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ABSTRACT

Cascading blackouts on a bulk power transmission systemaodeatmlly catastrophic events
with a large impact on society characterized by a sequendeeofrips and load shed. One
spectacular example of a cascading blackout is the Augud Blackout in North America
that affected 50 million people. We propose using brancpimgesses to model the line trip-
ping and load shed behavior of cascading blackouts. We usstanator of the offspring
mean, )\, to fit simulated blackout data to the branching process imddes parametes is a
measure of cascade propagation, and helps us to estimatkkietylarge blackouts are. We
compute distributions of blackout size and total numberired Failures from the model and
match them against simulated data. The match with simutd&isuggests that the branching
process model captures important aspects of the cascaderpbron. The line failures and
load shed in cascades are seen to have sirhjlareaning they propagate at the same rate. The
branching process model is an efficient way to estimate Arlare and load shed probability

distributions.



Chapter 1

Introduction

A cascading blackout is one in which a contingency or set atingencies cause a cas-
cading series of further failures to propagate across a pgne. The “domino effect” is a
useful heuristic for this phenonemon. For an example of hevasitating a cascading blackout
can be, look no further than the August 2003 blackout thagcédid Eastern Canada and the
Northeastern United States. This event resulted in abomiBion people without electricity
and over $6 billion in financial losses [39, 19].

We focus on using a simple statistical mathematical model oéscade to predict how
likely a cascading blackout is for a given system. By perfogrstatistical analysis on previous
blackout data, we can fit the prior data to a model and genarptebability density function
(pdf) of blackout sizes. Then it will be known how likely a casling blackout of a certain size
will be in the future, if one would happen to start. Also, thedel gives important information
about how “close” a power system is to a cascading regime #Jarge cascades have not
happened recently.

It has been shown that a simple model of cascading failurebeaapproximated well by
a particular mathematical model called a branching profEs}s This has motivated using
branching processes to model various aspects of a casdaldicigout. Branching processes
have been used to describe various “cascading” type eveclsas epidemics [2], and earth-
guakes [35], as well as more abstract cases such as perssy@efdamily names [26]. Their
mathematical properties have been widely studied, withbiés sources being [26, 1, 28].
Branching processes of some form can potentially be apptiehy type of cascading phe-

nomenon, so it is natural to extend them to blackouts.



For our purposes, we use branching processes to model betlolitages and load shed
produced by a cascading blackout. Discrete state branphoogsses are used for line failures,
with the mathematics presented in Section 2.1. Continu@is btanching processes are used
for load shed, with the mathematics presented in SectiarnTA@ model specifies a sequence of
failures at discrete stageswith failures at stage causing further failures at staget 1. The
most interesting aspect of the modeling is the propagasiotof\ which captures the potential
of the cascade to either die out or grow, and thus governskiblg kize of the cascade. When
A < 1, the cascade is likely to die out, while whan> 1 it is likely to become largel is also
the mean of the offspring distribution, which is the disttibn of failures at stage + 1 caused
by a single failure, or unit of failure, at stage Once the offspring distribution is specified, the
distribution of the total amount, or number of failures isguced. In the case of line failures,
this is total number of lines tripped (taken out of servicajing the cascade. In the case of
load shed, this is the total amount of system load demandghramoved as a result of the
cascade.

To fit the model to a particular power system simulation, aligmeters needed by the
branching process model includingnust be estimated from previous blackout data. A history
of blackout sizes and line failures must be available fovijoges blackouts. Moreover, they
must be available in sequential, time-ordered form. Se@ichows the methods used to fit
both line failure and load shed data.

Constructing blackout and failure distributions by way ofrarizhing process model is
much more efficient than simply constructing empirical milsitions from historical data
can be accurately estimated using a relatively small amoiuttaita.

We test our methods on the OPA power system model [6], use{BBE 118 bus test sys-
tem. The OPA model uses DC load flow and LP dispatch. Cascaelestated by overloading
the system so that lines are tripped. This initiating eveay wause further line failures, and
load shed as the system redispatches. The simulation isuiiipla times for various loading
levels simulating a history of cascades. The proceduregsctiéh 3 are used to gain estimates

of A\ and other relevant parameters. The distributions are tletted and compared to the



empirical data to test the accuracy of the model. A desomptif OPA, as well as results for

line failures and load shed, are presented in Section 4.

1.1 Literature Review

This section is divided up into two parts. The first briefly ciéses the literature directly
related to this thesis. The second describes literaturalinettly related to this project but

related to cascading blackouts.

1.1.1 Branching Processes with Power Systems

Using branching processes to model cascading failuresmepsystems was first proposed
by Dobson et al in [15]. That work was an extension of the CASCAD&del shown in
[18, 13]. CASCADE is a simple, abstracted model of cascadiigrés. It is shown in [15]
that under certain limiting conditions, CASCADE can be appr@ted by a branching process.
Applying branching processes to OPA power system simulataia was then done in [17] and

[47] as a part of this project.

1.1.2 Additional Cascading Blackout Research

Work on cascading blackouts can be divided into three categyomodeling, mitigation,
and miscellaneous. “Modeling” refers to any simple or caw@bstraction of cascading fail-
ure to gain understanding of the phenomenon. This model eamsbd to predict behavior
of real power systems in cascading regimes. This projel ifato this category. In [8], Q.
Chen and McCalley use a cluster model to construct probaldiittyibutions of line failures.
Their use of a parameter to represent the tendency of failures to “cluster” is simitaour
use of) to describe the tendency of failures to propagate. Carrémsbow in [7] show that
power-law tails are present in blackout data. They conjectioat the power-laws are due to
Self-Organized Criticality of the power system and expldris possibility through the OPA
power system model in [6]. The OPA model simulates the la@argitdynamics of a power sys-

tem as generation and transmission lines are upgradedpanss to cascading blackouts and



growing demand. In [9], J. Chen et al use a hidden failure mdestimate cascade blackout
sizes. The hidden failures refer to incorrect relay trigpwhich has been observed in real
systems. Roy et al develop generic network models in [34]rg@esent large, interconnected
complex systems capable of cascading failure. They simuéatdom network growth, noting
the distribution of connections, and employ a Markov modeieiwork failure.

“Mitigation” refers to techniques that can be used by powstesm operators to stop cas-
cades from spreading. In [43], Venkatasubramanian andt@uirsuggest using Static-Var-
Compensator (SVC) control techniques to dampen growinglasoits in a power system.
Through central control, the SVCs would be able to quicklyctea stop oscillations and re-
store the system to normal operation before cascadingéailtripple the system. In [44] Vittal
and Wang use a forced islanding scheme to separate part®wka gystem before a cascading
failure can grow. These mitigation methods have the prgpdrbeing “on-line,” that is they
are used when a cascading failure is thought to be occurring.

“Miscellaneous” can be any cascading failure researchdbas not fit into the above two
categories. For example, in [25], Hardiman et al descrile@ fiRELSS simulation, used to
simulate power system response to a variety of contingsengieey also give a brief overview
of some recent cascading blackouts. Kirschen et al usenearigeduction Monte Carlo tech-

niques in [29] to estimate stress on a power system.



Chapter 2
Branching Processes

2.1 Discrete State Branching Process

This section explains discrete state branching process#®etdetail necessary for this
project. See [26, 1] for more information.

In the discrete state branching process, a cascade sttr@mhitial number of failurex(,
and proceeds to produce a sequence of failifgsXs, . .., at discrete stages = 0, 1,2, .. ..
The failures at each stage are nonnegative integer§,se Z=° and X,, can be seen as the
number of lines failed at stagein a cascade. The offspring distributiétj.X = z| is defined
to be the distribution function of failures at staget+ 1 resulting from one failure at stage
n, as well as the distribution of a random variablewith mean) and probability generating

function
f(s)=E[s"]=) PIX =1,
=0
and whereP[X = 0] > 0. Combining these definitions gives
P X,.1=2|X,=1]=P[X =1x].

When the initial number of failureX is given by a constant then the number of failukgsat

stage 1 is distributed as a sum.%§ independent copies of :

Xo
XLy X
=1

In general X, is distributed as a sum of,, independent copies of:

Xn
X 23X
i=1



In terms of generating functions, this becomes

fasi(s) = E[s™ ] = E[E[s™ [ X,.]] = E[f(s)*"] = fu(f(5)), (2.1)
wheref, . is the generating function of ...
When the number of initial failureX, is a constant, then
fo(s) = E[s*°] = 570, (2.2)
(2.1) and (2.2) imply
Fuls) = (f(s))™, (2.3)
where /™ is then-fold functional compaosition of .
As the cascade proceeds, the failures accumulate and thangutotal of the failures at
stagen is given by
Yo=Xo+X1+...+X,.

The average number of failures at each stage is
EX, = X,\", (2.4)
while the average running number of failures is

EY, = Xo ) A" (2.5)
=1
If A < 1, the cascade shrinks on average and eventually dies oupvatiability 1, andY,,

converges to the total

Y = limY,.
Assuming the subcritical case< 1, the distribution ofy” can be computed from the offspring
distribution. LetF'(s) stand for the generating function Bfwhen X, = 1. In this case,

F(s) = E[s]

— E[81+X1+X2+...]
= E[sE[s* T X]]
= E[sF(s)™]

= sf(F(s)). (2.6)



Equation (2.6) is then solved implicitly fdr(s) using a Lagrange inversion method:

F(s)=S Py =ds" =3 G j:;l (f(2))" 0) 5 2.7)

a=

See Section 7.1 for details of the Lagrange inversion method
If the initial number failures, is randomly chosen according to some distributijixy =

x] with generating functiom:(s), and mear, then (2.2) becomes

and (2.3) becomes

fals) = E[s™]
= E[E[s"|Xo]]
= E[(f"(s))™]
= m(f"(s)).

Similarly, the generating function &f becomesF(s) where
F(s) =m(F(s)). (2.8)

Finally, (2.4) becomes
EX, =0\

2.2 Continuous State Branching Processes

This section explains the mathematics of continuous stateching processes that are used
in this project. See [28, 36] for more information.

As in the discrete case, continuous state branching pratags with an initial number
of failures X, and proceeds to produce a sequence of faillfgsXs,, ..., at discrete stages
n = 0,1,2,.... The failures at each stage are, this time, nonnegativentgabers so that

X, € R="andX, can be seen as the amount of load shed at staga cascade. The offspring



distribution H (x) is defined to be the distribution function of failures at stagt- 1 resulting
from one failure at stage. H (x) is the probability density function of a nonnegative, irtéhy

divisible continuous random variablé with mean), and cumulant generating function

h(s) = —InE[e*¥] = —In /000 e **H(x)dx.

When the initial number of failureX|, is given by a constant then the number of failuigsat

stage 1 is distributed as a sum.%§ independent copies of :

Xo
£y X (2.9)
=1

In general X, is distributed as a sum of,, independent copies of:

Xpi1 = Z X. (2.10)
In terms of generating functions, this becomes

ha(s) = —InEle%e
= —IE[E[e " |X,]]
= lnE[(E X))
= B | ()%
= ha(h(s)),

whereh,, ., is the generating function of .. ,, hence

whereh™ is then-fold functional composition of.

When the initial failuresX, is a constant, then
ho(S) = X()S

and
ha(s) = Xo (R (s)) . (2.11)



In the continuous case, (2.9) and (2.10) usually describpétegral sums of random vari-
ables. The way around this conceptual (and mathematid&gudiiy is to require the offspring
distribution H () to be infinitely divisible so that, by definition:

k

x£y
i=1

for some i.i.d. random variabldsf) and arbitrary integek.(note: this is definition of infinite

divisibility ([22])) Then, (2.9) can be rewritten

Xo
T
i=1
[kXo]

Lo 370
i=1

k—o00

For example, in the casg, = 2.5, X; becomes

2.5
x4 3 xo
=1

25
Sy
=1

Il

The running total of load shed at stagés again given by
Y,=Xo+ X1 +...+ X,.

The average number of failures at each stage is again (28 thle average running number
of failures is (2.5). IfA < 1, the cascade shrinks on average and eventually dies out with

probability 1, andY,, converges to the total

Y=1IimY,.

n—oo

Assuming the subcritical case< 1, the distribution ofy” can be computed from the offspring

distribution. Letk(s) stand for the cumulant generating function¥ofwhen X, = 1. In this
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case,
k(s) = —InE[e*]
_ _lnE[e—S(1+X1+X2+---)]

— —In E[G—SE[e—S(X1+X2+...) ’Xl]]
= —InEle % )X

= s+ h(k(s)). (2.12)

Equation (2.12) is then solved implicitly fdr(s) using the Lagrange expansion (see Section
7.1)

k(s)=s+)_ l_da—_z(h(s))a. (2.13)

If the initial number failuresX, is randomly chosen according to some distributidiiz)

with cumulant generating function(s), and meard, then (2.11) becomes
a(s) = m (h7(s)).
Similarly, the generating function &f becomesC(s) where
K(s) =m (k(s)). (2.14)

Finally, equation (2.4) becomes
EX, = 6\".

Once(s) has been obtained, the pdf(s) of the total load shed” is obtained as the

inverse Laplace transform ef ©(*) using the Post-Widder method:

K(x) = tim = (ﬁ)aﬂ ( 4" -kt ) . (2.15)
s=a/z

a—oo @l T ds®
The cumulative distribution function is similarly obtathas the inverse Laplace transform of

e ®() /5. See Section 7.2 for details of the Post-Widder method.
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2.2.1 Saturation

In real power systems, the cascade size is limited by thertotaber of lines in the system.
There may also be effects present that tend to inhibit treecithe cascade. We refer to both
of these limitations as “saturation,” and are included wapplying a discrete state branching
process to line outages. The simplest way to accomplishghis assume saturation can be
modeled by a single parametér Then the total number of line failures must not progress
beyond this number, or in other words, < S. The distribution (2.8) must then have all
probability mass greater tha# transferred tot” = S. We have not yet considered how to
model saturation effects for load shed.

In the case thak > 1, the cascade grows on average and there is a nonzero pityoiait
the cascade grows 0 = oco. In this case, a pdf cannot be defined Tounless the cascade
is forced to stop somewhere. Including saturation solvesgtoblem. It is possible when
A < 1 for a cascade to reach as well, although ifS is sufficiently large, this happens with
low probability.

If the initial line failuresd is large enough, it may be the case that cascades saturhte at t
initial stage. If this is the case, the line failures initiitribution P[ X, = x] would have to be

modified to include saturation.
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Chapter 3

Estimation of Branching Process Parameters

This section details how both blackout and line failure databe fit to branching processes.
Line failure data is fit to a discrete state branching proogbge load shed data is fit to a con-
tinuous state branching process. The propagation parameted the distribution of the total

cascade siz® are estimated in each case.

3.1 Line Failures

A cascading failure simulation is assumed to produce aflisascading blackouts and for
each blackout the number of line failures as well as theredat each intermediate stage of
the blackout is recorded. Specifically there dreeparate cascades, aig denotes the line
failures at stage of cascade. The accumulated data then looks like this:

stage) stagel stage2
cascade x\V x»  x{V
cascade Xx? x? xB® ... (3.1)

cascadgd X\ x  x{/
Likewise,Yn(i) refers to the cumulative failures

VO =X+ x4+ X0

at stagen of cascade.
The data must be handled in such a way that each cascadevathress nonzero number

of failures. For example, cascades with no failures areadited. One effect of this is that the
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computed distribution of failures is conditioned on theczake starting. Each cascade will not
necessarily have the same number of stag&g) refers to the number of stages of cascgde
with N (i) being determined either by the maximum number of simulatizgks being reached,

or the cascade hitting the saturation skzeV (7) is thus given by
N(i) = max{n ‘Yn(” <S8 andefZ1 > (0 andn < Nmax} . (3.2)
Nmax IS the maximum number of stages produced by the simulation.

3.1.1 Estimating\

The estimator for the propagations

M-

(Xl(") + X+t XJ(V)U)
A= = (3.3)
3 (Xé“ + X9+ X}j)(i)_l)

i=1

Yy — X

B

1
J

> Yty
i=1

The estimator (3.4) is a variant of the maximum likelihootireator

7

Sl Vi — Xg
Y Yk
when each cascade has the same number of sféag€8.4) is consistent and asymptotically
unbiased ag — oo [11, 24].

(3.4)



The mean of\ is given by

EX_E[

= > E

zyl Z;

2.

Ni,yi i

1+ AE

whereA is the event

A= ﬁ{

%

SR

Ni,yi,xi

1

ZJ (Y(l) X(Z))

=1

()

Zz 1 N(z

S (Y — Xé>> ,

P (A)

(4)
Zz IY (3)—1

1%+m+ﬁ>;WUA

=
(145

P (A)

Zi:l (v + ;)

Zi:1 (yz‘ + l'z)

J

1 J (i) J i
j ZZ ]- . E } Z’L 1 X( )
ZJ Y(l)

N(i)— JZzl N(z

- 17Y]\(;) 2 — yi7X](\2_1 :Xz}

14
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It is difficult to tell from the analytics whether or natis biased, but we demonstrate in the

Results section that underestimates. The variance of is given by

J i i
Zi:l (YJSI()z‘) B Xé )>>
Z;‘Izl Y(Z) -1
J (6  _ ()
— Var <1+ ZiZI(XN(z) X ) >
J (4) (4)
Zi:l(YN(z) » Xy N(i)— 1)
J )
— Va Zi:l(X](V)(i) B Xé ))
RSN 2 N O
i=1\I N ()2 N(i)-—
J [ i
v [ X = X07)
AL 0+ X0
i=tUN@—2 T AN
YL (XN —X0)
J (%) (4)
> it (Va2 + Xnvgoy-1)
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- _E 5
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(@)
LY ()‘XN(z - X))
+Var ( 0 v z) (3.5)

where
Asymptotically, as the number of runs goes to infinity, (h8fomes

- Var (E M v — Xo})

E [Yne)-1]

o

J

Co?
J 9

E [Xn-1]
(B [Yna 1))’

Var\ ~

where(' is a constant. The standard deviation is thus proportiam%t
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3.1.2 Estimating total failures distribution
The general procedure for estimating the total failuresidigtion P[Y = y] is

1. Assume a parameterized form for the initial failuresribistion P[X, = x| with gen-
erating functionm(s), and offspring distribution?[X = z| with generating function

f(s).
2. Estimate the parametersiof s) and f(s) from the data.

3. Compute the total failures distributid?[Y” = y] from m(s) and f(s) using (2.7) and
(2.8)

The procedure estimates parameters of an explicit form(@f and f(s) so that the computa-
tion of P[Y = y| can be done using computer algebra.

Previous work [15] has suggested that both initial lineufias P[ X, = x|, and offspring
distribution P[X = z| should be Poisson distributed. The initial distributiors n@eary, and
has the form

—Gex
PlXy=1] = - r=0,1,2,...

and generating function

m(s) = e,

Since cascades with zero number of failures are ignoredniti@ Poisson distribution must
be conditioned on nonzero failures, so

et o
1—e?2!

PW}{OZZ I}::

r=1,2,3,.... (3.6)

Let the sample mean of the initial failures be

J
I 1 :
_ (i
X =~ ;le X,

The parametef is then estimated b§ by equating means:

~

— 0
Xy = ~
0 1—e"
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If saturation effects are present in the initial stage,)(&1&y have to be altered (in some way)
to include saturation. See section (4.2.4.3) for more.

The Poisson offspring distribution has form

—/\)\x
P[Xy =] = < r=0,1,2,...
x!
and generating function
fls) = e,

Using (2.7) and (2.8)P[Y" = y]| is found to be a Generalized Poisson Distribution [10]. In-

cluding saturation effectS results in:

—yA—>0
0 (yr+6)V " o 0<y<S
PlY =y| = S-1 .1€Z>\9 (3.7)
1—;9 (tA+0) B y=29

When conditioned on nonzero initial failures, this becomes

—yA—0

P[Y:y} = —ix—0 (3.8)
1—Zem+e (1_6 T y=>=5

We will also make use of the “mixed” distribution

Z PplXy =2]—— x)' Yy N TN, y<S
PlY =y] = S-1 / o N . (3.9
1— PplXo = 0] ——— 7" I\ "t py=>9
Z<Z o=t )
where Z‘] (X5
_i Lyn_ (X,
Pp[X = o] = =42 )}O 0
is the observed empirical initial distribution and
P[Y = y|X0 = q;] = (y fxyyyzl)\yxe)\y (3.10)

is the Borel-Tanner distribution. (3.10) is obtained fron6§avhenf (s) is a Poisson distribu-
tion [10].
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3.2 Load shed

Load shed is gathered from the simulation or system in thedarmat as line failures. The
data must be handled in such a way that each cascade stértsnwahzero amount of shed. For
example, cascades with no load shed are discarded. Agam#ans that the computed pdf
of load shed is conditioned on the cascade starting. Moreib¢le simulation produces some
cascades with no load shed in initial stages and load shedbseguent stages, then we choose
to discard the initial stages with no load shed so that stagfars with a positive amount of
load shed. Then cascaddasN(i) stages. N (i) is determined similarly to (3.2) by either
the maximum number of simulated stages being reached ontbara of load shed in a stage

being zero or negligible.

3.2.1 Estimating and ¢

A is estimated in the same way as line failures, through usg.4§.(The mean initial load

shedd is estimated by the sample mean

3.2.2 Estimating blackout size pdf
The general procedure for estimating the blackout sizeifidf) is

1. Assume a parameterized form for the initial load shedwe@f) and offspring cgfi(s).

N

. Estimate the parametersiof s) andh(s) from the data.

w

. Compute the blackout size c§f(s) from m(s) andh(s) using (2.13) and (2.14)

IS

. Compute the inverse Laplace transformeof(®) to obtain the blackout size pdf ()

using (2.15).

The procedure estimates parameters of an explicit form(sf) andh(s) so that the computa-

tion of I(s) and the Laplace inversion can be done using computer algebra
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We choose to assume gamma distributions for the initial kletl and offspring distribu-

tions. Then the corresponding cgf’s are

92 O-izni
m(s) = = In (1 + sTt) (3.11)
and
)\2 2
h@y:——m(1+s%§>‘ (3.12)
Oof

The parameters of the initial load shed cgf are the nfed the variance? ... The parameters

init
of the offspring cgf are the meanand the variance?;
The means\ andd are estimated from the data as described in the previousstiins. The

variance of the initial load shetf , is estimated using

(Z N2
1n1t J Z X 9 :
The variance of the offspring distributier}; is estimated by applying the method of moments

to X;. The second moment of; is

R R
EX{=—5e |

Then the estimata#?; may be found by solving:

amo =N (07 + o) + 005y

}: 1m(m+&;0+ﬁﬁﬁ (3.13)
1( Z)d)

With (3.13), we estimate?; using only information from the{, and X, stages. This is

where

3.2.3 Note orv?; estimation

in contrast to) estimation where\ uses information from multiple stages. Ideally, we would

like to find an offspring variance estimator that also usésmation from all stages. One such

1 X A\ 2
Tor = ( n —A) , (3.14)

estimator, seen in [12], is
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Table 3.1 Comparison @f’; ando?;

loading factor 6% o
0.85 0.00431 0.116
0.9 0.00568 0.103
0.95 0.00995 0.130
1.0 0.01230 0.736
where
J
X,=> X,
=1
and

N = max{n|X, > 0}.

However, when we applied (3.14) to the data, it resulted imance estimate that seemed
much too high. Also, while?; tended to increase by a factor of ab8uas the loading in-
creased fronL = 0.85to L = 1.0, 5% tended to increase by a factor of abGuSee Table 3.1
for a comparison. These results lead me to believedhais unsuitable for our purposes. Itis
not clear why this is so but one explanation could be the fotig: if the underlying data\’
does not quite describe a branching process with fixdalt rather a branching process with
stage dependentn), then (3.14) will not work becaus(e)% - 5\>2 — <)\(n —~1) - 5\)2 A

0 asX, — oc for at least one.. Thus (3.14) will tend towards infinity. This should be theea

even if the stage dependent fluctuations\@f) are small.
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Chapter 4

Results

This section is divided up into two parts. The first deals wiie empirical statistical
accuracy of the\ estimator. The second analyzes the results of applyingstima&or on OPA

simulation data.

4.1 Performance of\ on Monte Carlo

The \ was first tested on a sequence of discrete state branchioggses, with, = 1
and Poisson offspring distribution, generated by Monte &Cafhe estimator meam(S\) and
standard deviation(S\) were recorded. First, various numbérs < J < 1000 of cascades
were generated with saturatigh = 20, and for various offspring mearts < A\ < 2. The

simulation was run fot0 stages. was found to underestimatewith a bias of less that.1:
~0.1 < p(A) = A <0.

The bias tended to decrease as more cascades considered for statistics. As predicted, the

~

standard deviation(\) was seen to decrease as roughly

() < 20

3

asJ increases.
The process was repeated for saturatios: 100. Increasing the saturation had the effect

of improving the performance of as it allows more information to be included. Here

—.07 < pu(A) —A <0,
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and
o(\) < —=

)\ was also tested on continuous state branching processbsXwi= 1 and Gamma off-
spring distribution. Various numbed$) < J < 1000 of cascades were generated for var-
ious offspring mean® < A < 2. The offspring variance was varied throughout the range
0 < 02 < A%, whereo?; = \? is the exponential distribution. Saturation was not coergd.
The simulation was run for0 stages.\ was found to underestimatewith a bias of less than
0.06:

~

—0.06 < pu(\) — A <0,

The bias tended to decrease as more cascades considered for statistics. The standard

~

deviationo(\) was seen to decrease as roughly

0.45

o)) < 77

as.J increases.

4.2 Estimating ) and blackout distributions on OPA model

The estimated propagationand total cascade sizes are estimated on data produced by the

OPA power system using the methods described in Section 3.

4.2.1 OPA model operation

The OPA power system simulation produces cascading trasgmiline outages and load
shed in stages resulting from an initial disturbance. leptsinput files specifying the config-
uration of buses and lines, as well as system characterstich as load profile, line ratings,
and generator capacity. The initial disturbance is produgtiner by forcing a random number
of lines to trip, by overloading the system to the point wrsme lines reach their MW limits,
or by a combination of the two. The initial disturbance caude system to redispatch gen-

eration and/or shed load via a DC load flow optimal LP dispaigorithm. This may cause
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more lines to trip, and system redispatches again. Thi&lisipatch procedure is allowed to
continue several times to represent a cascading blackdw.simulation outputs two sets of
numbers for each trial run: a sequence of line failures sapring the line failure cascade and
a sequence of load shed representing the load shed casdaglsinfulation is repeated until

sufficient cascades are produced for statistical anal{8jontains a detailed description of
OPA.

The input file we used was the IEEE 118 system, with load prefi@wvn in Section 7.3.
The OPA parameters wefe= 1.67, po = 0.0001, p; = 1.0. The small probability, of forced
line trips signifies that the cascades we produced were ynisdl to overloading. The loading
level L is the multiplier applied to the base load profile that deteaws the initial loading of
the system. We variefi and inspected its effect on the statistics. The loadingshese were

L =0.85,0.9,0.95,1.0, 1.3.

4.2.2 Data Preparation

In order to prepare the OPA cascades to match the form (3ri)mdber of preprocessing
steps needed to be taken. First, any stage of a cascade waitlshed< 10~1° is set to zero.
This is because the OPA simplex solver sometimes erronegists a small negative load
shed instead of a small positive one for orders lower tham thwould suggest that this means
that load shed below this order is inaccurate. Load shed &sured as a fraction of total
system demand, meaning the maximum sheld @& total blackout. In real systems, the load
shed will not be accurate to within the leveldf-'°, in fact it will probably only be measured
to a couple of significant figures. (Under these circumstaittoe mathematics of section (2.2)
may need to be altered to include conditioningX¥p) > p, wherep is the minimum level of
precision. )

The second preprocessing step is to discard any cascadeodaiteres or zero load shed.
It should be noted that the line failures and load shed paetslacoupled so that discarding
any line failure cascade does not necesarily mean discptbanload shed cascade and vice

versa. Additionally any initial stages of zero load shed niesdiscarded so that each cascade
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begins with nonzero shed. The simulation produtestages including the initial stage, so
after preprocessing each cascade will have a length Df(tp= 9.

The third step is to set saturation for line failures and teaséde line failure cascades that
saturate in the first two stageg,; (> S) when computing (3.4), since by the definition of (3.4)
these cannot be used.

We wished to apply our estimators to a set/of= 5000 nontrivial OPA cascades for each
loading levelL. So enough cascades were generated so that after prepmgeelss= 5000
cascades were used for both load shed and line outages. sTéidficent to ascertaii to
within a reasonable accuracy as well as construct probaldiistribution functions of total

failures and load shed.

4.2.3 \results

Table 4.1 displays the estimated propagation at each lead lgith line outages and load
shed displayed side by side. Saturation was sst+o15 for line failures and ignored for load
shed. We assume that saturation effects for load shed ammatifor subcritical\. This may
or may not be the case, but we currently have no way of inctugaturation into the load shed
framework so it is a necessary assumption. There are ndevisiimps in the load shed pdfs
for subcritical cases that would suggest saturation. Refit, > 1 are not available for load
shed because we are not yet able to deal with the saturatexisethat seem to be present in
this regime. Also, another caveat is that the- 15 setting for line failures is largely a guess.

)\ is seen to increase dsincreases, which is intuitive since a higher stressed systould
have higher propagation. Also, the two sets\afatch up quite well. This match tends to
support the assertion that a singleletermines the cascading process of both line failures and

load shed.

4.2.4 Cascade size distributions

Table 4.2 shows all the initial and offspring parametergredied from the data that are

needed to construct the distributioR$Y” = y| for line failures andi (x) for load shed.
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Table 4.1 Estimated propagatiarfrom load shed and line outage data
loading factor load shed line outages\

0.85 0.128 0.115
0.9 0.159 0.188
0.95 0.264 0.288
1.0 0.429 0.430

4.2.4.1 Line failures distributions

After pdfs were constructed from the data set, we producétha®s of the pdfs using
the methods of Section 3. Figure 4.1 compares the estimage@mpirical distributions of
total line failuresy for loading levelL = 0.85. This is repeated for loading levels= 1 and
L = 1.3 inFigures 4.2 and 4.3 respectively. The total failures sot#gxl on a log-log scale over
two decades, from a single line failure 100 line failures. (There aré79 lines in the network
total.) The Generalized Poisson Distribution (3.8) is usgth S = 15 for the estimated fit.
Additionally, the “mixed fit” of (3.9) is used witlt = 15. The fits forL = 0.85 andL =1
seem to work fairly well. Figure 4.3(= 1.3) is an interesting case, and is discussed in Section

4.2.4.3.

4.2.4.2 Note on Saturation

In figures 4.2 and 4.3, there are no empirical data pointsgadatationS = 15, because
we have modified the empirical distribution by moving all lpability massY > S to the
hypothesized saturation poift= 15 as described in Section 2.2.1. To see the empirical pdfs
without this modification, see Figures 4.4, and 4.5. Figuleshows no change as there were

no cascades reachitg= 15 for L = 0.85.

4.2.4.3 Discussion of Figure 4.3

In Figure 4.3, the fit of (3.8) does not match up with the fit gsan empirical initial

distribution. The mixed fit does not fit well either, and intféits worse than that of (3.8) which
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Table 4.2 Estimated initial line outages, initial load slaed load shed offspring distribution

parameters
loading factor load shed line outages\ load shed) line outage$ 62, 62
0.85 0.128 0.115 0.0520 0.985 0.00198 0.00431
0.9 0.159 0.188 0.0482 1.088 0.00195 0.00568
0.95 0.264 0.288 0.0445 1.325 0.00182 0.00995
1.0 0.429 0.430 0.0383 1.628 0.00160 0.01230
1.3 n/a 0.570 n/a 12.296 n/a n/a

0.1
>
o 0.01;
@©
o
o
S
0.001 }

1 2 5 10 20 50 100
nunber of lines failed Y

Figure 4.1 Probability distribution of total line failuréson log-log scale. Empirical
distribution shown as dots, estimated distribution witt8]3hown as dashed line, estimated
distribution with empirical initial failures (3.9) showrs aolid line. Empirical pdf unmodified.
IEEE 118 bus system with loading= 0.85.
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1 2 5 10 20 50 100
nunber of lines failed Y

Figure 4.2 Probability distribution of total line failur&@son log-log scale. Empirical
distribution shown as dots, estimated distribution witl8}3hown as dashed line, estimated
distribution with empirical initial failures (3.9) showrs solid line. Empirical pdf modified.

IEEE 118 bus system with loading= 1.0.
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1 2 5 10 20 50 100
nunber of lines failed Y
Figure 4.3 Probability distribution of total line failuréson log-log scale. Empirical
distribution shown as dots, estimated distribution witt8)3hown as dashed line, estimated

distribution with empirical initial failures (3.9) showrs aolid line. Empirical pdf modified.
IEEE 118 bus system with loading= 1.3.
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Figure 4.4 Probability distribution of total line failur&@son log-log scale. Empirical
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distribution shown as dots, estimated distribution witl8}3hown as dashed line, estimated
distribution with empirical initial failures (3.9) showrs &olid line. Empirical pdf unmodified.

IEEE 118 bus system with loading= 1.0.

0.05 |
> 0.01:
— 0.005 !
=
©
0
(@]
5 0.001!
0. 0005 |
| | | | | e
1 2 5 10 20 50 100

nunber of lines failed Y

Figure 4.5 Probability distribution of total line failuréson log-log scale. Empirical

distribution shown as dots, estimated distribution witt8)3hown as dashed line, estimated
distribution with empirical initial failures (3.9) showrs aolid line. Empirical pdf unmodified.

IEEE 118 bus system with loading= 1.3.
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is counterintuitive. | believe the poor fits are related thet fthat, at this high loading level,
many of the cascades saturate immediately at the initigest@his can be seen by looking at
the plot of the initial failures distribution (Figure 4.6)o properly deal with initial saturation,
(3.6) andd estimation would have to be altered to include saturatiteced, although it is not
yet clear how to do so. One idea is to remove runs for whigh> S from 6 estimation
and ignore these runs when performing estimatiofi.ofhe result in this case is the initial
distribution fit shown in Figure 4.7 and the total failurestdbution shown in Figure 4.8. Two
effects can be observed: the initial fit in Figure 4.7 is beted the mixed of Figure 4.8
matches up better with the fit using (3.8). However, the tiaifires empirical distribution still

does not match the fits.

0.5/
0.4}
0.3
0.2/

0.1

® .
® o
I .?Qoo.

5 10 15 20 25 30

Figure 4.6 Probability distribution of initial line failes X, for L = 1.3. Empirical is dots,
Poisson is solidd = 12.206

4.2.4.4 Load shed distributions

Figure 4.9 compares the empirical and estimated pdfs fatingalevel L = 0.85, and
Figure 4.11 compares the empirical and estimated pdfs &alihg levelZ. = 1.0. The blackout

size is plotted on a log scale over two decades, from a snaadkblutY” = .01 (shedding ofi %
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Figure 4.7 Probability distribution of initial line failes X, for L = 1.3. Empirical is dots,
Poisson is solid. OPA runs witR, > 15 removed.§ = 8.039
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0.01
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1 2 5 10 20 50 100
nunber of lines failed Y
Figure 4.8 Probability distribution of total line failur&@Son log-log scale for. = 1.3.

Empirical is dots, GPD is dashed, mixed is solid. OPA run& i > 15 removed.
Empirical pdf modified.
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Figure 4.9 Probability density function of blackout sizeon log-log plot. Empirical pdf
shown as dots, estimated pdf shown as dashed line. IEEE Kl8/btem with loading
L =0.85.
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Bl ackout size Y

Figure 4.10 Cumulative distribution function of blackouwtesY”. Empirical cdf shown as
solid line, estimated cdf shown as dashed line. IEEE 118 y®tes with loadingl, = 0.85.
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of total load) toY = 1 (shedding ofi00% of total load and total blackout). The corresponding
cgfs are also plotted in Figure 4.10 and Figure 4.12 to givatheer view of how well the

empirical and estimated distributions match.

10 L. T
5 L ‘\o\‘o
> ‘\‘“o‘
— \',
— 1 e
— o\
§ O 5 ‘”‘\
o SN\
E ““ \
0.1: . \
0.05 | oA\
\
0.01 0.02 0.05 0.1 0.2 0.5 1

Bl ackout size Y

Figure 4.11 Probability density function of blackout siZzen log-log plot. Empirical pdf
shown as dots, estimated pdf shown as dashed line. IEEE Kl8/btem with loading
L =1.0.

4.2.4.5 Initial load shed and offspring distribution

We discuss the choices of the forms of initial load shed afsgpahg distributions that are
assumed in the computations.

The initial load shed gamma distribution parameteasds2,., shown in Table 2 are rela-
tively insensitive to loading changes. For all these cases ~ 62 and hence the initial load
shed is approximately exponentially distributed. FigurE34shows estimated and empirical
initial failure distributions for loading. = 1.0.

Figure 4.14 shows the estimated offspring distribution fodfloading L = 1.0. This is
a gamma distribution with mean 0.0383 and variance 0.001&0i¢ approximately a normal

distribution. However, the offspring pdf becomes more asgtnical when the loading is
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Figure 4.12 Cumulative distribution function of blackoutesY". Empirical cdf shown as
solid line, estimated cdf shown as dashed line. IEEE 118 ystes with loadingl = 1.0.
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decreased. Any parameterized nonnegative distributatrighnfinitely divisible is a candidate
to describe the offspring distribution and we have not fogaderal arguments supporting our

specific choice of the gamma distribution.

10 T~
. ~
> 5 ° ‘\(\
ht e,
- N
E 1 = “‘
0.5
: \.
3\
0.1 \
N\
| | | | e\ | |
0.01 0.02 0.05 0.1 0.2 0.5 1

Initial shed Xg

Figure 4.13 Probability density function of initial loadeshX; on log-log plot. Empirical pdf
shown as dots, estimated pdf shown as dashed line. IEEE Kl8/btem with loading
L =1.0.

4.2.5 Influencing\

The main method we used to influenkén OPA was to raise or lower the loading factor
L. As seen in Table 4.1, increasidgcaused\ to increase. It can also be seen in Table 4.1
that we had a difficult time trying to push OPA to criticalityhereA = 1. For line outages,
increasingl had a much more significant effect 6n An approximatel0-fold increase iry
was accompanied by only an approximate doubling\.of(For load shed, a different effect
was observedj did not change appreciably dswas increased). We then tried a number of

alterations to the OPA model in hopes that we could obtairnti@airor supercritical response.

The alterations were:

1. Decrease the loading factbrwhile increasing,
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O fspring variable X
Figure 4.14 Probability density functiafi (x) of offspring distribution that is a gamma

distribution with mean\ = .429 and variance?; = .0123. Parameters computed from data
on IEEE 118 bus system with loadirdg= 1.0.



2. Decrease load fluctuationswhile increasingL
3. Increase the individual line limits.

None of these, however, had the effect of increasimgar 1.

36
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Chapter 5
Miscellaneous Topics

5.1 Correction in [24]

We found Theorem 2.2 in Guttorp&atistical Inference for Branching Processes to be
incorrect. The theorem reads:

For fixedn asz — oo:
1. if m < oo, m,(2) — ma.s. andim,(z) — m

2. if 02 < 00, then

. 1/2
( > 2n (m — 1) )m”) (mn(z) - m) i N<Oa 1)7

o? o mt—(2n+1

where it should read

For fixedn asz — oc:

1. if m < oo, m,(2) — ma.s. andim,(z) — m

2. if 02 < 00, then

(Z2= )1/2 (a(z) — m) 5 N(0,1),

o2mnr — 1

as shown in [48, 11]. This has been verified by Monte Carlo satrrh.

5.2 Critical Infrastructure Paper

| contributed to the research and writing of [3], which destoated simple DC load flow

algorithms that can be used to analyze the effect of tetratiacks on a power grid.
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5.3 Discrete Map Interpretation of Branching Processes

The stagewise cumulative offspring generating functign,of a Galton Watson branching
process is definied iteratively?, ;1 (s) = sf(F,(s)). Its most interesting feature is that when
certain conditions are met, this iterative procedure cayje®to a generating function with
power law expansion of index3/2, independent of specific details gf | interpret this
iterative procedure as a two-dimensional discrete map,soev that it contains a tangent
(saddle node) bifurcation. It then follows, from the work aihers, that this map displays
scaling relations and power law sensitivity to initial c@rahs in certain regions. The resulting
scaling exponents are universal, independent of the spéaifn of f and an index of 3/2 can

even be recovered (although its relation to the power lavaesion ofF' is not clear)

5.3.1 Branching Process Recap

I’m assuming knowledge of branching processes so | will§teste some relevant results as
found in [26]. The offspring generating functionfigs) = >°°  p,s™ and has meafi (1) = \.
The cumulative progeny generating function at stage F,,(s) = > .-, P,s" and is defined
by

Foi1(s) = sf(Fu(s)). (5.1)

Asn — oo, F,(s) converges to the total progeny generating funcfitn) as defined by

| will focus on the setF of f(s) whenf satisfies the conditions= 1 ,p, > 0, andpy+p; < 1.

When these conditions hold, the expansiorF¢$) goes as [31]

P — q (F}’(IJ i n=32 +0(n=°?) n=1modg; | 5.2)
0 n # 1modq
whereq is the largest integer such that # 0 implies thatg dividesn. The radius of conver-
gence of this power series is 1.
| will need a samplef(s) for examples; the Poisson generating functjgfs) = e*s=1

will be used for that purpose. It can be verified tiige F.
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5.3.2 Discrete Map Formulation
| now introduce the two-dimensional discrete mép
Tpyl = Tp (5.3)
Ynt1 = Tnf(Yn), (5.4)

subject to the constraints, y,, > 0. This puts the iterative nature @f(s) on a dynamical
systems/discrete map footing.can now be analyzed using discrete iterative map termiryolog
and techniques. The motivation is to find any scaling exptmehF and determine if any
any are equal te-3/2, the exponent of (5.2). So, looking &f, note first that the trajectories
only move in they direction. Note also that when the initial condition, y) is such that
xo = Yo, they,, component of the trajectory(xo, yo), (z1,v1), (x1,41), - . .} corresponds to the
sequence F(yo), F»(yo), F3(vo), - - .}. SOF(s) is the attracting set of all points that start on
the lines = xq = yo. To further explore the properties 8f we must only notice that any

vertical “cross section” of fixed,, = ¢, leads to the reduced map

Yn+1 = Cf(?/n)a

so we can deduce the properties of the vertical strips byihgokt graphs of vscf(s). When
0 < ¢ < 1, there are two fixed points, one stable and one unstable eviherstable point is
equal toF(c¢). Whenc > 1, There are no fixed points, and all trajectories diverge tdwa

Yoo = 00. The most interesting behavior 8f is whenc = 1. Here

Yns1 = [ (yn) (5.5)

describes a tangent bifurcation sint¢1) = A = 1. The fixed point is approached by points
on the vertical linel, = {1} x (0,1). Also, this fixed point1, 1), now calledz,, corresponds
to F(1) = 1.

To display other properties af/, | generated the phase space plot Figure 5.4 using the
example offspring generating functigia(s).

S denotes the attracting set of points whiledenotes the unstable set of fixed points. All

were found by running sample trajectories forwards and waatts in “time.” The pointz,
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Figure 5.1 Graph of.2f,(s) displaying no fixed points
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Figure 5.2 Graph oRf,(s) displaying one stable and one unstable fixed points
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Figure 5.3 Graph of,,(s) displaying the tangent bifurcation @t f(s)) = (1,1)
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Figure 5.4 First quadrant phase spacg 0#) displaying the set of stable fixed poirfis set
of unstable fixed point&, critical pointz;,, basin of attractior3, and critical regior..
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joins both sets. Now that the attracting set has been foumal/ecgence properties can be
explored. Sample paths are chosen close to the attractdyamahov exponents computed by
the method in [37]. Clearly there is exponential convergesfagearby trajectories for initial
points chosen in0,1) x (0,u), whereu € U. The interesting behavior is for trajectories
on L. These, which converge tg, have lyapnuov exponent of zero and thus display sub-
exponential convergence/divergence of nearby trajextoh has been suggested [33] that there
is a power-law convergence of nearby trajectories (poaerihsensitivity to initial conditions)
here which | explain later. The basin of attracti@h,is then described by all points {0, 1) x
(0,u) whereu € U, those that converge exponentially §o The strip = {1} x (0,1) is
the set that converges, subexponentially to the paitty. The setB|JL(JU is the set that
diverges to infinity. These qualitative properties are arsal forf € F.

The result of this is that investigation of scaling propestof )/ reduces to investigation of

scaling properties of (5.5), the one dimensional discredp at tangent bifurcation.

Figure 5.5 Graph of lyapunov exponent versyscoordinate for points irB. The lyapunov
exponent is zero at, = 1



43

5.3.3 Scaling Properties

| now restrict attention to the “interesting” part of the ghaspace: the sectidn= {1} x
(0, 1) where trajectories converge tg. Dropping thez,, component and shifting the map so

thatz,, is aty,, = 0 results in the map:

Ynt1 = 9(Yn), (5.6)

where
g(s) = f(s+1)—1.

This defines a one-to-one correspondence between thfessgt and a new sej € G.

6

_2
Figure 5.6 Graph of,(s) displaying the tangent bifurcation &, g(s)) = (0, 0)
Now consider the se which is the subset af for which g (0) = 1, g € G. ¢ € Q can be

written

q(s) = s +us” + O(s*™)

. It has been shown [27] thats) converges under repeated applications of the rescaling ope

ator
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(in the region about the origin) to the map

¢ () =5 (1— (z = Dus) VY

which displays the Feigenbaum scaling property [20],[2%],
¢°(q°(5)) = 4(s) = ~q"(as). (5.7)

The value ofa is given bya = 2'/(*=1 wherez signifies the “universality class” of the map
and is the index of the second lowest order term in the expan$k) = s + us® + O(s*T1).
Note thaty*(s) also has expansiayi(s) = s+ us”+O(s**!) around zero. Also, whes, < 0,
q"(so) converges under functional iterationd® (s).

The mapy(s) is, as shown in Section 5.3.6, always of universality ctass 2, soa = 2,

and thus the scaling relation for the fixed pagjiits) is

0'(6"() = 97(5) = 5°(29).

Also, the exact solution of (5.7) is

and wheny, < 0,
9" (o) — 9" (yo)- (5.8)

See Section 5.3.6 for convergence proofs.

5.3.4 Power Laws: Convergence and Sensitivity to Initial Coditions

A convenient approximation can be made after noticing (&8s8)ell as the property

o) = = (0" nwe) 59)

1 nYo

N "(1—Unyo)
Yo

1 —unyy’
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Figure 5.7 The mapp(s) = f,(s+ 1) — 1 converges under rescalifigto g5 (s) in the region

about the origin
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where (5.9) can be easily verified by induction. Now the ditetime map can be imagined,

as in [33], as a continuous time flow

Yo
= . . 1
9:(%0) 1 — uty, (5.10)

In fact, this is the solution to the vector field equation
= uz?, (5.11)

so the study of\/ and (5.6) has been further reduced to the study of a one-gioread vector
field at a tangent bifurcation. The solution (5.10) showg foa larget, i.e. as the flow

approaches the origin,
9:(yo) = (—ut)™!,
so the trajectory has a limiting power law form of exponenfTtanslating back tg" should
resultin
filyo) = 1+ (—ut) ™,
and simulation appears to support it (below).

Also, a sensitivity to initial conditions can be computednfrthe continuous time flow by

considering (using notation from [33])

N dg:(yo) - 1
“lo) == = T utmo? 512

Whent is large, this takes the power law form

&(yo) ~ (utyo) 2,

with exponent-2. Again, simulation seems to support this result.
In [33], itis claimed that the exponeBf2 can be recovered by interpreting (5.12) in terms

of a “g-generalized” lyapunov exponekyf, where

E(yo) = expy(\t) = (1 — (¢ — D)At) V0. (5.13)

This function has interesting properties and plays a cendfa in Tsallis non-extensive sta-

tistical mechanics [41], a new theory of statistical meatsmithat can be used to derive both
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Figure 5.8 Log-Log plot off3(.8) vs. iteration number. (lower) and a power law of index
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Figure 5.9 Log-Log plot off3(.8) — f7(.80001) vs iteration numben (lower) and a power
law of index—2 (upper)
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exponential distributions (as in traditional statistioa@chanics) and power law distributions.
However, it is a fairly contentious theory at the moment (&33), so | will merely state its
existence. Notice that (5.12) and (5.13) are equivalentwhe 3/2 and\, = 2uy,. Itis not
clear how this may be connected to thg/2 exponent of (5.2). I'll also note that [40] recov-
ers a power law exponent of neaf2 using a box counting method. Again any connection is

unclear.

5.3.5 Conclusion

By recasting (5.1) as a may (5.3),(5.4), the total progeny generating functib(s) can
be seen as the attractsrof M. Then any power law properties of (5.1) seem highly coreelat
with power law properties of the convergencesStoThis reduces to the study of scaling expo-
nents of a one-dimensional map (5.5) or flow (5.11) at a tanigéurcation. The flow (5.11)
converges to its fixed point with exponentl and displays insensitivity to initial conditions
with exponent—2. Using the statistical mechanics concepts of [41], thigmsgivity to ini-
tial conditions can be written as a g-exponential of ind¢X. Further research would have to

investigate the nature of the g-exponential and any reiakip to (5.2).
5.3.6 Appendix for Discrete Map Interpretation of Branching Process
5.3.6.1 Al: Equivalence class fo¢

| will show that an arbitraryy in G has expansiog(s) = s + us? + O(s®). Any g is

equivalent to ary(s) in F shifted so that the point of tangency is at the origin:

g(s) = fls+1)—1

= —l+po+pi(s+1)+pals+1)* +ps(s +1)°...

- 1+ ipn +inpns + i Z pns” + O(s°)
n=0 n=1 n=2

= s+us’+0(s),
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whereu = >, " ) pn. This result follows from the fact that" >~ jpo = f(1) = 1 and
2

Yosinpn=f(1)=A=1

5.3.6.2 A2: Demonstration of convergence t9*(s)

Write ¢(s) as
9(s) = g"(s) + h(s),

whereh(s) has leading term of ordes”, n > 2. Restrict attention to the region about the

origin. Now
F(s) = 0 (9°() + his)) + b g"(s) + h(s)) (5.14)
= g7(9) + 6 (" ()A(s) + b5 (5)) + 1 (g°(5))(s) (5.15)
~ 2029) 0 (0 (Dhs) + A" () + K (g (DA(s). (5.16)

To consider eigenfunctions, solutions of the form
2 1 * )\
9°(s) = 59" (28) + 5ha(2s) (5.17)

are needed. Combining (5.16) and (5.17), the eigenfunctjoatéon becomes

9" (9" ()ha(s) + alg*(5) + (0" (5))a(s) = 2ha(29).

Expanding this and equating powers leads to the eigenvalues4/2" whenh, has leading
terms™, n > 2. The fact that)\, | < 1 shows that since(s) andg*(s) only differ in the terms

of order greater or equal to*,

P(s) = Sg7(2s) + 2ha(2s)

2 2
() = Lgr(ds)+ X ha(as)
4 4
2m 1 * m 2 m
g (s) = omY (2™s) + om ha(2™s),



so it can be said that, using (5.9),

and since

it follows that
T (g(s)) — g"(s)

by (5.19).
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(5.18)
(5.19)
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Chapter 6

Conclusions and Future Work

In this thesis we have introduced a way to use branching pseseto model simulated
power system cascades of failures. We can estimate the gabpa parametei and con-
struct probability distributions for line failures and thahed. The parametaris the offspring
mean of the branching process modgl< 1 means that the cascade dies out on average as
it progresses in time, whila > 1 means that the cascade grows on average. A power Sys-
tem simulation ofA > 1 would be expected to produce many cascading failures angja la
blackout.

We have tested our methods on the OPA power system simul&@onresults for\ show
that we have been operating OPA in a subcritical regitne<( 1). Also, the \ estimates
for line failures match up well with the estimates for load shed, suggesting that a single
A may be used to gauge both cascades in question. If this isafe we can estimate the
propagation of load shed by monitoring the progagationre butages and vice versa. This
would reduce the amount of data needed for estimation. Quma&ted distributions show a
reasonable similarity to the empirical distributions gated by OPA. Future work would have
to quantify the similarity by way of Kolmogorov-Smirnov tesor similar methods. We have
shown that estimating distributions with branching preesds fairly efficient, since only tens
of cascades are needed to estimate within 0.1.

Future work would apply these methods to other power systemlations, such as those
found in [25, 29]. Eventually, if the method becomes suffitie established in simulated

blackouts, it may be applied to real blackout data. A numidessues would have to be
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addressed in the meantime, such as improving the modelisgtafation and applying it to
load shed. Also, more efficient estimators may be found se@mamproved estimate for;.
Efficient estimation of\ and blackout size distributions using limited data couldubed
in a number of important ways. System planners could use @ihads on model systems
to evaluate the risk of system upgrades. Extension of ouhaalstto real power systems
would enable system operators to monitor blackout risk frandest amounts of historical
data. In both cases the branching process approximaticasobding failure greatly simplifies
the modeling and reduces the amount of data needed to am&izeBranching processes
also have served as a way of representing cascading failuhe complex interconnected
systems. Modeling power system blackouts this way drawsfliehnalogies to other fields.
This project is both a first step toward the goals of efficeatkbut risk analysis and improving

the understanding of cascading blackouts of power trarssomsystems.
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Chapter 7
Appendix

7.1 Lagrange Inversion

We use the Lagrange Inversion technique to to approximateumulant generating func-
tion for continuous state branching processes. It can aswsbd to solve for the probability

generating function for discrete state branching prosesse

7.1.1 Lagrange Inversion Theorm

Let ¢(z) be a function analytic on and inside the contGusurrounding a poing, and lett

be such that the inequality
[to(2)| < |z — s (7.1)

is satisfied at all points on the perimeter of’; then the equation

¢ = s+ 10(C), (7.2)

regarded as an equationdnhas one root in the interior @f'; and further{ can be expanded
as a power series

B 1o da 1 a 7 3

=5+ Z 7 (6(2)") (7.3)

This method is called Lagrange Inversion. This uses theitlefirand language found in [45].

zZ=Ss
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7.1.2 Continuous State Branching Process

In Section 2.2, the total load shed cumulant generatingtiomé (s) is given implicitly by
(2.12):

k(s) = s+ h(k(s)) (7.4)
for s € {0,00}. This is equivalent to (7.2) wheh= 1 andh(z) = ¢(z). Thus (7.3) can be
used given that for eache {0, 0o}, a contourC' in the positive half-plane surroundingcan
be found that satisfies

|h(z)] < |2 — s

on the edge of’. If we define the function

U(2) = [z — 5[ = [h(2)], (7.5)
then condition (7.1) is equivalent to requirigidz) > 0 on C'. Kallenburg [28] shows thdt(z)
is analytic on the positive half-plane and concavezoa {0,oc0}. He [28] also shows that
when\ < 1, thenh(z) < zonz € {0,00}. k — h(k) is then increasing ok € {0, 00} and
vanishes fork = 0 so a unique solution can be found for any {0,0c0}. It remains to be

proven that the contouf' exists for suitable ranges afando?;.

7.1.3 Discrete State Branching Process

The Lagrange inversion method can be used in a similar sers@ve for the generating
function for discrete state branching processes. Thesim@method has been used previously
for this purpose in [26, 31, 10].

7.2 Laplace Inversion: Post-Widder method

Let g(z) be a smooth function defined @=°. The Laplace transform gf(z) is

G(s) = / e g(x)dx.
0
The Post-Widder inversion method [46] givgs) as:

o) = lim = <9>a+l G@ (9) (7.6)

a—oco  al s s
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whereG* is theath derivative ofG(s). For this thesis, we evaluate (7.6) at finiteather than
take the limit, to gain an approximation @fz). In [42] it is shown that whep(z) € L, (R=?)

is twice differentiable Witl’EQ% € L, (R="), this approximation converges §¢x) at a rate
of orderO (1):
(=D rayetl o, (@
H a! (3) G <s>_g($)

where the constart’ depends on the functiof(z). Examples below estimaté for relevant

<
LQ(REO)

g, (7.7)
a

distributions of mean\ and variancer®. C' was estimated by numerically computing the left

hand side of (7.7) for various

1. Approximation of exponential distribution with= .5, 0 = 0.25 hasC ~ 0.35
2. Approximation of gamma distribution with= .5, 02 = .05 hasC ~ 2.50
3. Approximation of gamma distribution with= .5, 0> = .40 hasC ~ 0.26

4. Approximation of gamma distribution with> > 2)\? does not converge i, since
g(z) & Ly (R°).

The accuracy of the Post Widder method is highly dependerthemlistribution used. It is
difficult to estimateC' for a typical total load shed distributioki (x), (2.15), since an analytic
expression for the distribution is unavailable. | hypotheshat using: = 15 terms gives “rea-
sonable” accuracy, and this seems to be true after visuathparing the results with Monte
Carlo generated((z). Also, since determination ok (x) often requires use of a Lagrange
inversion approximation, it is possible that both thesen®iof approximation can interact to
produce error. Before fitting data to a plf(x) usinga, term Lagrange approximation and
aay Laplace approximation, | think it's a good idea to compérer) against a Monte Carlo
generated pdf to test accuracy. The accuracy will likelyetepon the parameters 6, o2,

ando?

init*



7.3 OPA load profile

Here is the OPA input file used in Section 4.2:
$1-6810.48 0 0 a0 (80, 15) [1, 2]

$1-2670.78 00 al (99, 31) [0, 11]

$1-5208.01 00 a2 (72, 33) [0, 4, 11]

$3 -5208.01 0 26336.8 a3 (54, 63) [4, 10]
$1-1602.47 00 a4 (64, 83) [2, 3, 5, 7, 10]
$1-6944.02 0 0 a5 (79, 89) [4, 6]

$1-2537.24 00 a6 (87, 99) [5, 11]

$3-3739.08 0 26131.9 a7 (64, 91) [4, 8, 29]
$1-1602.47 0 0 a8 (46, 163) [7, 9]

$2005.85 a9 (22, 239) [8]

$1-9347.7300a10 (88, 59) [3, 4, 11, 12]
$3-6276.33 0 22120.8 al1 (120, 59) [1, 2, 6, 10, 13, 15, 116]
$1-4540.32 0 0 al2 (143, 70) [10, 14]
$1-1869.55 0 0 al3 (147, 74) [11, 14]
$1-12018.5 00 al4 (166, 84) [12, 13, 16, 18, 32]
$1-3338.47 0 0 a15 (134, 89) [11, 16]
$1-1468.93 00 al6 (146, 110) [14, 15, 17, 29, 30, 112]
$1-8012.33004a17 (170, 106) [16, 18]
$1-6009.25 0 0 a18 (185, 101) [14, 17, 19, 33]
$1-2403.7 00 a19 (176, 133) [18, 20]
$1-1869.55 0 0 a20 (175, 163) [19, 21]
$1-1335.39 0 0 a21 (188, 195) [20, 22]
$1-934.773 0 0 a22 (184, 213) [21, 23, 24, 31]
$3-1736.01 0 26538.6 a23 (227, 213) [22, 69, 71]
$2 0 023536.3 a24 (182, 251) [22, 25, 26]
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$2 0 0 23962.5 a25 (184, 265) [24, 29]

$3 -9481.29 23385.3 23385.3 a26 (95, 224) [24, 27, 31, 114]
$1-2270.16 0 0 a27 (85, 191) [26, 28]

$1-3204.93 0 0 a28 (92, 166) [27, 30]

$1-1602.47 0 0 a29 (149, 126) [7, 16, 25, 37]
$3-5742.17 0 23155.9 a30 (107, 169) [16, 28, 31]
$1-7878.79 0 0 a31 (120, 192) [22, 26, 30, 112, 113]
$1-3071.39 0 0 a32 (196, 92) [14, 36]

$1-7878.79 0 0 a33 (218, 102) [18, 35, 36, 42]
$1-4406.78 0 0 a34 (207, 128) [35, 36]

$1-4139.7 0 0 a35 (224, 129) [33, 34]

$1-1602.47 0 0 b36 (241, 94) [32, 33, 34, 37, 38, 39]
$1-1602.47 0 0 b37 (241, 94) [29, 36, 64]

$1 -3605.55 0 0 a38 (256, 75) [36, 39]

$3 -8813.56 0 26654.6 b39 (269, 65) [36, 38, 40, 41]
$1 -4940.94 0 0 b40 (284, 65) [39, 41]

$3-12819.8 0 24334.3 b41 (322, 65) [39, 40, 48]

$1 -2403.7 0 0 b42 (270, 119) [33, 43]

$1-2136.62 0 0 b43 (305, 104) [42, 44]

$1-7077.56 0 0 b44 (305, 124) [43, 45, 48]

$3 -3739.08 0 24262.1 b45 (285, 161) [44, 46, 47]
$1-4540.32 0 0 b46 (319, 150) [45, 48, 68]
$1-2670.78 0 0 b47 (337, 133) [45, 48]

$3-11617.8 23841.6 23841.6 b48 (358, 144) [41, 44, 46, 4T508%53, 65, 68]
$1-2270.16 0 0 b49 (286, 124) [48, 56]

$1-2270.16 0 0 b50 (395, 120) [48, 51, 57]
$1-2403.7 0 0 b51 (352, 92) [50, 52]

$1 -3071.39 0 0 b52 (353, 69) [51, 53]
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$3 -15089.9 26200.7 26200.7 b53 (385, 68) [48, 52, 54, 55, 58]
$1-8412.95 0 0 b54 (453, 59) [53, 55, 58]

$1-11217.3 0 0 b55 (427, 68) [53, 54, 56, 57, 58]
$1-1602.47 0 0 b56 (408, 94) [49, 55]

$1-1602.47 0 0 b57 (411, 97) [50, 55]

$3 -36990.3 0 29704.1 b58 (521, 125) [53, 54, 55, 59, 60, 62]
$1 -10416 0 0 b59 (523, 171) [58, 60, 61]

$2 0 29554.8 29554.8 b60 (520, 188) [58, 59, 61, 63]
$1-10282.5 0 0 b61 (512, 206) [59, 60, 65, 66]

$1-1602.47 0 0 b62 (514, 128) [58, 63]

$1-1602.47 0 0 b63 (512, 181) [60, 62, 64]

$2 0 32366.7 32366.7 b64 (383, 182) [37, 63, 65, 67]

$3 -5208.01 25086.6 25086.6 b65 (387, 169) [48, 61, 64, 66]
$1-3739.08 0 0 b66 (429, 164) [61, 65]

$1-1602.47 0 0 b67 (350, 207) [64, 68, 80, 115]

$2 0 29626.4 29626.4 b68 (335, 209) [46, 48, 67, 69, 74, 76]
$1-8813.56 0 0 b69 (280, 233) [23, 68, 70, 73, 74]
$1-1602.47 0 0 b70 (270, 225) [69, 71, 72]

$3 -1602.47 0 23957.9 b71 (260, 225) [23, 70]

$3-801.233 0 945.269 b72 (264, 186) [70]

$1-9080.62 0 0 b73 (300, 258) [69, 74]

$1-6276.33 0 0 b74 (314, 265) [68, 69, 73, 76, 117]

$1 -9080.62 0 0 b75 (347, 262) [76, 117]

$1-8145.87 00 b76 (372, 273) [68, 74, 75, 77, 79, 81]
$1-9481.29 0 0 c77 (381, 253) [76, 78]

$1 -5208.01 0 0 c78 (397, 247) [77, 79]

$3-17360.1 29043.6 29043.6 c79 (424, 268) [76, 78, 80, 9 BAOY]

$1-1602.47 0 0 ¢80 (428, 253) [67, 79]
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$1-7211.1 00 c81 (354, 303) [76, 82, 95]

$1-2670.78 0 0 c82 (344, 323) [81, 83, 84]

$1-1468.93 0 0 c83 (329, 331) [82, 84]

$1-3204.93 0 0 c84 (330, 344) [82, 83, 85, 87, 88]
$1-2804.32 0 0 ¢85 (320, 366) [84, 86]

$2 0 1.31034 1.31034 c86 (308, 394) [85]

$1 -6409.86 0 0 c87 (345, 347) [84, 88]

$2 0 23731.6 23731.6 c88 (370, 351) [84, 87, 89, 91]
$3-21766.8 0 24523.4 c89 (388, 383) [88, 90]
$3-1335.39 31028.5 31028.5 c90 (404, 370) [89, 91]
$1-8680.03 0 0 c91 (411, 354) [88, 90, 92, 93, 99, 101]
$1-1602.47 0 0 c92 (412, 339) [91, 93]

$1-4006.16 0 0 c93 (428, 320) [91, 92, 94, 95, 99]

$1 -5608.63 0 0 c94 (413, 318) [93, 95]

$1-5074.47 0 0 c95 (391, 308) [79, 81, 93, 94, 96]

$1 -2003.09 0 0 c96 (406, 290) [79, 95]

$1 -4540.32 0 0 c97 (437, 289) [79, 99]

$3 -5608.63 23898.2 27694.3 98 (451, 297) [79, 99]

$3 -4940.94 19920.6 19920.6 c99 (465, 321) [91, 93, 97, 9B, 102, 103, 105]
$1-2937.85 0 0 c100 (452, 356) [99, 101]

$1-667.694 0 0 c101 (427, 360) [91, 100]

$3-3071.39 25694.1 25694.1 ¢102 (496, 353) [99, 103, 108, 10
$1-5074.47 0 0 ¢103 (516, 323) [99, 102, 104]
$1-4139.7 0 0 ¢104 (535, 321) [102, 103, 105, 106, 107]
$1-5742.17 0 0 c105 (548, 310) [99, 104, 106]

$3 -6676.94 0 9760.98 c106 (575, 319) [104, 105]
$1-267.078 0 0 c107 (539, 334) [104, 108]

$1-1068.31 0 0 c108 (534, 349) [107, 109]
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$1-5208.01 0 0 c109 (532, 363) [102, 108, 110, 111]
$2 0 1.3802 1.3802 c110 (531, 376) [109]

$3 -9080.62 13095.9 13095.9 c111 (558, 376) [109]
$3 -801.233 33263.4 33263.4 a112 (118, 148) [16, 31]
$1-1068.31 00 a113 (112, 213) [31, 114]
$1-2937.85 0 0 al14 (130, 213) [26, 113]

$3 -24571.2 28575.4 28575.4 b115 (333, 234) [67]
$1-2670.78 0 0 a116 (152, 38) [11]

$1-4406.78 0 0 b117 (333, 265) [74, 75]
//010.0999 4667.71 1

020.0424 7713.04 1

111 0.0616 8744.93 1

240.108 13197.6 1

2110.16 4445.26 1

340.00798 20323.6 1

310 0.0688 12745.3 1

450.054 15822 1

470.0267 47831.1 1

410 0.0682 12308.4 1

56 0.0208 5557 1

611 0.034 6169.97 1

7.80.0305 2675.34 1

729 0.0504 41143.2 1

890.03225.97851 1

10 11 0.0196 9845.9 1

10 12 0.0731 7553.31 1

11 13 0.0707 7876.19 1

11 15 0.0834 8042.71 1
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11116 0.14 4445.27 1
1214 0.2444 7713.04 1
1314 0.1958212.81
1416 0.0437 28605.2 1
14 18 0.0394 7931.28 1
14 32 0.124417083.8 1
1516 0.1801 13014.8 1
16 17 0.0505 18836.4 1
16 29 0.0388 30610.7 1
16 30 0.1563 19779 1

16 112 0.0301 40857.3 1

17 18 0.0493 10631.2 1
18190.117 7659.43 1
18 330.24716730.11
19 20 0.0849 9575.01 1
2021 0.097 1239451
2122 0.159 1455151
2223 0.0492 44115.7 1
22 24 0.08 22098 1

22 310.1153 22740.2 1
2369 0.411525782.41
2371 0.196 23059.6 1
24 250.0382 23878.1 1
24 26 0.163 16486 1
2529 0.086 39624.6 1
26 27 0.0855 8929.82 1
26 31 0.075510195.41
26 114 0.0741 7500.8 1
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27 28 0.0943 6169.96 1
28 300.03319182.54 1
29 37 0.054 74960.6 1

30 31 0.0985 9508.43 1
311120.203 1205351

311130.06125794.52 1

32360.142 16156.5 1
33350.0268 7143.34 1
33 36 0.0094 23221 1
33420.1681 16156.6 1
34 350.0102 2904.69 1
34 36 0.0497 7606.19 1
36 37 0.0375 34464.8 1
36380.106 17814.11
36 390.168 18968.3 1
37 64 0.0986 68411.3 1
38 39 0.0605 22582.1 1
3940 0.0487 18968.3 1
39410.18313383.11
4041 0.13513761.7 1
41 48 0.1615 27818 1
42 43 0.2454 12481.3 1
43 44 0.0901 13105.81
44 45 0.1356 131976 1
44 48 0.186 8867.78 1
45 46 0.127 10856 1
4547 0.1896995.41 1
46 48 0.0625 9642.08 1
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46 68 0.2778 12394.6 1
47 48 0.0505 6388.95 1
48 49 0.0752 12308.4 1
48 50 0.137 15173.51
48 53 0.145 18446.3 1
48 65 0.04595 33987.3 1
48 68 0.324 11399.3 1
49 56 0.134 8867.83 1
5051 0.0588 6478.72 1
5057 0.07195518.38 1
51520.16352945.51
52530.122 4476.38 1
5354 0.0707 3920.73 1
53 550.0095517938.8 1
5358 0.2293 5480.02 1
54 55 0.0151 8992.36 1
54 58 0.2158 6300.45 1
5556 0.0966 6755.63 1
5557 0.0966 3975.81 1
5558 0.12243 10557.3 1
58 59 0.145 9055.33 1
58 60 0.1510780.51

58 62 0.0386 33818.2 1
5960 0.013524535.51
5961 0.0561 4700.39 1
60 61 0.0376 10780.5 1
60 63 0.0268 26884.4 1
61 650.218 8155.711



6166 0.1175714.24 1
62 63 0.02 36009.4 1
63 64 0.0302 61186.6 1
64 65 0.037 37576.51
64 67 0.016 86786.5 1
6566 0.101511163.21
67 68 0.037 26697.6 1
67 80 0.0202 74960.7 1
67 115 0.00405 38611 1
68 69 0.12717814.11
68 74 0.122 17083.9 1
68 76 0.101 38639.7 1
69 70 0.0355 34080.2 1
69 73 0.132317938.7 1
6974 0.14118705.51
70710.18 36036.2 1
7072 0.0454 1240.23 1
7374 0.0406 11886.5 1
7476 0.1999 13571 1
74117 0.0481 191011
7576 0.148 16613.7 1
75117 0.0544 13955 1
76 77 0.0124 21060.5 1

7679 0.033176 26492.3 1

76 81 0.0853 32912.11
7778 0.0244 7193.34 1
7879 0.0704 10483.91
7980 0.037 72391.21
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79950.182 15822 1
7996 0.0934 17445.2 1
7997 0.108 18968.2 1
7998 0.206 24898.7 1
8182 0.03665 20914.1 1
81 95 0.053 12656.6 1
82830.1328155.72 1
8284 0.148 11163.21
83 84 0.0641 8929.84 1
84 850.123 4635.26 1
84 87 0.102 11085.6 1
84880.17312924.3 1
8586 0.2074 1.41869 1
8788 0.0712 15810.3 1
88 89 0.06515 23529.8 1
88 91 0.038274 20283.2 1
89 90 0.0836 21506 1
90910.1272 21208 1
9192 0.0848 11559.4 1
9193 0.158 11085.6 1
91 99 0.295 6524.07 1
91101 0.0559 6755.63 1
9293 0.073210705.6 1
9394 0.0434 197791

93 950.0869 19917.51
9399 0.058 27262.1 1
94 95 0.0547 16613.7 1
95 96 0.0885 14450.3 1
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9799 0.17918575.41

98 99 0.0813 27645.2 1
99 100 0.1262 8806.17 1
99 102 0.0525 24880.2 1
99103 0.204 101954 1
99 105 0.229 10780.5 1
100 101 0.112 6388.96 1
102 103 0.1584 8684.14 1
102 104 0.1625 10266.8 1
102 109 0.1813 15386.6 1
103 104 0.0378 9777.46 1
104 105 0.0547 5794.52 1
104 106 0.183 5875.93 1
104 107 0.0703 8386.48 1
105 106 0.183 5075.25 1
107 108 0.0288 7931.28 1
108 109 0.0762 6344.55 1
109 110 0.0755 1.48968 1
109 111 0.064 13105.81
113114 0.0104 4833.38 1
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