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Transformer Thermal Modeling: Improving
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Abstract—Eventually, all large transformers will be dynamically
loaded using models updated regularly from field-measured data.
Models obtained from measured data give more accurate results
than models based on transformer heat-run tests and can be easily
generated using data already routinely monitored. The only signif-
icant challenge to use these models is to assess their reliability and
improve their reliability as much as possible. In this work, we use
data-quality control and data-set screening to show that model re-
liability can be increased by about 50% while decreasing model
prediction error. These results are obtained for a linear model.
We expect similar results for the nonlinear models currently being
explored.

Index Terms—ANSI C57.91, top-oil temperature, transformer,
transformer thermal modeling.

I. INTRODUCTION

EVENTUALLY, all transformers greater than about
20 MVA will be loaded using dynamic thermal models

and these models will be derived from measured field data
rather than from the data contained in heat-run reports. The
comparison of the top-oil temperature (TOT) performance
of the traditional (Clause 7) American National Standards
Institute (ANSI)/IEEE model [1] versus a model derived from
field-measured data shows why this will be the case: even
simple linear models derived from field-measured data are
more accurate than the ANSI Clause 7 model using parameters
taken from transformer test (heat-run) reports. (See Figs. 1 and
2 for this comparison. Also see the Appendix for a description
of this transformer and thermal sensors used in generating these
data.) Indeed, models derived from measured field data—data
which utilities already routinely monitor and record—naturally
account for many phenomena in operating transformers (op-
erational faults, such as fouled heat exchangers, inoperative
pumps/fans, etc.) that the nominal Clause 7 model does not.
And it is not a simple matter to detect the type of operational
fault that has occurred and then, for the Clause 7 model, adjust
the model appropriately.

A recent flurry of activity is sorting out which model(s) will
eventually be used to predict the TOT. The dust is a long way
from settling. Predicting in the long run which model(s) will sur-
vive and which will perish is a risky business. But this much is
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Fig. 1. Comparison of the ANSI Clause 7 model and a linear model
derived from field-measured data. (Color version available online at
http://ieeexplore.ieee.org.)

Fig. 2. Load, ambient temperature, measured TOT, and the TOT predicted by
the ANSI Clause 7 model and a model derived from field-measured data. (Color
version available online at http://ieeexplore.ieee.org.)

relatively certain: the traditional (Clause 7) ANSI model [1] (aka
top-oil model) will not survive in its current form for two rea-
sons: First, it does not accurately model the dynamic behavior
of ambient temperature [2], [3]. Second, (and it is not yet clear
how significant this error is), [4]–[6] have shown from first prin-
ciples, that the placement of the exponent used in the ANSI
model [1] is, at best, suboptimal if its role is to account for the
change in heat transfer under various cooling modes. (Although
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[1] states that is an “empirically derived exponent” selected
“for each cooling mode to approximately account for changes
in resistance with a change in load.” So the empirical of [1]
accounts for both changes in resistance and heat transfer under
various cooling modes, and cannot be compared directly with
the exponent of [4] and [5].)

In addition to these potentially viable first-order models
[2]–[6], there are some higher order linear models [7]–[9],
which may also prove eventually important; although, in order
to determine the parameters for these higher order models,
more quantities must be monitored (beyond load current,
ambient temperature, and top oil temperature). While such
monitoring may become routine in the future, it is rare today.
Exactly which model and parameter estimation procedure will
ultimately become standard in the industry is anyone’s guess at
this point.

There is evidence that regardless of which model is
used—whether first order linear [2], [3] or one of three
different nonlinear models (Annex G of [1], [4], or [6])—deter-
mining parameters will involve an ill-conditioned process. By
this, we mean that small changes in field-measured values can
lead to large changes in model parameters. We have observed
this when working with linear models and have observed a
similar phenomenon when working with the nonlinear model
of [4]. We also suspect such is the case with the Annex G
model; although [10] does not report on issues of stability of
the parameter estimation process. For linear modeling, ill-con-
ditioning is well known, and referred to as multicolinearity.

The practical results of multicolinearity in linear models (ill
conditioning in nonlinear models) are that a wide range of co-
efficients will have similar performance when measure against
predicted values. That is, the prediction error of TOT, for ex-
ample, may be small for a wide range of coefficients; however,
this does not necessarily mean that all sets of coefficients will
extrapolate to nearly identical values when the load or ambient
temperature are significantly different from the conditions used
to train the models.

Ill-conditioning is a problem when the input (measured) data
sets are noisy; hence, it is problem for all data sets and, there-
fore, all models. In this paper, we propose an algorithm for per-
forming data-quality control on the field-measured data used for
transformer thermal model creation. We also propose a method
of data-set screening which can eliminate data sets with poor-
quality data. We then assess the improvement these procedures
have on the reliability of the linear model, as proposed and de-
veloped in [2] and [3].

Data-quality control (QC) and data-set screening have a sim-
ilar effect on nonlinear and linear models. In this work, we limit
our investigation to linear models for simplicity.

II. MODEL DESCRIPTION

The traditional ANSI top-oil-rise (Clause 7) model [1], is
governed by the differential equation

(1)

which has the solution

(2)

where

(3)

(4)

and where
top-oil rise over ambient temperature ( C);
top-oil rise over ambient temperature at rated load
( C);
ultimate top-oil rise for load ( C);
initial top-oil rise for ( C);
ambient air temperature ( C);
time constant (h);
thermal capacity (MWh C);
total loss at rated load (in megawatts);
(oil exponent) an empirically derived coefficient se-
lected for each cooling mode to approximately account
for a change in resistance with load;
ratio of load to rated load;
ratio of load loss to no-load loss at rated load.

The TOT is then given by

(5)

The simplest of the linear models [2], [3], [7]–[9] and the
top-oil model [2], [3] (cf. top-oil-rise model) corrects the dy-
namic limitations of the top-oil-rise model by including in (1)
the dependence of the time-rate-of-change of on ambient
temperature

(6)

To obtain a discrete-time model, we discretize (6) by applying
the backward Euler discretization rule

(7)

to yield (with the assumption that )

(8)

where are functions of the differential equation coeffi-
cients [3], and is the per-unit transformer current (based on
the transformer’s rating) at time-step . Equation (8) is a linear
model with three coefficients. The least squares method can be
used to obtain the model coefficients that best fit the measured
data (rather than using the formulae for the ’s from test re-
port data).

III. DATA-QUALITY CONTROL TECHNIQUES

It is impossible to remove all noise in the field data. For
example, there is transducer/measurement noise, the presence
of unmodeled or inaccurately modeled nonlinearities, the ab-
sence of unmeasured exogenous driving variables, etc; however,
through the judicious use of data-quality control, some noise can
be eliminated, improving the reliability of the model.
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A. Identifying Bad Data

The purpose of the data-quality control technique is to iden-
tify those data that degrade reliability and then remove them
from the input data set. The data to be identified include

1) measurements flagged as erroneous in the input data set;
2) ambient temperature ( ) out of range;
3) spikes in TOT;
4) rapid and large jumps in ;
5) large discrete load changes;
6) data with incorrect cooling mode information.

Of the above types of data, types 1, 2, and 3 represent erro-
neous measurements; type 4 and 6 are likely to be a valid mea-
surement but indicate a change in the cooling mode of the trans-
former; and type 5 are usually good measurements but sampled
at an insufficient sampling rate.

1) Data Flagged as Erroneous in the Input Data Set: Typ-
ically, many utilities do some rudimentary preprocessing of
transformer measurements and allow for a quality-control (QC)
flag in their data file (usually a 0 or ) to identify data that
they believe to be erroneous. Through experimentation, we
have found that if there are less than 2.5 consecutive hours of
erroneous measurements, our model will not be significantly
affected if we use the linear interpolation to estimate the TOT
or measurement during the time interval in question; for
more than 2.5 consecutive hours, the bad measurements are
discarded.

2) Ambient Temperature Out of Range: In some data sets we
have received for transformers in Phoenix AZ, we have noticed

significantly below 15 F. Since the lowest recorded tem-
perature locally was 17 F, and the highest was 122 F, we re-
quired all data to be between 15 F and 125 F. While these
values are specific to Phoenix, such temperature ranges are easy
to define for other locations.

3) Spikes in TOT Data: We have observed situations where
TOT may change by 4 or more in 15 min. Since this is not
physically possible, these measurements must be considered as
errors. We correct these spikes by treating them as bad data and
linearly interpolating between the adjacent TOT data points. In
our data QC algorithm, we remove those spikes in which the
TOT changes by 0.5 C or more in 15 min and then jumps back
by 0.5 or more in the next 15 min. Figs. 3 and 4 give a com-
parison between the predicted results obtained before and after
removing the TOT spikes. These figures use data taken from
the Corbell transformer under FA cooling. (Note that the error
plotted in these figures is multiplicatively scaled by a factor of
5, so a 5 C error on the plot represents a 1 C prediction error.
Also, for the sake of convenience, the error plotted in these two
figures is Predicted TOT–Measure TOT.) Fig. 5 gives a com-
parison between the error duration before (solid line) and after
(dashed line) removing the TOT spikes. The error duration curve
gives the amount of time (in per unit) that a given value of error
exceeds.

4) Rapid and Large Jumps in Changes in : In many
cases, we have found large prediction errors occur when there is
a rapid change in ambient temperature, as shown in Fig. 6. This
figure shows many curves; let us explain what these curves are
as follows.

Fig. 3. Prediction errors before removing the spikes in TOT data. (Color
version available online at http://ieeexplore.ieee.org.)

Fig. 4. Prediction errors after removing the spikes in TOT data. (Color version
available online at http://ieeexplore.ieee.org.)

• The “QC flag” (labeled) indicates good data when equal
to 70, and bad data when equal to 40. (Fig. 6 shows only
good data.)

• Measured TOT is labeled “TOTmeas.”
• Calculated/predicted TOT is labeled “TOTpred.”
• TOT prediction error (multiplied by 5) is labeled

“ .”
• Measured precipitation is labeled “Rain.”
In Fig. 6, there are two places (marked) where there is a quick

drop in the ambient temperature. At both times, some amount of
rain was recorded. Notice that in one location, there is a steep
positive increase in the prediction error while at the other lo-
cation there is none. (Error is defined as Predicted-TOT–Mea-
sured-TOT). The presence of rain indicates evaporative cooling,
which means the transformer is experiencing a different thermo-
dynamic cooling mode than the one we are modeling.
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Fig. 5. Error duration curve before and after removing the spikes in TOT data.
(Color version available online at http://ieeexplore.ieee.org.)

Fig. 6. Example of obtaining large errors due to a quick change of � .
(Color version available online at http://ieeexplore.ieee.org.)

The solution to this problem is to eliminate data during times
of rain; however, we unfortunately do not usually have local rain
data nor are the rain data we have reliable. (This is the reason a
steep increase in error is not in evidence at the second location
in Fig. 6.)

Because a quick drop in temperature is a product of the rain
process—and since we have reliable temperature data—we use
quick drops in ambient temperature as a marker for rain. We dis-
card 12 h of data after each quick ambient-temperature change
to allow the transformer to completely dry before we begin again
to use the transformer’s data. Fig. 7 illustrates the prediction
results after discarding the data affected by quick changes in
ambient temperature ( indicates time intervals
with discarded data). The large peak error in Fig. 6 has been
eliminated in Fig. 7. Note that we have eliminated one interval
in Fig. 7 where rain may not have occurred. Such unintended

Fig. 7. Example of discarding data affected by quick changes of � . (Color
version available online at http://ieeexplore.ieee.org.)

Fig. 8. Example of large errors due to a rapid change of load. (Color version
available online at http://ieeexplore.ieee.org.)

consequences of this algorithm create no problems, other than
shrinking the size of the data set.

5) Large Discrete Load Changes: We have observed that
large discrete changes in load tend to produce large errors. Fig. 8
illustrates this point. Where the load profile is labeled “jump”
on July 14, the load decreases from about 20 to 10 MVA in
15 min and jumps back to about 20 MVA at the next 15-min
sample. (Note that we sample only every 15 min, a sampling
rate we have found to be sufficient.) The prediction error here
shows that the real TOT is much higher than the predicted TOT
(i.e., the model under-predicts). In some other places where the
load has an abrupt increase, the model over-predicts. When load
drops by 10 MVA for one sample, we do not know whether the
decrease occurred for a minute or for 29 min. We model this
as a 15-min load drop, which may be too short for the specific
outage shown in Fig. 8, or may be too long.



TYLAVSKY et al.: TRANSFORMER THERMAL MODELING 1361

Fig. 9. Example of discarding data affected by large discrete load changes.
(Color version available online at http://ieeexplore.ieee.org.)

Our solution to this problem is to discard the data that are
affected by those abrupt load changes. For the above case, we
would discard 30 min worth of data. Fig. 9 illustrates that, after
discarding the data affected by large discrete load changes, the
large peak errors in Fig. 8 have been eliminated.

6) Problems Identifying the Cooling Mode: Each mode of
cooling, OA, FA, FOA, represents a different thermodynamic
cooling condition and must be represented by a different trans-
former thermal model. Although the Salt River Project and Ari-
zona Public Service are most interested in the top rating of their
transformers, we have used our modeling procedure to predict
performance under OA cooling as well. To develop models for
each cooling mode, we divide the measured data into tiers. Tier
1 is defined as no fans on, tier 2 means some—but not all—fans
are turned on, and tier 3 means all fans are on and/or oil-circu-
lating pumps. We use the QC Flag to identify Tier 1, 2, and 3
data according to the following:

• : Tier 3 data;
• : Tier 2 data;
• : Tier 1 data;
• : discarded data.

Ideally, we have telemetered cooling fan/pump contactor data
that indicates when fans/pumps turn on and off. Rarely is this the
case. More often, we use design settings for the turn-on/turn-off
temperatures (either TOT or HST) of the fans/pumps to deter-
mine the cooling mode of the transformer for any given TOT or
HST temperature. Our experience with the field data shows that
this information is sometimes unreliable.

Take Arcadia bay-2 for example. The Arcadia bay-2 trans-
former has two groups of fans for cooling purpose and, thus,
can operate in three different cooling modes. The fans are set to
turn on and turn off in accordance with the simulated hot-spot
temperature (SHST). The first group of fans is designed to turn
on when the SHST exceeds 65 C, and turn off when the SHST
drops below 59 C. Likewise, the second group of fans is set to
turn on when the SHST exceeds 75 , and turn off when the
SHST drops below 69 C.

Fig. 10. Arcadia bay-2 TOT and TOT prediction error plot. (Color version
available online at http://ieeexplore.ieee.org.)

Fig. 11. Expanded view of TOT slope discontinuity. (Color version available
online at http://ieeexplore.ieee.org.)

Given this turn on/off information, we divided the data into
three tiers as described earlier, and applied our algorithm to the
tier 1 data. The plots of the measured TOT, predicted TOT, and
the prediction error are shown in Fig. 10. Also illustrated in this
figure is the QC Flag, which indicates the boundaries of the tiers.

After carefully inspecting the curve of the measured TOT,
we noticed that there are many points where the slope of the
curve is apparently discontinuous. Normally, we expect a slope
discontinuity at the fan turnoff point during a decreasing TOT as
shown near the 6/03 day boundary in Fig. 10, and as amplified
in Fig. 11(a). This slope discontinuity occurs when fans turn
off because the amount of heat expelled per unit time by the
transformer decreases, causing the cool-down to slow.

Sometimes we have observed the slope discontinuity (and,
therefore, fan turn-off point) to be much lower than 59 C, as
found in the data of Fig. 10 near the 5/30 boundary (marked
as point “a”) and as amplified in Fig. 11(b). This error in



1362 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 21, NO. 3, JULY 2006

Fig. 12. Schematic of control circuitry for fan motor control. (Color version
available online at http://ieeexplore.ieee.org.)

the cooling mode has two consequences. First, since we are
assuming 59 C SHST turn-off point in creating our data sets,
this error causes us to include data gathering under Tier 2
cooling conditions in our Tier 1 data training-data set, skewing
our model results. Second, when performing a simulation using
our model to quantify the performance error, we see unusually
large errors (Fig. 10) at the points where we are simulating Tier
2 performance with a model derived mostly from Tier 1 data.

We have observed similar (but not identical) unreliability in
cooling mode switching in most other transformers whose data
we have looked at closely and we suspect that the causes for the
unreliable switching may be legion; however, for the situation
presented in Fig. 10, we were able to determine the cause.

If you look carefully at Fig. 10, you will notice that the fan
turn-off temperatures are unusually low only when the peak
value of TOT and, consequently, SHST for a given 24-h cycle
are very high, while if the peak value of TOT (and SHST) are
rather low, the fan turn-off point is higher, closer to 59 C.
Fig. 12 is the electrical schematic that shows the first-stage
cooling fan controls for the Arcadia bay 2 transformer. In this
control scheme, the primary thermal switch (solid state) is set
to close at 65 C, and open at 59 C. The secondary switch
(electromechanical and less accurate/reliable) is redundant, and
acts as a backup if the primary thermal switch fails to operate.
As a backup switch, it picks up at a higher temperature and
drops out at about 48 C SHST. Therefore, the following is
found:

• if the TOT/SHST peak is not large, only the primary switch
picks up at 65 C and drops out at approximately 59 C;

• however, if the TOT/SHST peak is sufficiently high, then
the secondary thermal switch is activated (along with the
primary) and drops out at its design temperature, 48 C.

The result of this control scheme is that the fan turn-off tem-
peratures appears chaotic. We can develop an algorithm for clas-
sifying data according to the cooling mode to accommodate
this control scheme; however, because of the uncertainty in the
turn-on/turn-off performance, even this is problematic. We are
aware of methods that may help to assign data to the proper
cooling mode when the switching is unreliable; however, we
currently do not have a working solution to this problem.

TABLE I
EFFECT OF THE DATA-QUALITY CONTROL

Fig. 13. Applying models derived before and after data QC to independent test
data. (Color version available online at http://ieeexplore.ieee.org.)

B. Effect of the Data-Quality Control

Selecting appropriate measures for assessing the reliability
of the transformer thermal models is a larger issue than can be
addressed here. We have chosen three metrics for assessment.

• Coefficient of variation (CV), defined as the standard de-
viation divided by the mean, provides a measure of the re-
peatability of the model parameters and, hence, a measure
of the reliability of the model. We apply this measure to
each of the model coefficients (i.e., , , and ) ob-
tained by building models from many independent training
data sets.

• Mean absolute error (MAE) is the average of the absolute
value of the TOT prediction errors when compared to mea-
sured TOT values.

• 10% error is the value (from the error duration curve) that
the model error exceeds 10% of the time.

To measure the effect of the data QC scheme on reliability,
we applied these three reliability measures to the models we
derived before and after applying the QC scheme. Table I gives
the raw data from this comparison. Depending on the coefficient
you choose, the model reliability has increased by 15%–30%,
while the prediction error, as measured by MAE and 10% error,
has decreased by 1.5%; that is, we have increased the model
reliability while improving model accuracy.

To measure the effect of data QC scheme on error perfor-
mance, we also constructed Fig. 13, which shows the error du-
ration curves for two models. The “Before Data QC” model was
built using all data (including bad data). The “After Data QC”
model was build after data QC eliminated the bad data. Fig. 13
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shows that on the average, the “After Data QC” model has lower
prediction errors.

IV. DATA-SET SCREENING TECHNIQUES

While data QC can eliminate some erroneous data, a data set
screening technique can detect anomalous models and, there-
fore, by inference, anomalous data sets. In building a model, we
normally only use part of the data for training (known as the
training data set) and reserve the rest of the data to perform in-
dependent tests on the model’s performance. These latter data
sets are known as testing data sets. A valid model is expected
to perform well (we have chosen TOT prediction error as our
gauge of performance) on both types of data sets: the training
data set and testing data sets. If a model does not perform well
on either or both of these classes of data sets, we suspect that
the data of which the model was built from must be anomalous.
By removing the anomalous data sets from our model building
procedure, we improve the reliability of the model.

Our data screening technique involves the following steps.

• Divide the available data into 10-day
data sets. (One could use smaller data
sets, but using less than three-day data
sets is unadvisable.)
• Build a model for each data set.
• Measure the performance of each models
on its training data set. (This error is
known as training error.)
• Measure the performance of each models
on all of the other testing data sets.
(This error is known as testing error.)
• Reject those data sets that produce
anomalous models (i.e., models that do not
perform “well” on these data sets).
• The accepted data sets are then used to
create a thermal model of the transformer
and assess the model’s reliability.

Since the way we define “good” performance is very dif-
ferent for training and testing errors, we describe each proce-
dure separately.

A. Training-Error-Based Screening—Gaussian Distribution
Based

To eliminate erroneous data based on training error, we build
a model for each 10-day data set from available data and then
use those models to calculate the training error, that is, the TOT
prediction error on the respective data sets used to build each
model. An error duration curve is constructed for each model’s
training error and the error value on the error duration curve at
the 10% point is used to measure the accuracy of the model. The
10% training-error-duration data points are shown in Table II for
each of the 14 data sets for the Corbell bay-3 transformer.

We assume the training errors are Gaussian distributed with
a zero mean, and reject a model if its training error exceeds
a prescribed threshold value. The threshold value is based on

TABLE II
10% ERROR DURATION OF TRAINING DATA SETS

the standard deviation ( ) of the 10% training-error-duration
values in the following way:

Based on past experience, we have an idea of what the max-
imum should be, say (1.0 C), for good source data.
We then compare the calculated , call it , of the 10%
error-duration measures and compare that with .

• If , then we have good quality data. This is
the case for the data shown in Table II. We eliminate only
the data sets in Table II that generated models whose 10%
training-error-duation values are greater than . The
eliminated models, shaded in black in Table II, are 12 and
13. For good quality data, we typically discard very few
data sets. We use the retained data sets to build a thermal
model and to assess reliability of the model.

• If , that means the data quality is poorer.
If there aremuch data, we can apply this same criteria for
data-set rejection as in the bullet above; however, in many
practical cases, available data are limited; consequently,
in order to have enough data to assess the reliability of the
model, we eliminate those data sets with a 10% training-
error-duration value larger than the calculated .

Note that if this method of training, aka, diagonal training, is
used alone to estimate the performance error, it will lead to an
error estimate that is unrealistically low. In the approach we
propose here, we do not use the absolute value of the diag-
onal/training error to qualify data sets, rather we use the rel-
ative value of the training error to disqualify data sets. Using
this approach, it is possible to discard good models (those that
may pass the test in the next section) but it is unlikely that we
will retain bad models. Using the remaining qualified data sets,
testing-error based screening (which does not suffer the bias of
training-error-based screening) is then used as a second test to
detect anomalous data sets.

B. Testing-Error-Based Screening— Distribution Based

The second step of our two-stage screening procedure is to
eliminate models that do not perform well when using testing
error performance as a measure.
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TABLE III
10% TESTING-ERROR DURATION VALUES

In this step, we use each model created in step one and mea-
sure their testing-error performance (using the 10% error-du-
ration value as a measure). For a data population with 14 data
sets, we derive 13 testing error-duration measures as shown in
Table III for each model derived from one 10-day data set. (The
data sets already eliminated in step one of our procedure are
shaded in black in Table III. The diagonal values that are darkly
shaded in this table are training error values from Table II.)

We assume the prediction-error measures of each row
of Table III (including, for simplicity, the diagonal training
measure) are a sample taken from an independent Gaussian-dis-
tributed whole population. (Note that for a small number of
data sets, including the training-error measure can lead to a
bias in the error estimate; hence, the training-error measure
should be discarded in this instance.) We assign the following
variables for the subsequent discussion:

• is the variance of the sample/row, (shown in the last
column of Table III);

• is the variance of the corresponding whole Gaussian-
distributed population (unknown);

• is the size of the sample (14).
The sample variance is an approximation of the popula-

tion variance but for different samples from one population,
we may get a wide range of sample variances . Since is a
random variable, it is easy to image that we could get a low
(with a lucky sample) from a population of poor quality data and
a large value (from an unlucky sample) from a population of
high-quality data. By only knowing , what we wish to do is
determine whether the sample/row comes from a good popula-
tion or flawed population; that is, by knowing in Table III, de-
termining whether our model is good or bad and, hence, whether
the data that generated it are good or bad. If the population
(model) is bad, than we reject the data set that created the model;
otherwise, we keep the data set.

The problem is that we cannot know with certainty for any
given whether it comes from a good or bad population. For-
tunately, we can apply the hypothesis test for variance (or
standard deviation) to these samples (rows) to determine the
probability of accepting a bad model (population) as good in
the following way.

With the assumptions we are using, it can be shown that the
calculated value of for each sample (row) of
Table III is a distributed random variable with degrees
of freedom, or [11]. In the hypothesis test for vari-
ance, if we want to know the probability of accepting a model
(population) whose is indicative of poor quality data, that is,
greater than some acceptable value, say , and we need to do
this solely based on the variance of one sample whose variance
is , then the value of the integral of the density
curve, from 0 to the point gives us an upper-
bound on that probability. We can write this probability as

From past experience with good models/populations for
transformer thermal modeling, we have gained an idea of what
the value of the testing errors are: say . And, again
based on past experience, we think that the models can be
considered as bad with much confidence, if their corresponding

is larger than by a specified factor of (i.e.,
). Assume also that we wish to limit the probability

of accepting a bad model (population) as good to some value
. If we take a sample with variance from this bad popula-

tion with , then, according to the discussion above,
is . Therefore,

there exists some value of , let us call it ,
such that

(9)

where stands for probability (see Fig. 14 for a graphical
interpretation of ). This means that if we use

as the testing condition for
accepting a model as good, the probability of accepting a bad
model with is . For a bad model with , we
have

(10)

indicating that is the upper limit of the probability of accepting
a bad model as good, which is what we desire.
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Fig. 14. �2 distribution of the entire population.

TABLE IV
EFFECT OF THE DATA-SET SCREENING

TABLE V
EFFECTS OF THE DATA QC AND DATA-SET SCREENING

Therefore, we use (i.e.,
), as the testing condi-

tion for judging a bad model as good, based on its testing
errors.

C. Results of Data Screening

In Table III with data sets 7 and 14, the lightly shaded rows
are screened out based on testing errors. These models perform
well on their training data sets as seen in this table, but they
perform poorly on the other 13 testing data sets, as evidenced
by their variance values—which is what the data-screening
procedure measures. Table IV gives a comparison between
the coefficients of variation of the coefficients as well as
the error measures for TOT prediction, obtained before and
after applying data-set screening. The CVs of linear model
coefficients improve by 11%–38%, and the error measures
have improved by 5%–9%.

V. CONCLUSION

By applying both data-quality control and data-set
screening procedures, we have been able to improve the
reliability of the transformer thermal model coefficients by
35% to 50% while decreasing the prediction error 7%–11%
as shown in Table V; that is, we have increased the model
reliability substantially while improving the model accuracy.
While we have applied these techniques to a linear model,
we expect similar gains when applying these techniques to
other nonlinear models.

Fig. 15. Cross-section diagram of the core form transformer with winding
arrangement.

TABLE VI
CORBELL TRANSFORMER HEAT-RUN DATA

APPENDIX

TRANSFORMER DESCRIPTION

The Corbel transformer used in this work is a conventional
three-phase, three-leg core-form (Fig. 15), built for step-down
operation. The transformer is of “sealed tank” design. There is a
gas space above the oil inside the transformer. The high-voltage
winding contains a de-energized full capacity tap changer. The
reduced capacity load tap changer (LTC) is electrically located
in the low-voltage winding and is rated at 1500 A; hence, no
series transformer is necessary.

Each phase has three windings. From inner to outer they are
as follows:

• regulating or tap winding;
• low-voltage helical winding;
• high-voltage disk-type winding.
The heat-run data for this transformer are contained in

Table VI and the basic data for this transformer are contained
in Table VII.

The temperature sensor consists of a 100- platinum resis-
tance temperature detector (RTD) installed in a dry well in seg-
ment number one near the top of the transformer. The RTD
is connected to a commercially available transformer temper-
ature monitor, the Barrington TTM, which feeds the signal to
the SCADA system. The top-oil temperature measurements are
recorded by the SCADA computer every 15 min. The top-oil
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TABLE VII
BASIC TRANSFORMER DATA

probe is located just below the gas blanket and above the lowest
oil level.
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