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We give an overview of a complex systems approach to large blackouts of electric power trans-
mission systems caused by cascading failure. Instead of looking at the details of particular black-
outs, we study the statistics and dynamics of series of blackouts with approximate global models.
Blackout data from several countries suggest that the frequency of large blackouts is governed by
a power law. The power law makes the risk of large blackouts consequential and is consistent with
the power system being a complex system designed and operated near a critical point. Power
system overall loading or stress relative to operating limits is a key factor affecting the risk of
cascading failure. Power system blackout models and abstract models of cascading failure show
critical points with power law behavior as load is increased. To explain why the power system is
operated near these critical points and inspired by concepts from self-organized criticality, we
suggest that power system operating margins evolve slowly to near a critical point and confirm this
idea using a power system model. The slow evolution of the power system is driven by a steady
increase in electric loading, economic pressures to maximize the use of the grid, and the engineer-
ing responses to blackouts that upgrade the system. Mitigation of blackout risk should account for
dynamical effects in complex self-organized critical systems. For example, some methods of sup-
pressing small blackouts could ultimately increase the risk of large blackouts. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2737822�

Cascading failure is the usual mechanism by which fail-
ures propagate to cause large blackouts of electric power
transmission systems. For example, a long, intricate cas-
cades of events caused the August 1996 blackout in
Northwestern America that disconnected 7.5 million cus-
tomers and 30 GW of electric power.1–3 The August 2003
blackout in Northeastern America disconnected 50 mil-
lion people and 62 GW to an area spanning eight states
and two provinces.4 The vital importance of the electrical
infrastructure to society motivates the understanding and
analysis of blackouts. Although large blackouts are rare,
observed blackout statistics suggest that their risk is not
negligible because as blackout size increases, the prob-
ability of a blackout decreases in a power law manner
that is roughly comparable to the manner of increase of
blackout cost. We attribute the power law decrease in
blackout probability as size increases to cascading: as
failures occur, the power system is successively weakened
so that the chance of further failures is increased. Indeed,
probabilistic models that capture the essence of this cas-
cading show power law behavior at a critical point.
Moreover, similar behavior can be observed in several

power systems models of cascading failure when the
power system is loaded near a critical point. But why
should power systems be designed and operated near a
critical point? We see the power system as slowly evolving
in response to increasing load, economics, engineering,
and recent blackouts so as to move to a complex system
equilibrium near a critical point. A power system well
below the critical point experiences fewer blackouts and
it is economic for its loading to increase, whereas a power
system well above the critical point experiences blackouts
that drive system upgrades to effectively reduce the load-
ing. We incorporate these slow dynamics of power system
upgrade in a simple model to verify that these processes
can drive the system to a critical point with a power law
distribution of blackout size. The complex dynamics of
power system evolution can have a significant effect on
the long-term effect of system upgrades. Indeed, we show
that an upgrade that initially reduces blackout frequency
could eventually lead to an increased frequency of large
blackouts.

I. INTRODUCTION

There is evidence of a power law decrease in blackout
probability as blackout size increases from both data anda�Electronic mail: dobson@engr.wisc.edu
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simulations. These discoveries, together with the societal im-
portance of managing blackout risk, motivate the study of
cascading failure mechanisms and critical points in blackout
models. One explanation of the observed power laws is that
when the larger complex system dynamics of a power system
evolving in response to economic and engineering forces are
considered, the system self-organizes to near a critical point.
We give an explanatory overview of this theory, drawing
from a range of previous work.5–13

After Sec. II summarizes blackout mechanisms, Sec. III
discusses the evidence for a power law in blackout probabil-
ity and the consequences for blackout risk. Section IV sum-
marizes abstract and power system models of cascading fail-
ure and reviews related approaches in the literature. Section
V discusses the observed critical points in these models. Sec-
tion VI discusses quantifying blackout risk. Section VII ex-
pands the discussion to describe and model a power system
slowly evolving with respect to engineering and economic
forces and discusses some initial consequences for blackout
mitigation.

II. SUMMARY OF BLACKOUT CASCADING
FAILURE MECHANISMS

We consider blackouts of the bulk electrical power trans-
mission system; that is, the high voltage �greater than, say,
30 kV� portion of the electrical grid.14 Power transmission
systems are heterogeneous networks of large numbers of
components that interact in diverse ways. When component
operating limits are exceeded, protection acts to disconnect
the component and the component “fails” in the sense of not
being available to transmit power. Components can also fail
in the sense of misoperation or damage due to aging, fire,
weather, poor maintenance, or incorrect design or operating
settings. In any case, the failure causes a transient and causes
the power flow in the component to be redistributed to other
components according to circuit laws, and subsequently re-
distributed according to automatic and manual control ac-
tions. The effects of the component failure can be local or
can involve components far away, so that the loading of
many other components throughout the network is increased.
In particular, the propagation of failures is not limited to
adjacent network components. For example, a transmission
line that trips transfers its steady state power flow to trans-
mission lines that form a cutset with the tripped line. More-
over, the flows all over the network change. Hidden failures
of protection systems can occur when an adjacent transmis-
sion line is tripped, but oscillations and other instabilities can
occur across the extent of the power system. The interactions
involved are diverse and include deviations in power flows,
frequency, and voltage magnitude and phase as well as op-
eration or misoperation of protection devices, controls, op-
erator procedures, and monitoring and alarm systems. How-
ever, all the interactions between component failures tend to
be stronger when components are highly loaded. For ex-
ample, if a highly loaded transmission line fails, it produces
a large transient, there is more power that redistributes to
other components, and failures in nearby protection devices
are more likely. Moreover, if the overall system is more
highly loaded, components have smaller margins so they can

tolerate smaller increases in load before failure, the system
nonlinearities and dynamical couplings increase, and the sys-
tem operators have fewer options and more stress.

A typical large blackout has an initial disturbance or trig-
ger events followed by a sequence of cascading events. Each
event further weakens and stresses the system and makes
subsequent events more likely. Examples of an initial distur-
bance are short circuits of transmission lines through un-
trimmed trees, protection device misoperation, and bad
weather. The blackout events and interactions are often rare,
unusual, or unanticipated because the likely and anticipated
failures are already accounted for in power system design
and operation. The complexity is such that it can take months
after a large blackout to sift through the records, establish the
events occurring, and reproduce with computer simulations
and hindsight a causal sequence of events.

The historically high reliability of power transmission
systems in developed countries is largely due to estimating
the transmission system capability and designing and operat-
ing the system with margins with respect to a chosen subset
of likely and serious contingencies. The analysis is usually
either deterministic analysis of estimated worst cases or
Monte Carlo simulation of moderately detailed probabilistic
models that capture steady state interactions.15 Combinations
of likely contingencies and some dependencies between
events such as common mode or common cause are some-
times considered. The analyses address the first few likely
and anticipated failures rather than the propagation of many
rare or unanticipated failures in a cascade.

III. BLACKOUT DATA AND RISK

We consider the statistics of a series of blackouts from
several countries. Figure 1 plots the empirical probability
distribution of energy unserved in North American blackouts
from 1984 to 1998 as documented by the North American
Electrical Reliability Council �NERC�.16 The fall-off with
blackout size is close to a power law dependence.6,17–20

Moreover, similar results are obtained by separating the data
into blackouts in the eastern and western interconnections of
North America.19 Power law dependence of blackout prob-

FIG. 1. �Color online� Log-log plot of scaled pdf of energy unserved during
North American blackouts 1984 to 1998.
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ability with blackout size are observed in Sweden,21

Norway,22 New Zealand,23 and China.24 The approximate
power law exponents of the probability distribution function
�noncumulative� are shown in Table I. The similarity of the
power law form of the probability distribution function �pdf�
in different power transmission systems suggests that there
may be some universality. The power law region is of course
limited in extent in a practical power system by a finite cut-
off corresponding to the largest possible blackout.

There are several useful measures of blackout size. En-
ergy unserved and power or customers disconnected are
measures that impact society. An example of a measure of
disturbance size internal to the power system is number of
transmission lines tripped. �Transmission lines can often trip
with no load shed and hence no blackout.� Chen et al.25 fit
the empirical probability distribution of 20 years of North
American multiple line failures with a cluster distribution
model. Other heavy tailed distributions such as generalized
Poisson and a negative binomial model also give reasonable
fits to the data.

Blackout risk is the product of blackout probability and
blackout cost. Here we assume that blackout cost is roughly
proportional to blackout size, although larger blackouts may
well have costs �especially indirect costs� that increase faster
than linearly.15 However, in the case of a power law expo-
nent of blackout probability comparable to −1, the larger
blackouts become rarer at a similar rate as costs increase, and
then the risk of large blackouts is comparable to, or even
exceeds, the risk of small blackouts.13 Thus, power laws in
blackout size distributions significantly affect the risk of
large blackouts and make the study of large blackouts of
practical relevance. �Standard risk analyses that assume in-
dependence between events imply exponential dependence
of blackout probability on blackout size and hence negligible
risk of large blackouts.�

Consideration of the probability distribution of blackout
sizes leads naturally to a more detailed framing of the prob-
lem of avoiding blackouts. Instead of seeking only to limit
blackouts in general, we seek to manipulate the probability
distribution of blackouts to jointly limit the frequency of
small, medium, and large blackouts. This elaboration is im-

portant because measures taken to limit the frequency of
small blackouts may inadvertently increase the frequency of
large blackouts when the complex dynamics governing trans-
mission expansion are considered, as discussed in Sec. VII.

Important aspects of the complex dynamics of blackouts
that we do not focus on here are the long-range time corre-
lations in the blackout sizes and the distribution of time be-
tween blackouts.6,19–21,23

The available blackout data are limited and the statistics
have a limited resolution. To further understand the mecha-
nisms governing the complex dynamics of power system
blackouts, modeling of the power system is indicated.

IV. MODELS OF CASCADING FAILURE

This section summarizes abstract and power system
models of cascading failure that are used to understand the
propagation of failures in a blackout assuming a fixed sys-
tem. Since blackout cascades are over in less than one day
and the evolution of power system operation, upgrade, main-
tenance, and design is much slower, it is reasonable to as-
sume a fixed power system during the progression of any
particular cascade. We also review some other approaches
and models.

A. CASCADE model

The CASCADE model is an analytically tractable proba-
bilistic model of cascading failure that captures the weaken-
ing of the system as the cascade proceeds.11 The features that
the CASCADE model abstracts from the formidable com-
plexities of large blackouts are the large but finite number of
components, components that fail when their load exceeds a
threshold, an initial disturbance loading the system, and the
additional loading of components by the failure of other
components. The initial overall system stress is represented
by upper and lower bounds on a range of initial component
loadings. The model neglects the timing of events and the
diversity of power system components and interactions.

The CASCADE model11 has n identical components
with random initial loads. For each component the minimum
initial load is Lmin and the maximum initial load is Lmax. For

TABLE I. Observed and simulated power law exponents in the noncumulative pdf of blackout size. The power
law exponent is often calculated by subtracting one from an estimate of the slope of a log-log plot of a
complementary cumulative probability distribution.

Source Exponent Quantity

North America data �Ref. 6� −1.3 to −2.0 Various
North America data �Refs. 19 and 20� −2.0 Power
Sweden data �Ref. 21� −1.6 Energy
Norway data �Ref. 22� −1.7 Power
New Zealand data �Ref. 23� −1.6 Energy
China data �Ref. 24� −1.8 Energy

−1.9 Power
OPA model on tree-like 382-node �Ref. 8� −1.6 Power
Hidden failure model on WSCC 179-node �Ref. 9� −1.6 Power
Manchester model on 1000-node �Ref. 10� −1.5 Energy
CASCADE model �Ref. 11� −1.4 No. of failures
Branching process model �Ref. 12� −1.5 No. of failures
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j=1,2 , . . . ,n, component j has initial load Lj, which is a
random variable uniformly distributed in �Lmin,Lmax�.
L1 ,L2 , . . . ,Ln are independent. Components fail when their
load exceeds Lfail. When a component fails, a fixed amount
of load P is transferred to each of the components. To start
the cascade, we assume an initial disturbance that loads each
component by an additional amount D. Other components
may then fail depending on their initial loads Lj and the
failure of any of these components will distribute an addi-
tional load P�0 that can cause further failures in a cascade.

Now we define the normalized CASCADE model that
has the same failure statistics. The normalized initial load
� j is

� j =
Lj − Lmin

Lmax − Lmin . �1�

Then, � j is a random variable uniformly distributed on �0, 1�.
Let

p =
P

Lmax − Lmin, d =
D + Lmax − Lfail

Lmax − Lmin . �2�

The normalized load increment p is, then, the amount of load
increase on any component when one other component fails
expressed as a fraction of the load range Lmax−Lmin. The
normalized initial disturbance d is a shifted initial distur-
bance expressed as a fraction of the load range. In the case in
which Lfail=Lmax, then the shift Lmax−Lfail in the numerator
of �2� is zero and d is simply the initial disturbance expressed
as a fraction of the load range. The shift Lmax−Lfail trades off
the initial disturbance and the failure load so that the normal-
ized failure load is � j =1.

The distribution of the total number of component fail-
ures S is

P�S = r� =�
�n

r
���d��d + rp�r−1���1 − d − rp��n−r,

r = 0,1, . . . ,n − 1,

1 − 	
s=0

n−1

P�S = s� ,

r = n ,



�3�

where p�0, the saturation function is

��x� = �0, x � 0,

x , 0 � x � 1,

1, x � 1,

 �4�

and 00�1 and 0/0�1 are assumed. If d�0 and d+np�1,
then there is no saturation ���x�=x� and �3� reduces to the
quasibinomial distribution.26,27

A branching process approximation to the CASCADE
model gives a way to quantify the propagation of cascading
failures with a parameter � and further simplifies the math-
ematical modeling.12 In a Galton-Watson branching
process,28,29 the failures are regarded as produced in stages.
The failures in each stage independently produce further fail-
ures in the next stage according to a probability distribution

with mean �. The behavior is governed by the parameter �.
In the subcritical case of ��1, the failures will die out �i.e.,
reach and remain at zero failures at some stage� and the
mean number of failures in each stage decreases geometri-
cally. In the supercritical case of ��1, although it possible
for the process to die out, often the failures increase without
bound. Of course, there are a large but finite number of com-
ponents that can fail in a blackout and in the CASCADE
model, so it is also necessary to account for the branching
process saturating with all components failed.

The stages of the CASCADE model can be approxi-
mated by the stages of a saturating branching process by
letting the number of components n become large, while p
and d become small in such a way that �=np and �=nd
remain constant. The number S of components failed in the
saturating branching process is, then, a saturating form of the
generalized Poisson distribution.12 Further approximation of
the generalized Poisson distribution yields30

P�S = r� �
�e�1−���/�

�2	
r−1.5e−r/r0;

1 
 r � r1 = min�n/�,n�, �/� � 1, �5�

where r0 = �� − 1 − ln ��−1.

In the approximation �5�, the term r−1.5 dominates for r�r0

and the exponential term e−r/r0 dominates for r�r0. Thus, �5�
shows that the distribution of the number of failures has an
approximate power law region of exponent −1.5 for 1
r
�r0 and an exponential tail for r0�r�r1. Note that near the
critical point, ��1 and r0 becomes large. If r0 exceeds the
total number of components, then the power law region ex-
tends up to but not including all of the components failed.

For a very general class of branching processes, at the
critical point the probability distribution of the total number
of failures has a power law form with exponent −1.5. The
universality of the −1.5 power law at criticality in the prob-
ability distribution of the total number of failures in a
branching process suggests that this is a signature for this
type of cascading failure.

The branching process approximation does capture some
salient features of load-dependent cascading failure and sug-
gests an approach to reducing the risk of large cascading
failures by monitoring and limiting the average propagation
of failures �.30–33 However, work remains to confirm the
correspondence between these simplified global models and
the complexities of cascading failure in real systems. While
our main motivation is large blackouts, the CASCADE and
branching process models are sufficiently simple and general
that they could be applied to cascading failure of other large,
interconnected infrastructures.34

B. Power system blackout models

We summarize some power system models for cascading
failure blackouts. All these models include representation of
power flows on the grid using circuit laws.

The Oak Ridge-PSERC-Alaska �OPA� model for a fixed
network represents transmission lines, loads and generators
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with the usual dc load flow approximation �linearized real
power flows with no losses and uniform voltage magni-
tudes�. Starting from a solved base case, blackouts are initi-
ated by random line outages. Whenever a line is outaged, the
generation and load is redispatched using standard linear
programming methods �since there is more generation power
than the load requires, one must choose how to select and
optimize the generation that is used to exactly balance the
load�. The cost function is weighted to ensure that load shed-
ding is avoided where possible. If any lines were overloaded
during the optimization, then these lines are outaged with
probability p1. The process of redispatch and testing for out-
ages is iterated until there are no more outages. The total
load shed is, then, the power lost in the blackout. The OPA
model neglects many of the cascading processes in blackouts
and the timing of events. However, the OPA model does
represent in a simplified way a dynamical process of cascad-
ing overloads and outages that is consistent with some basic
network and operational constraints. OPA can also represent
complex dynamics as the network evolves; this is discussed
in Sec. VII.

Chen et al.9 model power system blackouts using the dc
load flow approximation and standard linear programming
optimization of the generation dispatch and represent in de-
tail hidden failures of the protection system. The expected
blackout size is obtained using importance sampling. The
distribution of power system blackout size is obtained by
rare event sampling and blackout risk assessment and miti-
gation methods are studied. There is some indication of a
critical point at which there is a power law in the distribution
of blackout size in the Western Systems Coordinating Coun-
cil �WSCC� 179-node system. Carnegie Mellon University
has developed a cascading overload dc load flow model on a
3357-node network that shows sharp phase transitions in cas-
cading failure probability as load is increased.35

Anghel et al.36 go beyond a dc load flow and linear
programming generation redispatch representation of cascad-
ing overloads to represent the time evolution of the random
disturbances and restoration processes and also analyze the
effect of operator actions with different risk optimizations of
load shedding versus cascading.

The University of Manchester has developed an ac
power blackout model that represents a range of cascading
failure interactions, including cascade and sympathetic trip-
ping of transmission lines, heuristic representation of genera-
tor instability, under-frequency load shedding, post-
contingency redispatch of active and reactive resources, and
emergency load shedding to prevent a complete system
blackout caused by a voltage collapse.10,37,38 The Manchester
model is used by Rios et al.37 to evaluate expected blackout
cost using Monte Carlo simulation and by Kirschen et al.38

to apply correlated sampling to develop a calibrated refer-
ence scale of system stress that relates system loading to
blackout size.

Ni et al.39 evaluate expected contingency severities
based on real-time predictions of the power system state to
quantify the risk of operational conditions. The computations
account for current and voltage limits, cascading line over-
loads, and voltage instability. Zima and Andersson40 study

the transition into subsequent failures after an initial failure
and suggest mitigating this transition with a wide-area mea-
surement system.

Hardiman et al.41 simulate and analyze cascading failure
using the TRELSS software. In its “simulation approach”
mode, TRELSS represents cascading outages of lines, trans-
formers, and generators due to overloads and voltage viola-
tions in large ac networks �up to 13 000 nodes�. Protection
control groups and islanding are modeled in detail. The cas-
cading outages are ranked in severity and the results have
been applied in industry to evaluate transmission expansion
plans. Other modes of operation are available in TRELSS that
can rank the worst contingencies and take into account re-
medial actions and compute reliability indices.

C. Review of other approaches

We briefly review some other approaches to cascading
failure and complex systems in power system blackouts.

Roy et al.42 construct randomly generated tree networks
that abstractly represent influences between idealized com-
ponents. Components can be failed or operational according
to a Markov model that represents both internal component
failure and repair processes and influences between compo-
nents that cause failure propagation. The effects of the net-
work degree and the intercomponent influences on the failure
size and duration are studied. Pepyne et al.43 also use a Mar-
kov model for discrete state power system nodal compo-
nents, but propagate failures along the transmission lines of a
power systems network with a fixed probability. They study
the effect of the propagation probability and maintenance
policies that reduce the probability of hidden failures.

The challenging problem of determining cascading fail-
ure due to dynamic transients in hybrid nonlinear differential
equation models is addressed by DeMarco44 using Lyapunov
methods applied to a smoothed model and by Parrilo et al.45

using Karhunen-Loeve and Galerkin model reduction. Lind-
ley and Singpurwalla46 describe some foundations for causal
and cascading failure in infrastructures and model cascading
failure as an increase in a component failure rate within a
time interval after another component fails.

Stubna and Fowler47 give an alternative view based on
highly optimized tolerance of the origin of the power law in
the NERC data. Highly optimized tolerance was introduced
by Carlson and Doyle to describe power law behavior in a
number of engineered or otherwise optimized applications.48

To apply highly optimized tolerance to the power system,
Stubna and Fowler assume that blackouts propagate one di-
mensionally and that this propagation is limited by finite
resources that are engineered to be optimally distributed to
act as barriers to the propagation. The one-dimensional as-
sumption implies that the blackout size in a local region is
inversely proportional to the local resources. Minimizing a
blackout cost proportional to blackout size subject to a fixed
sum of resources leads to a probability distribution of black-
out sizes with an asymptotic power tail and two free param-
eters. The asymptotic power tail exponent is exactly −1, and
this value follows from the one-dimensional assumption. The
free parameters can be varied to fit the NERC data for both
megawatts lost and customers disconnected. However, a bet-
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ter fit to both these data sets can be achieved by modifying
highly optimized tolerance to allow some misallocation of
resources.

There is an extensive literature on cascading in
graphs49,50 that is partially motivated by idealized models of
propagation of failures in infrastructure networks such as the
internet. The dynamics of cascading is related to statistical
topological properties of the graphs. Work on cascading
phase transitions and network vulnerability that accounts for
forms of network loading includes work by Watts,51 Motter
et al.,52 and Crucitti et al.53 Lesieutre54 applies topological
graph concepts in a way that is more consistent with power
system generation and load patterns.

V. CRITICAL POINTS

As load increases, it is clear that cascading failure be-
comes more likely, but exactly how does it become more
likely? Our results show that the cascading failure does not
gradually and uniformly become more likely; instead there is
a critical point or phase transition at which the cascading
failure becomes more likely. In complex systems and statis-
tical physics, a critical point is associated with power laws in
probability distributions and changes in gradient �for a
type-2 phase transition� or a discontinuity �for a type-1 phase
transition� in some measured quantity as the system passes
through the critical point.

The critical point defines a reference point of system
stress or loading for increasing risk of cascading failure. De-
signing and operating the power system appropriately with
respect to this critical point would manage the distribution of
blackout risk among small, medium, and large blackouts.
However, while the power law region at the critical point
indicate a substantial risk of large blackouts, it is premature
at this stage of risk analysis to presume that operation near a
critical point is bad because it entails some substantial risks.
There is also economic gain from an increased loading of the
power transmission system. Indeed, one of the objectives in
pursuing the risk analysis of cascading blackouts is to deter-
mine and quantify the tradeoffs involved so that sensible
decisions about optimal design and operation and blackout
mitigation can be made.

Implementing the management of blackout risk would
require limiting the system throughput and this is costly.
Managing the tradeoff between the certain cost of limiting
throughput and the rare but very costly widespread cata-
strophic cascading failure may be difficult. Indeed. we main-
tain in Sec. VII that for large blackouts, economic, engineer-
ing, and societal forces may self-organize the system to near
a critical point and that efforts to mitigate the risk should
take account of these broader dynamics.13

A. Qualitative effect of load increase on distribution
of blackout size

Consider cascading failure in a power transmission sys-
tem in the impractically extreme cases of very low and very
high loading. At very low loading, any failures that occur
have minimal impact on other components and these other
components have large operating margins. Multiple failures

are possible, but they are approximately independent so that
the probability of multiple failures is approximately the
product of the probabilities of each of the failures. Since the
blackout size is roughly proportional to the number of fail-
ures, the probability distribution of blackout size will have
an exponential tail. The distribution of blackout size is dif-
ferent if the power system is operated recklessly at a very
high loading in which every component is close to its load-
ing limit. Any initial disturbance then causes a cascade of
failures leading to total or near total blackout. It is clear that
the probability distribution of blackout size must somehow
change continuously from the exponential form to the certain
total blackout form as loading increases from a very low to a
very high loading. We are interested in the nature of the
transition between these two extremes. Our results presented
below suggest that the transition occurs via a critical point at
which there is a power law region in the probability distri-
bution of blackout size. Note that since we always assume a
finite size power grid, the power law region cannot extend
further than the total blackout size.

B. Critical points as load increases in CASCADE

This subsection describes one way to represent a load
increase in the CASCADE model and how this leads to a
parameterization of the normalized model. The effect of the
load increase on the distribution of the number of compo-
nents failed is then described.11

We assume for convenience that the system has n
=1000 components. Suppose that the system is operated so
that the initial component loadings vary from Lmin to Lmax

=Lfail=1. The average initial component loading L= �Lmin

+1� /2 may then be increased by increasing Lmin. The initial
disturbance D=0.0004 is assumed to be the same as the load
transfer amount P=0.0004. These modeling choices for com-
ponent load lead via the normalization �2� to the
parametrization

p = d =
0.0004

2 − 2L
, 0.5 � L � 1. �6�

The increase in the normalized power transfer p with in-
creased L may be thought of as strengthening the component
interactions that cause cascading failure.

The distribution for the subcritical and nonsaturating
case L=0.6 has an approximately exponential tail as shown
in Fig. 2. The tail becomes heavier as L increases and the
distribution for the critical case L=0.8, np=1 has an approxi-
mate power law region over a range of S. The power law
region has an exponent of approximately −1.4. The distribu-
tion for the supercritical and saturated case L=0.9 has an
approximately exponential tail for small r, zero probability
of intermediate r, and a probability of 0.80 of all 1000 com-
ponents failing. If an intermediate number of components
fail in a saturated case, then the cascade always proceeds to
all 1000 components failing.

The increase in the mean number of failures as the av-
erage initial component loading L is increased is shown in
Fig. 3. The sharp change in gradient at the critical loading
L=0.8 corresponds to the saturation of �3� and the conse-
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quent increasing probability of all components failing. In-
deed, at L=0.8, the change in gradient in Fig. 3 together with
the power law region in Fig. 2 suggest a type-2 phase tran-
sition in the system. In this regime of the CASCADE model,
mean number of failures detects the critical point in the same
way as percolation measures such as the frequency of a suf-
ficiently large number of components failing.10

The model results show how system loading can influ-
ence the risk of cascading failure. At low loading there is an
approximately exponential tail in the distribution of number
of components failed and a low risk of large cascading fail-
ure. There is a critical loading at which there is a power law
region in the distribution of number of components failed
and a sharp increase in the gradient of the mean number of
components failed. As loading is increased past the critical
loading, the distribution of number of components failed
saturates, there is an increasingly significant probability of
all components failing, and there is a significant risk of large
cascading failure.

C. Critical transitions as load increases in power
system models

Criticality can be observed in the fast dynamics OPA
model as load power demand is slowly increased, as shown
in Fig. 4. �Random fluctuations in the pattern of load are
superimposed on the load increase in order to provide statis-
tical data.� At a critical loading, the gradient of the expected
blackout size sharply increases. Moreover, the pdf of black-
out size shows a power law region at the critical loading, as
shown in Fig. 5. OPA can also display complicated critical

FIG. 2. Log-log plot of distribution of number of components failed S for
three values of average initial load L in the CASCADE model �Ref. 11�.
Note the power law region for the critical loading L=0.8. L=0.9 has an
isolated point at �1000,0.80� indicating probability 0.80 of all 1000 compo-
nents failed. Probability of no failures is 0.61 for L=0.6, 0.37 for L=0.8,
and 0.14 for L=0.9.

FIG. 3. Mean number of components failed �ES� as a function of mean
initial component loading L in the CASCADE model �Ref. 11�. Note the
change in gradient at the critical loading L=0.8. There are n=1000 compo-
nents and ES becomes 1000 at the highest loadings.

FIG. 4. �Color online� Mean blackout size as loading increases. Critical
loading occurs where mean blackout size sharply increases. Results obtained
with the OPA model �Ref. 5�.

FIG. 5. �Color online� Blackout size pdf at critical loading P=15 392 and
other loadings. Results obtained with the OPA model �Ref. 5�.
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point behavior corresponding to both generation and trans-
mission line limits.7

As noted in Sec. IV, the cascading hidden failure model
of Chen et al.9 on a 179-node system and the Carnegie Mel-
lon University cascading overload model35 on a 3357-node
system also show some indications of a critical point as load
is increased. The results of Chen et al. show a gradual in-
crease in expected blackout size near the critical point,
whereas the Carnegie Mellon model shows sharp increases in
the probability of larger blackouts at the critical point.

The most realistic power system model critical point re-
sults obtained so far are with the Manchester blackout simu-
lation on a 1000-bus realistic model of a European power
system.10 Figure 6 shows the mean blackout size as system
loading is increased and Fig. 7 shows a power law region in
blackout size distribution at the critical point.

VI. QUANTIFYING BLACKOUT RISK

At a critical point there is a power law region, a sharp
increase in mean blackout size, and an increased risk of cas-
cading failure. Thus, the critical point gives a reference or a
power system operational limit with respect to cascading

failure. That is, we are suggesting adding an “increased risk
of cascading failure” limit to the established power system
operating limits such as thermal, voltage, and transient sta-
bility. How does one practically monitor or measure margin
to the critical point?

One approach is to increase loading in a blackout simu-
lation incorporating cascading failure mechanisms until a
critical point is detected by a sharp increase in mean black-
out size. The mean blackout size is calculated at each loading
level by running the simulation repeatedly with some ran-
dom variation in the system initial conditions so that a vari-
ety of cascading outages are simulated. This approach is
straightforward and likely to be useful, but it is not fast and
it seems that it would be difficult or impossible to apply to
real system data. It could also be challenging to describe and
model a good sample of the diverse interactions involved in
cascading failure in a fast enough simulation. This approach,
together with checks on the power law behavior of the dis-
tribution of blackout size, was used to find criticality in sev-
eral power system and abstract models of cascading
failure.7,9,11,12 Confirming critical points in this way in a
range of power system models incorporating more detailed
or different cascading failure mechanisms would help to es-
tablish further the key role that critical points play in cascad-
ing failure.

Another approach that is currently being developed30–33

is to monitor or measure from real or simulated data how
much failures propagate after they are initiated. Branching
process models such as the Galton-Watson process described
in Sec. IV have a parameter � that measures both the mean
failure propagation and proximity to criticality. In branching
process models, the mean number of failures is multiplied by
� at each stage of the branching process. Although there is
statistical variation about the mean behavior, it is known29

that for subcritical systems with ��1, the failures will die
out and that for supercritical systems with ��1, the number
of failures can exponentially increase. �The exponential in-
crease will in practice be limited by the system size and any
blackout inhibition mechanisms; current research seeks to
understand the blackout inhibition mechanisms.� The idea is
to statistically estimate � from simulated or real failure data.
Essentially this approach seeks to approximate and fit the
data with a branching process model. The ability to estimate
� and any other parameters of the branching process model
would allow the efficient computation of the corresponding
distribution of blackout size probability and hence estimates
of the blackout risk. Our emphasis on limiting the propaga-
tion of system failures after they are initiated is complemen-
tary to more standard methods of mitigating the risk of cas-
cading failure by reducing the risk of the first few likely
failures caused by an initial disturbance as for example in
using the n−1 criterion or in Ni et al.39

VII. SELF-ORGANIZATION AND SLOW DYNAMICS
OF NETWORK EVOLUTION

A. Qualitative description of self-organization

We qualitatively describe how the forces shaping the
evolution of the power network could give rise to self-

FIG. 6. Mean blackout size �expected energy not served� in Manchester
model as loading increases on a realistic 1000-bus model �Ref. 10�. Critical
loading occurs at kink in curves where mean blackout size sharply increases.

FIG. 7. Log-log plot of blackout size PDF obtained from Manchester black-
out simulation at critical loading on a realistic 1000-bus model �Ref. 10�.
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organizing dynamics.6 The power system contains many
components such as generators, transmission lines, trans-
formers and substations. Each component experiences a cer-
tain loading each day and when all the components are con-
sidered together they experience some pattern or vector of
loadings. The pattern of component loadings is determined
by the power system operating policy and is driven by the
aggregated customer loads at substations. The power system
operating policy includes short-term actions such as genera-
tor dispatch as well as longer-term actions such as improve-
ments in procedures and planned outages for maintenance.
The operating policy seeks to satisfy the customer loads at
least cost. The aggregated customer load has daily and sea-
sonal cycles and a slow secular increase of about 2% per
year.

The probability of component failure generally increases
with component loading. Each failure is a limiting or zeroing
of load in a component and causes a redistribution of power
flow in the network and hence a discrete increase in the
loading of other system components. Thus, failures can cas-
cade. If a cascade of events includes limiting or zeroing the
load at substations, it is a blackout. A stressed power system
experiencing an event must either redistribute power flows
satisfactorily or shed some load at substations in a blackout.

Utility engineers make prodigious efforts to avoid black-
outs and especially to avoid repeated blackouts with similar
causes. These engineering responses to a blackout occur on a
range of time scales longer than one day. Responses include
repair of damaged equipment, more frequent maintenance,
changes in operating policy away from the specific condi-
tions causing the blackout, installing new equipment to in-
crease system capacity, and adjusting or adding system
alarms or controls. The responses reduce the probability of
events in components related to the blackout, either by low-
ering their probabilities directly or by reducing component
loading by increasing component capacity or by transferring
some of the loading to other components. The responses are
directed towards the components involved in causing the
blackout. Thus, the probability of a similar blackout occur-
ring is reduced, at least until load growth degrades the im-
provements made. There are similar, but less intense re-
sponses to unrealized threats to system security such as near
misses and simulated blackouts.

The pattern or vector of component loadings may be
thought of as a system state. Maximum component loadings
are driven up by the slow increase in customer loads via the
operating policy. High loadings increase the chances of cas-
cading events and blackouts. The loadings of components
involved in the blackout are reduced or relaxed by the engi-
neering responses to security threats and blackouts. How-
ever, the loadings of some components not involved in the
blackout may increase. These opposing forces driving the
component loadings up and relaxing the component loadings
are a reflection of the standard tradeoff between satisfying
customer loads economically and security. The opposing
forces apply over a range of time scales. We suggest that the
opposing forces, together with the underlying growth in cus-
tomer load and diversity give rise to a dynamic complex
system equilibrium. Moreover, we suggest that in this dy-

namic equilibrium cascading blackouts occur with a fre-
quency governed approximately by a power law relationship
between blackout probability and blackout size. That is,
these forces drive the system to a dynamic equilibrium near
a critical point.

The load increase is a force weakening the power system
�reducing operating margin� and the system upgrades are a
force strengthening the system �increasing operating mar-
gin�. If the power system is weak, then there will be more
blackouts and hence more upgrades of the lines involved in
the blackout and this will strengthen the power system. If the
power system is strong, then there will be fewer blackouts
and fewer line upgrades, and the load increase will weaken
the system. Thus, the opposing forces drive the system to a
dynamic equilibrium that keeps the system near a certain
pattern of operating margins relative to the load. Note that
engineering improvements and load growth are driven by
strong, underlying economic and societal forces that are not
easily modified.

These ideas of complex dynamics by which the network
evolves are inspired by the corresponding concepts of self-
organized criticality in statistical physics.55–57

B. OPA blackout model for a slowly evolving network

The OPA blackout model8,58–60 represents the essentials
of slow load growth, cascading line outages, and the in-
creases in system capacity caused by the engineering re-
sponses to blackouts. Cascading line outages leading to
blackout are regarded as fast dynamics and are modeled as
described in Sec. IV and the lines involved in a blackout are
computed. The slow dynamics model the growth of the load
demand and the engineering response to the blackout by up-
grades to the grid transmission capability. The slow dynam-
ics represents an idealized form of the complex dynamics
outlined in subsection A. The slow dynamics is carried out
by the following small changes applied each time a potential
cascading failure is simulated: All loads are multiplied by a
fixed parameter that represents the rate of increase in elec-
tricity demand. If a blackout occurs, then the lines involved
in the blackout have their line flow limits increased slightly.
The grid topology remains fixed in the upgrade of the lines
for model simplicity. In upgrading a grid it is important to
maintain coordination between the upgrade of generation and
transmission. The generation is increased at randomly se-
lected generators subject to coordination with the limits of
nearby lines when the generator capacity margin falls below
a threshold. The OPA model is “top-down” and represents
the processes in greatly simplified forms, although the inter-
actions between these processes still yield complex �and
complicated!� behaviors. The simple representation of the
processes is desirable both to study only the main interac-
tions governing the complex dynamics and for pragmatic
reasons of model tractability and simulation run time.

An example of the evolving average line margins and
power served is shown in Fig. 8. The power served follows
the exponential increase in load except when it is reduced by
blackouts. The line loading is averaged over the lines and the
figure shows the average line loading converging to a steady
state of approximately 70%.
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Moreover, when the generator upgrade process is suit-
ably coordinated with the line upgrades and load increase,
OPA results show power law regions in the pdf of blackout
sizes. For example, OPA results for the IEEE 118-bus net-
work and an artificial 382-bus tree-like network are shown in
Fig. 9. Both the power law region of the pdf and the consis-
tency with the NERC blackout data are evident. This result
was achieved by the internal dynamics modeled in the sys-
tem and is in this sense self-organizing to a critical point.

C. Blackout mitigation

The success of mitigation efforts in self-organized criti-
cal systems is strongly influenced by the dynamics of the
system. Unless the mitigation efforts alter the self-
organization forces driving the system, the system will be
pushed to a critical point. To alter those forces with mitiga-
tion efforts may be quite difficult because the engineering
and economic forces are an intrinsic part of our society. The
mitigation efforts can then move the system to a new dy-

namic equilibrium while remaining near a critical point and
preserving the power law dependence. Thus, while the abso-
lute frequency of blackouts of all sizes may be reduced, the
underlying forces can still cause the relative frequency of
large blackouts to small blackouts to remain the same.

Indeed apparently sensible efforts to reduce the risk of
smaller blackouts can sometimes increase the risk of large
blackouts.13 This occurs because the large and small black-
outs are not independent but are strongly coupled by the
dynamics. For example, the longer-term response to small
blackouts can influence the frequency of large blackouts in
such a way that measures to reduce the frequency of small
blackouts can eventually reposition the system to have an
increased risk of large blackouts. The possibility of an over-
all adverse effect on risk from apparently sensible mitigation
efforts shows the importance of accounting for complex sys-
tem dynamics when devising mitigation schemes.13 For ex-
ample, Figure 10 shows the results of inhibiting small num-
bers of line outages using the OPA model with self-
organization on the IEEE 118-bus system.13 One of the
causes of line outages in OPA is the outage of lines with a
probability p1 when the line is overloaded. The results show
the effect of inhibiting these outages when the number of
overloaded lines is less than 10. The inhibition corresponds
to more effective system operation to resolve these over-
loads. Blackout size is measured by number of line over-
loads. The inhibition is, as expected, successful in reducing
the smaller numbers of line outages, but eventually, after the
system has repositioned to its dynamic equilibrium, the num-
ber of larger blackouts has increased. The results shown in
Fig. 10 are distributions of blackouts in the self-organized
dynamic equilibrium and reflect the long-term effects of the
inhibition of line outages. It is an interesting open question to
what extent power transmission systems are near their dy-

FIG. 8. �Color online� Evolution of average line loading �M� and power
served in OPA.

FIG. 9. �Color online� Blackout size pdf resulting from self-organization
showing OPA results on two networks �Ref. 5�. The NERC North American
blackout data is also shown for comparison.

FIG. 10. �Color online� Distribution of number of line outages for base case
and for inhibiting up to ten line outages. Results are obtained using OPA
model on the IEEE 118-bus test system �Ref. 13�.
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namic equilibrium, but operation near dynamic equilibrium
is the simplest assumption at the present stage of knowledge
of these complex dynamics.

Similar effects are familiar and intuitive in other com-
plex systems. For example, more effectively fighting small
forest fires allows the forest system to readjust with in-
creased brush levels and closer tree spacing so that when a
forest fire does happen by some chance to progress to a
larger fire, a huge forest fire is more likely.13

VIII. CONCLUSIONS

We have summarized and explained an approach to se-
ries of cascading failure blackouts at a global systems level.
This way of studying blackouts is complementary to existing
detailed analyses of particular blackouts and offers some new
insights into blackout risk, the nature of cascading failure,
the occurrence and significance of critical points, and the
complex system dynamics of blackouts.

The power law region in the distribution of blackout
sizes in observed blackout data6,19–23 has been reproduced by
power system blackout models7–10 and some abstract models
of cascading failure11,12 and engineering design.47 The power
law profoundly affects the risk of large blackouts, making
this risk comparable to, or even exceeding the risk of small
blackouts. The power law also precludes many conventional
statistical models with exponential-tailed distributions and
new approaches to the risk analysis of blackouts need to be
developed.11,12,25,32,33

We think that the power law region in the distribution of
blackout sizes arises from cascading failure when the power
system is loaded near a critical point. Several power system
blackout models7,9,10 and abstract models of cascading
failure11,12 show evidence of a critical loading at which the
probability of cascading failure sharply increases. Determin-
ing the proximity to critical loading and the overall blackout
risk from power system simulations or data is an important
problem. The current approaches include Monte Carlo simu-
lation methods to compute the proximity to critical
loading7,9,38 and ways of quantifying propagation of failure �
using branching process models of cascading failure. We are
pursuing practical methods of estimating � from real or
simulated failure data.12,30,32,33 It is also of interest to find
quantities that influence �at least in the short term� the dis-
tribution of blackout sizes such as loading level, spinning
reserve, hidden failure probability, and control actions.7,9,36

A novel and much larger view of the power system dy-
namics considers the opposing forces of growing load and
the upgrade of the transmission network in response to real
or simulated blackouts. Our simulation results show that
these complex dynamics can self-organize the system to be
near a critical point.8 These complex dynamics are driven by
strong societal and economic forces and the difficulties or
tradeoffs in achieving long-term displacement of the power
system away from the complex systems equilibrium caused
by these forces should not be underestimated. Indeed we
have simulated a simple example of a blackout mitigation
method that successfully limits the frequency of small black-
outs, but in the long term increases the frequency of large
blackouts as the transmission system readjusts to its complex

systems equilibrium.13 In the light of this example, we sug-
gest that the blackout prevention problem be reframed as
jointly mitigating the probabilities of small, medium, and
large blackouts.

If the power system is self-organizing to near a critical
point in response to strong economic, societal, and engineer-
ing forces, this may limit the ways in which the distribution
of blackout sizes may be readily changed. For example, the
self-organization may make it hard in the long term to
change the approximate power law form of the distribution
of blackout size. It could be easier to preserve the power law
form but reduce the frequency of blackouts of all sizes by the
same fraction. It is of interest to find quantities that influence
the long-term, steady-state distribution of blackout sizes such
as component reliability, redundancy, and generator
margin.13,61 While it is conceivable that structural change to
our society such as draconian energy saving measures or
widespread local electricity generation could change or at
least temporarily suspend the annual load increase on the
transmission system that is a driver of the self-organization, a
conservative assumption for North America is that the his-
torically robust annual growth rate in electricity usage will
continue and the transmission system will continue to pro-
vide most of the electrical energy to customers.

A quantitative overall risk analysis of blackouts is only
now emerging and it is not yet clear for optimizing the power
system whether a power law region in the distribution of
blackout size is desirable, undesirable, or, as suggested by
self-organization, inevitable. Once practical methods for
quantifying blackout risk become established, they can be
used to assess the change in risk when specific improvements
are made to the power system. This ability to quantify the
reliability benefits of improvements would be particularly
helpful in evaluating and trading off the costs and benefits of
proposed reliability policies or standards. In any case, in op-
timizing the blackout risk by considering the costs and ben-
efits of reliability improvements, instead of only considering
the short-term reliability of a fixed power grid with an im-
provement, we suggest also examining the long-term reli-
ability of an evolving power grid that is governed by the
complex dynamics of its upgrade process.

There are good prospects for extracting engineering and
scientific value from the further development of models,
simulations and computations and we hope that the overview
in this paper encourages further developments and practical
applications in this emerging and exciting area of research.
There is an opportunity for systems research to make a sub-
stantial contribution to understanding and managing the risk
of cascading failure blackouts.
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