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Identification of Network Parameter Errors

Jun Zhu and Ali Abur, Fellow, IEEE

Abstract—This paper describes a simple yet effective method for
identifying incorrect parameters associated with the power net-
work model. The proposed method has the desired property of dis-
tinguishing between bad analog measurements and incorrect net-
work parameters, even when they appear simultaneously. This is
accomplished without expanding the state or the measurement vec-
tors. There is also no need to a priori specify a suspect parameter
set. All these features are verified via simulations that are carried
out using different-size test systems for various possible cases. Im-
plementation of the method involves minor changes in the weighted
least-squares state estimation code; hence, it can be easily inte-
grated into existing state estimators as an added feature.

Index Terms—Lagrange multipliers, parameter errors, power
system state estimation.

1. INTRODUCTION

LL THE energy management system (EMS) applications

make use of the network model in the mathematical
formulation of their problem. Transmission line resistances,
reactances and charging capacitances, transformer reactances
and tap values, and shunt capacitor/reactor values are examples
of network parameters that are required to build the network
model. Among the EMS applications, state estimation plays an
important role since it provides the network model for all other
applications.

Traditionally, state estimation is carried out assuming that the
correct network model is known. Therefore, any inconsistencies
detected during the estimation process will be blamed on the
analog measurement errors. Errors in the network model may
be due to topology and/or parameter errors.

The influence of the parameter errors on the state estimation
solution is studied in detail in [1] and [2]. Existing methods of
parameter error identification are of two types [1]. The first type
is based on residual sensitivity analysis [3]-[9], where the sensi-
tivities of the measurement residuals to the assumed parameter
errors are used for identification. This analysis is performed on
the solved state estimation case, and therefore, the core state
estimation code will remain untouched. This is the main advan-
tage of this type of approach. The second type uses a state vector
augmented by additional variables, which are the suspected pa-
rameters. This approach can be implemented in two different
ways: one using the static normal equations [2], [10]-[16] and
the other using the Kalman filter theory [17]-[24].
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Topology errors, on the other hand, involve incorrect status
information for circuit breakers, and several methods are pro-
posed so far for their detection and identification [25]-[29].
Among these methods, a recent one that is based on a reduced
system model and the use of Lagrange multipliers [28], [29]
addresses the main shortcoming of the previously proposed
methods by eliminating the need to identify a suspect substation
before topology error identification.

In this paper, a new parameter error identification method
that complements the topology error identification method of
[29] is proposed. This method is based on the Lagrange mul-
tipliers of the parameter constraints. A set of additional vari-
ables that correspond to the errors in the network parameters
is introduced into the state estimation problem. However, di-
rect estimation of these variables is avoided by the proposed
formulation. Following the traditional state estimation solution,
measurement residuals are used to calculate the Lagrange multi-
pliers associated with the parameter errors. If these are found to
be significant, then the associated parameter will be suspected
of being in error. The main advantage of this method is that
the normalized measurement residuals and parameter error La-
grange multipliers can be computed, allowing their identifica-
tion even when they appear simultaneously. The first part of the
proposed procedure is based only on the conventional weighted
least-squares (WLS) state estimation solution; however, the sub-
sequent error identification and correction procedures will have
to be implemented and integrated into the existing code. There
is no need to specify a suspect set of parameters a priori, since
the method will readily identify the erroneous parameters along
with any existing bad measurements.

This paper is organized such that Section II presents the pro-
posed formulation and solution of the parameter error identifi-
cation problem. Implementation details and the results of simu-
lations are given in Section III. Section IV concludes the paper.

II. PROPOSED METHOD

A. Problem Formulation

Consider the following measurement model:

z=h(z,p.)+e €))
where
z measurement vector;
h(z,p.)  nonlinear function relating the measurements to
the system states and network parameter errors;
X system state vector, including voltage magni-
tudes and phase angles;
Pe vector containing network parameter errors;
e vector of measurement errors.
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Buses with no generation or load will provide free and exact
measurements as zero power injections. These can be treated as
equality constraints given by

c(x,pe) = 0. 2)
The network parameter vector will be modeled as

P =Pt + Pe 3)

where p and p; are the assumed and true network parameter
vectors. Network parameter errors are normally assumed to be
zero by the state estimator. Therefore, for error-free operation,
the following equality constraint on network parameter errors
will be used:

Pe = 0. “)

The WLS state estimation problem in the presence of network
parameter errors and equality constraints can then be formulated
as the following optimization problem:

1
Minimize: J(z) = §rtWr
Subject to:  ¢(z,p.) =0
pe=0 &)
where
r =z — h(x,p.) measurement residual vector;
w diagonal matrix whose inverse is the mea-

surement error covariance matrix, cov(e).
Applying the method of Lagrange multipliers, the following
Lagrangian can be defined for the optimization problem of (5):

1
L = §TtW7” —ple(m,pe) — Ape. (6)

Applying the first-order optimality conditions
oL

=H!Wr+Clu=0 (7)
ox
oL
a—p:H;Wr+C;/L+/\:0 (8)
oL
M =c(x,pe) =0 )
oL _ . —0 (10)
)\ =Pe =
where
1, = Ow.pe) (11
ox
o, — dc(x, pe) (12)
ox
_ Oh(z,pe.)
Hy, = . (13)
_ 9c(z,pe)
= op, (1

1 and A are the Lagrange multipliers for the equality constraints
(2) and (4).
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Equation (8) can be used to express A in terms of 4 and r

A:S[q (15)
7
where
_[wh,)"
5= |: Cp ] (10

is the parameter sensitivity matrix.

Equality constraint (4) allows substitution of p. in (7)-(9).
Denoting h(z,0) and ¢(z,0) by ho(z) and co(z), respectively,
the measurement equations will take the following form:

A7)
(18)

z=ho(z) + e

co(z) =0.

Note that (17) and (18) are the conventional measurement and
zero injection equations used by the state estimators. They do
not include parameter errors as explicit variables. Substituting
the first-order Taylor approximations for ho(z) and ¢o(z), the
following linear equations will be obtained:

H, Ax+r=Az
Cr - Ax = — co(x0)

19)
(20)

where Ax = x — x¢, o being the initial guess for the system
state vector Az = z — ho(zp).

Using (7), (19), and (20), the following equation will be
obtained:

0 H:w ¢t Az 0
H, I 0O |ef| r | = Az 21
C, 0 0 " —co(o)

This equation is the same equation used for the iterative solu-
tion of the conventional WLS state estimation problem. Hence,
the solution for the measurement residuals 7 and the Lagrange
multipliers for the zero injections 4 can be obtained first by it-
eratively solving (21). Once the state estimation algorithm suc-
cessfully converges, (15) can be used to recover the Lagrange
multiplier vector A associated with the parameter errors.

B. Computation of the Normalized Lagrange Multiplier \N

Since the main aim of this paper is to identify parameter er-
rors, the validity of the constraint (10) will have to be tested.
This can be done based on the Lagrange multiplier vector \ as-
sociated with the parameter error vector p.. In order to test the
significance of a given \; value, it will be normalized using its
covariance matrix cov(A), which can be obtained as in [30] and
also described below.

Letting v = [r )T and using (15)

A = cov()\) = S -cov(u) - S*. (22)
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The covariance of u, cov(u) can be calculated by first ex-
pressing r and p in terms of the measurement mismatch. To do
that, let the inverse of the coefficient matrix in (21) be given in
partitioned form as follows:

1

0 H:wW Ct] E, E; Ej
H, T 0| =|E, B E (23)
C, 0 0 E; Es Fy

Noting that co(x) = 0 at the solution, (21) will yield the
following expressions for r and p:

r=~F5 Az 24)
uw=FEs-Az. (25)
Let U = [E5 Fg|T; then
u=V-Az (26)
cov(u) =0 -W1. 0t 27)

The Lagrange multipliers for the parameter errors can then be
normalized using the diagonal elements of the covariance matrix
A defined in (22)

; A
AN = (28)
A(4, 1)
forall 2 = 1,...,k, where k is the total number of network

parameters whose errors are to be identified.

Note that the denominator in (28) will be zero for cases where
local measurement redundancy does not allow detection of er-
rors in parameter 7. One such case is when all measurements
that are functions of a parameter are critical. The other obvious
one is when there are no measurements that are functions of a
parameter.

C. Correction of the Parameter in Error

After the parameter in error is identified, this specific param-
eter can be corrected by estimating its true value simultaneously
with the other state variables [1]. In order to accomplish this,
the state vector is augmented by the suspicious parameter p,
yielding the following new state vector, v:

(29)

v =[21,%2, ..., 2Tn|p)]

X1,...,X, conventional state variables;

P parameter previously identified as erroneous.

The solution of the state estimation problem will yield not
only the state estimates but also the estimated value of the sus-
pect parameter.

D. Error Identification/Correction Algorithm

The above formulation can be used to develop an algorithm to
detect, identify, and eliminate network parameter errors as well
as bad data. Such an algorithm is proposed in the following.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 2, MAY 2006

Step 1) WLS State Estimation

This is the WLS state estimation problem as cur-
rently solved by existing software. In addition to
the measurement residual vector 7, the solution will
provide the Lagrange multiplier vector y of zero in-
jections if they are treated as equality constraints
in the state estimation formulation. The solution in-
volves repeated solution of (21) until convergence.
Note that all parameter errors are assumed to be zero
and therefore ignored at this step.

Bad Data and Parameter Error Identification

Compute the normalized residuals r™ for the
measurements, as described in [31], and the nor-
malized Lagrange multipliers AN for the parameter
errors, as in (28). Section II-B illustrates the steps
leading to (28).

Choose the larger one between the largest
normalized residual and the largest normalized
Lagrange multiplier.

o If the chosen value is below the identification threshold,
then no bad data or parameter error will be suspected. A
statistically reasonable threshold to use is 3.0, which is the
one used in all simulations presented in the next section.

e Else, the measurement or the parameter corresponding to
the chosen largest value will be identified as the source of
the error.

Step 3) Correction of the Parameter Error

If a measurement is identified as bad, it is re-
moved from the measurement set. Equivalently, its
value can be corrected using a linear approximation
for the estimated measurement error [31].

If a parameter is identified as erroneous, it is cor-
rected by estimating its value by the method de-
scribed in Section II-C using the augmented state
vector defined as (29). Substitute the estimated pa-
rameter value for the old one and go to Step 1).

Step 2)

Note that bad data and parameter errors are processed simul-
taneously. This is possible provided that there is sufficient mea-
surement redundancy and the parameter errors are not strongly
correlated with the bad data. Since parameter errors are persis-
tent whereas bad data usually appear in a single scan, the like-
lihood of simultaneously having strongly interacting bad data
and parameter errors is small. Furthermore, using this approach,
there is no need to specify which parameter is to be tested for
errors, a priori state estimation. Those three steps are separated
from each other. Step 2) uses the results of the normal state esti-
mation done in Step 1), and the set of suspicious parameters can
be easily changed in Step 2) and without requiring re-estimation
of the system states.

III. SIMULATION RESULTS

The above-described parameter error identification procedure
is implemented and tested on IEEE 14-, 30- and 57-bus test sys-
tems. Different cases are simulated where errors are introduced
in transmission line parameters, transformer taps, shunt capaci-
tors, and analog measurements. Both single errors and simulta-
neously occurring errors in analog measurements and parame-
ters are simulated. The performance of the method as well as its
limitations is illustrated through these examples.
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TABLE 1
SIMULATED PARAMETER AND MEASUREMENT ERRORS
Bad Parameter/Meas.
Test Syst
estoystem Test A Test B
14-bus s 945
30-bus X5_7 P57
57-bus Fag G4
TABLE II
RESULTS OF ERROR IDENTIFICATION—14-BUS SYSTEM
Test A Test B
Measurement/ Normalized | Measurement/| Normalized
Parameter residual /)N Parameter residual /)\N
T4 s 7.88 45 12.02
4 5.98 qs 8.61
s 4.84 q, 6.57
qas 4.81 X4 5 5.35
t5 ¢ 4.59 Xy 4 4.18
TABLE 1II

RESULTS OF ERROR IDENTIFICATION—30-BUS SYSTEM

Test A Test B

Measurement/ Normalized |Measurement/| Normalized
Parameter residual /\N Parameter | residual /\N

Yo g 25.47 P 19.50

X7 22.01 rs 12.34

X s 21.92 s 10.56

e 15.78 e 9.97

" s 15.42 X7 9.86

TABLE 1V

RESULTS OF ERROR IDENTIFICATION—57-BUS SYSTEM

Test A Test B

Measurement/ Normalized | Measurement/| Normalized
Parameter residual /)N Parameter | residual /\N

Fye 14.82 Q4 8.78

G4 9.65 [ 5.96

5y 7.37 X5 4.22

7ys 7.09 Sy 4.01

Pag 6.79 q, 4.01

A. Case 1: Line Impedance or Measurement Error

This case presents single errors in transmission line imped-
ances or analog measurements. The method is shown to differ-
entiate between these different types of errors and to correctly
identify the error. The simulated errors for the three test sys-
tems are listed in Table I, where tests A and B are carried out as
follows.

Test A) Anerror is introduced in the line parameter listed in
Table I; all analog measurements are error free.
Test B) No parameter errors are introduced; all measure-
ments are error free, except for the listed flow in
Table I.
Tables II-IV show the sorted normalized residuals r and
normalized Lagrange multipliers A~, obtained during the tests
of Table 1.

N
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TABLE V
ESTIMATED AND TRUE PARAMETERS OF LINE IMPEDANCES
Test Bad Estimated True
system | Parameter Parameter Parameter
14-bus Tys 0.01355 0.01355
30-bus Xs5_7 0.11593 0.11600
57-bus Ty 0.04295 0.04300
TABLE VI
TAP AND MEASUREMENT ERROR IDENTIFICATION
Test A Test B
Measurement/ | Normalized |Measurement/| Normalized
Parameter residual / \N Parameter | residual /2N
N 63.19 P13-49 18.52
q13-49 53.48 X13-49 6.71
X13-49 48.69 74849 6.37
X48-49 25.60 Pao 6.17
Y46-47 20.03 X14-46 5.58
TABLE VII
ESTIMATED AND TRUE PARAMETERS OF TAPS
Test Bad Estimated True
system Parameter Parameter Parameter
57-bus hi3-49 0.89502 0.89500

For Test A, the estimated parameter values based on the pro-
cedure of Section II-C are shown in Table V for all three tested
systems.

As evident from the above, single line impedance errors as
well as single analog measurement errors can be identified and
corrected by this approach.

B. Case 2: Transformer Tap or Measurement Error

This case presents single errors in transformer taps or analog
measurements. Errors are simulated for the 57-bus test system,
where tests A and B are carried out as follows:

Test A) A 1% error is introduced in the transformer tap
value t13_49; all analog measurements are error
free.
No parameter errors are introduced; all measure-
ments are error free, except for the flow p13_49.
Table VI shows the sorted normalized residuals and Lagrange
multipliers that are obtained during Tests A and B. Again, for
Test A, the estimated value of the wrong parameter is shown in
Table VII.
As in case 1, the method successfully identifies and corrects
transformer tap errors while maintaining its ability to identify
any errors appearing in analog measurements.

Test B)

C. Case 3: Errors in Shunt Capacitor/Reactor Parameters

Errors in the parameters of shunt devices such as capacitors
or reactors can be detected but not identified. The reason is the
lack of redundancy, i.e., there is only one measurement, namely,
the reactive power injection at the corresponding bus, whose ex-
pression contains this parameter. Hence, when there is an error
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TABLE VIII TABLE XI
SHUNT SUSCEPTANCE ERRORS ESTIMATED AND TRUE PARAMETERS OF MULTIPLE ERRORS
14-bus system 30-bus system Step Bad Estimated True
Measurement/ | Normalized | Measurement/| Normalized Parameter Parameter Parameter
Parameter residual /)N Parameter | residual /)\N 1 Xy 4 0.17400 0.17632
S9 5.80 S24 12.72 nd ty g 0.96015 0.96000
o 5.80 . 12.72
99-10 3.05 d224 5.78 TABLE XII
SIMULTANEOUS ESTIMATION OF ALL IDENTIFIED PARAMETERS
lao 2.51 G2 5.23
14 2.05 42324 4.65 Bad Estimated True
Parameter Parameter Parameter
X4 0.17633 0.17632
TABLE IX t49 0.96000 0.96000
ESTIMATED AND TRUE PARAMETERS OF SHUNT SUSCEPTANCES
T Bad Estimated True
estsystem | meter Parameter Parameter When corrected, the parameter values are found, as shown
14-bus So 0.1900 0.1900 in Table XI. Notice that when there are multiple errors in the
30-bus So4 0.0432 0.0430 network parameters as well as analog measurements; repeated
application of the largest normalized value test can identify er-
rors one by one, as shown in Table X. However, due to the in-
TABLE X teraction between multiple parameter errors, sequential correc-

MULTIPLE ERROR IDENTIFICATION RESULTS

Error identification cycle
B o 31
z/p rN/QN Z/p rN/ )N z/p rN/ )N
Xy y 60.56 L9 23.87 Pas 5.07
Pas 46.48 Doy 17.99 D3 3.75
X4s 40.49 147 10.00 Py 3.02
Xy s 30.24 7.9 9.78 oy 2.86
4o 25.00 Dy 9.68 Das 2.25
Identified and Eliminated error
Xy 4 l49 Pas

in this injection measurement or an error in the shunt device pa-
rameter, this error will be detected, but its source cannot be iden-
tified. The injection measurement and the parameter constraint
constitute a critical pair. This case illustrates two examples of
this limitation for 14- and 30-bus test systems.

Errors are introduced in the shunt susceptances at bus 9 (sg)
and at bus 24 (sy4) of 14- and 30-bus systems, respectively.
The normalized residuals and Lagrange multipliers are given
in sorted form in Table VIII. Note that the reactive injection
measurements and shunt susceptances have identical normal-
ized values, indicating that they constitute a critical pair whose
errors cannot be identified.

The estimated and true parameter values are shown in
Table IX.

D. Case 4: Simultaneous Errors

This case shows the identification of multiple errors occur-
ring simultaneously in the 14-bus system. Errors are simulated
in the reactance of the transmission line 2—4, tap of the trans-
former 4-9, and the power flow measurement in line 4-2. The
largest normalized value test is used to identify these errors one
at a time. Results of normalized value tests for each error iden-
tification cycle are presented in Table X.

tion of parameter errors may yield approximate values, as in
Table XI. This approximation error can be minimized by exe-
cuting an extra estimation solution, where all identified param-
eters are included simultaneously in the augmented state vector.
The results for this case are shown in Table XII. Note that the re-
sults in Table XII are more accurate than those given in Table XI.

Similar to the case of the multiple interacting and conforming
bad data, there may be situations where strongly interacting pa-
rameter and analog measurement errors cannot be identified due
to error masking. Such cases are, however, rare and cannot be
handled by this method.

E. Case 5: Inherent Limitations: Multiple Solutions

Identification of errors in network parameters is inherently
limited by the available set of measurements as well as the
system topology. The limitation is due to the possibility of
multiple solutions corresponding to two or more parameter
errors that affect the same subset of measurements.

Consider two network parameters pl, p2 and their erroneous
values p?, pb. If two different solutions x*, x> yielding the same
objective function value can be found such that

J (Xa,péll;pQ) =1 (Xbaphpg)

then the WLS state estimator will equally likely converge to
either one of these solutions. Hence, it will not be possible to
identify which of these two parameters is actually in error.
One such situation is illustrated by the following two tests
that are carried out on the IEEE 14-bus system whose diagram
and measurements are shown in Fig. 1.
Test A) The reactance xg_ 1o for line 612 is incorrect; all
measurements are exact.
Test B) The reactance x1o_ 13 for line 12—13 is incorrect; all
measurements are exact.
The incorrect parameters for the two neighboring lines are
chosen as shown in Table XIII. These two parameter errors will
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B12 B13 TABLE XV
+ B14 ESTIMATED STATES FOR TESTS A AND B
Bus N Test A Test B
us INO:
B10 v 0 v 2]
| ) 1 1.0600 0 1.0600 0
BY
B6 BN 2 1.0450 -5.2379 1.0450 -5.2382
B7 3 1.0100 -13.1662 1.0100 -13.1669
. — fe 4 10159 | -10.8853 10159 | -10.8858
B5 ‘, B4 5 1.0180 -9.2395 1.0180 -9.2403
6 1.0700 -14.8812 1.0700 -14.8857
B3 B8
$ 7 1.0679 -14.6357 1.0678 -14.6355
8 1.0900 -16.4757 1.0900 -16.4758
9 1.0606 -16.0028 1.0605 -16.0023
Fig. 1. IEEE 14-bus system. 10 1.0547 -16.0920 1.0547 -16.0922
11 1.0588 -15.6241 1.0587 -15.6260
TABLE XIII
OBJECTIVE FUNCTION VALUES FOR TESTS A AND B 12 1.0558 15.7289 1.0559 15.7184
13 1.0510 -15.8867 1.0510 -15.8656
Erroneous Assumed True J(x) 14 1.0384 -16.9473 1.0384 -16.9403
Parameter Value Value
Test A Xg 1 0.23656 0.25581 14.7064
TestB iy 13 0.29988 0.19988 14.7068 testing the significance of the associated Lagrange multipliers.
These are computed from the normalized measurement resid-
uals obtained by the WLS state estimation. The method can deal
TABLE XIV . . . .
ERROR IDENTIFICATION OF SERIES LINES with mixed-type multiple errors in measurements and network
parameters. There is also no need to specify a set of suspect
Test A Test B parameters before state estimation. Once the parameter error
Measurement/ | Normalized | Measurement/| Normalized is identified, its correct value is estimated using the augmented
Parameter residual /\N Parameter | residual /)\N . . . .
. 3.8291 . 3.8280 state estimation method. Several examples are simulated to il-
612 - 612 - lustrate the effectiveness of the method. This paper also shows
Y1213 3.8250 M12-13 38148 the inherent limitations of error identification for certain special
X613 2.8902 X613 2.7479 cases. The method can be readily implemented as a user-defined
Ps1a 2.4126 Pia13 2.5182 option by modifying an existing WLS state estimation code.
P12-13 2.3390 Pes-12 2.4759

be detectable but not identifiable. Either one of the parame-
ters can be identified as incorrect, depending upon the initial
conditions used in the iterative solution of the state estimation
problem.

In Test A, the proposed method correctly identified z¢_12 as
the erroneous parameter, while in Test B, the same algorithm
still identified the same parameter instead of the incorrect pa-
rameter x12_13 as bad data. The reason can be easily seen by
looking at the almost identical objective function values corre-
sponding to the two tests in Table XIII. As shown in Table XIV,
in Test B, x4_12 is identified instead of the real parameter in
error, £12_13. The estimated states for the two test cases are
shown in Table XV. Note that the two estimates differ very little,
only at the buses incident to the branches with parameter errors,
namely, buses 6, 12, and 13.

IV. CONCLUSION

This paper presents a method for identifying network param-
eter errors, even in the presence of bad analog measurements.
The parameter error identification is accomplished by formu-
lating the parameter errors as zero equality constraints and then
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