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Abstract— The electricity price duration curve (EPDC) repre-
sents the probability distribution function of the electricity price
considered as a random variable. The price uncertainty comes
both from the demand side and the supply side, since the load
varies continuously, and not all generators may be available at
all times. The production costs of electricity also fluctuate with
the price of fuel. EPDCs have many application including the
valuation of incremental generation assets or forward contracts
on the energy produced by such assets, estimating capacity
cost recovery and valuation of energy call options. Traditional
approaches for calculating EPDCs were based on approximation
methods such as the method of cumulants using Edgeworth
expansions of multivariate probability distributions. This paper
presents a new approach to compute numerically the EPDC
under price and quantity competition models. This numerical
method provide both exact numerical results and modeling
flexibility. It is based on inference algorithms in probabilistic
graphical models (PGMs) which exploit conditional independence
relationships among the random variables.

I. INTRODUCTION

In regulated electricity industries, regulators have always
been concerned with securing the supply of electricity and
ensuring adequate and fair remuneration of the regulated
monopolies entrusted with the supply of electricity. Since
the electricity industry was viewed as a domain of natural
monopolies it was the role of public authorities to control
whether these monopolies were making adequate investment
in generation and transmission facilities so as to ensure a high
level of reliability at just and reasonable rates.

But the liberalization of electricity markets and the in-
creased commercial use of interconnections between regional
distribution networks have led to important interdependences
of regional networks and to a retreat of regulatory author-
ities. However, electricity crises and massive blackouts that
occurred around the world over the last few years have raised
public concern regarding the supply-demand equilibrium and
the means to secure enough investment in production and
transportation of electricity in a competitive market. Attract-
ing investors requires, among other thing, accurate means
to predict electricity prices and cost recovery capability in
the medium and long term. Predicting electricity prices is a
complex task as the market is subject to physical uncertainty

(e.g., fuel prices, availability of the generators, availability of
the transmission lines), economic uncertainty (e.g., number of
participants in the market, strategy employed by the players,
price-elasticity of the load), and finally regulatory uncertainty
(e.g., market rules set up by the regulator).

The electricity price duration curve (EPDC) is a tool that
captures price uncertainty in the form of a probability distri-
bution describing the probability or the fraction of time that
the market clearing price will exceed any particular level.
Such information can be used, for instance, to predict the
fraction of time that a resource offered at a fix marginal
price or an option contract on energy at a given strike price
will be ”in the money”, i.e. will be competitive relative to
the prevailing whole sale price characterized by the EPDC.
The EPDC can also be used to price energy call options and
generation capacity and to evaluate the inframarginal profit of
a generation plant with known marginal production cost. Such
valuation is necessary in order to determine whether the plant
will be able, on average, to recover its amortized fixed cost.
The pricing of energy call options with specified strike prices
is an important potential application of EPDCs since such
instruments are gaining support as a mechanism for assuring
generation adequacy. DeVries [1] provides strong support for
physically covered call options as the capacity mechanism
of choice, in terms of stabilization of the investment level,
robustness against regional shortage, effectiveness in securing
generation in an open market, and robustness against market
power in the electricity market. A detailed description of a
capacity mechanism involving physically covered call options
is given in [2]. EPDCs are also useful in pricing bilateral
forward supply contract, which are the prevailing form of
electricity transaction even in electricity systems with highly
developed spot markets. Allaz and Vila [3] provide theoretical
support to the importance of forward contracting showing that
forward contracts should not only be considered as hedging
instruments, but can also increase consumer surplus by in-
creasing competition in oligopoly markets.

Traditional methods for computing EPDC were based on
the numerical method of cumulants used to approximate the
convolution of independent random variables characterizing
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the availability of generation plants. Originally this approach
was applied to compute the distribution of marginal cost in
a regulated electricity system dispatched centrally in merit
order (e.g. [4]). This approach has been recently employed
in [5], [6], to approximate the EPDC in a Bertrand, Cournot
and supply function equilibrium (SFE) setting. In this paper,
we propose a new exact method that can be used to forecast
the electricity price distribution. This method is very flexible,
and could accommodate many different models. It is based
on probabilistic graphical models (PGMs). These probabilistic
models provide a general framework for dealing with problems
involving a very large number of random variables.Each node
of a graph is naturally associated with a random variable. The
edges of the graph reflect dependencies between the random
variables: Graphical models take advantage of the conditional
independence relations between the nodes of the graph to pro-
vide a compact representation of a problem. This compactness
will allow for more accuracy and reliability in the inference
and parameter estimation. We illustrate the applicability of this
approach by predicting electricity prices in price competition
and in quantity competition under uncertainty.

We will consider two sources of physical uncertainty: un-
certainty of the load created by a random demand shock, and
randomness of the supply caused by the possible outages of
the generators. We examine the effect of such uncertainty on
market prices of electricity. In our static price competition
model, we assume that the generators behave as price takers
and offer their output at marginal cost while an independent
system operator (ISO) dispatches them optimally in merit
order. In our two-player dynamic quantity competition model,
each player learns at the beginning of each period the avail-
ability of her generators, but ignores the load level and the
state of her opponent’s generators. We consider two alternative
information structures concerning what players know about
the previous period’s game. In our first model, each player
learns the realization of the demand and the availability of her
opponent’s generator a posteriori, once the period is over. They
use this information and their knowledge of the underlying
random processes to form beliefs regarding the state of the
system in the current period. In our second model, only the
electricity market price is public. However, the players will use
this limited information to infer last period’s residual demand,
form beliefs regarding the residual demand they are likely to
face in the following period. In both cases, the players engage
in a non-cooperative strategic interaction.

The structure of the paper is as follows. In Section II, we
briefly introduce probabilistic graphical models and define the
class of PGMs we use in this research. In Section III, we
describe our stochastic model for the electricity market, and
in Section IV and V, we define more precisely the price and
quantity competition frameworks that we consider, present the
graphical models used to predict the electricity price, and
provide numerical examples. Section VI concludes.

II. PROBABILISTIC GRAPHICAL MODELS

A. General Introduction to PGMs

Intuitively, a graphical model can be thought as a struc-
ture carrying probabilistic relations between a set of random
variables corresponding to the nodes of the graph. This prob-
abilistic structure appears in the potential functions defined
over subsets of nodes of the graph. Probability theory ensures
the consistency of the aggregate construction. The model is
used to answer queries about the random variables and their
probabilistic relations. We may want to find the marginal
probability distribution of a random variable or learn the most
likely value of some parameters of the statistical model.

The advantage of graphical models comes from the econom-
ical representation of the joint probability distribution that they
allow, based on certain conditional independence assumptions
on the underlying probabilistic model. The relations between
random variables are therefore only local, and the different
algorithms defined on graphical models extensively use these
local relations to perform rapidly various inference operations.

Jordan [7] provides a complete tutorial demonstrating the
potential of probabilistic graphical models and Jordan [8] is a
collection of works presenting learning methods in graphical
models. Wainwright [9] gives a brief introduction to the
message-passing algorithms that we use in this paper to infer
the price distribution. Finally, Murphy [10] provides more
details on dynamic graphical models, their representation and
associated inference algorithms.

B. Construction of a PGM to Describe Competition in the
Electricity Market

A PGM is constituted of two different layers: the graph
structure and the potential functions defined over subsets of
nodes of the graph.

1) Graph structure: We will work with a directed graphical
model, also known as Bayes net. Directed graphical models
are more adapted here since we model a physical system
where the causal relations can be postulated a priori. Given a
directed graph G = (V, E), each node i ∈ V has an associated
random variable Xi. A clique C ⊆ V is a subset of fully
connected nodes: ∀i, j ∈ C,∃ e ∈ E , e = (i, j). We define
∀A ⊆ V, XA := {Xi, i ∈ A}.

A graph imposes restrictions on the joint probability distri-
bution p over the support defined by the vector XV . Particu-
larly, p must satisfy the conditional independence property
(CI). Let π(s) be the set of parents of node s in G. A
topological ordering I of V is such that all the nodes in π(s)
appear before s in I . ∀i ∈ I, ν(s) = {1, . . . , s − 1} /π(s).
XV satisfies the CI property if ∀s ∈ V, Xs is independent of
Xν(s) given Xπ(s). We build a graph G so that the known
statistical properties of the random vector XV are reflected
onto the graph.

2) Potential functions: ∀i, Xi is the state space associated
with the random variable Xi. We need to be able to obtain a
concise representation of the joint distribution p : X1 × . . . ×
Xn → [0, 1]. The two possible options are either to impose
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a particular functional form on p, such as a multinomial
Gaussian distribution, or to discretize the state spaces Xi and
then be completely free to specify the joint distribution on this
discretized space. We choose the second approach.

Because the distribution p on XV satisfies the CI property,
the Hammersley-Clifford theorem [7] tells us that p can also be
factorized in the form p(XV) =

∏
s∈V p(Xs|Xπ(s)). Therefore

we only need to specify the conditional probability distribu-
tions of each node of the graph given his parents: the potential
functions, to fully describe the joint distribution p. Moreover,
these potentials can be represented on a tabular form because
the state spaces Xi are discrete. One key parameter of the
PGM representation is the maximal size of the conditional
probability tables: maxs∈V |Xs| ×

∏
t∈π(s) |Xt|. We will have

to limit this parameter to a reasonable size to avoid memory
problems when working on the graph.

C. Inference on PGMs

To compute marginal probabilities at various nodes of the
graph, we use the junction tree algorithm. It is a message-
passing algorithm, but not directly on the original graph
associated with the problem: The graph needs to be first
transformed to an equivalent clique-tree where the cliques
of the original graph are gathered to form “meta-nodes”
so that the cycles disappear and we obtain a tree. Some
conditions on the graph and the transformation need to be
satisfied so that the inference gives consistent results, because
some nodes may appear in several cliques. The junction tree
algorithm allowed us to compute efficiently exact marginal and
conditional probabilities.

In the case where we work with a dynamic Bayesian net,
i.e., a graphical model whose structure is repeated to account
for a time dimension, we do not want to use the junction tree
algorithm which is too cumbersome. To reduce the computa-
tional time, we resort to an approximate inference algorithm:
the BK algorithm described in [11]. The general intuition
behind the BK algorithm is that some random variables may
only be weakly correlated together, and it may thus not be
necessary to keep track of all the correlations to obtain a good
approximation of the belief state on the system. Consequently,
the BK algorithm will represent the belief state over the system
as a set of localized beliefs on subsets of the system. These
subsets can range from the whole system as a subset, in which
case we obtain an exact result, to a fully factorized version
where every node constitutes a subset. The error induced by
this approximation is bounded since the errors on the belief
state contract exponentially as the system evolves in time.

III. THE STOCHASTIC ELECTRICITY MARKET MODEL

We try to compute the EPDC, which is the curve defined
at period t by y = � {p(t) > x}, with p(t) the spot price of
electricity in period t. Our model focuses on the uncertainty of
the load and availability of the generating units. Particularly,
we ignore variations of the production costs (that could result
from random fuel costs), unit commitment and transmission
constraints.

A. Supply Side Uncertainty

The supply side uncertainty comes from the stochastic
availability of the generators: We associate a random variable
Yi ∈ {0, 1} to each production plant i. Yi = 1 if the generator
provides electricity to the network, Yi = 0 if it is shut
down. The availability of the generators will be described by
a continuous time Markov process with failure rate λi and
repair rate µi.

B. Demand Side Uncertainty

The actual demand function at hour t is L(t) = K(t) −
ζp(t). The nominal load K(t) is a random variable which
corresponds to a demand shock. ζ reflects the price-elasticity
of the demand and is constant in time. As explained earlier,
the state space of K(t) will have to be discretized. We form a
demand state space D and the distribution of K|t is in ∆(D).

C. Choice of a Competition Model

When modeling competition between firms, one needs to
choose the strategic variable: price or quantity, which will
be used. The role of the strategic variables in presence of
uncertainty of the residual demand is studied theoretically in
[12].

The most natural model of competition is the Bertrand
model of price competition [13]. The Nash equilibrium (NE)
of the Bertrand game is to bid marginal cost and the play-
ers should not make any profit. These results constitute the
Bertrand paradox since “It is hard to believe that firms in
an industry with few firms never succeed in manipulating the
market price to make profits.” [14].

The immediate alternative to this model is the Cournot
model of quantity competition [15] which yields results that
conform better with the real world: The players bid above
marginal cost in equilibrium and make a positive profit [14].
Different variations of the Bertrand model have tried to
reconcile it with real-world outcomes. Particularly, several
dynamic models of price competition [16], [17], [18] have
been developed that lead to possible price cycles1, potential
stabilization of the price above the marginal costs, etc.

The question of the most relevant strategic variable has
also been raised in modeling electricity markets. Because the
exercise of market power has been proved to be a reality in
electricity markets such as California [1] or the U.K. [19], it
has often been argued that a quantity competition model would
be more relevant [20].

However, we will study both competition frameworks. This
offers two different perspectives on the forecasting of electric-
ity prices which could be adequate under different conditions.
It also shows the flexibility of the PGM approach which can
tackle these two different problems efficiently.

IV. PRICE COMPETITION MODEL

This first model is a probabilistic production costing model:
First introduced by Baleriaux et al. [21], these models consider

1The Edgeworth cycles.
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load uncertainty and take the availability of the producing
units into account. Additionally, they assume that that the
generating units are dispatched by a central planner according
to economic merit order, i.e., in increasing order of marginal
costs. The rationing rule is as follows: if several generators
have the same marginal cost and are marginal, they produce
an equal amount of energy to satisfy the load, and thus share
equally the profit. In the context of price competition, assum-
ing a production costing model is tantamount to assuming that
perfect competition reigns, and that each generator bids at
marginal cost.

Our model can therefore be adapted to describe a very
competitive market, but is an inedequate characterization of
a market where players can exercise market power. We deal
with the case of an oligopoly later in Section V. This model is
close to the one used in [5]. However, we are fully aware that
bidding at marginal cost when the generators are capacity-
constrained is not a Nash equilibrium of the game. Indeed,
the generators could always be better-off by behaving like a
monopoly on the residual demand when they happen to be
marginal.

Finally, we want our market price to take only a finite
number of values. Yet, with every generator bidding its whole
capacity at a fixed cost, the aggregate supply is a stair case
function. If the demand is such that it intercepts the supply
function on a vertical segment, then the market clearing price
could take a continuum of values. Therefore, for the purpose
of this analysis we will assume that the market price is the
marginal cost of the marginal generator, or the marginal cost
of the next generator in the merit order if the intercept of the
supply and the demand is on a vertical segment. Importantly,
this means that our EPDC is an upper bound on the real EPDC,
and the profits obtained for the generators also constitutes
upper bounds on the profit obtained in reality. The above
assumption is commonly found in the production costing
modeling literature [6], but its implications are rarely pointed
out.

A. Notations
i = 1, . . . , N : generator
j = 1, . . . , M : generator type
Ext : external supply of power
k = 1, . . . , F : firm
Mj : {i of type j}
|Mj | = mj

Fk : {i belonging to firm k}
|Fk| = fk

qj (MWh) : capacity of type j
cj ($/MWh) : marginal production cost of type j

B. Market Structure

The market include F competing firms which are asymmet-
ric: each firm k has fk generators and each generator belongs
to one of the M generator types with their own characteristics.
Very importantly, if a firm cannot supply enough energy
because its generators may not be working, the firm can always
resort to an external purchase of electricity, with an unlimited

capacity and a high marginal cost: cext. Alternatively, cext

can be interpreted as the value of loss load (VOLL) when the
shortage is covered by load curtailment.

C. Price Competition

We saw that each production unit will offer its energy at
marginal cost. We assume c1 < . . . < cM . The ISO dispatches
the cheapest types first until the total energy supplied can meet
the demand. We also make the additional simplification about
the market clearing price: ∃ j, p(t) = cj .

Under our assumptions: p(t) = cJ(t) where J(t) is the
marginal generator type dispatched. Determining the EPDC
boils down to determining the distribution of J(t).

We define ∀j,Wj =
∑

i∈Mj
Yi. For a given realization of

K(t) and of the Wj , J(t) is uniquely determined by

J(t) = min


h|

h∑
j=1

qjWj − (K(t) − ζch) > 0


 .

Consequently we obtain the following conditional probabili-
ties:

∀j, � {J(t) = j|K(t),W1, . . . , WM} = 1

⇔J(t) = min


h|

h∑
j=1

qjWj − (K(t) − ζch) > 0


 (1)

D. Graphical Model Representation

1) Graph structure: The structure of the graphical model
is presented in Figure 1.

Fig. 1. Graphical model describing the price competition.

2) Potential functions: Now that the structure of the graph
is defined, we need to endow this graph with potentials
functions at each node. Because we focus on medium-term
forecasts, we reach the steady state of the Markov process
followed by the availability of the generators Yi. Thus, Yi is
a Bernouilli random variable with �(Yi = 1) =

µj

λj+µj
if

i ∈ Mj . Consequently, Wj is binomial with parameters mj

and µj

λj+µj
.

We assume that the time t is uniformly distributed on
{1, . . . , 24}. The EPDC obtained is therefore an average over a
day of the hourly EPDCs, which are straightforward to obtain.
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TABLE I
DESCRIPTION OF THE GENERATOR TYPES

Type 1 2 3 4 5 6 7 8 9
qj 400 50 20 350 155 76 12 100 197

cj 0.4 1.0 8.0 14.0 14.0 14.0 14.8 14.8 14.8

P {Yj = 1} .92 .99 .9 .92 .96 .98 .98 .96 .95

TABLE II
MARKET COMPOSITION

Unit Type Firm 1 Firm 2 Firm 3 Total
1 0 0 1 1

2 0 2 2 4

3 1 1 1 3

4 2 0 0 2

5 2 0 0 2

6 2 1 1 4

7 2 2 0 4

8 0 1 2 3

9 2 0 2 4

Total 11 7 9 27

The nominal load is uniformly distributed between at and bt

in each period t and from that we build the discrete distribution
of K|t .

Finally, the conditional distribution of J |K,W1, . . . , WM

comes directly from equation (1).

E. Numerical Example

In order to compare our method with approximate numerical
techniques, we use the exact same data as in [5], [6]. The
generators are grouped into M = 9 different types whose
characteristics are summarized in Table I. Table II presents
the market composition of our model. There are a total of
N = 27 generators, which belong to F = 3 different firms.
The load data are presented in Table III. These data come from
the hourly load pattern for the PJM East Region for weekdays
of Fall 2003 and have been scaled down to fit the market
composition of our power system [6]. We construct a demand
space of 16 points2. We choose ζ = 38.5. The cost of the
external supply of electricity is cext = 100$/MWh.

Figure 2 presents the EPDC obtained with the PGM method
for the price competition model. The stair shape come from the
initial assumption that ∃ j, p(t) = cj , and from the fact that the
PGM method offers exact results. The corresponding marginal
probabilities for the marginal generator J(t) are presented on
Table IV and have been computed exactly with the junction
tree algorithm. One important advantage of this exact inference
method is that we can obtain the exact probability of external
supply (or load curtailemnt): � {J(t) = Ext} = 0.0018. This
probability is usually approximated to 0 by the traditional
numerical approximation methods. Our method shows that the
clearing price will reach cext with a non-zero probability. This

2We tried various demand space dimensions and the variations between 10
and 16 demand points are negligible.

TABLE III
LOAD PATTERN (MWH)

Hour at bt Hour at bt

1 1650 2300 13 2100 2850

2 16000 2200 14 2000 2800

3 1550 2200 15 1950 2800

4 1550 2200 16 1900 2800

5 1550 2250 17 1950 2900

6 1650 2450 18 2050 3100

7 1800 2750 19 2050 3100

8 1900 2850 20 2000 3100

9 2050 2850 21 2000 3050

10 2100 2850 22 2000 2950

11 2150 2850 23 1950 2700

12 2150 2850 24 1750 2450

is important because that is the only time when peaking units
can make a profit, which is essential for covering their fixed
costs.

Table V displays the expected profit for the different gen-
erator types and compares them with the results from [6]. We
notice that generator types 7 ,8, and 9 have zero expected profit
with the method of cumulants, which approximates the small
probabilities to 0 by taking only a finite order expansion of the
distribution functions. With the PGM method, we observe a
positive expected profit for these more expansive peak-load
units. The method of cumulants may be misleading, since
investing in peak-load units can indeed be profitable. In the
context of resource adequacy, this is a valuable insight. The
PGM method makes the study of the profitability of peak-load
generators possible.

13.5 14 14.5 15 15.5 Cext
0

0.2

0.4

0.6

0.8

1

p ($/MWh)

P
ro

ba
bi

lit
y 

of
 {

P
ric

e>
p}

Fig. 2. EPDC from the PGM method with the price competition model.

V. QUANTITY COMPETITION MODELS

Our price competition model presented in Section IV es-
sentially assumes perfect competition and does not consider
any strategic behavior. In this section, we model the strategic
behaviors of two players producing electricity under uncertain
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TABLE IV
PROBABILITY MASS FUNCTION OF J(t) FROM PGM.

j 1 2 3 4 5

P {J(t) = j} 0 0 0 0.1080 0.2300

j 6 7 8 9 Ext

P {J(t) = j} 0.2575 0.0719 0.2044 0.1264 0.0018

TABLE V
EXPECTED DAILY PROFIT PER GENERATOR WITH PERFECT PRICE

COMPETITION.

Generator Type Cumulants PGM
1 131,669 122,780

2 15,839 16,013

3 2,930 2,798

4 2,034 2,906

5 904 1,654

6 448 852

7 0 44

8 0 346

9 0 605

conditions. Each player owns a unique generating unit. To
better model the strategic interactions, we move to a quantity
competition framework. We follow a game theoretic approach
that was first inspired by [22]. This approach is particularly
adapted here since the PGM method requires the strategy space
of the players to be discrete.

A. Additional Notations
z ∈ {a, b} : player
−z ∈ {a, b} : opponent of player z
u (resp. v) : type of player z (resp. −z)

B. Timing and Information Structure

In this model we account for strategic interactions in a game
theoretic setting with discrete strategies. Since the dynamic
game is more realistic and brings a deeper understanding of
the interaction between the two players, we work with a multi-
period setting. The information structure is hence a keystone
of the analysis. We elaborate two scenarios regarding the
information from the previous period available to the players.

In the first scenario (Subsection V-D), each player z learns
the realization of the nominal load in period t: Kt and the
availability of the generator of her opponent in period t: Y−z,t

at the end of period t. The information is delayed, but will
prove useful since the transition probabilities from one state
to the other are known by the players.

In the second scenario (Subsection V-E), the only informa-
tion available to the players at the end of each period is the
market clearing price, and the realized demand or availability
of the opponent’s generator are not observed even after the
market clears. However, we will see that knowing her own
bid and the market price in the previous period is sufficient
for each player to learn the residual demand she was actually
facing.

In both scenarios, each player z learns at the beginning of
the current period t the state of her generator: Yz,t. She also
uses the information available from period t−1 to form beliefs
about the state of the system in the current period.

C. One-Stage Quantity Quantity Game

1) Setting of the game: Each player z possesses a single
generator whose availability is described by the random vari-
able Yz ∈ {0, 1}. We say that player z is of type 0 if Yz = 0
and of type 1 otherwise. Again, each player can resort to an
external supply of electricity (wich can come from curtailable
load). Therefore the uncertainty on the availability of the load
translates to an uncertainty of the marginal cost of player z. If
she has a generator of type j we define:c1

z = cj and c0
z = cext.

A strategy of a player in an extensive form game is
a complete plan of actions: It specifies an action in each
information set where the player moves. Therefore, a strategy
of player z is xz =

(
x0

z, x
1
z

)
where xu

z ∈ Su
z is the strategy

played by player z if she is of type u. Because we are in a
quantity competition model, the strategy space Su

z is basically
the set of quantities that player z can offer to the market if she
is of type u. Particularly, 0 ≤ maxS1

z ≤ qj : The player cannot
bid more than the capacity of her unique generator when it is
working.

We also need to define the inverse demand from the linear
demand function defined above: if player a of type u and
player b of type v bid xu

a and xv
b respectively, then:

p(t) =
K(t)

ζ
−

1

ζ
(xu

a + xv
b ) .

The universe describing the physical state of the market is
Ω = D × {0, 1} × {0, 1} and we define the joint probability
matrix Γ with Γ(k, u, v) := � {K = k, Ya = u, Yb = v}. We
also define a set of conditional probability matrices. For
example, the conditional probability for a type-u player a to
face a type-v player b and a nominal load K = k is:

Θu
a(k, v) =

Γ(k, u, v)∑
(k,v)∈D×{0,1} Γ(k, u, v)

.

Eventually, we define a set of conditional payoff matrices.
For instance πu

z (k, v) is the matrix describing the payoffs
obtained by a type-u player z facing a demand K = k and a
type-v player −z. It is defined for each strategy xu

z ∈ Su
z and

xv
−z ∈ Sv

−z by:

πu
z (k, v)(xu

z , xv
−z) =

(
k

ζ
−

1

ζ
(xu

z + xv
−z) − cu

z

)
xu

z .

2) Structure and payoffs of the game: Each player z only
knows Yz at the beginning of the period. Thus, we have a
game of imperfect information since the player does not know
the residual demand she is facing. We transform the game of
imperfect information to a game of incomplete information.
Nature chooses first the type of player a, player b and the
level of the nominal load K. Then both players choose their
strategy xa and xb in order to maximize their utility.
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The expected payoffs of player z of type u are defined for
every strategy xu

z ∈ Su
z and x−z ∈ S−z by:

Gu
z (xu

z , x−z) = �K×Y
−z

[
πu

z (k, v)(xu
z , xv

−z)
]

=
∑

k∈D,v∈{0,1}

Θu
z (k, v)πu

z (k, v)(xu
z , xv

−z)

3) Equilibrium concept: If there are multiple Nash equi-
libria (NE), or if there are none, it is hard to imagine how
the players can “coordinate” to play a given equilibrium
point. And with the structure of the game, the existence of
a unique pure strategy NE is very hypothetical. We resolve
this potential ambiguity by assuming that the players play
the maximin strategy [23], which always exists. Doing so,
the players maximize the minimum expected payoff that they
can obtain in the game, given that the opponent can play any
possible strategy. Therefore, each player will obtain at least
the equilibrium expected payoff in the game.

This maximin equilibrium may be a NE as in the PoolCo
example of [22]. The main advantage of this solution concept
is that the players do not assume any sort of rationality from
their opponent. Moreover, in a multi-period setting, it is very
hard to predict the reaction of the opponent because it requires
keeping track of the beliefs of the opponent from the first
period on. Thus, coordinating on a NE seems illusory.

D. Dynamic Quantity Game with Delayed Information

We keep the same setting as in the one-stage game.
However, we introduce an inter-temporal stochastic process.
We assume a Markov process [24] with transition matrices
MK ,Ma,Mb for K,Ya, Yb. We also assume that even if they
are not observed at the beginning of the period, K and Y−z

are revealed to each player z at the end of each period.
The players will update their beliefs at the beginning of

each period after observing last period’s game. Because they
know the transition matrix of K and Y−z , and they observed
Kt−1and Yz,t−1, they can form subjective probabilities over
Ktand Yz,t. These probabilities are then used to compute
the expected profit Gu

z from the conditional profits πu
z (k, v)

through the conditional probabilities Θu
z (k, v). More precisely,

at the beginning of period t when player z is of type u:

Θu
z (k, v) = [Kt−1MKek] [Y−z,t−1M−zev]

where ek, ev are the canonical basis vector and
(Kt−1, Y−z,t−1) ∈ {0, 1}

|D|
× {0, 1}

2 are observed random
variables. For instance, we represent the observation of K as
a vector K = [1, 0, . . . , 0] if the realization of K is the first
element of D. The “beliefs” will automatically be built from
rows of the transition matrices MK ,Ma,Mb.

1) Graphical Model Representation: The structure of the
graphical model is presented in Figure 3. Xa, Xb are the
random variables representing the bids of player a and b.

The unique observed variable is the electricity price P . All
the other variables are hidden. The potentials on K,Ya, Yb

come from the Markov process defined above. The potential
of P is immediately derived from the inverse demand func-
tion. Finally, the potentials on Xa, Xb are derived from two

Fig. 3. Graphical model describing the dynamic quantity game of delayed
information.

components: the beliefs of a and b which are formed with
the variables K,Ya, Yb of the last period, and the maximin
functions derived from these beliefs and the realization of the
type of the generator.

The PGM formalism can perform two different tasks. First,
the observed price variable allow to infer the most likely set of
priors on all the other hidden variables (“post obs.”), instead
of simply imputing some arbitrary priors into the model. This
allows starting with a prior on the different variables that
reflects the real state of the market, and makes the study of
the transient properties of the system (“1 lag”, “5 lag”, etc.)
relevant.

Second, we use our model to predict the future prices of
electricity. Our dynamic model respects the Markov property
[24], so we can transform it to a hidden Markov model (HMM)
characterized by a prior joint distribution on all the hidden
variables �0 and a transition matrix T from any state t to the
state t + 1. The joint distribution in k periods in the future is
then obtained with �k = �0T

k. And if T k +∞
→ T∞, then the

stationary behavior of the system is given by �∞ = �0T
∞.

Since T is a finite stochastic matrix, it admits 1 for eigenvalue
and all the other eigenvalues λ(real or complex) are such that
|λ| < 1. After diagonalizing T , it is straightforward to obtain
T∞.

2) Numerical Examples: The EPDC obtained when two
players with different repair rates for their generator face
each other in a physical system where the nominal load K
is independent of the past is displayed in Figure 4(a). The
transition matrices of the Markov process for K is such that
� {Kt|Kt−1} = � {Kt} = 1

|D| . We set µa = .9 and µb = .1.
We also compare the expected profit in that case. Player a
repairs her generator more rapidly, and performs better than
player b, as illustrated in Figure V-D.2. The system converges
rapidly to the long-term behavior (after two periods) since the
dependence to the past is very weak.

We then consider a system with sticky random vari-
ables. Particularly, MK is closer to the identity matrix and
� {Kt = Kt−1|Kt−1} = .8. The two players are similar,
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except that player 1 have marginal costs that are more con-
centrated: We set ca = [15, 10] and cb = [50, 5] such that
� [ca] = � [cb] in the long-run. The EPDC obtained in
that case is in Figure 4(c), and the profits are compared in
Figure 4(d). Player b performs better, but we do not have a
strong intuition of why it is the case. Interestingly, the EPDC
converges more slowly to the steady state.

E. The Dynamic Quantity Competition with Heuristics

We now relax the assumptions we made in the previous
model about the information available at the end of every
period to the players. We only made the arguably more
realistic assumption that at the end of period t, each player
z observes the price pt and knows her offer Xz,t. Since
p = 1

ζ
(K−Xa−Xb), each player can infer K−X−z that was

realized in the previous period. From this, each player z can
form a set of beliefs on the possible realizations of the residual
demand Rz = K − X−z in the current period: p̂(Rz = r).

1) Belief formation: Since the residual demand in the last
period Rz,t−1 is observed: p̂(Rz,t) = p̂ {Rz,t|Rz,t−1}. To
compute p̂, each player needs � {Kt, X−z,t|Kt−1, X−z,t−1}
The first simplifying assumption made by both players is that
X−z,t is conditionally independent of Kt−1 given X−z,t−1.
Thus, the players only need to find p̂ {X−z,t|X−z,t−1}. Be-
cause the game is too complex to devise what the opponent’s
strategy will be, each player resorts to a heuristic.

We distinguish between three kinds of players:

• A myopic player who believes that:

p̂ {X−z,t = X−z,t−1|X−z,t−1} = 1.

Intuitively, the myopic player conjectures that her oppo-
nent always offers the exact same quantity.

• An agnostic player who believes that:

p̂ {X−z,t|X−z,t−1} = p̂ {X−z,t} =
1

|S−z|
.

Intuitively, the agnostic player does not presume any
possible move from her opponent, i.e., anything can
happen.

• A quasi-myopic player with parameter α who more
generally believes:

p̂ {X−z,t = X−z,t−1|X−z,t−1} = α

and for X ∈ S−z/X−z,t−1:

p̂ {X−z,t = X|X−z,t−1} =
1 − α

|S−z| − 1
.

α = 0 correspond to the agnostic player and α = 1
correspond to the myopic player.

2) Expected profit maximization: Since player z formed
beliefs on the residual demand she is going to face in the
current period, she can compute and then maximize her
expected profit. She simply solves if she is of type u:

max
xu

z

�p̂

[{
1

ζ
(R − xu

z ) − cu
z

}
xu

z

]
.

3) Graphical Model Representation: The structure of the
graphical model is presented in Figure 5. As explained, Xz,t

depends on Kt−1 −X−z,t−1 and this dependence appears on
the graph since {Kt−1, X−z,t−1} are parents of Xz for both
players z.

Fig. 5. Graphical model describing the quantity, multi-stage heuristic
competition.

4) Numerical Examples: We provide here two numeri-
cal examples. In the first one, we model a highly vari-
able physical system in the sense that for any ran-
dom variable Z ∈ {K,Ya, Yb}: � {Zt �= Zt−1|Zt−1} >>
� {Zt = Zt−1|Zt−1}. In the second model, on the other hand,
� {Zt �= Zt−1|Zt−1} << � {Zt = Zt−1|Zt−1}. We try and
determine how the different heuristics perform in both cases.

The EPDC obtained when a myopic player faces an agnostic
player in a quantity competition setting with a highly variable
physical system is displayed in Figure 6(a). As expected, the
EPDC converges quickly to the steady state. We then compare
the expected profit generated by both heuristics. Since the
physical system is highly variable, we expected the myopic
bidder to perform worse than the agnostic bidder. This is
verified in Figure 6(b). In Figure 6(c), we study the same
markets but with a quasi-myopic player with α = .5 facing
an agnostic player. The reduction in the myopic bias lowers
the difference in expected profits between the two players, the
agnostic player still performing better.

We now switch to a sticky physical system. We keep all the
parameters constant in expected value, but there is less vari-
ability in the system. Figure 6(d) presents the EPDC obtained
when a myopic player faces an agnostic player. Clearly, the
EPDC converges far more slowly to the steady state. Finally,
Figure 6(e) and Figure 6(f) present the same comparison as
in the previous example, with a myopic and a quasi-myopic
player facing an agnostic opponent. Interestingly, the myopic
player outperforms the agnostic player in that case, and the
quasi-myopic player with α = .5 also performs better than the
agnostic player in the transient state (less than 30 lags), but
seemed to be outperformed in the long-run. The superiority
of the myopic heuristic in that case was expected since the
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(b) Expected profit with demand independent of the past.
Player 1 has a higher repair rate.
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(c) EPDC with a sticky demand.
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(d) Expected profit with a sticky demand. Player 1’s costs are more
concentrated.

Fig. 4. Quantity game with different Markov processes for K.

system is moving very slowly: Predicting a constant strategy
for the opponent seems to make more sense that refusing to
infer anything from the past period.

VI. SUMMARY AND DISCUSSION

The contributions of this paper are threefold. First, we
show how to use PGMs to study static stochastic competition
models. Here, the electricity price is considered as a random
variable because of physical uncertainties such as generators’
availability and load level. The distribution of the price is
determined exactly, and represented by the electricity price
duration curve.

Second, we develop a method to study in depth the dynamic
behavior of strategic games with uncertainty. We focus on a
quantity competition game in an oligopoly market. We present
two versions of this game which differ in the amount of
information made available to the players. First, we assume
that the past physical state of the system is entirely revealed
at the end of every period, and we then explore another
version which does not require any particular assumption on
the knowledge of the players. This latter approach requires
behavioral hypotheses regarding the way players form their
conjectures on various events where very limited information

is available and rational expectations and subjective probabil-
ities are too complex to compute.

Third, we study heuristics for dynamic decision-making
with very limited information, and provide numerical illustra-
tions of various phenomena that could occur. We consider two
extreme heuristics: a myopic case where the player assumes
that her opponent always plays the same strategy, and an
agnostic case where the player assumes that her opponent
can play anything with equal probabilities, and we eventually
introduce a behavioral parameter to describe the degree of
myopia of the player: α.

Two ways to extend this research seem particularly promis-
ing. The first one is to provide theoretical foundations for
the observations made in simulating the quantity competition
games: Can we predict theoretically the behavior of biased
players based on the stochastic process driving the physical
system, can we bind the differences in expected profit between
the heuristics? Second, it would be interesting to fit our model
to real-world data, in order to estimate both the parameters of
the physical system and the behavioral parameters describing
the heuristics used by the players.
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(a) EPDC with variable physical system and myopic
vs. agnostic player.
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(b) Expected profit with variable physical sys-
tem and myopic vs. agnostic player.
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(c) Expected profit with variable physical system and
quasi-myopic vs. agnostic player.
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(d) EPDC with sticky physical system and myopic
vs. agnostic player.
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(e) Expected profit with sticky physical system and
myopic vs. agnostic player.
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(f) Expected profit with sticky physical system and
quasi-myopic vs. agnostic player.

Fig. 6. Quantity competition with different heuristics and various Markov processes for K, Ya, Yb.
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des Richesses. Paris: L. Hachette, 1838.

[16] K. Judd, “Cournot versus Bertrand: A dynamic resolution,” Mimeo,
April 1996.

[17] E. Maskin and J. Tirole, “A theory of dynamic oligopoly, I: Overview
and quantity competition with large fixed costs,” Econometrica, vol. 56,
pp. 549–569, May 1988.

[18] M. Dudey, “Dynamic Edgeworth-Bertrand competition,” The Quaterly
Journal of Economics, vol. 107, pp. 1461–1477, Nov. 1992.

[19] R. Green and D. Newbery, “Competition in the british electricity spot
market,” Utilities Policy, vol. 1, pp. 245–254, 1991.

[20] S. Borenstein and J. Bushnell, “Price competition vs. quantity compe-
tition: The role of uncertainty,” The Journal of Industrial Economics,
vol. 47, pp. 285–323, Sept. 1999.

[21] H. Baleriaux, E. Jamoulle, and F. L. de Guertechin, “Simulation
de l’exploitation dun parc des machines thermiques de production
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