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Abstract—This paper proposes a novel nonparametric approach
for the modeling and analysis of electricity price curves by ap-
plying the manifold learning methodology—locally linear embed-
ding (LLE). The prediction method based on manifold learning
and reconstruction is employed to make short-term and medium-
term price forecasts. Our method not only performs accurately in
forecasting one-day-ahead prices, but also has a great advantage
in predicting one-week-ahead and one-month-ahead prices over
other methods. The forecast accuracy is demonstrated by numer-
ical results using historical price data taken from the Eastern U.S.
electric power markets.

Index Terms—Electricity forward curve, electricity spot price,
forecasting, locational marginal price, manifold learning.

I. INTRODUCTION

I N the competitive electricity wholesale markets, market
participants, including power generators and merchants

alike, strive to maximize their profits through prudent trading
and effective risk management against adverse price move-
ments. A key to the success of market participants is to model
electricity price dynamics well and capture their characteristics
realistically. One strand of research on modeling electricity
price processes focuses on the aspect of derivative pricing and
asset valuation which investigates electricity spot and forward
price models in a risk-neutral world (e.g., [1]–[3]). Another
research strand concerns the modeling of electricity prices in
the physical world, which offers price forecasts for assisting
with physical trading and operational decision-making. An
accurate short-term price forecast over a time horizon of hours
helps market participants to devise their bidding strategies in
the auction-based pool-type markets and to allocate generation
capacity optimally among different markets. The medium-term
forecast with a time horizon spanning days to months is useful
for balance sheet calculations and risk management applica-
tions [4].

In the second research strand of power price modeling, there
is an abundant literature on forecasting spot or short-term
electricity prices, especially the day-ahead prices [5]–[12].
Typically, electricity prices are treated as hourly univariate
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time series and then modeled by parametric models, including
ARIMA processes and their variants [6]–[8], regime-switching
or hidden Markov processes [9], [12], Levy processes [11],
hybrid price models combining statistical modeling with
fundamental supply-demand modeling [5], or nonparametric
models such as the artificial neural networks [13]–[15]. While
spot price modeling is important, successful trading and risk
management operations in electricity markets also require
knowledge on an electricity price curve consisting of prices of
electricity delivered at a sequence of future times instead of
only at the spot. For instance, in order to maximize the market
value of generation assets, power generators would need to base
their physical trading decisions over how much power to sell
in the next day and in the long-term contract markets on both
the short-term price forecast for electricity delivered in the next
24 h and the electricity forward price with maturity ranging
from weeks to years. The non-storable nature of electricity
makes the energy delivered at different time points essentially
different commodities. The current market price (or spot price)
of electricity may have little correlation with that of electricity
delivered a few months in the future. Thus, it is imperative to
be able to model the electricity price curve as a whole.

There is not much literature on modeling electricity price
curves. Paper [16] proposes a parametric forward price curve
model for the Nordic market, which does not model the move-
ments of the expected future level of a forward curve. A recent
paper [17] employs a weighted average of nearest neighbors ap-
proach to model and forecast the day-ahead price curve. These
works offer little insight on understanding the main drivers of
the price curve dynamics. Our paper contributes to this strand
of research by proposing a novel nonparametric approach for
modeling electricity price curves. Analysis on the intrinsic di-
mension of an electricity price curve is offered, which sheds
light on identifying major factors governing the price curve dy-
namics. The forecast accuracy of our model compares favorably
against that of the ARX and ARIMA model in one-day-ahead
price predictions. In addition, our model has a great advantage
on the predictions in a longer horizon from days to weeks over
other models.

In general, the task of analytically modeling the dynamics of
such a price curve is daunting, because the curve is a high-di-
mensional subject. Each price point on the curve essentially rep-
resents one dimension of uncertainty. To reduce the dimension
of modeling a price curve and identify the major random factors
influencing the curve dynamics, principle component analysis
(PCA) is proposed and has been widely applied in the real-world
data analysis for industrial practices. As PCA is mainly suited
for extracting the linear factors of a data set, it does not appear to
perform well in fitting electricity price curves with a linear factor
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Fig. 1. Conceptual flowchart of the model.

model in a low-dimensional space. However, the following intu-
ition suggests that there shall exist a low-dimensional structure
capturing the majority of randomness in electricity price curve
dynamics. Take the day-ahead electricity price curve as an ex-
ample. While electricity delivered in the next 24 h are different
commodities, the corresponding prices all result from equili-
brating the fundamental supply and demand for electricity. The
common set of demand and supply conditions in all 24 h hints
a possible nonlinear representation of the 24-dimensional price
curve in a space of lower dimension.

A natural extension to the PCA approach is to consider
manifold learning methods, which are designed to analyze
intrinsic nonlinear structures and features of high-dimensional
price curves in the low-dimensional space. After obtaining the
low-dimensional manifold representation of price curves, price
forecasts are made by first predicting each dimension coordi-
nate of the manifold and then utilizing a reconstruction method
to map the forecasts back to the original price space. The
conceptual flowchart of our modeling approach is illustrated by
Fig. 1.

Our major contribution is to establish an effective approach
for modeling energy forward price curves, and set up the entire
framework in Fig. 1. The other major contribution is to iden-
tify the nonlinear intrinsic low-dimensional structure of price
curves. The resulting analysis reveals the primary drivers of the
price curve dynamics and facilitates accurate price forecasts.
This work also enables the application of standard times series
models such as Holt–Winters in the forecast step from box 1 to
box 2.

In this paper, locally linear embedding (LLE) and LLE recon-
struction are adopted for manifold learning and reconstruction.
The study of the intrinsic dimension and embedded manifold
indicates that there does exist a low-dimensional manifold with
the intrinsic dimension around four for day-ahead electricity
price curves in the New York Independent System Operator’s
markets (known as NYISO).

The rest of the paper is organized as follows. Section II
describes a manifold based method LLE and the corresponding
reconstruction method. In Section III, LLE and LLE reconstruc-
tion are applied to model and analyze the day-ahead electricity
price curves in NYISO. Section IV presents the results of

electricity price curve predictions based on manifold learning.
Section V discusses about the extensions and restrictions of our
modeling and prediction. Section VI concludes.

II. MANIFOLD LEARNING ALGORITHM

A. Introduction to Manifold Learning

Manifold learning is a new and promising nonparametric di-
mension reduction approach. Many high-dimensional data sets
that are encountered in real-world applications can be modeled
as sets of points lying close to a low-dimensional manifold.
Given a set of data points , we can as-
sume that they are sampled from a manifold with noise, i.e.,

(2.1)

where , and is noise. Integer is also called
the intrinsic dimension. The manifold based methodology offers
a way to find the embedded low-dimensional feature vectors
from the high-dimensional data points .

Many nonparametric methods are created for nonlinear man-
ifold learning, including multidimensional scaling (MDS) [18],
[19], locally linear embedding (LLE) [20], [21], Isomap [22],
Laplacian eigenmaps [23], Hessian eigenmaps [24], local tan-
gent space alignment (LTSA) [25], and diffusion maps [26].
Survey [27] gives a review on the above methods.

Among various manifold based methods, we find that LLE
works well in modeling electricity price curves. Our purpose
is two-fold: to analyze the features of electricity price curves
and predict the price curve at a future time. The reconstruction
of high-dimensional forecasted price curves from low-dimen-
sional predictions is a significant step for forecasting. Through
extensive computational experiments, we conclude that LLE re-
construction is more efficient relative to other reconstruction
methods for our purpose. Moreover, LLE and LLE reconstruc-
tion are fast and easy to implement. In next two subsections, we
introduce the algorithms of LLE and LLE reconstruction, re-
spectively.

B. Locally Linear Embedding (LLE)

Given a set of data points in the high-
dimensional space, we are looking for the embedded low-di-
mensional feature vectors . LLE is a non-
parametric method that works as follows [20], [21].

1) Identify nearest neighbors based on Euclidean distance
for each data point , . Let denote the set
of indices of the nearest neighbors of .

2) Find the optimal local convex combination of the nearest
neighbors to represent each data point . That is, the fol-
lowing objective function (2.2) is minimized with weight
coefficients being decision variables:

(2.2)

where is the norm and .
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The weight indicates the contribution of the th data
point to the representation of the th data point. The op-
timal weights can be solved as a constrained least square
problem, which is finally converted into a problem of
solving a linear system of equation.

3) Find the low-dimensional feature vectors , ,
which have the optimal local convex representations with
weights obtained from the last step. That is, ’s are
computed by minimizing the following objective function:

(2.3)

The problem (2.3) can be rewritten in a quadratic form

(2.4)

involving inner products of . The square matrix
M is given by ,
where is 1 if and 0 otherwise. To uniquely deter-
mine ’s, we will impose the constraints and

to remove the translational and rota-
tional degree of freedom, respectively. The quadratic opti-
mization (2.4) with additional constraint can be solved by
using the Langrange multiplier. The problem is finally con-
verted into finding the eigenvectors associated with the

smallest nonzero eigenvalues of matrix , which com-
prise the -dimensional coordinates of ’s. Thus, the coor-
dinates of ’s are orthogonal. We refer interested readers
to [20] for the details of this formulation.

LLE does not impose any probabilistic model on the data; How-
ever, it implicitly assumes the convexity of the manifold. It can
be seen later that this assumption is satisfied by the electricity
price data.

C. LLE Reconstruction

Given a new feature vector in the embedded low-dimensional
space, the reconstruction method is used to find its counterpart
in the high-dimensional space based on the calibration data set.
Reconstruction accuracy is critical for the application of mani-
fold learning in the prediction. There are a limited number of
reconstruction methods in the literature. For a specific linear
manifold, the reconstruction can be easily made by PCA. For
a nonlinear manifold, LLE reconstruction, which is derived in
the similar manner as LLE, is introduced in [20]. LTSA recon-
struction and nonparametric regression reconstruction are intro-
duced in [25]. Among all these reconstruction methods, LLE re-
construction has the best performance for electricity price data.
This is an important reason for us to choose LLE and LLE re-
construction in this paper.

Suppose low-dimensional feature vectors
have been obtained through LLE in the previous subsection.
Denote the new low-dimensional feature vector as . LLE
reconstruction is applied to find the approximation of the
original data point in the high-dimensional space based

on and . There are three steps for LLE
reconstruction.

1) Identify the nearest neighbors of the new feature vector
among . Let denote the set of the indices

of the nearest neighbors of .
2) The weights of the local optimal convex combination

are calculated by minimizing

(2.5)

subject to the sum-to-one constraint, .
3) Date point is reconstructed by .
Remark: Solving optimization problems (2.2) and (2.5) is

equivalent to solving a linear system of equations. When there
are more neighbors than the high dimension or the low dimen-
sion, i.e., or , the coefficient matrix associated with
the system of linear equations is singular, which means that the
solution is not unique. This issue is solved by adding an identity
matrix multiplied with a small constant to the coefficient matrix
[20]. We adopt this approach here.

Suppose , , is the th component of vector .
The reconstruction error (RE) of is defined as

(2.6)

The reconstruction error of the entire calibration data set
(TRE)1 is defined as

(2.7)

by regarding each as a new feature vector .

III. MODELING OF ELECTRICITY PRICE CURVES

WITH MANIFOLD LEARNING

The data of the day-ahead market locational based marginal
prices (LBMPs) and integrated real-time actual load of elec-
tricity in the Capital Zone of NYISO are collected and pre-
dicted in this paper. The data are available online (www.nyiso.
com/public/market_data/pricing_data.jsp). In this section, two
years (731 days) of price data from February 6, 2003 to Feb-
ruary 5, 2005 are used as an illustration of modeling electricity
price curves by manifold based methodology. Fig. 2(a) plots
the hourly day-ahead LBMPs during this period, where elec-
tricity prices are treated as a univariate time series with 24
731 hourly prices. Fig. 2(b)–(d) illustrates the mean, standard
deviation and skewness of 24 hourly log prices in each day after
outlier processing.

The section is organized as follows. First, the data are
preprocessed with log transform, outlier processing and LLP

1When the TRE is calculated, y itself is not included in its k nearest neigh-
bors.
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Fig. 2. Day-ahead LBMPs from February 6, 2003 to February 5, 2005 in the
Capital Zone of NYISO. (a) Hourly prices. (b) Mean of log prices in each day.
(c) Standard deviation of log prices in each day. (d) Skewness of log prices in
each day.

smoothing, and then the results of the manifold learning and
reconstruction are illustrated. Next, the major factors of elec-
tricity price curve dynamics are analyzed with low-dimensional
feature vectors. Finally, the parameter selections and the sensi-
tivity of reconstruction error to those parameters are analyzed.

A. Preprocessing

1) Log Transform: The logarithmic (log) transforms of elec-
tricity prices are taken before the manifold learning. There are
several advantages to deal with the log prices. First, electricity
prices are well known to have the nonconstant variance, and log
transform can make the prices less volatile. The log transform
also enhances the efficiency of manifolding learning, by making
the embedded manifold more uniformly distributed in the low-
dimensional space and the reconstruction error of the entire
calibration data set (TRE) reduced. Moreover, the log trans-
form has the interpretation of the returns to someone holding
the asset.

2) Outlier Processing: Outliers in this paper are defined as
the electricity price spikes that are extremely different from the
prices in the neighborhood. To deal with the outliers, we replace
the prices in the day with outliers by the average of the prices
in the days right before and right after. We remove the outliers
because the embedded low-dimensional manifold is supposed
to extract the primary features of the entire data set, rather than
the individual and local features such as extreme price spikes.
The efficiency of manifold learning is improved after outlier
processing. Moreover, outliers, which represent rarely occur-
ring phenomena in the past, often have very small probability
to occur in the near future, so the processing of outliers does not
severely affect the prediction of the near-term regular prices.

In the illustrated data set, only one extreme spike is identified
on the right of Fig. 2(a), which belongs to January 24, 2005.
In the low-dimensional manifold, the days of outliers can also
be detected by the points that stand far away from the other
points. Fig. 3 shows that the point corresponding to January

Fig. 3. Embedded three-dimensional manifold without any outlier prepro-
cessing (but with log transform and LLP smoothing). The square indicates the
day with outliers—January 24, 2005.

Fig. 4. Embedded three-dimensional manifold after log transform, outlier pre-
processing, and LLP smoothing.

24, 2005 lies out of the main cloud of the points on the em-
bedded three-dimensional manifold. Thus, we regard January
24, 2005 as a day with outliers. Fig. 4 shows that the low-dimen-
sional manifold after removing the outliers is more uniformly
distributed.

3) LLP Smoothing: The noise in (2.1) can contaminate the
learning of the embedded manifold and the estimation of the
intrinsic dimension. Therefore, locally linear projection (LLP)
[27]–[29] is recommended to smooth the manifold and reduce
the noise. The description of the algorithm is given as follows

ALGORITHM: LLP

For each observation , ,
1) Find the -nearest neighbors of . The neighbors are

denoted by .
2) Use PCA or SVD to identify the linear subspace

that contains most of the information in the vectors
. Suppose the linear subspace is . Let
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Fig. 5. Coordinates of the embedded four-dimensional manifold.

denote the assumed dimension of the embedded manifold.
Then subspace can be viewed as a linear subspace
spanned by the singular vectors associated with the largest

singular values.
3) Project into the linear subspace and let ,

, denote the projected points.

After denoising, the efficiency of manifold learning is enhanced,
and the TRE is reduced. For the illustrated data set with the
intrinsic dimension being four, the TRE is 3.89% after LLP
smoothing, compared to 4.41% without LLP smoothing. The
choice of the two parameters in LLP, the dimension of the linear
space and the number of the nearest neighbors, will be discussed
in detail in Section III-D.

B. Manifold Learning by LLE

Each price curve with 24 hourly prices in a day is considered
as an observation, so the dimension of the high-dimensional
space is 24. The intrinsic dimension is set to be four. The
number of the nearest neighbors for LLP smoothing, LLE, and
LLE reconstruction is selected to be a common number 23 for
all the numerical studies. The details of the parameter selections
are discussed in Section III-D. Due to the ease of visualization
in a three-dimensional space, all the low-dimensional manifolds
are plotted with the intrinsic dimension being three. We apply
LLE to the denoised data , , which are obtained
after LLP smoothing. Fig. 4 provides the plot of the embedded
three-dimensional manifold. As the low-dimensional manifold
is nearly convex and uniformly distributed, LLE is an appro-
priate manifold based method. Fig. 5 plots the time series of
each coordinates of the feature vectors in the embedded four-di-
mensional manifold.

Table I shows the TRE of different reconstruction methods.
LLE reconstruction has the minimum reconstruction error
among all the methods. LTSA reconstruction has a very large
TRE, because it is an extrapolation-like method, and the re-
construction of some of the price curves has very large errors.

TABLE I
TRE OF DIFFERENT RECONSTRUCTION METHODS

Therefore, LLE and LLE reconstruction are selected to model
electricity price dynamics.

C. Analysis of Major Factors of Electricity Price Curve
Dynamics With Low-Dimensional Feature Vectors

The interpretation of each dimension in the low-dimensional
space and the cluster analysis to the low-dimensional feature
vectors reveal the major drivers of the price curve dynamics,
which suggests that our prediction methods in the next section
based on the modeling of price curves with manifold learning
are reasonable.

1) Interpretation of Each Dimension in the Low-Dimensional
Space: There are some interesting interpretations for the first
three coordinates of the feature vectors in the low-dimensional
space. For each price curve, we can calculate the mean, stan-
dard deviation, range, skewness and kurtosis of the 24 hourly
log prices. The sequence of each coordinates of the low-di-
mensional feature vectors comprises a time series. The corre-
lation between each time series and mean log prices (standard
deviation, range, skewness and kurtosis) is calculated. Table II
shows which one of the four-dimensional coordinates has the
maximum absolute correlation with the statistics of log prices
(mean, standard deviation, range, skewness and kurtosis), and
the corresponding correlation coefficients. The comparison be-
tween Figs. 2 and 5 gives more intuition about the correlations.
It is found that the first coordinates have a very high correla-
tion coefficient 0.9964 with the mean log prices within each
day, and the second coordinates are highly correlated with the
standard deviation of the log prices in a day with a correlation
coefficient 0.7073. This also means that the second coordinates
contain some other information besides standard deviation, and
Table II demonstrates that the second coordinates are also corre-
lated, but not significantly, with range and skewness. The third
coordinates show both weekly and yearly seasonality in Fig. 5.
Weekly seasonality is well known for electricity prices. Yearly
seasonality may be caused by the shape change of the price
curves over the year. The shape of price curves is often uni-
modal in the summer and bimodal in the winter.

2) Cluster Analysis: The yearly seasonality of electricity
price curves can be clearly demonstrated by the cluster analysis
of low-dimensional feature vectors.

Cluster analysis [30] (also known as data segmentation)
groups or segments a collection of objects into subsets (i.e.,
clusters), such that those within each cluster are more closely
related to each other than those assigned to different clusters.

The K-means clustering algorithm is one of the mostly used
iterative clustering methods. Assume that there are clusters.
The algorithm begins with a guess of the cluster centers.
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TABLE II
ONE OF THE FOUR-DIMENSIONAL COORDINATES WHICH HAS THE

MAXIMUM ABSOLUTE CORRELATION COEFFICIENT WITH THE MEAN

(STANDARD DEVIATION, RANGE, SKEWNESS, AND KURTOSIS) OF LOG

PRICES IN A DAY IN EMBEDDED FOUR-DIMENSIONAL SPACE

Fig. 6. Coordinate-wise average of the actual price curves in each cluster,
where clustering is based on low-dimensional feature vectors.

Then, the algorithm iterates between the following two steps
until convergence. The first step is to identify the closest cluster
center for each data point based on some distance metric. The
second step is to replace each cluster center with the coordi-
nate-wise average of all the data points that are the closest to it.

For electricity price data, we apply K-means clustering with
Euclidean distance to the low-dimensional feature vectors of the
embedded four-dimensional manifold. The number of clusters
is set to be three, as the yearly seasonality can be clearly illus-
trated with three clusters. The coordinate-wise average of price
curves in each cluster is plotted in Fig. 6. The distribution of
clusters is illustrated in the first graph of Fig. 7, where axis
is the date of the price curves, and axis is the corresponding
clusters. The two graphs show that the first cluster represents
the price curves from the summer, which are featured with uni-
modal shape, and the second cluster represents the ones from the
winter, which are characterized with bimodal shape. The price
curves in the third cluster reveal the transition from unimodal
shape to bimodal shape. The average price curves in the three
clusters closely resemble the typical load shapes observed in
summer, winter, and rest-of-year, respectively.

The second graph of Fig. 7 shows the distribution of clusters
by applying K-means clustering with correlation distance to the
high-dimensional price curves. The two graphs in Fig. 7 have
the similar patterns, which gives a good illustration that low-di-
mensional feature vectors capture the major factors of the price
curve dynamics.

Fig. 7. Distribution of clusters.

D. Parameter Setting and Sensitivity Analysis

The selections of several parameters, including the number of
intrinsic dimensions, the number of the nearest neighbors and
the length of the calibration data, are discussed in this subsec-
tion.

1) Intrinsic Dimension: Intrinsic dimension is an impor-
tant parameter of manifold learning. Papers [31] and [32] pro-
vide several approaches of estimating the intrinsic dimension. In
[31], the maximum likelihood estimator of the intrinsic dimen-
sion is established. In [32], the intrinsic dimension is estimated
based on a nearest neighbor algorithm. Without LLP smoothing,
the two methods show that the intrinsic dimension is some value
between 4 and 5. Thus, it is reasonable to set the dimension of
the linear space as 4 in LLP smoothing. After LLP smoothing,
the intrinsic dimension is reduced to a value between 3 and 4.
The numerical experiments indicate that LLP smoothing can not
only denoise, but also improve the efficiency of estimating the
intrinsic dimension.

Another empirical way of estimating the intrinsic dimension
is to analyze the sensitivity of the TRE to the different values
of the intrinsic dimension. Fig. 8 shows that the TRE is a
decreasing function of the intrinsic dimension with a increasing
slope. The slope of the curve in the figure has a dramatic change
when the intrinsic dimension is around four. Therefore, we
choose the intrinsic dimension as four in the paper.

2) Number of the Nearest Neighbors: The plot of the TRE
against the number of the nearest neighbors is used to select the
appropriate number of the nearest neighbors. Fig. 9 indicates the
TRE first falls steeply when the number of the nearest neighbors
is small, and then remains steady when the number of the nearest
neighbors is greater than 22. We set the number of the nearest
neighbors to be 23 for all the numerical studies. This is only one
of the many choices as the reconstruction error is not sensitive
to the number of the nearest neighbors within a range.

3) Length of the Calibration Data: The plot of the TRE
against the length of the calibration data in Fig. 10 illustrates
that the TRE is not very sensitive to the data length. Two years
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Fig. 8. Sensitivity of TRE to the intrinsic dimension (data length = 731 days,
number of the nearest neighbors = 23).

Fig. 9. Sensitivity of TRE to the number of the nearest neighbors
(data length = 731 days, intrinsic dimension = 4).

of data are applied to the manifold learning, and it helps to study
whether there is yearly seasonality.

IV. PREDICTION OF ELECTRICITY PRICE CURVES

The prediction of future electricity price curves is an im-
portant issue in electricity market related research, because
accurate predictions enable market participants to earn stable
profits by trading energy and hedging undesirable risks suc-
cessfully. However, it is difficult to make accurate predictions
for electricity prices due to their multiple seasonalities—daily
and weekly seasonality. The speciality of the electricity price
data often results in complicated models to forecast future
electricity prices, which are often overfitting and fail to make
accurate predictions in a longer horizon. Our method converts
the hourly electricity price time series with multiple season-
alities into several time series with only weekly seasonality
by manifold learning. After conversion, each data point in

Fig. 10. Sensitivity of TRE to the length of the calibration data
(intrinsic dimension = 4, number of the nearest neighbors = 23).

the new time series represents a day rather than an hour. The
simplification of the new time series makes the longer horizon
prediction easier and more accurate. Therefore, our method has
an advantage in the longer horizon prediction over many other
prediction methods.

A large amount of existing forecasting methods focus on
one-day-ahead price predictions, i.e., the horizon of prediction
is one day (24 h). Two articles [4] and [33] give a good review
on many prediction methods, and make a comparison on their
performance. In our paper, we compare our prediction methods
with three models—ARIMA, ARX and the naive method. The
ARIMA model [7] and the naive method are pure time se-
ries methods. The ARX model (also called dynamic regression
model) includes the explanatory variable, load, and is suggested
to be the best model in [33] and one of the best models in [4].

The longer horizon prediction has not drawn much atten-
tion so far. However, it also plays an important role in biding
strategy and risk management. Our numerical results show that
our prediction methods not only generate competent results in
forecasting one-day-ahead price curves, but also produce more
accurate predictions for one-week-ahead and one-month-ahead
price curves, compared to ARX, ARIMA and the naive method.
Moreover, as the new time series generated by manifold learning
are simple, it is very easy to identify the time series models or
utilize some nonparametric forecasting techniques. Our predic-
tion methods also allow larger size of data for model calibra-
tion and incorporate more past information, but the size of the
calibration data for ARIMA and ARX is often restricted to be
several months.

A. Prediction Method

In our prediction method, we first make the prediction in the
low-dimensional space, and then reconstruct the predicted price
curves in the high-dimensional space from the low-dimensional
prediction. There are three steps in detail.

1) Learn the low-dimensional manifold of electricity price
curves with LLE. The sequence of each coordinates of the
low-dimensional feature vectors comprises a time series.
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2) Predict each time series in the low-dimensional space
via univariate time series forecasting. Three prediction
methods are applied: the Holt–Winters algorithm (HW)
[34], the structural model (STR) [34] and the seasonal
decomposition of time series by loess (STL) [35]. Each
data point in the time series represents one day, so for
the one-week-ahead (one-day-ahead or one-month-ahead)
price curve predictions, seven (one or 28) data points are
forecasted for each time series.

3) Reconstruct the predicted price curves in the high-dimen-
sional space from the predictions in low-dimensional space
with LLE reconstruction.

The first and third step have been described in the previous
sections. In the second step, we make the univariate time se-
ries forecasting for each coordinates of the feature vectors rather
than making the multivariate time series forecasting for all the
time series in the low-dimensional space, because the coordi-
nates are orthogonal to each other.

There are a variety of methods of univariate time series
forecasting, among which Holt–Winters algorithm, structural
model and STL are selected. Both the Holt–Winters algorithm
and structural model are pure time series prediction methods
(models), and do not require any model identification as in
ARIMA. The STL method can involve the explanatory variable
in the prediction. All the prediction methods can be easily and
fast implemented in statistical software R. The following is
some brief description of the three prediction methods.

1) Holt–Winters Algorithm (HW): In Holt–Winters filtering,
seasonals and trends are computed by exponentially weighted
moving averages. In our numerical experiments, Holt–Winters
algorithm is executed with starting period equal to seven days
and 14 days, respectively. This choice is due to the weekly effect
of electricity prices.

2) Structural Models (STR): Structural time series model is a
(linear Gaussian) state-space model for (univariate) time series
based on a decomposition of the series into a number of com-
ponents—trend, seasonal and noise.

3) Seasonal Decomposition of Time Series by Loess (STL):
The STL method can involve explanatory variables in the pre-
diction. As the effect of temperature is usually embodied in elec-
tricity loads, only load is utilized as an exploratory variable. We
first learn the manifold with the intrinsic dimension four for both
prices and loads, and then decompose each time series in the
low-dimensional space of price and load curves into seasonal,
trend and irregular components using loess. Let and de-
note the trend2 of the th coordinates of the feature vectors for
prices and loads at time . Then, we regress on and the
lagged with the lag three. As the relationship between prices
and loads are dynamic, the history data we applied to train the
model are 70 days. The model is written as

B. Definition of Weekly Average Prediction Error

To assess the predictive accuracy of our methodology, three
weekly average prediction errors are defined for one-day-ahead,

2trend window = 5

one-week-ahead and one-month-ahead price predictions, re-
spectively. First, we give a general definition, the weekly
average -day-ahead prediction error.

For the th day of a certain week, , the calibration
data are set to be the two-year data right before this day, and
then -day-ahead predictions are made, i.e., the horizon of the
prediction is days. The th-day-ahead predictions are denoted
as a 24-dimensional vector , . The -day-
ahead prediction error for the th day is defined as

where is the actual electricity price curve corresponding
to , and is the average of the corresponding actual
electricity prices of the -day-ahead predictions for the th day.

is the norm of a vector, which is the sum of the absolute
values of all the components in the vector.

The weekly average -day-ahead prediction error is defined
as

The weekly average one-day-ahead prediction error ,
weekly average one-week-ahead prediction error and
weekly average one-month-ahead prediction error are
defined for , 7, 28, respectively.

We define , and as the standard deviations of
, , for , 7, 28, respectively.

C. Prediction of Electricity Price Curves

Our numerical experiments are based on 12 weeks from Feb-
ruary 2005 to January 2006, which consist of the second week of
each month. Three weekly average prediction errors as defined
above are calculated for each week, respectively. For each data
set, the same parameter values taken from the previous section
are used. The number of the nearest neighbors and the intrinsic
dimension are set to be 23 and 4, respectively. Only one day, Jan-
uary 24, 2005, is identified with outliers. As we only have the
forecasts of loads for six future days from the NYISO website,
the weekly average one-week-ahead prediction error for STL
and ARX is actually the weekly average six-days-ahead predic-
tion error.

Tables III and IV provides the weekly average one-day-ahead
prediction errors for the 12 weeks and their standard deviations.
Our prediction methods—Holt–Winters, structural model and
STL—are compared with ARX, ARIMA and the naive method.
The details of the ARIMA and ARX model are in Appendices A
and B. The naive predictions of a certain week are given by the
actual prices of the previous week. Holt–Winters and structural
model outperform all the other methods. It seems that involving
the exploratory variable does not necessarily improve the pre-
diction accuracy. STL performs slightly worse than Holt–Win-
ters and structural model, and ARX also has less accuracy than
ARIMA. This is not consistent with the results in [33] and [4],
where ARX has better performance than ARIMA. A potential
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TABLE III
COMPARISON OF WPE (%) OF ONE-DAY-AHEAD

PREDICTIONS FOR 12 WEEKS

HW7 and HW14 stand for Holt–Winter algorithm with starting period
equal to seven days and 14 days, respectively.

TABLE IV
COMPARISON OF � (%) OF ONE-DAY-AHEAD PREDICTIONS FOR 12 WEEKS

cause is that the predictions of loads are not precise, or the cor-
relation between loads and prices is not high enough in NYISO.

In Tables V and VI, the weekly average one-week-ahead
prediction errors for the 12 weeks and their standard deviations
are presented. All of our prediction methods outperform ARX,
ARIMA, and the naive method. The ARIMA model acts even
worse than the naive method for one-week-ahead predictions.
Since the ARIMA model is a very complicated model with
multiple seasonalities, it is often overfitting and makes the
longer horizon predictions less accurate. The ARX model is a
little simpler and given more information by the load forecasts,
so it performs better than ARIMA. However, both ARX and
ARIMA need to predict 168 data points for one-week-ahead
predictions, while our prediction methods only need to predict
seven data points for each time series. Therefore, our prediction
methods have a great advantage in the longer horizon predic-
tions. Among Holt–Winters, structural model and STL, STL
has slightly worse performance than other two, and structural
model is the most accurate.

TABLE V
COMPARISON OF WPE (%) OF ONE-WEEK-AHEAD

PREDICTIONS FOR 12 WEEKS

TABLE VI
COMPARISON OF � (%) OF ONE-WEEK-AHEAD PREDICTIONS FOR 12 WEEKS

The proposed method can be applied to forecast prices in
a longer horizon than one week, e.g., two weeks or even one
month. As there are only a few methods associated with one-
month-ahead price predictions, we apply three naive methods
to compare with. The first naive method takes the last month
prices in the calibration data set as the predictions. The second
method repeats the last week prices four times, and the third one
replicates the prices of last two weeks twice, respectively, as the
predictions. Tables VII and VIII provide the weekly average pre-
diction errors of the one-month-ahead price predictions for the
12 weeks and their standard deviations. The notations—naive1,
naive2 and naive3—stand for the three naive methods. From
the comparison, the proposed methods outperform all the naive
methods. We notice that the total stand deviation of the struc-
tural model is larger than that of the naive methods, and it is
mainly due to an inaccurate prediction for one day in week five.
Thus, Holt–Winters algorithm has the best performance among
all the methods for one-month-ahead price predictions.

In summary, our prediction methods without a exploratory
variable—Holt–Winters and structural model—outperform all
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TABLE VII
COMPARISON OF WPE (%) OF ONE-MONTH-AHEAD

PREDICTIONS FOR 12 WEEKS

TABLE VIII
COMPARISON OF � (%) OF ONE-MONTH-AHEAD PREDICTIONS FOR 12 WEEKS

of ARX, ARIMA and the naive method in both one-day-ahead
and one-week-ahead predictions. STL is competent with ARX
and ARIMA in one-day-ahead predictions, and performs better
in one-week-ahead predictions. Our prediction methods have a
great advantage in the longer horizon predictions spanning days
to weeks.

While the numerical experiments reported in the paper are
conducted with the day-ahead electricity prices in the Capital
Zone in NYISO, numerical studies have been done with price
signals in other zones in NYISO and demonstrate the same kinds
of comparative advantages of our method.

V. DISCUSSION OF MODELING AND PREDICTION

In this section, we discuss some extensions of our modeling
and prediction of electricity price curves. The restriction of our
method is also discussed.

A. Modeling and Prediction With New Historical Price Curves

It is not necessary to build a new model whenever new his-
torical price curves are coming. Denote the new historical price

curve as . The procedure of computing the low-dimensional
feature vector of is as follows.

1) Identify the nearest neighbors of the new data point
among . Let denote the set of the indices of
the nearest neighbors of .

2) Compute the linear weights which best reconstruct
from its neighbors, i.e., minimize the following objective
function:

(5.8)

subject to the sum-to-one constraint, .
3) The low-dimensional feature vector is computed by

.
For the prediction of each dimension in the low-dimensional
space, the original prediction models can still be employed.
Therefore, our modeling and prediction of electricity price
curves can be utilized online for real forecasting.

B. Weekday and Weekend Effect

Electricity price has different daily profiles, in particular,
weekdays verses weekend. To detect the significance of the
weekday and weekend effect, we can add the dummy variables,
e.g., Saturday and Sunday, into our prediction method in the
same fashion as electricity loads. We did the numerical exper-
iments, but the prediction results are almost the same as those
without the dummy variables. The reason may be that the effect
of weekdays and weekend is mostly captured by the weekly
seasonal and the effect of electricity loads.

C. Effects of Other Factors, e.g., Hurricane Events and Higher
Prices for Natural Gas

Our prediction method can be extended to incorporate other
factors which affect the price curve dynamics. For the irreg-
ularly occurring event, e.g., hurricane events, the invention
analysis can be considered in the prediction in low-dimensional
space. For the effect of natural gas price becoming higher, our
prediction method can incorporate natural gas price as a mod-
eling factor in the same manner as it does with electricity load.
Exploration along these directions is left for future research.

D. Restriction of Our Method

Our model captures the price spike aspect of electricity price
curves but does not focus on the prediction of the extreme spikes
that are likely caused by one-of-a-kind events. For instance, the
historical data set used for calibrating the forward price curve
model in the New York area from February 2003 to January
2006 includes all price spikes but one outlier. This implies that
the calibrated forward price curve model is capable of predicting
price spikes that are of certain stationarity nature. As for the
extreme spikes resulting from one-of-a-kind events, they shall
not be viewed as being sampled from an embedded low-dimen-
sional intrinsic manifold structure, thus they can be removed
from the calibration data set. However, if such extreme price
spikes were caused by changes to the fundamental structure of
aggregate supply and demand, then the intrinsic dimension of
the low-dimensional manifold would change accordingly, and



CHEN et al.: ELECTRICITY PRICE CURVE MODELING AND FORECASTING 887

yield a different set of major factors of the price dynamics in a
low-dimensional space.

VI. CONCLUSION

We apply manifold-based dimension reduction to electricity
price curve modeling. LLE is demonstrated to be an efficient
method for extracting the intrinsic low-dimensional structure of
electricity price curves. Using price data taken from the NYISO,
we find that there exists a low-dimensional manifold represen-
tation of the day-ahead price curve in NYISO, and specifically,
the dimension of the manifold is around 4. The interpretation of
each dimension and the cluster analysis in the low-dimensional
space are given to analyze the main factors of the price curve
dynamics. Numerical experiments show that our prediction per-
forms well for the short-term prediction, and it also facilitates
medium-term prediction, which is difficult, even infeasible for
other methods.

APPENDIX A

The procedure of identifying ARIMA model follows paper
[7]. The history data we applied to train the model are 90 days.
The model is as follows:3

The model estimation and prediction is implemented through
the SCA system.

APPENDIX B

The ARX model with explanatory variable load follows paper
[33]. The history data we applied to train the model are 45 days,
as the relationship between prices and loads is dynamic. The
model is as follows:

3Occasionally, we slightly change the model when it does not converge.

The model estimation and prediction are implemented in
MATLAB.
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