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Abstract: Improving the utilisation of transformers requires that the hot-spot and top-oil
temperatures be predicted accurately. Using measured (noisy) data to derive equivalent linear
dynamic thermal models yields performance that is superior to the ANSI standard model, but the
reliability of these model coefficients must be assessed if the user is to have confidence in the model.
By adding arbitrarily large amounts of data in the modelling process it was expected to make the
reliability measures of these models arbitrarily small. When this did not happen, an investigation
began that showed why there is a limitation to the accuracy of models derived from noisy data. It is
also shown that a standard technique for assessing the reliability of model coefficients is invalid
because of the absence of unmeasured driving variables. An alternative method for assessing
transformer model reliability is provided.

1 Introduction

The maximally efficient dynamic loading of transformers
requires a model that can accurately predict both top-oil
and hot-spot temperatures (HSTs and TOTs). We know
that the traditional top-oil model [1] does not accurately
model dynamic behaviour [2, 3], but yields accurate steady-
state behaviour. Nevertheless, this model [1] is used
ubiquitously in the industry for three primary reasons.
First, since this model has been the industry standard for
many years, most utilities have developed in-house software
that implements the model equations and have had
reasonable success using it. Secondly, the model yields
accurate results, provided only long-term and/or steady-
state behaviour is needed. Thirdly, this model requires only
parameters that can be distilled from measurements
recorded on the transformer’s test report, a document that
most utility engineers can find in their archives.

The competitive concerns of deregulation have caused
many utilities to look at improving the efficiency of their
transmission and distribution system. Accurate dynamic
loading, which is one way of making this improvement,
requires that the dynamic performance limitation of what is
known as the top-oil rise model (ANSI model) [1] be
overcome. The model developed by Pierce [5, 6] overcomes
these limitations of the top-oil-rise model but requires
model parameters that are not often available to a planning
or operations engineer in a production environment.

An alternative approach that reliably yields more
accurate temperature prediction is to develop the trans-
former parameters from transformer performance in situ

[2, 4, 8]. We have observed that using a linear transformer
thermal model obtained through system identification
techniques yields results that are superior to the nonlinear
ANSI model [1]. Figure 1 shows the typical errors we
observe when predicting transformer top-oil temperature
using a linear model (i.e. top-oil model) constructed from
data measured in situ against a nonlinear ANSI model
constructed from transformer test report coefficients. Other
authors have also observed that models created from field
data perform well [9, 10].

The model created from field data is superior because
it accurately represents what is in the field which is often
different from OEM equipment. For example, failed
cooling fans are sometimes replaced with fans of ratings
different from the OEM, or sometimes not replaced at all.
The model created from field data is superior also because
it neither relies on a single transformer test, which may be
inaccurate, nor does it rely on the existence of transformer
test reports, which are sometimes lost, making determining
the parameters of the transformer a guessing game.

As we experimented with building models frommeasured
data [2, 4, 8] we noticed a larger than expected variation in
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the coefficients of the models built using data taken
from the same transformer, data that was, to the eye,
similar. While these models exhibited very similar per-
formance, as measured by the top-oil temperature,
the variability cast some doubt on the reliability of the
models. The objective of this paper is to explain the source
of that variability and provide one way of measuring
the reliability of the model. To that end we derive a
mathematical model to simulate the effect of noise on
parameter calculations and show that mathematical model
is consistent with simulation results. This derivation shows
why the variations in the model coefficients cannot be made
arbitrarily small by using an arbitrarily large number of
measured data points to construct a model. We show
through traditional reliability analysis, and by using the
FFT as a low-pass filter to eliminate high-frequency noise,
that there is a difference between the performance of
measured data and simulated data and, further, that this
difference is due to unmeasured driving variables and/or
unmodelled nonlinearities. Finally we show that traditional
reliability analysis yields erroneous reliability results and
propose a sample-based approach for predicting model
reliability.

In the following Section we establish a common notation
for transformer thermal model development and develop a
notation for linear regression analysis.

2 Fundamental model

The traditional top-oil-rise model [1] is governed by the
differential equation

To
dyo

dt
¼ �yo þ yu ð1Þ

which has the solution

yo ¼ ðyu � yiÞð1� e�ðt=ToÞÞ þ yi ð2Þ
where

yu ¼ yfl
K2 � Rþ 1

Rþ 1

� �n

ð3Þ

To ¼
Cyfl

Pfl
ð4Þ

and

yo top-oil rise over ambient temperature (1C)
yfl top-oil rise over ambient temperature at rated load

(1C)
yu ultimate top-oil rise for load L (1C)
yi initial top-oil rise for t¼ 0 (1C)
yamp ambient air temperature (1C)
To time constant
C thermal capacity (Wh/1C)
Pfl total loss at rated load (W)
n oil exponent
K ratio of load L to rated load
R ratio of load loss to no-load loss at rated load.

The TOT is then given by,

ytop ¼ yo þ yamb ¼ ðyu � yiÞð1� e�ðt=ToÞÞ þ yi þ yamb ð5Þ
The top-oil model [3] (cf. top-oil-rise model) corrects the
dynamic limitations of the top-oil-rise model by including
in (1) the dependence of the time rate of change of ytop on
ambient temperature yamb

To
dytop

dt
¼ �ytop þ yamb þ yu ð6Þ

This equation has the solution

ytop ¼ ðyu þ yamb � yiÞð1� e�ðt=ToÞÞ þ yi ð7Þ
To obtain a discrete-time model we discretise (6) by
applying the forward Euler discretisation rule

dytop½kDt�
dt

¼ ytop½kDt� � ytop½ðk � 1ÞDt�
Dt

ð8Þ

to yield (with the assumption that n ¼ 1)

ytop½k� ¼ K1I ½k�2 þ K2yamb½k� þ ð1� K2Þytop½k � 1� þ K3

ð9Þ
where K1�K3 are functions of the differential equation
coefficients [3], and I [k] is the per-unit transformer current
(based on the rated value of the transformer) at time-step k.
To obtain a model based on measured field data we choose
the coefficients that best fit the measured data (rather than
using the formulas for the Kx s from test report data). We
have examined many optimisation techniques of finding the
best Kx s and have observed linear regression (least-squares
method) to be among the best and easiest to use.

To use the least-squares method to obtain K1�K3, (9) is
reformed as

Y ½k� ¼ K1X1½k� þ K2X2½k� þ K3 ð10Þ
where

Y ½k� ¼ ytop½k� � ytop½k � 1�
X1½k� ¼ I ½k�2

X2½k� ¼ yamb½k� � ytop½k � 1�
Assuming m sets of independent X measurements, (10) can
be rewritten in matrix format as

Y ¼ K1X1 þ K2X2 þ K3 1 1 � � � 1½ �T1�m ð11Þ
where

Y ¼ Y ½1� Y ½2� � � � Y ½m�½ �T

Xi ¼ Xi½1� Xi½2� � � � Xi½m�½ �T ; i ¼ 1; 2

Averaging both sides of (11) over time-step index k yields

Y ¼ K1X 1 þ K2X 2 þ K3 ð12Þ
where the over-bar represents variables averaged over time.
For example

X 1 ¼
1

m

Xm

k¼1
X1 k½ �

Subtracting (12) from each equation in (11) gives

~Y ¼ K1
~X1 þ K2

~X2 ð13Þ
where the tilde represents variables of zero mean and

~Y ¼ Y ½1� � Y Y ½2� � Y � � � Y ½m� � Y
� �T

~Xi ¼ Xi½1��X i Xi½2��X i � � � Xi½m��X i

� �T
i ¼ 1; 2

Equation (13) can be rewritten as

~Y ¼ ~X K ð14Þ
where

~X ¼ ~X1
~X2

� �
K ¼ K1 K2½ �T

With the least-squares method the formula to calculate
these coefficients is

K ¼ ð~X T ~X Þ�1 ~X T ~Y ð15Þ
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After K1 and K2 are obtained, K3 can be calculated from
(12) as

K3 ¼ Y � K1X 1 � K2X 2 ð16Þ
Using these equations for Kx we can calculate the
transformer thermal time constant and top-oil rise at full
load.

3 Cause of model variability

When using (15) and (16) to calculate the Kx coefficients we
found our models were not as consistent as we expected,
even when derived from load and temperature data that
seem, to the eye, to be consistent. For example, we
constructed eight models using data measured from one
transformer over a period of two summer months in
Arizona. During this time the daily variation of load and
ambient temperature was relatively uniform; however the
coefficients resulting from our model building, listed in
Table 1, show variations as high as 19% (STD% in Table 1
represents the standard deviation of the coefficient divided
by the sample mean in percent). We suspected that these
variations were due to noise in the input data. We expected
that if we put sufficient data into the modelling procedure,
the random effects of measurement noise would average out
and that we could bring the Kx coefficients into an
arbitrarily narrow band. To test this hypothesis we designed
experiments to duplicate the effect of measurement noise
using simulated (rather than field) data. Using simulated
data allowed us to eliminate the effects of nonlinearities that
may be present in the physical process and to eliminate the
effects of any unknown missing driving variables. Using
simulated data also provided us with a process for which we
knew the theoretically correct models.

We created simulated data sets by first using ambient
temperature and load field data for a transformer from
data provided by the Salt River Project to serve as typical
driving variable data. Next, we assigned to K1, K2, and K3

typical values for the transformer from which these data
came (i.e. K1¼ 2.1882, K2¼ 0.08269, K3¼ 0.70, which
correspond to T0¼ 2.77h, R¼ 3.13 yfl¼ 34.91C). We then
used (9) to generate the simulated TOT data, which we call
‘true’ TOT. Then we added random noise (first gaussian
and then uniformly distributed) to the ‘true’ TOT, load
and ambient temperature, one at a time. Finally we
preformed the linear regression to obtain the new
coefficients K1�K3.

3.1 Observation in coefficients
Figure 2 shows K1 against the standard deviation of the
gaussian noise added to the TOT data. It can be seen that
K1 becomes larger than its true value when the TOT data is
noisy. Further, it increases monotonically as the magnitude
of the noise increases. Results show that plots of K2 and K3

against the standard deviation of the noise have a similar
pattern.

We obtained similar results when we applied uniformly
distributed random noise to TOT data.

We found that all the coefficients were much less sensitive
to noise added to the ambient temperature data or load
data than noise is added to TOT as shown in Fig. 2 and
that regardless of the amount of data we put in our
modelling procedure, we could not bring the Kx values to
within an arbitrarily narrow range.

3.2 Discussion

3.2.1 Ill-conditioned matrix: To discover why the
modelling process is sensitive to noise we first looked at
the condition number of the coefficient matrix. Consider the
equation used to calculate the coefficients (15), written in an
equivalent form

ð~X T ~X ÞK ¼ ~X
T ~Y ð17Þ

It is well known that the matrix ~X T ~X has a larger condition

number than the ~X matrix. (The condition number of a
matrix may be defined as the ratio of the largest singular
value of the matrix to the smallest.) A large condition
number indicates that the matrix is nearly singular. For
example, using the simulated data described earlier (without
noise) in (17) yields as expected

~X T ~X ¼ 32:654 �240:404
�240:404 24402:0

� �

~X T ~Y ¼ 51:5744
1491:76

� �

K ¼ K1

K2

� �
¼ 2:1882

0:08269

� �

The condition number of ~X T ~X matrix is

condð~X T ~X Þ ¼ 806:0, a number which is large for a 2� 2

Table 1: Variability of transformer thermal model coefficients

Data set K1 K2 K3

1 3.1068 0.0961 0.5277

2 3.0589 0.0905 0.3901

3 3.1632 0.0911 0.4277

4 2.8474 0.0797 0.2667

5 2.7130 0.0814 0.4367

6 2.9740 0.0843 0.3706

7 2.8518 0.0864 0.4621

8 2.8679 0.0936 0.4860

Mean 2.9479 0.0879 0.4210

STD 0.1538 0.0059 0.0801

STD% 5.22% 6.66% 19.02%

0 1 2 3 4 5

2

3

4

5

standard deviation of noise, deg C
K

1

noise added to TOT
noise added to ambient temp.

Fig. 2 K1 against the standard deviation of gaussian noise added to
the TOT data, and the ambient temperature data
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matrix. This indicates the matrix is closer to singular than

desired, which means that slight noise in ~X T ~X or in ~X T ~Y
can lead to large changes in the Kx coefficients. In our
example, a noise level of 0.7% added to TOT yields changes
in K1 and K2 of 1.0% and 3.5%, respectively, a five-fold
increase over the input noise level. Further, we’ve observed
that noise that is more highly correlated (which we find in
practice) will lead to a more exaggerated response in the
coefficients.

To show the effect of a large condition number
graphically we expand (17) as

~X T
1

~X1
~X T
1

~X2

~X T
2

~X1
~X T
2

~X2

2
4

3
5 K1

K2

2
4

3
5 ¼ ~X T

1
~Y

~X T
2

~Y

2
4

3
5 ð18Þ

which can be expressed as

ðm� 1ÞvarðX1Þ ðm� 1ÞcovðX1;X2Þ

ðm� 1ÞcovðX1;X2Þ ðm� 1ÞvarðX2Þ

2
4

3
5 K1

K2

2
4

3
5

¼
ðm� 1ÞcovðX1; Y Þ

ðm� 1ÞcovðX2; Y Þ

2
4

3
5 ð19Þ

where var is the variance operator, and cov is the covariance
operator. Equation (19) represents two lines in the K2

against K1 co-ordinate plane, the intersection of which is the
solution of (19)

line1: K2 ¼
covðX1; Y Þ � varðX1Þ � K1

covðX1;X2Þ
ð20Þ

line2: K2 ¼
covðX2; Y Þ � covðX1;X2Þ � K1

varðX2Þ
ð21Þ

When the relatively small amount of uniformly distributed
random noise in TOT, 70.51C, is applied to measured

TOT data, ~X T ~X and ~X T ~Y become

~X T ~X ¼
32:654 �240:650

�240:650 24490:0

2
4

3
5

~X T ~Y ¼
51:5844

1565:61

2
4

3
5

And the solution of the Kx coefficients becomes

K ¼
K1

K2

2
4

3
5 ¼ 2:2110

0:08565

2
4

3
5

Figure 3 shows the two lines whose intersection is the
solution to (17) before and after applying a 70.51C
uniformly distributed noise in TOT. This Figure shows
several relevant characteristics of the modelling process. It
shows that the lines that characterise coefficient matrix
are nearly collinear, which explains the sensitivity of the
modeling process to noise. It shows that even though the
presence of noise in TOT has little impact on line 1, noise in
TOT causes line 2 to shift upward slightly which, because of
the colinearity problem, causes the solution point for K1

and K2 to shift considerably. This Figure does not explain
why adding a large amount of data to the modelling
procedure does not cause the effect of noise to be made
arbitrarily small.

3.2.2 Analysing coefficient matrix when
noise is present: In this Appendix (Section 8) we

analyse the coefficient matrix after introducing a noise
model. The results of this analysis, shown in approxima-
tions (22) and (23), shows that line 1 is (approximately)
unaffected by noise, while the approximation for line 2
differs from (21) by the presence of an additional term
var(N�1). This new term the variance of the added noise to
the simulated TOT.

line1: K2 �
covðX1; Y Þ � varðX1Þ � K1

covðX1;X2Þ
ð22Þ

line2: K2 �
covðX2; Y Þ þ varðN�1Þ � covðX1;X2Þ � K1

varðX2Þ
ð23Þ

This analysis shows that K1 and K2 will always increase
when noise in TOT is added, which is consistent with the
numerical results we observed and shown in Fig. 2. Further,
it shows that regardless of the number of points in the data
set, the coefficients obtained from data sets with different
amounts of noise cannot be brought into an arbitrarily
small range unless either the variance of the applied noise is
reduced or the variances and covariances shown in (22) and
(23) are made invariant, something that is not within our
control with field data.

To eliminate or reduce the value of var(N�1) in (23),
we investigated using the FFT as a low-pass filter to reduce
noise in the TOT input data. We chose to investigate noise
in TOT because this source of noise has the most
severe effect on the variance of the coefficients. We first
applied this filter to simulated data and then to field data.

4 Using FFT to eliminate TOT noise

4.1 Appling FFT to filter TOT noise in
simulated data
Because the time constant associated with a transformer’s
TOT is about 3 to 5 hours, only the relatively low
frequencies of the TOT have information that comes from
the TOT heating process. Measurement noise introduced
into the TOT manifests itself mainly as high-frequency
components. Our hypothesis was: we can reduce
the var(N�1) in (23) by eliminating the high-frequency
components.

Using the simulated data constructed earlier, normally-
distributed zero-mean random noise with 1.51C standard
deviation was first added to the TOT and then the FFT was
applied to the noisy TOT with different cutoff frequencies.

2.18 2.19 2.20 2.21 2.22

0.07

0.08

0.09

0.10

K1

K
2

coefficients with noise in TOT

coefficients with no noise in TOT

line 2 with noise in TOT

line 2 with no noise in TOT

Fig. 3 Effect on coefficients with slight noise in TOT
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Typical results for the experiments we conducted are shown
in Table 2.

It can be seen from Table 2 that when the cutoff
frequency is too low, the K1 coefficient strays far from its
true value: too many frequency components are eliminated
which eliminates signal in addition to noise. On the other
hand, when the cutoff frequency is too high, K1 strays far
from its true value also: too much noise is preserved. Our
experiments showed that the optimum filter involved
retaining about 21 cycles per day.

In another test we repeated the experiment on many
independent data sets and used the variation of the model
coefficients as the evaluation of the effectiveness of the FFT.
The assumption here is that if the FFT is removing noise,
the models derived should have a narrower range of
coefficients. Table 3 shows results obtained by using the
FFT to filter TOT data with different cutoff frequencies
applied to 17 sets of simulated data. It can be seen from
Table 3 that the FFT reduces the variation in the model
coefficients, and the swift reduction continues until the FFT
cutoff frequency drops below about 21 cycles per day.

4.2 Appling FFT to filter TOT noise in
measured data
Since there is no guarantee that the cutoff frequency
determined will be the same for measured data, the
experimental approach to determining the cutoff frequency,
by minimising the variance of the Kx values, was performed
using measured data. The experiment determined the Kx

values using 17 independent data sets, and used the
variation of the model coefficients as the evaluation of the
effectiveness of the FFT. Table 4 shows the results of using

the FFT to filter TOT data with different cutoff frequencies.
While the variation in these coefficients is acceptable for
modelling, it can be seen from Table 4 that the FFT
essentially does not reduce the variation in the model
coefficients. The lack of change in the field-data STD near
21 cycles a day implies that variability of the coefficients is
not caused by random measurement noise, but by either
missing driving variables or unmodelled nonlinearities.
Note that both of these confounding modelling issues
(nonlinearities and missing driving variable) will appear as
virtual input–data noise leading to unwanted variation in
our coefficients.

Since there is no way to eliminate the variation in
coefficients it is necessary to quantify the reliability of the
model we produce.

5 Reliability analysis

5.1 Traditional reliability analysis
For a given confidence level it is possible to calculate the
confidence interval of each of the coefficients that result
from linear regression [7]

CIKi ¼ ½Ki � s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~X T ~X Þ�1ii

q
� t; Ki þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~X T ~X Þ�1ii

q
� t�; i ¼ 1; 2

ð24Þ

where CIKi is the confidence interval of Ki (i¼ 1, 2); s is the

standard deviation of the residuals; ð~X T ~X Þ�1ii is the ith

diagonal element of the inverse of the matrix ~X T ~X ; and t is
the number of standard deviations corresponding to a given
confidence level.

Assuming a desired confidence level of 95% for K1, and
then after calculating the corresponding confidence interval
we can then say we are confident that the true value of K1

for our model lies within the calculated confidence interval
95% of the time. That is, we can expect that for each
coefficient we calculate, the 95% confidence interval
surrounding that coefficient will enclose the true value
95% of time, or 19 out of 20 times [7].

We first applied the confidence interval approach to the
simulated data with TOT corrupted by normally-distributed
zero-mean random noise with 0.51C standard deviation.
Figure 4 shows the calculated K1 coefficient with confidence
intervals corresponding to a 95% confidence level for data
samples taken from various times of the year. This Figure
shows that the real value of K1 as well as the mean
value and the median value of calculated K1 stay in the
confidence interval 100% of the time. This is slightly more
often that we would expect; however, because our sample

Table 2: Applying FFT to one simulated data set

Cutoff freq. (cycle/day) K1

3 2.0741

5 2.0992

8 2.1156

10 2.1266

17 2.1546

21 2.1903

30 2.3187

40 2.5286

no FFT 2.7000

true value 2.1882

Table 3: Applying FFT to many independent simulated data
sets

Cutoff freq (cycle/day) STD% of K1

3 1.55

5 1.40

8 1.31

10 1.42

17 1.55

21 1.79

30 3.74

40 6.65

no FFT 8.88

Table 4: Applying FFT to field data

Cutoff freq. (cycle/day) STD%

K1 K2 K3

3 4.57 4.44 6.60

5 4.76 4.59 6.40

8 4.83 4.72 6.53

10 4.86 4.79 6.63

17 4.90 4.91 6.86

21 4.94 4.98 6.95

30 5.00 5.12 7.16

40 5.03 5.22 7.37

no FFT 5.06 5.29 7.49
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was so low (we had only 17 sets of coefficients), the results
shown do not violate the theory.

We applied this confidence interval approach to the field
data, calculating the confidence interval based on a 95%
confidence level. Inspection of Fig. 5 (which corresponds to
the numerical confidence intervals shown in the middle
column of Table 5) shows that there is no way to pick a
‘true K1’ that is within the calculated confidence intervals
95% of the time. This apparent paradox shows that the
inconsistency of the model coefficients is not mainly due to
random noises, but to either the incompleteness of the
model, e.g. missing driving variables or the nonlinearity in
the transformer thermal process. It is impossible with a
linear regression approach to distinguish whether the virtual
noise in our data comes from unmodelled nonlinearities or
unmodelled (and unmeasured) driving variables. Both of
these sources of virtual noise are perceived identically by
the linear regression process. To show that either of these
sources of virtual noise can cause the effect on confidence
interval and confidence level observed in Fig. 5,
we generated simulated transformer TOT values using a
linear model which was modified by adding an extra driving
variable to the model. This extra variable accounted for the
increase in heat caused by solar radiation model. Then we
calculated the model coefficients and confidence intervals
based on the original model (without a solar-radiation
variable). The results of Fig. 6 show that the behaviour of
the coefficient’s confidence interval is similar to that of field

data; there is no way to pick a ‘true K1’ that it is within the
calculated confidence intervals 95% of the time.

The failure of the traditional approach to yield consistent
confidence levels and intervals also explains why using a
low-pass filter does not increase the reliability of our model:
the noise in our data is virtual noise rather than actual
measurement noise.

To estimate the reliability of our model we needed a
different approach.

5.2 Sample-based reliability analysis
Sample-based reliability calculations involve calculating
many models from different data samples and then
calculating the standard deviation of, for example, K1. This
sample standard deviation can be used to estimate the
standard deviation of the population. Using this standard
deviation the confidence intervals and confidences levels can

Jun Jul Aug Sep Oct Nov
0.5

1.0

1.5

2.0

2.5

3.0

3.5

month, year 2000

K
1

calculated value
upper bound
lower bound
true K1 =  2.1882
mean value
median value

Fig. 4 Applying confidence interval to simulated data with
normally distributed noise

Jun Jul Aug Sep Oct Nov
1.8

2.0

2.2

2.4

2.6

month, year 2000

K
1

calculated value
upper bound
lower bound
mean value
median value

Fig. 5 Applying confidence interval to field data

Table 5: Comparison of linear-regression-based and sample-
based confidence intervals

Start date
of sample

Magnitude of linear-
regression-based
confidence interval
for K1

Magnitude of
sample-based
confidence interval
for K1

Jun 01 0.073

Jun 11 0.0839

Jun 21 0.0863

Jul 01 0.0877

Jul 11 0.0667

Jul 21 0.0703

Jul 31 0.0783

Aug 10 0.1051

Aug 20 0.1053 0.5781

Aug 30 0.0879

Sep 09 0.0789

Sep 19 0.0728

Sep 29 0.0789

Oct 09 0.1961

Oct 19 0.2538

Oct 29 0.24

Jun Jul Aug Sep Oct Nov
2.1

2.2

2.3

2.4

2.5

2.6

2.7

month, year 2000

K
1

calculated value
upper bound
lower bound
true K1 = 2.1882
mean value
median value

Fig. 6 Applying confidence intervals to simulated data modelling
missing driving variable

IEE Proc.-Gener. Transm. Distrib., Vol. 153, No. 4, July 2006 419



be calculated. Specifically, assuming we have m data sets
with K1 values: K11,K12,y,K1m, the standard deviation is
defined as

sK1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

Xm

j¼1
K1j � K1


 �2vuut
Based on the number of samples Student’s T-distribution
can be used to calculate the confidence interval for a given
confidence level. For sample sizes larger than 15, the
confidence interval calculated using Student’s T-distribution
is close to that obtained when assuming a gaussian
distribution, and a Gaussian assumption may be used.
Assuming Student’s T-distribution, the confidence interval
can be calculated as

CIKi ¼ ½Ki � sKi � t;Ki þ sKi � t�; i ¼ 1; 2 ð25Þ
where sKi is the sample-based standard deviation of Ki and t
is the point on the scale of the Students T-distribution
corresponding to a given confidence level. Figure 7 shows
the calculated K1 coefficients taken from field data with
confidence intervals corresponding to a 95% confidence
level for data samples taken from various times of the year.
Numerical confidence-interval values corresponding to
Fig. 7 are shown in the right-most column of Table 5.
Inspection of Fig. 7 shows that both the mean and median
K1 values are within 15 of 16 confidence intervals, which is
consistent with a 95% confidence level.

To show that this same behaviour exists for other
transformers, we examined two transformers. We calculated
the linear-regression-based confidence intervals for several
samples and the sample–based confidence intervals for the
same set of samples. This data is shown in Table 6, which
clearly shows that the relationship between the linear-
regression-based and sample–based confidence intervals is
similar to what we’ve observed in Figs. 5 and 7.

We observed that regardless of the reliability metric we
chose the reliability index we calculated varied, depending
on which Kx we used in the assessment. To estimate the
reliability of the model it is necessary to develop a measure
which includes all coefficients. While many such measures
can be justified we chose to use steady-state load as a
measure, since the ultimate use of these models will be to
predict loading capability. Our goal is to use these models to
perform dynamic loading. Defining a measure of dynamic

loading requires many arbitrary assumptions, such as
daily load shape, and daily ambient temperature profile
and amplitude. We’ve observed that steady-state loading
may be defined with many fewer arbitrary assumptions
and further, the changes in predicted steady-state loading
level correlate well with changes in predicted dynamic
loading level. Steady-state loading for a fixed ambient
temperature of 371C can be calculated by assuming
ytop[k]¼ ytop[k�1] and setting this quantity to the maximum
TOT allowed for the transformer in (9) and then solving for
load I to get

ISS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2ðTOTmax � 37Þ � K3

K1

s
ð25Þ

where ISS stands for the steady-state loading. A similar
result can be obtained if hot-spot temperature is the limiting
criteria.

We observed that the confidence intervals in Fig. 8 for
steady-state load (using field data) are always much smaller
than the corresponding intervals (in percentage of respective
parameters) for the Kx coefficients. This seeming contra-
diction can be explained. We observed that K1 and K2 tend
to rise and fall in unison from model to model. The variable
K1 is proportional to the heat generated per unit load
during each time-step. The variable K2 is proportional to

Table 6: Comparison of linear-regression-based and sample-
based confidence intervals for two other transformers

Transformer
name sample
number

Magnitude of linear-
regression-based
confidence intervals

Magnitude of sample-
based confidence
interval

Transformer 1 K1 K2 K1 K2

1 0.4432 0.0112

2 0.2764 0.0069

3 0.2550 0.0062

4 0.3594 0.0090

5 0.3570 0.0090

6 0.2279 0.0059

7 0.3575 0.0080 1.1465 0.0402

8 0.3700 0.0089

9 0.2491 0.0059

10 0.2860 0.0060

11 0.3035 0.0068

12 0.5344 0.0065

Transformer 2 K1 K2 K1 K2

1 0.2415 0.0074

2 0.2535 0.0063

3 0.3033 0.0088

4 0.2336 0.0057

5 0.1787 0.0046

6 0.1490 0.0038 1.0026 0.0285

7 0.2266 0.0059

8 0.2724 0.0075

9 0.1822 0.0051

10 0.2309 0.0053

11 0.1687 0.0040

12 0.4712 0.0064
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Fig. 7 Applying sample-based confidence intervals to K1 derived
from field data
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the heat lost to air during each time-step. If both K1 and K2

change in synchronism, their effect on loading capability
offset, leading to much more consistent predictions of
loading level than the variability of K1 or K2 would
suggest.

6 Conclusions

We have shown that as long as there is noise in the
measurement process, inaccuracies in the dynamic thermal
models from measured data will persist. Luckily, with most
of the data we have looked at, the noise is relatively small
and the models derived are ‘good.’ The goal of this work
was to provide a method for assessing the reliability of these
models or, equivalently, to define in a quantitative way,
what ‘good’ means. We showed, using confidence intervals
as a measure, that the behaviour of real data is very
different from the behaviour of data contaminated with
random noise and that the standard technique for assessing
reliability is invalid when applied to real data. Through
numerical experimentation we provided a plausibility
argument that this difference is caused by the absence of
unmeasured driving variables in the model. We provided a
valid method for assessing model reliability. Rather than
using model coefficients as a measure of model reliability,
we proposed using loading capability as a more relevant
measure of model performance and explain why the
reliability of predicted loading is much higher than the
reliability of the coefficients of the model.

Being able to calculate the reliability of a model derived
from measured data is another advantage of using system
identification techniques. Reliability assessment gives the
user some measure of confidence in the model they
are using. At present there is no method for assessing the
reliability of models derived from transformer test reports.
From the data of Fig. 1, it is likely that such models are
much less reliable than the models we propose here.
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8 Appendix

8.1 Analysis of why Kx increases when noise is
added to the TOT
When random noise with zero mean N is added to ytop, the
variables Y, X1, and X2 become

Y 0½k� ¼ ytop½k� þ N ½k� � ytop½k � 1� � N ½k � 1�
¼ Y ½k� þ N ½k� � N ½k � 1�

X 01½k� ¼ I ½k�2 ¼ X ½k�

X 02½k� ¼ yamb½k� � ytop½k � 1� � N ½k � 1�
¼ X2½k� � N ½k � 1�

kX1

Accordingly (19) becomes

varðX 01Þ covðX 01;X 02Þ

covðX 01;X 02Þ varðX 02Þ

2
64

3
75

K1

K2

2
64

3
75 ¼

covðX 01; Y 0Þ

covðX 02; Y 0Þ

2
64

3
75
ð26Þ

where for an m length sample

Y 0 ¼ Y 0½1� Y 0½2� � � � Y 0½m�½ �T

X 0i ¼ X 0i ½1� X 0i ½2� � � � X 0i ½m�½ �T ; i ¼ 1; 2

Apparently we have

varðX 01Þ ¼ varðX1Þ

covðX 01;X 02Þ ¼ covðX1;X2Þ � covðX1;N�1Þ

varðX 02Þ ¼ varðX2Þ � 2covðX2;N�1Þ þ varðN�1Þ

covðX 01; Y 0Þ ¼ covðX1; Y Þ þ covðX1;NÞ � covðX1;N�1Þ

covðX 02; Y 0Þ ¼ covðX2; Y Þ þ covðX2;NÞ � covðX2;N�1Þ
� covðN�1; Y Þ � covðN�1;NÞ þ varðN�1Þ

where

N ¼ N ½1� N ½2� � � � N ½m�½ �T

N�1 ¼ N ½0� N ½1� � � � N ½m� 1�½ �T

If the data length is sufficiently long, the covariance between
any of the deterministic variables X1, X2 and Y, and any of
the noises N and N�1 will approach to zero. Also since N is
a random noise, covðN�1;NÞ ¼ 0. Thus

varðX 01Þ ¼ varðX1Þ
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Fig. 8 Sample-based confidence intervals for steady-state load
predictions made from field data
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covðX 01;X 02Þ � covðX1;X2Þ

varðX 02Þ � varðX2Þ þ varðN�1Þ

covðX 01; Y 0Þ � covðX1; Y Þ

covðX 02; Y 0Þ � covðX2; Y Þ þ varðN�1Þ
Substituting these approximations into (26) and solving for
K2 yields the same equation for line 1 (20) in K2 against K1

co-ordinate plane, (as shown in Fig. 2) while line 2 with
noise becomes

line2: K2 �
covðX2; Y Þ þ varðN�1Þ � covðX1;X2Þ � K1

varðX2Þ þ varðN�1Þ
ð27Þ

From the definition of X2 :X2½k� ¼ yamb½k� � ytop½k � 1�,
varðX2Þ is the variance of the top-oil-rise. Therefore for a

normal magnitude of noise, it may be assumed that
varðX2Þ44varðN�1Þ. Thus (27) becomes approximately

line2: K2 �
covðX2; Y Þ þ varðN�1Þ � covðX1;X2Þ � K1

varðX2Þ
ð28Þ

Equation (28) indicates that, after noise is added to TOT,
the slope of line 2 has changed little, whereas its intercept
will increase. Also notice that normally the slopes of both
lines are positive since usually covðX1;X2Þo0 due to the
positive correlation between load and top-oil-rise. The
increase of the intercept of line 2 given, for the example in
Fig. 2, by varðN�1Þ=varðX2Þ ¼ 0:08=24402=ð960� 1Þ � 0:
003 for m¼ 960) will then shift the intersection of the two
lines to the upper right, causing both K1 and K2 to increase,
as shown in Fig. 2.
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