition numbers for these transformers: 1) values calculated
using nominal parameters and 2) values calculated at the solu-
tion point. The condition number , evaluated using
nominal parameters predicts whether an iterative algorithm has
an initial direction which will reliably point toward the op-
timum. At the solution point , the eigenvalues and condition
number measure how sensitive the solution point
is to noise in the input data. The condition numbers at nominal
and optimal parameter values for the Corbell3 (28 MVA) and
DV6 (167 MVA) transformers are shown in Tables I and II,
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TABLE I
EIGENVALUES AND CONDITION NUMBERS FOR

CORBELL3 FOR NOMINAL PARAMETERS

TABLE II
EIGENVALUES AND CONDITION NUMBERS

FOR DV6 FOR NOMINAL PARAMETERS

respectively. The eigenvalues of in Tables I and II use
nominal parameters. The nomenclature used in these tables is:
LTOP is the linearized Clause 7 model [3], NTOP is the Clause
7 model [1], Susa is the Susa et al. model [7], and Swift is the
Swift et al. model [5], [6].

Notice that the eigenvalues and condition numbers in these ta-
bles are similar for both transformers, indicating that this metric
is determined more by the model than by the transformer type.

The condition number of the LTOP model is much better
than that of any other model for both transformers. For DV6,
the nominal value of is 1.0 for all models except the Susa
et al. [7] model. For , the NTOP and Swift models
are identical to LTOP. Then why in Table II is there such a
large difference in the condition numbers between the LTOP,
NTOP, and Swift models? The difference is not caused by the
input data since all models share the same data. The large dif-
ference arises because the LTOP model is linear in the parame-
ters while the nonlinear models are nonlinear in
the parameters , and it is the deriva-
tives with respect to those parameters that are entries into the
matrix.

Due to the large condition number of the NTOP, the itera-
tion matrix at the nameplate (nominal) values is numerically
singular. (For nominal values for these transformers, refer to
Tables XII and XIII.) The practical consequence of this is that
the iteration scheme defined by (2) does not converge, except for
the trivial case of the linear model and in certain cases for the
Swift et al. [5], [6] model. Where the Gauss–Newton scheme
did not converge for us, we used a more robust MatLab opti-
mization routine, FMINSEARCH.

TABLE III
PARAMETER SENSITIVITIES FOR CORBELL3 FOR

NOMINAL PARAMETERS VALUES

The large condition number of the NTOP model indicates
the model is not well posed. References [5]–[7] have shown
through first-principle derivations that the exponent in the
NTOP model is misplaced. The ANSI/IEEE standard [1] states
that the placement of the NTOP-model exponent was ad hoc, de-
rived, “empirically” to account for the “variation of the (top-oil
temperature rise above ambient caused by the) … change in re-
sistance with change in load.” Thus, it is not surprising that the
NTOP model may be inappropriate.

Another question arises: The Susa and Swift models are very
similar to the NTOP model. Why are their condition numbers so
much better? The eigenvalues (and condition numbers) are sen-
sitive to small changes in entries of the matrix since is
close to singular. The small changes in these models are enough
to move further from a singular matrix. This also suggests
that the Susa and Swift models more accurately capture the fea-
tures of the thermal process than the NTOP model.

When the matrix is well conditioned, the parameters
derived from the model will be more consistent. When con-
sistency is seen in the solution (investigated later), then the
model (of necessity) must match the process it is modeling
more closely. Since the matrix of the Swift and Susa
models are also ill-conditioned, we would expect them to have
consistency and convergence issue, as indeed they have.

Notice that the condition numbers evaluated using optimal
parameters values in Tables I and II are consistent
with , indicating that is a good measure of
the condition number at the solution point.

B. Parameter Sensitivities

The objective of evaluating parameter sensitivities is to iden-
tify which parameters are most likely to be skewed by the noise
in the input data and/or model insufficiencies. The sensitivities
of the parameters, calculated using nominal values, are shown in
Tables III and IV. These sensitivities give relative values of the
change in parameter for a change in input/measurement vector

. The first three rows have double labels to account for the dif-
ferent parameters , , and , used in the LTOP.

These tables show that is the parameter that is most
sensitive to input parameters. Neglecting the NTOP model,
the Swift model, in general, shows higher sensitivities than
the Susa model (consistent with their condition numbers) and
the LTOP model shows the smallest sensitivities. Sensitivities
calculated for optimal parameters are very similar to the ones
shown in these tables with remaining as the most sensitive.
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TABLE IV
PARAMETER SENSITIVITIES FOR DV6 FOR NOMINAL PARAMETERS VALUES

TABLE V
VIF’S FOR CORBELL3 FOR OPTIMAL PARAMETERS

TABLE VI
VIF’S FOR DV6 FOR OPTIMAL PARAMETERS

The parameter occurs in the nonlinear models in the term

(4)

This quantity is relatively insensitive to values of
and . Hence, for optimization purposes, a wide range in

values yields similar results.

C. Variance Inflation Factors (VIFs)

The VIF for each parameter in the model measures the com-
bined effect of the dependencies among the regressors on the
variance (uncertainty) of that parameter. One or more VIFs that
are larger than 10 indicates that the associated regression coeffi-
cients are poorly estimated because of multicollinearity. Tables
V and VI show the calculated VIFs for Corbell3 and DV6 data
sets, respectively. As expected, these VIFs show that the vari-
ance of the parameters of the LTOP model is the smallest and
that the parameter will be the most uncertain of all param-
eters. This is consistent with the observations made regarding
(4).

D. Variation of Model Coefficients and

The mean of and its coefficient of variation for Cor-
bell3 and DV6, taken from six five-day data-set samples are

TABLE VII
VARIATION IN SSL FOR CORBELL3

TABLE VIII
VARIATION IN SSL FOR DV6

TABLE IX
R PARAMETERS FOR CORBELL3

TABLE X
R PARAMETERS FOR DV6

shown in Tables VII and VIII. As expected, there is a lack of
consistency in between the models. In terms of predic-
tion variation, LTOP does the best, followed by the Susa and the
Swift models. While the CVs of these latter models appear rea-
sonable, these values are based on parameters which have large
CVs and are sometimes negative, as shown in Tables IX and
X. The low CVs of the nonlinear models (Tables VII and VIII)
show that despite wide variations in the coefficients, the opti-
mization algorithm works appropriately, but multicollinearity
causes model parameters to be unrealistic.

V. ADEQUACY METRICS

Adequacy measures whether the model has the appropriate
structure to capture the features of the process being modeled.
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Fig. 1. Plot of residuals versus fitted values for LTOP applied to Corbell3.

Fig. 2. Plot of residuals versus fitted values for LTOP applied to DV6.

A. Plots of Residuals Versus Fitted Values

1) LTOP Model: A plot of studentized residuals versus
the fitted values (calculated using the optimal coefficients)
is helpful for detecting common types of model inadequacies.
The plot of residuals versus fitter values for the LTOP model is
shown for Corbell3 and DV6, in Figs. 1 and 2, respectively. The
residual-versus-fitted-values plots show that the linear model
fails to capture the mild nonlinearity in Corbell3 (where the load
range from 0.08 to 0.64 p.u. and TOT ranging from 36.5 to
73.01 in the training data set). This mild nonlinearity is not
sufficient to cause the model to be inadequate.

For DV6, an FOFA-cooled transformer, the residual plots
show that the heating process is quite linear. (The load and TOT
values in the training data set for these plots ranged from 0.12
to 0.88 p.u. and from 33.37 to 80.76 , respectively.) This
linearity is consistent with the exponent recommended
by Swift et al. [5], [6] and the LTOP models. Other residual
plots versus load and TOT for both Corbell3 and DV6 show no
nonlinearity [9].

2) Susa et al. [7] and Swift et al. [5], [6] Models: All of the
residual plots (versus fitted values, load, or TOT) for the Susa
and Swift models give similar results to that of Fig. 2 for DV6.
These results indicate that the extra heating due to a change in
resistance with load is not significant at these load levels. These
results suggest again that the placement of the exponent in
these models (compared to the NTOP model) captures the mild
nonlinearity of Fig. 1.

TABLE XI
R VALUES

TABLE XII
OPTIMIZED PARAMETER VALUES FOR CORBELL3

TABLE XIII
OPTIMIZED PARAMETER VALUES FOR DV6

B.

measures the ability of the model, to accurately pre-
dict each data point, when that data point is not used in building
the model. The statistics for each model for both trans-
formers are contained in Table XI. These numbers show that
under FOFA operation, all models have similar performance.
Likewise, under NOFA operation, all models have similar per-
formance. This implies that the linear model captures a linear
model feature in NOFA operation not evident in our analysis.

VI. ACCURACY

The accuracy metrics assess the models’ accuracy for pre-
dicting quantities of interest by interpolating (predicting values
from within the data-set range) and extrapolating (predicting
values outside the data-set range).

A. Comparison With Nominal Values

Since a wealth of positive experience exists with transformer
thermal models using parameters derived from the test report,
it is expected that the optimal parameters will be reasonably
close to the nominal parameters. Optimal model parameters that
vary widely from classical calculations indicate that the model
is faulty and/or ill conditioned.

The results of optimizing the parameters for all models using
30-day training data sets taken from Corbell3 and DV6 are con-
tained in Tables XII and XIII. The row labeled “Nominal n” in
these tables represents the recommended nominal values (as we
best understood them by reading [5]–[7].)
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Table XII shows that none of the models accurately represents
the NOFA transformer. While the Susa model comes closest,
we see in Table IX (for smaller data sets—5 day versus 30 day)
that there is a wide range of variability in the parameter from
the Susa model. The conclusion that none of the models can
accurately model NOFA transformers is premature. We have
observed that larger data sets yield more consistent models for
LTOP and expect the same behavior for the nonlinear models.
With a sufficiently large data set, the Swift or Susa models may
be accurate. Table IX does show that the LTOP gives a con-
sistently incorrect parameter for the NOFA transformer indi-
cating that the LTOP is unacceptable for NOFA transformers.

For the FOFA transformer, Table XIII shows the LTOP model
is most accurate and Table X shows that the results are reason-
ably consistent. (Since is the most sensitive parameter, it has
the most variation. Other parameters for all models of DV6 are
much closer to nominal values and have much smaller varia-
tions.) The Swift model may be acceptable for the FOFA cooling
mode, even though Table X shows inconsistency in parameter
estimates. Again, a data set that is larger than 60 days may im-
prove the performance of all models.

The optimized parameters for the NTOP model are far from
nominal for both transformers for all coefficients. These unrea-
sonable results, along with the variability of the Susa and Swift
models, are consistent with the large condition number of the

matrix contained in Tables I and II.
It is noteworthy that the Swift et al. model, [shown in (5) at

the bottom of the page] performs better for the DV6 transformer
(which has oil pumps) than for Corbell3 (which has none.) With
oil pumps, oil circulation is almost independent of oil viscosity.
Indeed, the Susa model results for the DV6 transformer given an

coefficient which is nearly 1.0. This means that the Susa model
[shown in (6) at the bottom of the page] is nearly independent
of oil.

The sensitivity results of Tables III and IV indicate that the pa-
rameter is most sensitive to changes in input data and, there-
fore, contributes to large condition numbers of the matrix

TABLE XIV
OPTIMIZED PARAMETER VALUES FOR CORBELL3 WITH R FIXED

TABLE XV
OPTIMIZED PARAMETER VALUES FOR DV6 WITH R FIXED

of all but the linear model. We test this hypothesis by fixing
at its nominal value and evaluating the remaining parameters
of each model. The results of this optimization are shown in
Tables XIV and XV. We observe that this somewhat improves
both the Swift and Susa model performance. This is not sur-
prising since by fixing the value of , we improve the condition
number of the matrix.

There is evidence that the oil viscosity term in the Susa
model is an important feature. Compare the performance in
Table XIV of both the Swift and Susa models for Corbell3
(which is without oil pumps.) The Swift et al. [5], [6] model
shows worse optimized parameters than the Susa et al. model.

(5)

(6)

(7)
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Fig. 3. Error duration curves for Corbell3.

Fig. 4. Error duration curves for DV6.

When no oil pumps are present, heat transfer relies on natural
convection, which is dependent on oil viscosity.

B. Residual Duration Curves

Plots of the residual (or error) duration curves, give a mea-
sure of how well each model predicts TOT compared to ac-
tual values. Fig. 3 shows the Corbell3 error duration curves for
all models using optimized coefficients, except for the NTOP
model. Since we could not obtain reasonable coefficients by
training the NTOP model, we show it plotted using the nom-
inal coefficients. A plot of the error duration curves for DV6 is
shown in Fig. 4. Figs. 3 and 4 show that the linear model is either
equal to or better than the other nonlinear models. All models
are considerably better than the NTOP (Clause 7) model.

VII. SUMMARY

Whether the model is NOFA or FOFA affects which, if any,
model is appropriate. Of the four transformer top-oil models ex-
amined here, we can draw the following conclusions regarding
acceptability of models for training using measured data.

• The NTOP (Clause 7) model is unacceptable.
• The LTOP model is unacceptable for NOFA cooling.
• The LTOP model is acceptable for FOFA cooling.
• The Susa et al. [7] and Swift et al. [5], [6] models may

be acceptable for FOFA and NOFA cooling. These models
should be further investigated by using larger data sets.

TABLE XVI
TRANSFORMER HEAT-RUN DATA

Regarding the metrics we used, the following obtained results
showed:

• Condition numbers, sensitivity, VIF”s variation give
a priori information about model consistency. These
conclusions are reinforced by inspecting the variation of
model parameters and .

• Residuals plots and prediction help identify potential
misspecification of the model.

• Comparison with nominal values and residual duration
curves provide useful information about the accuracy and
prediction capability of the model.

• The linear model takes into account an unknown feature
that the nonlinear models do not.

• The condition number is the best single predictor of
a model’s consistency and adequacy.

In conclusion, model consistency, accuracy, and adequacy
can be used to determine acceptability of transformer thermal
models.

APPENDIX

CORBELL3 AND DV6 TRANSFORMER DESCRIPTIONS

The heat-run data and basic data for these transformers are
contained in Table XVI.
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