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Abstract— Quantifying the overall risk of blackout due to
cascading failure and determining the corresponding safe limits
for power system design and operation are challenging problems.
Large blackouts involve long, complicated and diverse cascades of
events that often are unlikely or unexpected. An exhaustive and
detailed analysis of these cascading events before the blackout
occurs is impossible because of the huge number of possible com-
binations of unlikely events. Despite these challenges, approaches
to quantify the overall risk of blackouts are emerging and we
give a tutorial account reviewing these emerging approaches and
their prospects.

We summarize the implications for blackout risk of the power-
law region in the observed distribution of sizes of North American
blackouts. High-level probabilistic models of cascading failure
and power system simulations suggest that there is a critical
loading at which expected blackout size sharply increases and
there is a power law in the distribution of blackout size. This
critical loading could serve as a reference point for determining
the “edge” for cascading failure risk. We model cascading failure
as an initial disturbance that sometimes propagates to become
much more widespread. The size of the initial disturbance
and the average amount of propagation of the failures can be
estimated from data from simulated cascades. We suggest that
these estimates could be used to efficiently quantify the blackout
risk. We summarize initial testing on power system simulations of
cascading overloads and speculate that extending this approach
to process data from series of cascades occurring in the power
system could lead to direct monitoring of power system reliability.

I. INTRODUCTION

Cascading failure occurs when a sequence of failures suc-

cessively weaken the electric power transmission system and

make further failures more likely. Large blackouts typically

become widespread by a complicated sequence of cascading

failures [35]. Here we use the term failure of a power system

component in a general sense of an event that includes

misoperation or being unavailable to transmit power due to

tripping by automatic or manual protection or damage. The

failures are typically rare and unanticipated because the likely

and anticipated failures have already been accounted for in

power system design and operation. The determined efforts to

analyze and mitigate the anticipated and likely failures have

usually been successful and this accounts for the historically

high reliability of bulk power generation and transmission

systems in developed economies.
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Cascading failure is very challenging to analyze because of

the huge number of possible rare and unanticipated failures

and the dependence of the failures on the previous failures

in the sequence of failures. There are many ways in which

failures can influence further failures, including overloads,

hidden failures of protection systems, software, control or

operator error, flawed or inapplicable operating procedures,

and a variety of dynamic and stability phenomena including

transients, oscillations, transient stability and voltage collapse.

Each large blackout typically combines several of these diverse

types of interactions between failures. One common aspect of

these diverse interactions is that the interactions tend to be

stronger when the power system is more stressed or loaded.

For example, tripping a highly loaded transmission line causes

a larger transient and a larger steady-state redistribution of

power flow. Moreover, the impact on the remaining operating

margins of other components is larger if the power system is

more stressed.

Cascading failure can be to some extent mitigated by design

and operation to limit the start of cascades. In the n-1 criterion,

a contingency list is established and the power system is

operated so that no single contingency will lead to further

failures. Sometimes a chosen subset of multiple contingencies

is also considered. In power systems of practical size, the

extension of the n-1 criterion to systematically account for 3

or 4 contingencies is precluded by a combinatorial explosion

in the number of possibilities. This paper addresses the com-

plementary problem of monitoring the propagation of cascades

after they are started.

One useful way to analyze cascading failure is to examine

the detailed sequence of failures of a particular blackout after

it has happened. One takes a deterministic point of view and

works out the way in which the particular sequence of failures

occurred. The analysis is time-consuming, but it provides

useful engineering data for strengthening weaker parts of the

system. Careful attention to the details of previous blackouts

motivates good practice and this is vigorously pursued by

engineers for reasons of professionalism and in response to

significant pressures from society and industry. In summary,

“blackouts cause reliability”.

It is also practical to simulate some of the detailed in-

teractions of cascading failure and we summarize some of

the simulation capabilities in the Appendix. This simulation

capability is significant in providing an approximate direct as-

sessment of cascading failure that can identify both particular

cascading sequences and some sampling of possible cascading
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sequences. Moreover, these simulations can be used to initially

test methods for assessing cascading risk from real data.

In this paper, instead of examining the details of individual

blackouts, we discuss the prospects for an overall risk analysis

of blackouts of all sizes. This is necessarily a global and top-

down analysis of bulk system properties that neglect the details

of the cascading failure sequence and adopts a probabilistic

point of view. This probabilistic and high-level approach

should be seen as complementary to the more traditional

detailed and deterministic analyses.

We begin in section II by discussing the observed statistics

of blackouts. Section III discusses blackout cost and blackout

risk. Section IV describes the critical loading at which a

change in the behavior of the blackout risk can be identified.

Section V describes branching and other high-level probabilis-

tic models for cascading. Section VI describes Monte Carlo

and branching process parameter estimation methods to esti-

mate the distribution of blackout size from cascading failure

simulations. The paper concludes and discusses challenges

such as direct monitoring of blackout risk in section VII.

A review of the literature in cascading failure blackouts may

be found in [23].

II. OBSERVED DATA FOR THE FREQUENCY OF BLACKOUTS

Large blackouts are rarer than small blackouts, but how

much rarer are they? There is empirical data that addresses

this question by plotting blackout frequency or probability

as a function of blackout size. One might expect a proba-

bility distribution of blackout sizes to fall off exponentially.

That is, for the larger blackouts, doubling the blackout size

squares its probability and so, after many squarings, the very

largest blackouts have vanishingly small probability. However,

analyses of the published international data show that the

probability distribution of the blackout sizes does not decrease

exponentially with the size of the blackout, but rather has an

approximate power law region (North America [13], [7], [14],

[38], Sweden [28], Norway [5], New Zealand [2], China [37]).

For example, Figure 1 plots on a log-log scale the empirical

probability distribution of energy unserved in North American

blackouts. The fall-off with blackout size is close to a power

law dependence with an exponent between –1 and –2. (Note

that a power law dependence with exponent –1 implies that

doubling the blackout size only halves the probability. A power

law dependence with exponent –1 appears as a straight line

of slope –1 on a log-log plot.) Thus the North American data

suggests that large blackouts are much more likely than might

be expected from the common probability distributions that

have exponential tails. The power law region is of course

always limited in extent in a practical power system by a finite

cut off corresponding to the largest possible blackout.

The approximate power law region can be qualitatively

attributed to the dependency of failures in the blackout. As

the blackout progresses, the power system usually becomes

more stressed, and it becomes more likely that further failures

will happen. This weakening of the power system as failures

occur makes it more likely that a smaller blackout will evolve

into a larger blackout.

Fig. 1. North American blackout size probability distribution from NERC
Disturbance Analysis Working Group data.

There are several useful measures of blackout size. Energy

unserved and power or customers disconnected are measures

that impact society. An example of a measure of disturbance

size internal to the power system is number of transmission

lines tripped.

III. BLACKOUT RISK

Risk is often defined as the product of frequency and cost.

Therefore the risk of a blackout near a given size is the product

of the frequency of blackouts near that size times the cost of

those blackouts.

The direct cost of blackouts is most simply modeled as

proportional to the energy unserved but there are numerous

uncertainties in estimating this cost [6]. Blackouts halt the

economy and impose direct costs on the public and business.

Especially for large blackouts, there are sometimes large

indirect costs such as those resulting from social breakdown

and impacts on other infrastructures. Utilities can incur repu-

tational, legal and regulatory costs and the costs of upgrades

or personnel to improve reliability. A backstop feedback for

reliability is provided by elected officials, who are certain to

act if there are repeated large blackouts.

In the case of an exponential dependence of blackout

probability on blackout size, large blackouts become rarer

much faster than blackout costs increase so that the risk of

large blackouts is negligible. However, in the case of a power

law dependence of blackout probability on blackout size, the

larger blackouts can become rarer at a rate similar to the rate

at which costs increase, and then the risk of large blackouts is

comparable to the risk of small blackouts [10]. For example,

if the power law dependence has exponent –1, then doubling

the blackout size halves the probability of the blackout and

doubles its cost and therefore the risk of the blackout remains

the same. Thus power laws in blackout size distributions

significantly affect the risk of large blackouts and this risk

justifies the study and analysis of large blackouts. That is,
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although large blackouts are rarer than small blackouts, their

costs are higher and they become rarer slowly enough that

they can have comparable risk.

There can be tradeoffs between the frequencies of small

and large blackouts [10]. One very extreme and uneconomic

example is that operating a power system without using any

interarea tie lines would eliminate large blackouts and increase

the frequency of small blackouts. Another example is that a

policy of never shedding load in emergencies to solve local

problems would tend to reduce small blackouts but would tend

increase larger blackouts. These considerations, together with

the roughly comparable risk of small and large blackouts, sug-

gest that engineering efforts to mitigate blackouts should aim

to manage the blackout risk by considering the joint reduction

of the frequency of small, medium and large blackouts as well

as trading off the blackout risk with the economic benefits of

maximizing the use of the transmission system. To achieve

this aim, it is necessary to be able to quantify the overall

risk of blackouts of various sizes, particularly the blackout

frequency and cost for the various sizes. The normalized

blackout frequency as a function of blackout size is also known

as the probability distribution of blackout size.

Another promising direction for cascading failure risk anal-

ysis computes the initial portions of the highest risk cascading

sequences since these are candidate multiple contingencies for

mitigation efforts [16], [32], [17].

IV. CRITICAL LOADING

Consider cascading failure in a power transmission system

in the impractically extreme cases of very low and very

high loading. At very low loading, any failures that occur

have minimal impact on other components and these other

components have large operating margins. Multiple failures are

possible, but they are approximately independent so that the

probability of multiple failures is approximately the product of

the probabilities of each of the failures. Since the blackout size

is roughly proportional to the number of failures, the probabil-

ity distribution of blackout size will have an exponential tail.

The probability distribution of blackout size is different if the

power system is operated recklessly at a very high loading in

which every component is at its loading limit. Then any initial

disturbance will cause a cascade of failures leading to total or

near total blackout. The probability distribution of blackout

size must somehow change continuously from the exponential

tail form to the certain total blackout form as loading increases

from a very low to a very high loading. We are interested in

the nature of the transition between these two extremes. Our

results presented below suggest that the transition occurs via

a critical loading at which there is a power law region in the

probability distribution of blackout size. This concept is shown

in Figure 2.

There are two attributes of the critical loading:

1) A sharp change in gradient of some quantity such as

expected blackout size as one passes through the critical

loading.

2) A power law region in probability distribution of black-

out size at the critical loading.

Fig. 2. Log-log plots sketching idealized blackout size probability distribu-
tions for very low, critical, and very high power system loadings.
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Fig. 3. Average blackout size (expected energy not served) in Manchester
blackout simulation as loading increases on a realistic 1000 bus model. Critical
loading occurs at kink where average blackout size sharply increases. Data
from [33].

We use the terminology “critical” because this behavior is

analogous to a critical phase transition in statistical physics.

Critical behavior in power system blackout models as load

is increased was first described in 1992 [8], [19], [9], [15]

using models of cascading overloads and hidden failures.

Observation of the critical loading in the most realistic power

system model to date used the Manchester model on a 1000

bus European system example as shown in Figures 3 and 4

[33]. The average blackout size in Figures 3 remains low and

changes little as load is increased until the critical loading

is reached and then it sharply increases. This shows that,

although a low average blackout size could be used to confirm

that the power system is below criticality, average blackout

size is not a good index of blackout frequency or risk.

The critical loading defines a reference point for increasing

risk of cascading failure. Monitoring the proximity to the

critical loading would give an indication of the risk of large,

cascading failure blackouts. Although there is a substantial risk

of large blackouts near criticality, it cannot be assumed based
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Fig. 4. Log-log plot of blackout size probability distribution obtained from
Manchester blackout simulation at critical loading on a realistic 1000 bus
model. Data from [33].

on current knowledge that power system operation near crit-

icality is undesirable; there are substantial economic benefits

in maximizing the use of the power transmission system that

also have to be considered in an overall risk analysis. Indeed,

one of the main aims of the research discussed in this paper

is to make such a risk analysis practical so that the tradeoffs

between economics and security involved in positioning the

power system with respect to cascading failure risk can be

quantified.

Although most authors have increased power system total

load to stress the power system so that it moved through

criticality, there may be quantities other than total load that

more directly reflect the system stress with respect to cascad-

ing failure. This is an open question and these quantities are

of great interest because of their potential for monitoring and

mitigating cascading failure risk. Several papers have started

to investigate the impact of generation margin [9], [10], [15]

and generalized line outage distribution factors [11].

Over time, system stress or loading tends to increase due

to load growth and tends to decrease due to the system

upgrades and improvements that are the engineering responses

to blackouts. It has been suggested that these opposing forces

tend to slowly shape the power system towards a near power

law distribution of blackout size [12]. Moreover, it is argued

in [10] that blackout mitigation should take account of these

opposing forces in order to achieve positive reliability results

in the long-term.

V. PROBABILISTIC MODELS OF CASCADING

Two high-level probabilistic models for cascading failure

are the CASCADE model and branching processes. Both

models have a large but finite number of identical components

that can fail. The total number of components failed in each

cascade varies randomly and the models are simple enough

that there are analytic formulas for the probability distribution

of the total number of components failed. Neither model

Fig. 5. Branching from a failure showing a random number 0,1,2,3,... of
children failures. The mean number of children failures is λ.

Fig. 6. Example of failures produced in stages by a branching process. Each
failure independently has a random number of children failures in the next
stage.

directly represents the power system and their purpose is to

provide simple models of a generic cascading process to better

understand power system cascading.

We briefly summarize the CASCADE model [23]. The

CASCADE model has components that fail when their load

exceeds a threshold, an initial disturbance loading the system,

and the additional loading of components by the failure of

other components. The initial overall system stress is rep-

resented by upper and lower bounds on a range of random

initial component loadings. The model neglects the length of

times between failures, the structure of the power grid, and the

diversity of power system components and interactions. In a

parameter range of the most interest, the CASCADE model is

well approximated by a branching process [20], so we proceed

to explain the branching process in more detail.

Branching processes have long been used in a variety of

applications to model cascading processes [27], [4], but their

application to the risk of cascading failure is novel and was

first suggested in [20], [21]. Here we informally describe

the simplest branching process model that is called a single-

type Galton-Watson process. The branching process gives a

probabilistic model of the number of failures. There are a

random number of initial failures that then propagate randomly

to produce subsequent failures in stages. The initial failures

are modeled as a random number of failures with mean θ.

The subsequent failures are produced in stages or generations

starting from the initial failures. Each failure in each stage

(a “parent” failure) independently produces a random number

0,1,2,3,... of failures (“children” failures) in the next stage as
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shown in figure 5. The distribution of the number of children

is called the offspring distribution. The children failures then

become parents to produce the next generation and so on. If the

number of failures in a stage becomes zero, then all subsequent

stages have zero failures and the cascade stops. The mean

number of children failures for each parent is the parameter

λ. λ quantifies the tendency for the cascade to propagate.

The intent of the modeling is not that each parent failure

in some sense “causes” its children failures; the branching

process simply produces random numbers of failures in each

stage that can statistically match the outcome of cascading

processes.

The branching process theory gives analytic formulas for

the probability distribution of the total number of failures.

For example, when the number of initial failures is a Poisson

distribution of mean θ and the number of children failures for

each parent failure is a Poisson distribution of mean λ, the total

number of failure follows a generalized Poisson distribution

that is parameterized by θ and λ [20]. Larger numbers of initial

failures (larger θ) or larger cascade propagation (larger λ) will

increase the frequency of larger numbers of total failures.

The eventual behavior of the branching process is governed

by the propagation parameter λ. In the subcritical case of

λ < 1 (each parent failure has on average less than one

child), the failures will die out and this usually corresponds

to either no blackout or a small blackout. In the supercritical

case of λ > 1 (each parent failure has on average more than

one child), although it possible for the process to die out,

often the failures increase exponentially until the system size

or saturation effects are encountered. At the critical case of

λ = 1, the branching process has a power law distribution of

the total number of failures with exponent −1.5.

An accelerated propagation model for the number of trans-

mission line failures is described by Chen and McCalley in

[18]. They also examine the fit of the accelerated propagation

model and other models such as the generalized Poisson

distribution to combined data for North American transmission

line failures from [1].

VI. ESTIMATING BLACKOUT SIZE DISTRIBUTION FROM

SIMULATIONS

A. Monte Carlo approaches

There are a variety of blackout simulations that can pro-

duce samples of cascading failures (see Appendix). Without

quantitative statistical analysis of these sample cascades, it

is not clear how robust the power system is to cascading

failure. For example, if one of the sample cascades is a large

blackout, does this indicate a vulnerable power system, an

unrepresentative rare event, or simply bad luck?

A straightforward way to obtain the distribution of blackout

size empirically is to run the simulation exhaustively with a

sample of initial conditions and/or Monte Carlo evaluation

of any probabilistic decisions. There are technical challenges

in choosing a good sample of initial conditions with suffi-

cient range and uniformity over the possibilities of interest.

Moreover, simulation is inherently time-consuming, especially

in obtaining accurate estimates of the rare events in the

(potentially) heavy tails of the distribution of blackout sizes.

Importance sampling [15] and correlated sampling [30] are

useful methods to reduce the simulation time.

B. Estimating blackout size distribution via estimating λ

If the cascading can be approximated by a branching

process, we can estimate the parameters such as λ and θ of the

branching process from the simulated cascade data and then

use the branching process theory to compute the distribution

of blackout size from the parameters [22]. This procedure is

much more efficient than exhaustively running the simulation

because it is model based and because the parameters being

estimated relate to distributions such as the offspring distribu-

tion which do not have power laws. Of course, this approach

relies on the branching process representing the gross behavior

of the cascade with sufficient accuracy.

The power systems simulation produces some quantity such

as number of transmission lines tripped in stages and we use

this data to estimate the branching process parameters. The

mean θ of the number of initial failures is estimated simply

as the total number of initial failures divided by the number

of sample cascades. The propagation λ is the mean number

of children failures per parent failure. λ may be estimated

from a sample of cascades by dividing the total number of

children failures in the sample cascades by the total number

of parent failures. However, this standard estimate [25] may

require adjustment for saturation effects [22].

The propagation λ and mean initial failures θ are useful

metrics describing the cascading in the simulation data. λ = 1
indicates criticality. Moreover, these parameters provide an

estimate of the distribution of the total number of failures

using formulas from the branching process theory [22]. This

gives a way to verify the assumption that a branching process

approximates the simulation results. One can simply run the

simulation exhaustively to obtain an empirical distribution of

total number of failures. This empirical distribution can then

be compared to the estimated distribution of total number of

failures. If the match is acceptable then the estimation via the

branching process can be used to approximate the estimated

distribution of total number of failures. An example of the

match obtained in a subcritical test case from [22] is shown

in Figure 7.

Tracking the numbers of transmission lines that fail in each

stage of the cascade gives an integer number of failures in

each stage. This is modeled by the Galton-Watson branching

process explained above. However, it is also useful to track in

each stage of the cascade continuously variable measures of

blackout size such as power shed. Cascades of continuously

varying quantities are modeled by continuous state branching

processes and these can be applied in a similar way to

estimate branching process parameters and hence compute the

probability distribution of the power shed [39].
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Fig. 7. Probability distributions of total number of transmission lines failed
obtained by different methods. The dashed line is obtained by estimating
parameters (λ = 0.4 and θ = 1.5) from simulation data and assuming a
branching process model of the cascading. The dots are obtained empirically
from the same simulation data. The simulation is the OPA model of cascading
line outages in blackouts [9] and the test case is the IEEE 118 bus system.
Figure reprinted from [22].

VII. CONCLUSION AND CHALLENGES

In this paper, we review some emerging approaches to the

challenging problem of cascading blackout risk. International

data suggests an increased (but still rare) frequency of large

blackouts that makes the risk of large blackouts substantial. We

argue that the problem of avoiding blackouts should be posed

as jointly mitigating the risk of blackouts of all sizes. There

is evidence of a change in cascading blackout risk at a critical

loading or stress that provides a reference point for power

system design and operation with respect to cascading failure.

There are a range of power system simulations and high-level

models of cascading failure that could be used to develop

risk analysis methods appropriate to cascading failure. One

of the high-level models is a branching process that models

cascading failure probabilistically as initial failures followed

by propagation of these failures. The amount of propagation

λ can be quantified from data and is under investigation as

a metric for cascading failure that can help predict overall

blackout risk.

We now comment on some key challenges in quantifying

and monitoring cascading blackout risk.

A. Access to data

Blackout and failure data is highly sensitive information.

However, if researchers cannot access real blackout and failure

data, the emerging methods to estimate blackout risk will

founder because there will be no way to eliminate wrong

hypotheses, develop sound theory, and validate methods and

simulations. There can be optimism that the conflict between

secrecy and research access can be resolved because the high-

level methods of this paper inherently tend to ignore most

of the detail and specifics of the data and therefore it should

be technically feasible to filter the data to drastically reduce

or eliminate its sensitivity. Continuing discussions between

industry, national labs, government, engineering societies and

researchers would be most helpful. Almost all the references

of this paper directly or indirectly relied on access to data. I

note with gratitude the essential role of the NERC Disturbance

Analysis Working Group database summarizing North Amer-

ican blackout data in catalyzing and enabling all the work on

the complex systems study of blackouts and cascading failure.

B. Develop insight, models and methods

Although a promising start has been made in several aspects

of understanding and modeling cascading failure and large

blackouts, much work remains to develop further insights and

systematically test and validate ideas and methods. The critical

loading behavior of blackout simulations is complicated [9]

and the limitations and capabilities of high-level models such

as branching processes are not yet established. It would be very

useful to identify the parameters that most strongly control

the proximity of the system to critical loading. These are the

parameters that should be used to implement the mitigation of

blackout risk and it might be feasible to monitor and control

some of these parameters in operations. Practical metrics for

risk analysis such as the propagation λ are starting to emerge

but are not fully tested. The goal is a comprehensive risk

analysis that is practical for cascading blackouts and further

comparisons between real data, detailed simulations and high-

level models need to be vigorously pursued.

After a transmission system upgrade, the patterns of use

of the network can evolve to change the balance between

maximizing use of the transmission system and reliability

[29], [34]. For initial work in understanding how the slow

complex dynamics of network upgrade and responses to recent

blackouts shapes the blackout risk see [10], [12].

C. Improve cascading blackout simulation

In addition to the usual issue of the appropriate tradeoffs be-

tween model detail and simulation speed, there is uncertainty

about which aspects of cascading failure should be modeled

and what detail is required. Cascading failure is influenced by

operational policies, software and human errors, upgrade and

the responses to previous blackouts in addition to the varied

and complicated ways in which failures interact via physical

laws on the power grid. It remains to be seen to what extent

these aspects can be modeled and how closely the statistics

of real blackouts can be reproduced. There is also a need for

simple, high-level models to explain the phenomena observed

in the detailed simulations and in real data.

There are also challenges in running the simulations so

that appropriate samples of initial conditions and probabilistic

decisions are made and in developing ways to extract useful

risk metrics from the results and to communicate the risks.

D. Can we directly monitor system reliability?

It seems that simulations will not be able to fully represent

all the intricacies of real blackouts in quantifying reliability.

Therefore, although simulations clearly have a vital role in

planning and operations and in testing new methods, it is

desirable to also develop methods of monitoring reliability
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directly from real power system data. One tactic is to first

develop and test efficient methods of quantifying blackout risk

from simulations and then adapt these methods to work on

real data. The efficiency of the methods is important because

practicality dictates that the monitoring quantify reliability

quickly enough. For example, monitoring failure data for

about one year to approximately determine the distribution

of blackout sizes might be acceptable. Waiting many decades

in order to empirically gather enough data for good statistics

on the rare but most costly blackouts is not acceptable.

We speculate that the branching process parameter estima-

tion methods, after they are more thoroughly validated on sim-

ulations, could be developed to directly monitor power system

reliability with respect to cascading failure. One possibility

is statistically estimating branching process parameters from

transmission line outage records to compute the distribution of

blackout size and then combining this with blackout cost to

estimate the distribution of blackout risk. There are a number

of challenges to be overcome to achieve this, but the current

research does indicate a path towards this goal.

Power system reliability with respect to the more compli-

cated and dependent failures has in the past been approached

by studying selected real or simulated failures in detail and

devising design and operating guidelines that position the

power system a judicious margin away from likely failures.

These guidelines are based on expert judgement and have

proven effective in the past, but the methods do not measure

reliability in a way that allows the tradeoffs involved in

reliability investments to be quantified. That is, there is a

difference between being able to recommend prudent measures

that help reliability and being able to quantify the effect of

reliability measures in terms of the costs of various sizes

of blackouts. If methods to directly monitor and quantify

power system blackout reliability are developed, this would

enable new possibilities in quantifying these tradeoffs and

determining the value of reliability investments.

REFERENCES

[1] R. Adler, S. Daniel, C. Heising, M. Lauby, R. Ludorf, T. White, An
IEEE survey of US and Canadian overhead transmission outages at 230
kV and above, IEEE Transactions on Power Delivery, vol. 9, no. 1, Jan.
1994, pp. 21 -39.

[2] G. Ancell, C. Edwards, V. Krichtal, Is a large scale blackout of the
New Zealand power system inevitable?, Electricity Engineers Associa-
tion 2005 Conference “Implementing New Zealands Energy Options”,
Aukland, New Zealand, June 2005.

[3] M. Anghel, K.A. Werley, A.E. Motter, Stochastic model for power grid
dynamics, 40th Hawaii International Conference on System Sciences,
Hawaii, January 2007.

[4] K.B. Athreya, P.E. Ney, Branching Processes, Dover NY 2004 (reprint
of Springer-verlag Berlin 1972).

[5] J.Ø.H. Bakke, A. Hansen, and J. Kertész, Failures and avalanches in
complex networks, Europhysics Letters, vol. 76, no. 4, pp. 717-723,
2006.

[6] R. Billington, R.N. Allan, Reliability evaluation of power systems (2nd
ed.), New York: Plenum Press, 1996

[7] B.A. Carreras, V.E. Lynch, M. L. Sachtjen, I. Dobson, D. E. Newman,
Modeling blackout dynamics in power transmission networks with sim-
ple structure, 34th Hawaii International Conference on System Sciences,
Maui, Hawaii, January 2001.

[8] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Dynamics,
criticality and self-organization in a model for blackouts in power
transmission systems, Thirty-fifth Hawaii International Conference on
System Sciences, Hawaii, January 2002.

[9] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Critical points and
transitions in an electric power transmission model for cascading failure
blackouts, Chaos, vol. 12, no. 4, December 2002, pp. 985-994.

[10] B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson, Blackout miti-
gation assessment in power transmission systems, 36th Hawaii Interna-
tional Conference on System Sciences, Hawaii, 2003.

[11] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Dynamical and
probabilistic approaches to the study of blackout vulnerability of the
power transmission grid, 37th Hawaii International Conference on
System Sciences, Hawaii, 2004.

[12] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Complex dynamics
of blackouts in power transmission systems, Chaos, vol. 14, no. 3,
September 2004, pp. 643-652.

[13] B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole, Evidence for
self organized criticality in a time series of electric power system
blackouts, IEEE Transactions on Circuits and Systems I, vol. 51, no. 9,
September 2004, pp. 1733-1740.

[14] J. Chen, J.S. Thorp, M. Parashar, Analysis of electric power system
disturbance data, Thirty-fourth Hawaii International Conference on
System Sciences, Maui, Hawaii, January 2001.

[15] J. Chen, J.S. Thorp, I. Dobson, Cascading dynamics and mitigation
assessment in power system disturbances via a hidden failure model,
International Journal of Electrical Power and Energy Systems, vol. 27,
no. 4, May 2005, pp. 318-326.

[16] Q. Chen, K. Zhu, J.D. McCalley, Dynamic decision-event trees for rapid
response to unfolding events in bulk transmission systems, 2001 IEEE
Porto Power Tech Proceedings, vol. 2, Portugal 2001.

[17] Q. Chen, J.D. McCalley, Identifying high risk n-k contingencies for
online security assessment, IEEE Transactions on Power Systems, vol.
20, no. 2, May 2005, pp. 823-834.

[18] Q. Chen, C. Jiang, W. Qiu, J.D. McCalley, Probability models for
estimating the probabilities of cascading outages in high-voltage trans-
mission network, IEEE Transactions on Power Systems, vol. 21, no. 3,
August 2006, pp. 1423-1431.

[19] I. Dobson, J. Chen, J.S. Thorp, B.A. Carreras, D.E. Newman, Examining
criticality of blackouts in power system models with cascading events,
35th Hawaii International Conference on System Sciences, Hawaii,
January 2002.

[20] I. Dobson, B.A. Carreras, D.E. Newman, A branching process ap-
proximation to cascading load-dependent system failure. 37th Hawaii
International Conference on System Sciences, Hawaii, January 2004.

[21] I. Dobson, B.A. Carreras, D.E. Newman, Branching process models for
the exponentially increasing portions of cascading failure blackouts, 38th
Hawaii International Conference on System Sciences, January 2005,
Hawaii.

[22] I. Dobson, K.R. Wierzbicki, B.A. Carreras, V.E. Lynch, D.E. Newman,
An estimator of propagation of cascading failure, 39th Hawaii Interna-
tional Conference on System Sciences, January 2006, Kauai, Hawaii.

[23] I. Dobson, B.A. Carreras, D.E. Newman, A loading-dependent model
of probabilistic cascading failure, Probability in the Engineering and
Informational Sciences, vol. 19, no. 1, January 2005.

[24] I. Dobson, B.A. Carreras, V.E. Lynch, B. Nkei, D.E. Newman, Estimat-
ing failure propagation in models of cascading blackouts, Probability
in the Engineering and Informational Sciences, vol. 19, no. 4, October
2005, pp 475-488.

[25] P. Guttorp, Statistical inference for branching processes, Wiley, NY, 1991

[26] R.C. Hardiman, M.T. Kumbale, Y.V. Makarov, An advanced tool for an-
alyzing multiple cascading failures, Eighth International Conference on
Probability Methods Applied to Power Systems, Ames Iowa, September
2004.

[27] T.E. Harris, Theory of branching processes, Dover NY 1989.
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hidden
OPA failure Manchester CMU PSA TRELSS

overloads X X X X X X
generator redispatch X X X X X

hidden failure X X
protection group X

AC network X X X
generator trip X

voltage collapse X X
transient stability X

under frequency load shed X X
islanding X X X

operator response X X X
blackout time intervals & repair X

load increase & grid upgrade X
approx. max number of buses 400 300 1000 2500 ? 13000

reference [9] [15] [30] [31] [3] [36], [26]

TABLE I

MODELING DETAIL IN CASCADING FAILURE SIMULATIONS

APPENDIX

We briefly summarize some of the available cascading fail-

ure simulations and indicate their modeling detail reported in

publications in Table I. There are several models of cascading

overloads of transmission lines representing the power grid at

the level of DC load flow and LP dispatch of generation [9],

[12], [15], [31]. Some special capabilities of these models are

that the OPA model represents the slow complex dynamics of

grid upgrade [12], the model developed at Cornell University

represents hidden failures of the protection system [15], and

the model developed using the PSA suite at Los Alamos

National Laboratory represents the timing of blackout events

and operator actions [3]. The state of the art in terms of model

detail is to use an AC load flow and have some approximate

representations of protection, operator actions and voltage

collapse as in the Manchester model [30] and TRELSS [36],

[26]. The Manchester model has been run on industrial data

and the cascading mode of TRELSS is used by industry to

identify cascading failure problems.
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