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ABSTRACT

Advanced Fault Diagnosis Techniques and Their Role

in Preventing Cascading Blackouts. (December 2006)

Nan Zhang, B.S., Tsinghua University, China;

M.S., Tsinghua University, China

Chair of Advisory Committee: Dr. Mladen Kezunovic

This dissertation studied new transmission line fault diagnosis approaches using

new technologies and proposed a scheme to apply those techniques in preventing and

mitigating cascading blackouts. The new fault diagnosis approaches are based on two

time-domain techniques: neural network based, and synchronized sampling based.

For a neural network based fault diagnosis approach, a specially designed fuzzy

Adaptive Resonance Theory (ART) neural network algorithm was used. Several ap-

plication issues were solved by coordinating multiple neural networks and improving

the feature extraction method. A new boundary protection scheme was designed by

using a wavelet transform and fuzzy ART neural network. By extracting the fault gen-

erated high frequency signal, the new scheme can solve the difficulty of the traditional

method to differentiate the internal faults from the external using one end transmis-

sion line data only. The fault diagnosis based on synchronized sampling utilizes the

Global Positioning System of satellites to synchronize data samples from the two ends

of the transmission line. The effort has been made to extend the fault location scheme

to a complete fault detection, classification and location scheme. Without an extra

data requirement, the new approach enhances the functions of fault diagnosis and

improves the performance.

Two fault diagnosis techniques using neural network and synchronized sampling

are combined as an integrated real time fault analysis tool to be used as a reference of
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traditional protective relay. They work with an event analysis tool based on event tree

analysis (ETA) in a proposed local relay monitoring tool. An interactive monitoring

and control scheme for preventing and mitigating cascading blackouts is proposed.

The local relay monitoring tool was coordinated with the system-wide monitoring

and control tool to enable a better understanding of the system disturbances. Case

studies were presented to demonstrate the proposed scheme.

An improved simulation software using MATLAB and EMTP/ATP was devel-

oped to study the proposed fault diagnosis techniques. Comprehensive performance

studies were implemented and the test results validated the enhanced performance

of the proposed approaches over the traditional fault diagnosis performed by the

transmission line distance relay.
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CHAPTER I

INTRODUCTION

A. Problem Statement

1. Power System Cascading Blackouts

Power system is one of the largest dynamic systems in the world, consisting of

thousands of electrical sources, loads, transmission lines, power transformers, cir-

cuit breakers, and other equipment to provide power generation, transmission and

distribution. Fig. 1 shows an example of power system including those typical com-

ponents. For over a century, the power engineers have striven hard to maintain the

reliable operation of the power system, transmitting the electricity uninterruptedly

from the generators to the customers. With the ever-increasing load demand and

the advent of the deregulated power market recently, the power systems are pushed

more often to operate close to their design limits and with more uncertainty of the

system operating mode. That makes the power systems face more challenges than

before. As a most catastrophic result, power system large-scale blackouts, as the one

that occurred on Aug 14, 2003 [1], can interrupt the power supply for a few hours,

affecting millions of people and causing huge economic loss. The causes for this kind

of large-scale blackout are quite involved due to the complexity of power system op-

erations and the randomness of different system contingencies. Typical factors are

inadequate system understanding, inadequate operational awareness, inadequate tree

trimming, relay misbehavior, bad weather, human errors, etc. The large-scale black-

This dissertation follows the style of IEEE Transactions on Automatic Control.
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out usually has a cascading process which can last from a few seconds to even a few

hours. No two blackouts appear identical according to the historical records [2]. But

there is a common cascading process for different blackouts, which can be described

as follows [3, 4]:

• System state before the blackout: Before the blackout, system parameters usu-

ally remain within their normal operating reliability ranges. At the same time,

some noticeable deviations that could potentially weaken the systems, such as

high electricity demands, heavy power flows, depressed voltages, and frequency

variations, etc, could be observed. Some scheduled maintenances on the nearby

generators and/or transmission facilities may also happen before the blackouts.

• Contingency conditions: Before the blackouts, the system may be additionally

weakened by unscheduled outages, such as several transmission line, transformer

and generator outages due to the faults. Those conditions lead the system to a

more stressful stage.
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• Initiating events: At a certain point of the blackout development, a triggering

event happened. Triggering event is the point separating a period where multi-

ple contributing but not direct factors for final blackout are accumulated, from

the direct sequence of events with clear cause/effect relationships.

• Steady state progression with slow succession: The triggering event as well as

the subsequent events in a blackout scenario may cause power flow surges, over-

loads, or voltage problems. The protection system may remove the equipment

or a group of equipment from the rest of network if it detects the low voltage

and high current even though there may be no faults. Some load loss may

accompany this process. This can result in more power flow surges, overloads,

and voltage problems, and so on. In this initial stage, the cascading process can

be relatively slow.

• Transient state progression with fast succession: In this stage, the system begins

to lose major parts which results in bigger power swing, overload or low voltage.

The components begin to trip one by one in a very short time. Uncontrollable

system separation, angle instability, and voltage collapse may occur. As a result,

a significant load loss may be inflicted. Final large-scale blackout is reached in

a very short period.

From the above description, one can see that the cascading blackout is a result

of accumulation of a chain of contingencies and system reactions. Protective relay

misoperation or unintended operation is believed to be one of the contributing factors

in 70 percent of the major disturbances in North America [5]. This cause can be iden-

tified in any stage of the blackout process mentioned above. Relay misoperations or

unintended operations due to overload, power swing, and relay hidden failure are the

main factors contributing to the blackouts. Most of the problems are associated with
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relays tripping too many healthy lines. Since a relay makes the decision automati-

cally to remove a component from the system according to its internal mechanism,

the relay misoperation or unintended operation can make an effective influence on

the system stability.

The associated problem with relay misoperation or unintended operation is the

inadequate real time diagnostic support for verifying the correctness of relay opera-

tion. In the existing practice, the relay operation is evaluated offline to investigate a

specific event and prevent future relay misbehavior. When the system operates close

to its limits, every single relay operation after N-1 contingency could cause a chain

of unfolding events eventually. For present power system, there are no real time

monitoring tools available to verify if the relay has responded to the disturbances

correctly. The system operator can only monitor an outcome of the relay decision no

matter whether it is correct or not. The system operator is not able to influence the

relay operation online in order to avoid system disturbances unfolding into cascading

events.

As mentioned, most of the cascading blackouts have a slow pace during the ini-

tial stage, and may evolve or cascade quickly when the time elapses without effective

mitigating schemes. A real time relay monitoring tool can help correct relay misop-

eration or unintended operation and mitigate the blackout at the initiating stage.

Those kinds of schemes are not readily available today.

2. Transmission Line Protection

The protective relay system, which is shown in the zoomed area in Fig. 1, is the

most important component in the power system to preserve the reliability of system

operation. It detects the faults using its fault diagnosis mechanism and removes the

faulted component by its associated circuit breaker action in a short time to avoid
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damage of the system equipment. The protection system for transmission lines is very

important since the transmission lines are mostly extended across large geographic

area to carry the power from sources to loads. They can easily experience a fault due

to the lightning that causes loss of insulation.

The performance of protection system is measured by several criteria including

reliability, selectivity, speed of operation, etc. [6, 7]. Reliability has two aspects: de-

pendability and security [8]. Dependability is defined as “the degree of certainty that

a relay system will operate correctly when there is a fault on the system”. Security

“relates to the degree of certainty that a relay or relay system will not operate incor-

rectly when there is no fault on the system” [7]. For a weakened system that already

lost several components, loss of reliability due to the relay misbehavior will have a

large impact on the system that may contribute to the cascading blackout. There are

two kinds of relay unintended operations:

• Relay fails to operate. This situation is relative rare. But it is very harmful to

the system stability when it happens. Even though the fault is cleared by the

backup relays in a delayed time, there are healthy components removed from

the system. This can result in more power flow surges, overloads, and voltage

problems for a weakened system.

• Relay operates in an non-fault situation. This situation is more common in

most of blackouts involving distance relay unintended operations. For example,

the relays may observe a low voltage and a high current, at the time during

the overload, power swing or low voltage. Trip of the healthy components will

also result in more power flow surges, overloads, and voltage problems for a

weakened system. The event may unfold and spread out.

Each transmission line protective relay has its own designated area known as
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primary zone, and usually it still has the opportunity to operate in overreached zones

to provide backup protection for an adjacent transmission line section. To ensure the

selectivity of transmission line protection systems, the relays need to be coordinated

with the backup relays to operate only when the primary relay fails to clear the fault.

Hence, selectivity is important to assure maximum service continuity and minimum

system disconnection. The speed of operation indicates how fast the relay can isolate

a faulted area. Usually for transmission line protection, the high-speed relay is one

that operates in less than 20 ms. Not in all situations the very high-speed operation

is preferred. The relay must have the ability to differentiate fault and other tolerable

transients very well before issuing high-speed operation.

The most commonly used scheme for transmission line protection is the distance

relay. The basic principle is shown in Fig. 2. The voltage and current measured

through voltage transformer (VT or PT) and current transformer (CT) are the inputs

for protective relays. The distance relay algorithm is trying to extract the fundamental

U

I

Measurements Through Moving Data Window

Phasor Calculation Comparison with Settings

Z

Fig. 2. Basic principle of distance relay
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frequency phasor of voltage and current signals. Then through the calculation of

certain nonlinear ratio of voltage and current phasors, the apparent impedance seen

by the relay is obtained and compared to the preset thresholds. If the impedance falls

into the protected zones, the relay will assume a fault occurred and will send a trip

signal to the circuit breaker on the transmission line to disconnect the faulted line.

Once triggered, the impedance calculation is continuously iterated using the moving

data window. The relay algorithm is fixed by design. When the relay is installed in

the system, the most important task is to determine the thresholds (settings). The

settings are obtained by comprehensive short-circuit system studies in a predefined

system operating condition. To ensure the protection system maintains dependability

when protecting the equipment as fast as possible, a backup scheme is provided for

each relay.

The distance relay principle is straightforward and usually performs reliably.

That is the reason why this principle is still dominantly used in the industry, although

the relay hardware has advanced through the technologies of electromechanical, solid

state, and microprocessor. However, there are still some inherent problems associated

with the distance relay principle:

• The transient signal during the fault is a non-stationary signal containing fun-

damental frequency component, DC offset with damping, harmonics, etc. When

extracting the fundamental frequency component from the faulted signal, algo-

rithms can only obtain an approximate value since the information from unused

components is lost. In some extreme situations, this may result in an inaccu-

rate representation of the faulted signal and may cause the false judgment in

relays [9]. Since an approximation of steady state phasors of voltage and current

are used for distance relay algorithm, other non-fault situations that can cause
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low voltage and high current, such as under-voltage, overload, and power swing

may cause relay to misbehave. The speed of operation of distance relay is also

limited by its principle since it will take some time for calculated impedance to

move from pre-fault load area to a stable fault area.

• The calculation of relay settings is very important. It is usually done using

certain fault parameters for a worst case system operating condition. The com-

promise is made to cover worst case fault and system operating conditions for

N-1 contingency. When the fault condition and system condition significantly

deviate from the expected ones, which may be the case for N-M contingency,

the relay settings may be inadequate causing the relay to misbehave. For a

large system, the calculation of settings is very complex and tedious. Correct

coordination needs to be made for the settings to ensure the selectivity of each

relay in the system.

• The dependability and security are conflicting criteria for distance relay. There

is no perfect means to guarantee the dependability and security at the same

time. The trade-off is made when setting the relays to ensure a certain level of

balance of the two criteria. In the regulated power system before, dependability

was of most concern since the primary task of protective relay is protecting

the expensive power system equipment at all costs. Security issue was not

so critical because overtripping would not cause major problems due to the

redundancy of the transmission system. Falsely removing some non-faulted

lines may have not interrupted many customers or even cause the catastrophic

system blackouts since there was enough system redundancy at that time. After

the utility industry was deregulated, the increase of power generation and power

grid did not match the increase of the power demand. This caused power grid to
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be more stressed and there are more opportunities to operate the system closer

to its transmission limit. The importance of the protective relay security has

become an issue. Falsely removing non-faulted lines in the system may cause a

serious problem such as triggering a cascading blackout.

As a summary for the problem statement section, the following issues are the

major concern of this dissertation:

• Relay misoperation or unintended operation is one of the major contributing

factors for power system cascading blackout. Approaches to reduce the relay

misbehavior need to be identified .

• Real time monitoring tools to assess the relay misbehavior are needed, providing

the system operator accurate information about unfolding events.

• Existing transmission line protection scheme still has drawbacks. Advanced

fault analysis mechanism to enhance the system dependability and security

simultaneously are desirable.

B. Existing Solutions

1. Schemes to Prevent and Mitigate Cascading Blackouts

As mentioned, cascading blackout is a result of a chain of accumulated contin-

gencies and system reactions. The complete prevention of the power system blackout

is almost impossible due to the uncertainty in system operation pattern, weather,

human factors, etc. However, one can expect to mitigate the unfolding event against

developing into a large area blackout by some carefully designed defensive strategies.

Among those strategies, the analysis and monitoring tool for relay system operation is

the first step since the relay misbehavior may be a very important factor contributing
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to the blackout. Some useful solutions are proposed in the literature [5, 10–16]. The

relation between the relay hidden failure and power system disturbances is analyzed

in [5], where the author developed a way to calculate the vulnerability index of each

relay in the system to indicate which group of relays is most likely to cause a problem

if and when the hidden failure exists. That provides the information which relay in

the system should be careful monitored. The line protection schemes and their rela-

tion to voltage stability and transient stability is analyzed in [10], where the author

provides an improvement of Zone 3 distance protection scheme to enhance the secu-

rity of the protection relay operation. In [11], a wide area back-up protection expert

system to prevent cascading outages is proposed. The scheme tries to precisely locate

the faulted area and avoid unnecessary trip due to the hidden failure or overload.

Adaptive protection schemes are introduced to coordinate the relay operations and

settings with the prevailing system operating conditions [12–14]. System protection

schemes proposing the idea of coordinated protection and control means to minimize

the impact of a disturbance are discussed in [15, 16].

2. Improvements over Traditional Relay Principles

The new protection schemes that are better than traditional transmission line

protection principles are very extensively studied in the literature. After the digital

relay is introduced, the relay principle can be realized using more flexible software

means [17–20]. New fault diagnosis principles for transmission line relay are pro-

posed. The traveling waves based relay schemes, adaptive relay schemes, neural

network based relay schemes, and transients based relay schemes are developed as

new directions for transmission line protection [12–14,21–40].

The traveling wave based protection for transmission line, which can be used for

fast fault detection, was introduced in the late 1970s [21–27]. When the fault occurs
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on the transmission line, the traveling waves are generated from the faulted point

and start moving towards both ends of the transmission line. The traveling wave

based protection schemes are formed based on detection of the traveling wave at line

ends. These relays have the advantage of: a) fast response, b) directionality, c) not

being affected by power swing and CT saturation. However, the characteristics of

existing widely-used instrument transformers are inadequate yet to support this type

of protection scheme.

The concept of adaptive protection was introduced during the 1980s [12–14].

The concept of adaptive relaying is to make an assessment of the state of the power

system first, and then automatically make adjustment to protection systems so that

their settings are suitable for the prevailing conditions. The application areas of

adaptive relaying could be distance protection and autoreclosing. The advantages of

adaptive relaying are: improved system responses, increased reliability and reduced

costs. However, the basic principles of the various existing relays cannot been easily

changed to encompass the adaptive techniques.

The application of artificial intelligent techniques in protection attracted re-

searchers since 1990s [28–33]. As an example, neural networks can be used for different

applications in transmission line protection including fault detection, fault location,

distance and direction detection, autoreclosing, etc. The neural networks based pro-

tection scheme arranges the voltage and current signal samples as a pattern. The fault

detection issues then become the pattern recognition issues. The advantage of neural

network based protection scheme is its “intelligence” to find the internal similarity

of different types of disturbances. The decision is made by measuring the similarity

between the unknown patterns and the trained prototypes instead of comparing the

characteristics of unknown patterns to the fixed relay settings. The disadvantage is

that one must train the network with a large data set, and one must select enough
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relevant training scenarios.

In recent years, the concept of the “Transient Based Protection” is introduced

by using fault generated high frequency transients to develop new relaying principles

[34–40]. The technique detects high frequency transient signals through specially

designed transducers and algorithms, thereby, overcoming the bandwidth limitation

of conventional transducers. There are a few applications using the fault generated

transient signals in transmission line protections developed so far. Although it is still

not proven that this kind of method is reliable when high frequency disturbance in

the signal is introduced, it is very attractive to explore significant improvement in

terms of speed and new protection principle.

Although new protection schemes have been studied for a while, the conventional

transmission line relays are still widely used in practice today. At the theoretical level,

the new relay principles must be superior to the traditional relays in order to be used

as a substitute. At the practical level, the design of the new relay principles considers

the state-of-art computer and signal processing technology. As the digital relays are

more widely used, the new relay principles are expected to be applied in the future.

Although a lot of new techniques proposed in previous literature can provide an

overall enhancement over the traditional relay, it is still hard to find a perfect match

due to the algorithm or hardware limits. A combination of different techniques might

be a better solution to achieve a high performance and simplify the real time decision

making.

The existing proposals and solutions for preventing cascading blackout do not

propose new relay principles. Most of the schemes depend on the improvement of

distance relay principles. To solve the problems in preventing cascading blackouts,

one can suggest some new protection schemes to be installed in the monitoring mode

as the operation verification tool for existing distance relays. The improved fault
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analysis and event analysis results can be communicated between the centralized sys-

tem and local substation to seek a better solution to reduce the impact of that event.

Currently, this kind of online application has not been implemented or even proposed.

Most of fault analysis is implemented offline, which does not allow understanding the

disturbances in real time.

C. Research Issues

This dissertation has the following major objectives: a) Investigate new trans-

mission line fault diagnosis approaches using advanced technologies, b)Integrate the

transmission line fault analysis tool with the traditional relays to improve the over-

all performance of transmission line protection system, c) Apply those techniques in

preventing and mitigating cascading blackouts, d) Propose a relay monitoring tool at

substation level as a local diagnostic support, e)Provide the solution that coordinates

the system and local actions to prevent blackouts.

The dissertation will focus on the new techniques that are basically different

from the traditional distance relay schemes. Since most of the new principles such as

traveling wave, neural network, and transient based protections have their shortcom-

ings, a different solution for dealing with the application issues must be studied when

developing new techniques. A more suitable solution may be obtained by combining

two or more new techniques. Previous studies show a promising benefit using neu-

ral network and synchronized sampling [41–43]. Those two techniques both use the

time-domain samples as input, without requiring the phasor and relay setting com-

putation as required for the traditional relays. In this dissertation, the fault diagnosis

approaches for transmission line protection based on those two techniques are further

studied, improved, and carefully evaluated to make sure they are more feasible for
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online use.

How to apply the new technologies in a systematic strategy to monitor relay

operations and prevent cascading blackout is another focus of this dissertation. As

mentioned earlier, the existing relay monitoring tool mostly depends on improvement

of distance relay design. If a more accurate diagnosis result is available from new

algorithms, one can refer to this result as a reference when verifying the correctness

of relay operations. A straightforward monitoring tool can help the system operator

to take the corrective activities in a short time. This kind of tool will be designed in

this dissertation.

D. Research Approach

A breakdown of research approach in this dissertation is as follows:

• Investigate the relationship between distance relay operation and transient sta-

bility limits. The background of distance relay and its behavior during the

disturbances are explored and demonstrated. A much clearer picture of the role

of relay misbehavior contributing to the cascading blackouts will be drawn.

• Develop improved fault diagnosis techniques using neural network and syn-

chronized sampling [44–48]. This study utilizes several enhancements of the

prototype algorithms developed earlier.

• For the neural network based algorithm, improve the overall performance ef-

fectively when applied to a large set of random scenarios in the power sys-

tem [44,47]. The method of selecting the scenarios, coordinating different neural

networks and optimizing the input and output is discussed and proposed.

• Develop a new method to use the fault generated high frequency component
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as extracted feature to achieve advanced transmission line boundary protection

[48]. That is an extension of the neural network based fault diagnosis approach.

• For synchronized sampling based algorithm, improve the previous algorithm by

using it for purposes beyond just fault location [45–47]. An extended fault diag-

nosis scheme based on synchronized sampling is proposed and the optimization

of original algorithm in term of speed and accuracy is discussed.

• In order to benefit from the advantages of both neural network and synchro-

nized sampling, combine the two techniques as a real time fault analysis tool to

be used as a reference for analyzing the traditional transmission line relay per-

formance [47]. The possible application, hardware configuration and software

implementation are described in detail.

• Design an event analysis tool using event tree analysis (ETA) for monitoring

the relay operations, providing the system operator accurate information about

disturbance/response from the local substation level [49]. This dissertation

demonstrates the effective way to build a set of typical event trees for a relaying

system and use them in online relay monitoring.

• Propose an interactive mitigation scheme to combine local and system-wide

actions to prevent cascading blackout [50–52]. This dissertation suggests the

way of using interactive schemes between the system-wide and local monitoring

and control actions.

• Develop a comprehensive modeling, simulation and evaluation tool for assess-

ing new fault diagnosis algorithm [53] and implement comparative studies of

developed algorithms. This dissertation implements a comprehensive modeling

and simulation tool using MATLAB [54] and Alternative Transients Program
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(ATP) [55]. The assessment of the performance of the proposed fault diagnosis

algorithms will be reported at the end.

E. Dissertation Outline

The dissertation is organized as follows. Problems with existing transmission

line protection are outlined in Chapter II. Chapter III describes the fault diagnosis

techniques using a specially designed fuzzy ART neural network algorithm. A new

technique using neural network and wavelet transform for transmission line bound-

ary protection is introduced in Chapter IV. Chapter V describes a complete fault

diagnosis technique using a synchronized sampling based algorithm. An integrated

real time fault analysis tool that combines neural network and synchronized sam-

pling techniques is described in Chapter VI. A real time relay monitoring tool using

event tree analysis method for monitoring transmission line protection system is in-

troduced in Chapter VII. Chapter VIII demonstrates the interactive schemes for the

system/local analysis to prevent and mitigate cascading blackouts. A comprehen-

sive simulation tool using MATLAB and ATP is described in Chapter IX as a new

simulation environment for design and evaluation of fault diagnosis algorithms. The

simulation steps and results are shown and discussed in Chapter X. Conclusions are

given in Chapter XI. References and Appendices are attached at the end.
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CHAPTER II

PROBLEMS WITH TRANSMISSION LINE RELAYING

A. Introduction

The problems to be solved in this dissertation are presented briefly in the previous

chapter. This chapter explores the existing transmission line relaying techniques and

explains in detail the drawbacks in those principles and why they may contribute to

the cascading blackouts. In Section B, the category and history of transmission line

relays are reviewed. Section C demonstrates the basic principles of the commonly used

distance relay for transmission line protection. The drawbacks behind the principles

are exposed. The system transient stability and power swing are briefly explored

in Section D and E respectively, where we can understand how relay performance

is related to those issues. An overview of cascading blackouts and the role of relay

misbehavior in the blackouts are given in the Section F. The problems with traditional

relaying are summarized in Section G.

B. Types of Transmission Line Relays

In general, the transmission line faults are associated with increased currents

and decreased voltages. Other changes of the AC quantities in one of the following

parameters may also occur: phase angles of current and voltage phasors, harmonic

components, active and reactive power, frequency of the power system, etc [6]. Those

parameters can be the inputs of the relays to detect the faults. The operating prin-

ciples of the relays in use on transmission lines, may be classified as follows [6, 56]:

• Magnitude Relays: These relays are based on the comparison of the magnitude

of one or more operating quantities to the threshold. For example, the overcur-
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rent relay responds to the changes in the magnitude of the input current. The

load-shedding relay responds to the changes of the system frequency.

• Directional Relays: These relays are based on the comparison of the phase angle

between two AC inputs. The comparison can be based on current phasor and

voltage phasor, and also on current phasor and another current phasor.

• Ratio Relays: These relays are based on the comparison of the ratio of two pha-

sors to the thresholds. The ratio of two phasors are complex number, therefore

the threshold should be set in a complex plane. A typical example of a ratio

relay is the distance relay.

• Differential Relays: These relays are based on the algebraic sum of two or more

inputs. In a general form, those inputs may be the currents entering (or leaving)

a specific protection zone. According to the Kirchhoff’s law, the algebraic sum

should be close to zero when there is no internal fault and should be a big value

when there is an internal fault.

• Pilot Relays: These relays are based on the communicated information obtained

from the two ends of a transmission line. The decisions made by a local relay

and by a remote end relay are combined to form the final decisions. The inside

principle of each relay could be any of the four types described above.

When applied to the transmission line protection, the above principles can be

further classified into two broad categories: a) non-unit protection scheme and b)

unit protection scheme. The non-unit protection scheme uses data from one end of a

transmission line while the unit protection scheme usually uses data from two or more

ends. For non-unit schemes such as overcurrent relay and distance relay, they can

not protect very accurately the entire length of the primary line because they can not
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differentiate the internal faults from external faults occurring around the line bound-

aries due to the imperfections caused by measuring errors, transformation errors, the

inaccuracy of the line impedance, source and load changes, different fault parameters,

etc. Backup protection needs to be introduced as a trade-off for protecting the entire

length of the transmission line. Unit protection schemes such as differential relays

and pilot relays can protect the entire length of the transmission line. They require a

communication link to transmit the blocking or transfer tripping signals. Therefore,

the reliability of the unit protection scheme highly depends on the reliability of the

communication link. The cost of the communication link also needs to be taken into

account.

The primary goal of transmission line protection, whatever the principle it uses, is

to rapidly and precisely detect the fault and disconnect the faulted area. If possible, it

should also differentiate the internal faults from external faults so that only the faulted

line is removed; provide the exact fault type selection so that advanced tripping and

reclosing schemes (single-pole tripping and reclosing) can be applied; locate the precise

fault position on the transmission line so that the line can be repaired and restored

quickly.

The earliest relay designs were electromechanical devices using plungers, balanced-

beams, induction discs or cups, etc [6]. Those relays are robust but require a fairly

high amount of energy to operate. Solid-state relays appeared in late 1950s. Those

relays were based on electronic components such as diodes, transistors and opera-

tional amplifiers, offering a better flexibility than the electromechanical relays. Both

electromechanical relays and solid-state relays are still in use today. Microprocessor

based relay (or digital relay) was introduced in 1980s and has been developed exten-

sively in the following years until today [56–58]. Compared to the electromechanical

relays and solid-state relays, the size of a digital relay is very compact, and the cost is
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reduced. The unique benefits can be found in digital relays with their reliability and

functional flexibility. It can also provide an easy way to implement adaptive relaying,

system integration and digital substation automation environment.

In a digital relay, the voltage and current signals from the power system are

sampled and converted to digital form by the Analog-to-Digital Converter (ADC).

The data is then processed by the relaying algorithm to produce a digital output.

A great many algorithms have been developed typically including sinusoidal-wave-

based algorithms, Fourier analysis and Walsh function based techniques, least squares

based methods, differential equation based techniques, etc. All of the algorithms

try to extract the useful AC quantities to implement the different relay principles

mentioned above. The details of each relay algorithms, which are out of scope in this

dissertation, can be found in [56, 57] .

C. Distance Relay

Distance relay is the most common type of protection for multiterminal trans-

mission lines [6,58,59]. As implied by its name, it calculates the impedance between

the relay location and the fault location. The impedance is calculated through the

measured voltage and current signals at the relay location. If the measured fault

impedance is smaller than the line impedance, the relay will assume that an internal

fault has occurred on the transmission line. Since the impedance per mile of a trans-

mission line is a relatively constant parameter, the distance relay hence responds to

the computed impedance that corresponds to the distance between the relay location

and the fault location.
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1. Relay Coordination Scheme

Due to the imperfections in the distance relay measurement caused by measuring

errors, transformation errors, the inaccuracy of the line impedance, source and load

changes, different fault parameters, etc, the distance relay may not be able to always

protect the entire line length using only one end of measured data. A coordinated

protection scheme using distance relays is applied today. As shown in Fig. 3, the

scheme is described for the relay at position “1” (relay 1). For relay 1, the security

margin of 10-15% should be selected from the remote end (Bus B) to be absolutely

sure that the relay 1 will not overreach to the next line in some situations. Hence the

first zone (Zone 1) of relay 1 is set to reach 85-90% of the line length A-B. If fault is

found within Zone 1 of the distance relay, the trip signal will be sent to the circuit

breaker instantaneously or with a very small time delay t1. The rest of the line A-B

will be covered by an overreaching zone (Zone 2). The reach of the second zone is

usually set at 120-150% of the line length A-B. If the adjacent line B-C has a quite

different impedance characteristics, Zone 2 can be also set as the line length of A-B

plus 20-50% of the line length B-C [58]. A timer t2, usually 0.3-0.5 seconds, should

t1
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t2

t
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Zone 3
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Fig. 3. Relay coordination scheme
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be set for Zone 2 to ensure that relay 1 is delayed to allow relay 3 to trip the fault at

F3. Relay 1 must provide enough time for relay 3 to respond the fault in its Zone 1

before relay 1 sends the trip signal. The Zone 2 of relay 1 will also provide a backup

function for the relay 3 since it overreaches to the line B-C. However, it is only true

for part of the line B-C because Zone 2 of relay 1 can not reach beyond Zone 1 of

relay 3 to ensure the similar selectivity mentioned above. Another zone (Zone 3) is

used to provide the backup function for the entire line length of line B-C. Zone 3 of

relay 1 is usually extended to the 250% of the line length of line A-B and the timer

t3 for its delayed action is set for a delay in the order of 1 second.

Similarly, the step distance settings for other relays in the system will follow

the same principle. It should be noted that in this example only the typical system

configuration is considered. In reality, the settings must be calculated and coordinated

by a comprehensive short circuit study for more complicated network structures [58].

Such a tedious work may result in incorrect settings due to the human error or

improper settings due to lack of consideration of unusual system operating conditions.

The relay settings may play a significant role in different stages of cascading blackouts

[1, 2].

2. R-X Diagram

Since the distance relay respond to the impedance measurements, it is common to

use an R-X diagram to analyze and demonstrate the behavior of the distance relay.

Consider an R-X diagram matching an ideal simple system shown in Fig. 4. The

origin of the R-X plane is the relay location. The axis R corresponds to the real

part of the impedance Z, while the axis X corresponds to the imaginary part of the

impedance Z. The apparent impedance at the relay location is calculated by the
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quotient of the measured secondary voltage and current phasors.

Za =
Vs

Is
(2.1)

During the normal condition, the measured apparent impedance is close to the

load impedance since ZL ≪ ZLoad. The load area shown in Fig. 4 is far from the

relay settings. When fault occurs, the apparent impedance seen by relay will change

to Z
′

f = Zf +Rf , where Zf is the line impedance from the relay location to the fault

location and Rf is the fault resistance. Since Rf ≪ ZLoad, the line section behind

the fault location as well as the load impedance can be neglected according to the

circuit theory. As shown in Fig. 2 in last chapter, the impedance during the fault will

flow into the relay setting area. Due to the transient phenomenon during the fault,

the impedance will not jump instantaneously from ZLoad to Z
′

f . In R-X plane, it will

move step by step to Z
′

f until the transient is gone after about one cycle. From the
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R-X diagram, it is not difficult to conclude that the performance of the distance relay

will depend on the fault resistance. The fault resistance is a random value that may

be influenced by the electrical arc between two phases of the transmission lines or

between one phase and a grounded object. The magnitude varies with respect to the

fault type, fault location, and fault inception time. Besides the fault resistance, the

pre-fault load condition will also play a role for the distance relay performance. If

the load is too high, it may float to the relay setting area, especially for the backup

settings in Zone 2 and Zone 3. In that case, the relay may operate in the overload

situation thinking that it is a real fault. When some of the healthy lines are removed

from the system, the power flows in those lines are re-dispatched to the other lines.

Similar overload situations will cause more healthy lines being tripped by the relays

and unfolding cascades may start.

3. Three-phase Distance Relay

The previous illustration is based on a single phase system. On a three-phase

power system, the apparent impedance can not be calculated using (2.1) directly.

There are 11 different fault types in three-phase systems, which are single-phase-to-

ground faults (A-G, B-G, C-G), phase-to-phase faults (A-B, B-C, C-A), phase-to-

phase-to-ground faults (A-B-G, B-C-G, C-A-G), three-phase fault (ABC) and three-

phase-to-ground fault (ABC-G) [6]. For different fault type, a symmetrical component

analysis may be used to obtain the relationship between voltages and currents mea-

sured at the relay location [59, 60]. It is known that regardless of the fault type,

distance relay is able to measure the positive sequence impedance from relay location

and fault location in a three phase system [6]. Therefore, the relay settings can be

calculated based on the total positive sequence impedance of the transmission line

regardless of the fault type.
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Consider the system shown in Fig. 4 is a three-phase system and the fault is

a B-C fault. The symmetrical network connection for this fault is shown in Fig. 5,

where the subscript “1” corresponds to positive network components and subscript

“2” corresponds to negative network components. We can observe that

V1F = V2F = V1 − Z1F I1 = V2 − Z2F I2 (2.2)

Since Z1F = Z2F for a transmission line, we can further get

V1 − V2

I1 − I2
= Z1F (2.3)

The relationship between phase value and sequence value can be expressed as:

a = ej 2π
3 (2.4)
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Fig. 5. Symmetrical network connection for B-C fault
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Subtract the third row from the second row, we have

Vb − Vc = (a2 − a)(V1 − V2) (2.6)

Similarly, we can also get

Ib − Ic = (a2 − a)(I1 − I2) (2.7)

Substituting (2.6) and (2.7) in (2.3), we get

Vb − Vc

Ib − Ic
=
V1 − V2

I1 − I2
= Z1F (2.8)

It relates the phasor measurements at relay location to the positive impedance

measured from relay location to the fault location. For other fault types, we can also

use different symmetrical component networks to get the voltage and current used

to calculate the positive impedance. The result is shown in Table I, where it can be

seen that in order to detect a three-phase fault, a pair of voltage and current may be

used for phase fault detection or for ground fault detection since they are required

to calculate the exact positive impedance in a three-phase fault. For traditional elec-

tromechanical relays and solid-state relays, we need six elements to respond to all

eleven fault types. In a digital relay, the different voltage and current pairs shown in

Table I can be organized by the relay software as long as the three-phase voltage and

Table I. The voltages and currents used to calculate apparent impedance for each fault

type

AB/ABG BC/BCG CA/CAG AG BG CG ABC/ABCG

V Va − Vb Vb − Vc Vc − Va Va Vb Vc Any of the six V on the left

I Ia − Ib Ib − Ic Ic − Ia Ia + k0I0 Ib + k0I0 Ic + k0I0 Corresponding I

*k0 = Z0−Z1

Z1
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current inputs are available.

4. Specific Applications

The above introduction of distance relay principles are based on the very simple

system configuration. In real practice, the distance relay need to be tuned to face

specific system configurations [61, 62]. Four typical system configurations are shown

in Fig. 6. For parallel lines that are on the same tower or share the same right-of-way,

the mutual coupling between these lines must be taken into account for the relay

schemes. For the multi-terminal lines, the infeed current from the tapped terminal

plays a role in the fault detection. For a weak electrical system in which the source

impedance is high, one should notice relative low values of fault current and relatively

flat voltage profile along the line seen by the relay. For the series compensated line

in which the the series reactor or series capacitor is installed, the relay scheme must

take into account the change of the line impedance due to the on/off switching of the

compensation devices.

ZM

(a) Parallel Lines (b) Multi-terminal Lines

(c) Weak systems

Zs is Large

(d) Compensated Lines

Series reactors or capacitors

I1

I2

Fig. 6. Specific system configurations for distance relay application
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D. Transient Stability

The real power system is a dynamic system and the normal operation condition

may be altered by certain disturbances caused by faults, load rejection, line switching,

and loss of excitation. Transient stability is defined as the ability of the power system

to maintain synchronism when subjected to those disturbances [63, 64]. The protec-

tion system performance plays an important role to maintain the system transient

stability after the fault.

The basic idea of transient stability can be demonstrated using a simple two-

machine system shown in Fig. 7. For this system, if we neglect the resistance of the

line, the active power Pe transferred between two generators can be expressed as,

Pe =
ES · ER

X
· sinδ (2.9)

where δ is the angle difference between the two generators andX = XS+XL+XR.

If the ES, ER and X is fixed, the relationship between Pe and δ can be described

using the power angle curve shown in Fig. 8, where the two power angle curves

correspond to the normal state and the fault situation respectively.

The differential equation to model the motion of the generator rotor angle is

known as the swing equation [63, 64]:

2H

ω0

d2δ

dt
= Pm − Pe (2.10)

Xs ZL XR

Es ER

Vm Vn

Relay

Fig. 7. A two-machine system
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Fig. 8. The power angle curve

where Pm is the mechanical power input of the generator and H is the inertia

constant.

As shown in Fig. 8, during the normal state, Pm = Pe = P0. The generator

rotor runs at a constant speed and the rotor angle difference between the generators

is constant, as δ0. When a fault occurs, the power transmission Pe is dropped to the

PF from P0. At the same time, the mechanical power Pm of generator can not be

changed at once to match the change of Pe, resulting in the rotor acceleration and δ

increasing. When the fault is cleared at the time δ reaches δC , the power transmission

Pe returns to the PC , which is larger than mechanical power Pm = P0. That causes

the rotor to decelerate and δ reaches δF due to the inertia of the rotor system. At δF ,

the deceleration area A2 is equal to the acceleration area A1. This is known as the

equal-area criterion [63,64]. If δF is smaller than δL, δ can eventually go back to the

original balance point δ0 with sufficient damping. The system is transient stable in

this case. If area A1 is still larger than A2 at the time δ reaches to δL, the rotor will

accelerate again beyond recovery since Pe < Pm. The system is transient unstable

and may cause big problem such as cascading blackouts. It is seen that the fault
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clearing time by the protection system will directly relate to the area of A1 and A2.

The faster the fault is cleared, the more stable the system. Consider a large system,

any disturbance such as fault, load rejection, line switching, loss of excitation, etc will

cause similar behavior of each system generator as demonstrated above, resulting in

the oscillation of system bus voltages and angles. That will in turn have an impact

on the relay operations, which will be explained in the next section.

There are several ways to enhance system transient stability, such as high-speed

fault clearing, reduction of transmission system reactance, single-pole switching, gen-

erator tripping, controlled system separation and load shedding, etc [64]. It is obvious

that the fast and accurate response of transmission line protection system, which can

precisely recognize the disturbances and take correct actions, is the first and most

important requirement. With the informed situation about the disturbance delivered

to the system control center, the system-side contingency study can be activated ef-

fectively hence the system-wide corrective control can be selected earlier to minimize

the impact of the disturbances.

E. Power Swing

The associated phenomenon with the transient stability issue is power swing,

which is defined as “a variation in three phase power flow which occurs when the gen-

erator rotor angles are advancing or retarding to each other in response to changes in

load magnitude and direction, line switching, loss of generation, faults and other sys-

tem disturbances. [65]” The power swing is stable if the generator does not experience

pole slipping and unstable (out-of-step) if one or a group of generators experience pole

slipping. A simulation example of power swing observed at relay location is shown in

Fig. 9.
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(a) Voltage waveform in a stable power swing

(c) Current waveform in a stable power swing

(b) Voltage waveform in an unstable power swing

(d) Current waveform in an unstable power swing

Fig. 9. A simulation example of power swing observed at relay location

Distance relay for transmission line protection is designed to isolate faults occur-

ring within the desired zone only. It is not supposed to trip the line during the power

swing caused by the disturbances outside the protected zones. Even for the out-of-step

conditions, the preferred operation is to separate the system with an out-of-step trip-

ping (OST) protection at pre-selected network locations and blocking other distance

relays by out-of-step blocking (OSB) protection [65, 66].

Power swing, either stable or unstable, may have impacts on distance relay judg-

ment. During the emergency state, such kind of relay unintended operation may

cause more healthy lines removed from the system, resulting in the system becoming

even more stressful. The reason is given below.

For the two machine system shown in Fig. 7, for steady state, assume the two

sources have the terminal voltages as ES0 6 δ0 and ER0 6 0 respectively, where the phase

angle of the receiving end generator is always used as the angle reference. As for

the two-machine system, the power swing appears to a relay as an oscillation of
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magnitudes and the angles of two generators. At certain time during the power

swing, assume the voltages are ES 6 δ and ER 6 0. Then we have

İ =
ES 6 δ − ER 6 0

Z
(2.11)

where Z = XS + ZL +XR.

From Fig. 7, we have

V̇m = ES 6 δ − jXS · İ (2.12)

Therefore, the apparent impedance seen by the relay at bus m can be expressed

as

Zm =
V̇m

İ
= −jXS + jZ

ES 6 δ

ES 6 δ − ER
(2.13)

The trajectory of Zm with respect to ES and ER can be found in [65,66]. When

the angle difference δ becomes large enough, the trajectory of Zm will float into the

relay setting area and cause relay unintended operation.

Now, let us extend the idea to regular multi-machine systems. Still look at Fig. 7.

Consider the line in the middle as one of the transmission lines in the system with

the terminal voltages of Vm 6 θm and Vn 6 θn. The other parts outside the line represent

the rest of the system.

If there is no fault on the line, the impedance seen by relay at bus m is,

Zc =
˙Vm

˙Im
=

V̇m

(V̇m − V̇n)/ZL

= ZL





1

1 −
∣

∣

∣

Vn

Vm

∣

∣

∣

6 θnm



 (2.14)

According to (2.14), Zc is only related to the magnitude ratio (|Vn/Vm|) and angle

difference (θnm = θn − θm) of the bus voltages at the two ends. When power swing

occurs in the system, Vm 6 θm and Vn 6 θn will oscillate during the time. Assuming line

impedance ZL = 1 6 80o, we can draw the figure of Zc trajectories in the R-X phase
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with respect to voltage magnitude ratios and angle differences, as shown in the left

side of Fig. 10.

The conclusion is similar as in the two-machine system. If the power swing

causes θnm large enough, the impedance seen by relay will reach the zone settings and

relay will misoperate. The right side of Fig. 10 gives an example of typical actual

impedance trajectories during a stable power swing and an unstable power swing.

F. Cascading Blackouts

Although the power system is well planed and redundancy is provided, it is still

occasionally affected by large scale system blackouts. An overview of the major North

America blackouts is listed in Table II [1]. We can notice that each blackout has caused

a significant economical loss. With the advent of deregulation and restructuring,

power systems are increasingly being operated close to their limits. When exposed
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Fig. 10. Zc trajectory in the R-X diagram in different terminal conditions
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Table II. Comparison of several North America large scale blackouts

Date Location Lost of MW Affected People Collapse Time Outage Duration

Nov. 9, 1965 Northeast 20000 30 million 13 mins 13 hrs

July 13, 1977 New York City 6000 9 million 1 hr 26 hrs

Dec. 22, 1982 West Coast 12350 5 million

July 2-3, 1996 West Coast 11850 2 million 35 secs a few mins to several hrs

Aug. 10, 1996 West Coast 28000 7.5 million >6 mins a few mins to 9 hrs

June 25, 1998 Upper Midwest 950 152000 19 hrs

Aug. 14, 2003 Northeast 61800 50 million >1 hr up to 4 days

to weak connections, bad weather, unexpected events, relay system failures, human

errors, etc, the system may loose stability and experience catastrophic failures.

As one of the most contributing factors, the relay misoperations or unintended

operations are always found in the blackout reports [1,2]. In 1965 Northeast Blackout,

a backup protective relay misoperated to open one of five 230kV lines taking power

north from a generating plant in Ontario to the Toronto area. That was the direct

cause of the subsequent power swings resulting in a cascading outage that blacked

out much of the Northeast. In 1977 New York City Blackout, the external 138kV

ties to Consolidated Edison tripped in an overload situation and directly isolated the

Consolidated Edison System. In July 2-3, 1996 West Coast Blackout, a protective

relay on a parallel 345kV transmission line incorrectly detected the fault on the other

line, resulting in the tripping of both parallel lines, which triggered the cascading

events. In the recent August 14, 2003 Northeast Blackout, many distance relays

operated on the power swing, and overload/low voltage conditions rather than faults.

Although relay misbehavior was not the triggering cause, it was one of the major

factors in spreading the blackout.

The common factors regarding the relay system failures in the major blackouts

are the relay unintended operations due to the improper settings, inherent defects



35

in the principles and relay hidden failures [5]. Additionally, the inability of system

operators or coordinators to recognize the events either at the local level or at the

entire system level was a contributing factor as well. There are several NERC recom-

mendations regarding the relay system improvement to prevent cascading events [1],

as shown in Table III. Obviously, application of new techniques and new real time

tools is encouraged for better system operation.

G. Problems with the Traditional Relay

The problems with the traditional transmission line protective relay are summa-

rized here based on the review of its background in the previous sections. Those

problems are the ones we need to solve or avoid when developing new relay schemes.

• All traditional relay schemes depend on calculation of fundamental frequency

phasor of measurements as well as settings. As described in Chapter I, some

extreme fault and system operating conditions will cause unreliable phasor ex-

traction and improper settings, resulting in incorrect fault diagnosis of relay.

• The most commonly used distance relay can not accurately protect the entire

length of the line due to the measurement imperfections. The backup protection

scheme is a necessity.

• Distance relay scheme and settings must be adjusted to cope with unusual

Table III. Several NERC recommendations to prevent future blackouts

21 “Make more effective and wider use of system protection measures.”

22 “Evaluate and adopt better real-time tools for operators and reliability coordinators.”

28 “Require use of time-synchronized data recorders.”
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system configurations. Some specific network structures need very complicated

protection scheme and coordination.

• The system transient stability will be affected if distance relay has a slow or

improper response to the fault due to the inaccurate fault diagnosis. That will

cause power swing or even out-of-step in the system.

• The judgment of distance relay may be affected during the power swing and

out-of-step situation since they may appear as a fault for the distance relay in

some situation. In that case, the relay may issue an unintended command to

remove the healthy transmission line.

• The relay misoperation or unintended operation may trigger or spread a cas-

cading event that contributes to a large scale system blackout.

H. Summary

The purpose of the protective relaying is to minimize the effect of power sys-

tem faults by preserving service availability and minimizing equipment damage [67].

Different types of the transmission line relays have been explored in this chapter.

For the traditional principles, there is not a very sound method yet to balance the

dependability and security of the protection system. The advent of the digital relay

motivated development of new techniques to solve that problem. Distance relay is the

most common type for the transmission line protection. The principe is straightfor-

ward while it still has some inherent drawbacks. New fault diagnosis techniques for

transmission line protection are needed and new real time event analysis tool based

on those techniques are highly desired. The remaining chapters will focus on the

improvement of existing protection system based on the new techniques.
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CHAPTER III

FAULT DIAGNOSIS USING NEURAL NETWORK∗

A. Introduction

The traditional transmission line protection schemes are mostly based on the

calculation of certain AC quantities and their comparison to pre-defined thresholds.

This kind of method relies on a “hard” criterion. The settings require short circuit

analysis to cover worst case fault conditions and coordinate the selectivity of each relay

protection zone. The threshold based algorithm needs theoretical understanding and

verification through the use of elaborate analysis tools.

The above issues can be improved by applying a “soft” criterion based on artificial

intelligence techniques. Neural network is one of such techniques that has been studied

in the power system area for quite a while [68–71]. Neural network based fault

diagnosis algorithms usually use the time-domain voltage and current signals directly

as patterns instead of calculated phasors. They compare the input voltage and current

signals with well-trained prototypes instead of predetermined settings. Hence, the

major problems in traditional relay principles described in Chapter I.A.1, which is

about phasor extraction and setting coordination, are not an issue in neural network

based algorithms. As mentioned in Chapter II.C.4, traditional protection schemes

need to be properly set when applied to the specific system structures. In neural

network based approaches, this is not an issue since they can be trained through the

simulated waveforms to adapt to different kinds of system configurations.

To be used as an independent transmission line protection scheme, every tech-

∗Part of the material in this chapter is reprinted from “A real time fault analysis
tool for monitoring operation of transmission line protective relay” by Nan Zhang
and Mladen Kezunovic, Electric Power Systems Research, (Accepted, In Press),
doi:10.1016/j.epsr.2006.03.015 c©2006 Elsevier B.V., with permission from Elsevier.
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nique must take into account the detailed application issues. Some of the following

issues are common for all kinds of neural network based algorithms. Those issues will

be discussed in this chapter in detail.

• The transmission line fault can occur anywhere in the system with different com-

bination of fault parameters and system operating conditions. The argument

that neural network based algorithm has better performance than conventional

relay is based on an assumption that the neural network has broader view of

system contingencies through a comprehensive learning and training process.

The neural network based algorithms thus face the issue of dealing with a large

set of training data. How to train the network efficiently when taking into

account the large number of system-wide scenarios is critical.

• The neural network based algorithm should be immune to the impact of non-

fault situations such as overload and power swing. If the input pattern uses

raw voltage and current samples, the waveforms during the overload and power

swing may appear as low voltage or high current, which may be confused with

fault waveforms, so neural network needs to be trained to differentiate such

cases.

• Most of the neural network based algorithms implement the training using fixed

post-fault data window. An assumption is made that one can identify an exact

fault inception point, otherwise the real pattern is quite different from those

learned and the performance of neural network will be degraded. In realistic

situation, the inception point needs to be well identified to ensure the neural

network based algorithm is tuned correctly.

Along with a background of neural network, this chapter will review a previously

developed fuzzy Adaptive Resonance Theory (ART) neural network algorithm used
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for transmission line fault classification [41, 72]. The previous contribution of the

proposed approach was extensively focused on the tune-up of the training and testing

mechanism to achieve an effective pattern recognition scheme [41,72]. The application

issues mentioned above were not fully addressed as in other neural network based

approaches. In this chapter, an enhancement of the prototype fuzzy ART neural

network algorithm is provided to address the mentioned application issues, so that

it will be more feasible to be as a stand alone distance relay with full fault diagnosis

capability.

In Section B, a brief background of neural network and its application in trans-

mission line fault diagnosis are reviewed. Section C provides the background of fuzzy

ART neural network algorithm, which was developed earlier and will be used as

the major technique in this chapter and following chapters. The application issues

identified in the previous neural network implementation as limitations are discussed

in Section D. The solution to solve the problems and improve performance of the

previous algorithm is provided in Section E.

B. Neural Network and Its Application in Transmission Line Fault Diagnosis

Neural network (NN) or artificial neural network (ANN) is introduced to solve

the complex nonlinear problems which the conventional analytical methods cannot

easily solve. By resembling the human brain, the neural network works as a paral-

lel distributed processor made up of simple processing units (neurons), which have

a natural capability for storing experiential knowledge and making it available for

generalization [73]. The “knowledge” of the neural network is formed by a learning

process and is stored by the interneuron connection strengths, or synaptic weights.

A neuron is the most fundamental information-processing unit of a neural net-



40

work. Fig. 11 shows the structure of a single neuron. The three basic elements of

a neuron are synaptic weights, summing junction, and the activation function. The

input-output mapping of a neuron can be expressed by following two equations:

uk =
n

∑

j=1

wkjxj (3.1)

and

yk = ϕ(uk + bk) (3.2)

The use of neural network offers several benefits over the traditional analytical

methods. The typical benefits are:

• Generalizability: Through its powerful parallel distributed structure and the

learning capability, a neural network can produce reasonable outputs for the

inputs not participated in the learning process. It can handle imperfect or

incomplete data, and has the potential to be fault tolerant. That is very useful

when analyzing the practical noisy data.

• Nonlinearity: The neural network could have nonlinear structure. This is very
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Fig. 11. A basic neuron model
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useful for representing very complex large-scale systems.

• Adaptivity: The neural network has a natural capability to adapt its knowledge

to changes in the applied environment. It can be retained to deal with the

changes even in a nonstationary environment. That makes it a useful tool in

adaptive pattern recognition, adaptive signal processing and adaptive control.

• VLSI Implementability: The massive parallel structure of neural network make

it well suited for implementation using very-large-scale-integrated (VLSI) tech-

nology to achieve fast computation tasks.

From the pioneering work of neural networks by McCulloch and Pitts in 1943

[74], the theoretical and practical work of neural network has been rapidly growing

until today. It has been used in such diverse applications as modeling, time series

analysis, pattern recognition, signal processing, and control. Typical fields where

neural networks are used are: aerospace, automotive, banking, electronics, games,

medical, oil and gas, robotics, speech, telecommunications, vision, etc. Regarding

the power system, it has been successfully applied in addressing the large set of

problems such as load forecasting, security assessment, control, fault diagnosis, system

identification, operation, planning, protection, alarm processing, etc [68]. As to the

concern of this dissertation, the area of transmission line fault diagnosis also finds the

neural network a useful tool in fault detection and classification [29,31–33,41,75–83],

fault direction discrimination [30], fault location [31, 84–89], fault analysis [90–92],

autoreclosing [28, 93], high impedance fault detection [94–96], adaptive relaying [97,

98], etc.

Learning process is the most important step when applying neural networks.

The learning techniques for most neural networks can be classified into two broad

categories: supervised learning (or learning with a teacher) and unsupervised learning
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(or learning without a teacher). In supervised learning, each input signal is associated

with the labeled output. The task is the input-output mapping by adjusting the

synaptic weights to minimize the overall error between the entire output set and their

corresponding input data set. In unsupervised learning, the categories of the outputs

are not known in advance. The network is self-organized by some sort of clustering

techniques to identify the mutual similarity of the input patterns. The task is to

adjust the network weights until the similar inputs can produce similar outputs.

The typical supervised and unsupervised neural network techniques are shown

in Fig. 12. Single Layer Perceptron (SLP) is the first model of supervised learning

proposed by Rosenblatt in 1958 [99]. Due to its simplicity, the application of this

model is limited. The most commonly used supervised neural networks is Multilayer

Perceptron (MLP) [100]. It has a feedforward structure as shown in Fig. 13. By

introducing one or more hidden layers, it can be used for learning complex nonlinear

relationships between input and output data. In 1986, Rumelhart and McClelland

introduced the back-propagation (BP) algorithm for training MLP networks [101],

Single Layer Perceptron

Multilayer Perceptron

Radial-Basis Function

Support Vector Machines

Principal Components Analysis

Self-Organized Maps

Learning Vector Quantization

Adaptive Resonance Theory

Fig. 12. The types of supervised and unsupervised neural network techniques
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Fig. 13. The structure of Multilayer Perceptron

making MLP more popular in practical applications. Radial-basis function network

is invented in 1988 [102]. The locally tuned response characteristics produce faster

training than BP algorithm. Another powerful supervised learning network, support

vector machine (SVM) was introduced in 1990s by Vapnik and his colleagues [103].

Unsupervised learning networks usually use the competitive learning rule, which is a

clustering technique to group the data into clusters so that the patterns in a cluster

have similarity with each other. The typical techniques including primary component

analysis (PCA) [73], self-organized map (SOM) [104], learning vector quantization

(LVQ) [105], and adaptive resonance theory (ART) [106–109]. ART networks have a

unique property to solve the problem of unstable learning. It can adjust the number

of clusters during the training and adapt itself to new inputs without affecting the

results of the previous training.
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Except for the simplest SLP neural network, the mentioned neural network tech-

niques have all been used in the transmission line fault diagnosis. MLP neural net-

works with BP algorithm have been dominantly used [28–31,77,78,81,84–87,90,92–94,

97,98]. Since BP is the basis of the modern neural network algorithm, it can be used as

a good start to solve the fault diagnosis problem. Recently, the following problems of

those kinds of neural network algorithms have been recognized in the literature: time

consuming training, uncertainty in selecting the number of hidden neurons, selection

of the proper learning rate, and convergence issues. New approaches using other type

of neural networks has been reported, including RBF [82,91], SVM [88,89], SOM [79],

LVQ [33], PCA [95, 96] and ART [41, 75, 76, 80, 83]. Supervised learning techniques

have similar issues in the MLP networks. Unsupervised techniques, because of the

self-organized property, can solve most of the mentioned problems. But this property

needs to be combined with other classifier to implement the pattern recognition and

classification tasks.

Neural network based on combined unsupervised/supervised training scheme is

proved to be more capable of handling large data sets of random fault scenarios than

solely using supervised training schemes [41,79]. In this and next chapters, a specially

designed, fuzzy ART neural network algorithm, is used to deal with transmission line

fault diagnosis issues in traditional line protection scheme and boundary protection

scheme.

C. Background of Fuzzy ART Neural Network Algorithm

1. Overall Scheme

The fuzzy ART neural network algorithm for fault classification was described

in its original form in [75, 76]. Further enhancements are introduced regarding: a)
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Preprocessing of input data; b) Refining supervised training; c) Applying fuzzy deci-

sion rule; and d) Taking into account complex system conditions. The latest version

of the algorithm is described in [41, 72].

The block diagram of fuzzy ART neural network algorithm used for fault diagno-

sis is demonstrated in Fig. 14. The two major components of the algorithm are ART

neural network training and fuzzy K-NN classification. The theoretical background of

these two approaches can be found in [107,110]. By using those techniques, the fault

detection and classification becomes a pattern recognition approach instead of phasor

computation and comparison. Without calculating the phasor, the voltage and cur-

rent signals from the local measurement are formed as patterns using time-domain

data samples, which can retain the original information in the waveforms. Without

need to specify settings, the setting coordination work can be avoided. Thousands

of patterns obtained from power system simulation or substation database of field

recordings are used to train the neural network offline and then the pattern proto-

types are used to detect the real faults online by using the fuzzy K-nearest neighbor
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ART Neural 
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Fig. 14. Fuzzy ART neural network algorithm for fault diagnosis
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(K-NN) classifier. The ART neural network is also capable of online training aimed

at updating the pattern prototypes. Using the prototypes of trained clusters, fuzzy

K-NN classifier can realize online analysis of unknown patterns for fault detection and

classification. The fuzzy K-NN classifier takes into account both the effect of weighted

distances and the size of neighboring clusters for distinguishing new patterns. From

the simulation results in [41], it is shown that fuzzy K-NN classifier has better perfor-

mance than a common K-NN classifier. A graphic view of the status of input patterns

at each step during training and testing process is shown in Fig. 15 [41].

2. Training

The procedures of training and testing the fuzzy ART neural network, which were

developed in [41], are reviewed in this and next sections using graphic demonstrations.

The neural network training process is shown in Fig. 16. Unsupervised learning is

Original Training Patterns Final Abstraction Level

Initial Abstraction Level

Unsupervised

& Supervised 

Learning

Fuzzyfication

Defuzzification

Generalization

Intermediate Abstraction Level

Fig. 15. Entire procedure of training and testing
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the first stage to process the initial data set, containing all the patterns. During this

stage, the category of each pattern is not presented in advance. The input patterns

are grouped by themselves according to some sort of similarity. Neither the initial

guess of the number of cluster nor their position is specified in advance.

Unsupervised learning consists of two steps: initialization and stabilization. In

initialization phase, the entire pattern set is presented only once to establish initial

cluster structure based on similarity between patterns. As shown in Fig. 17, the first

cluster is formed with only the first input pattern assigned. From the second pat-

tern being presented, new clusters are formed incrementally if the shortest Euclidean

distance dp between a new pattern and all existing prototypes is larger than the pre-

determined threshold, or radius ρ. Otherwise the pattern is allocated to the “nearest”

existing cluster, which will then update its center and radius with the new pattern.

The initialization stage of the unsupervised learning will follow one of the routes

shown in Fig. 17 until all of the n input patterns are presented. By the end of this

phase, the output is an initial set of unstable clusters, since the clusters keep chang-

ing their positions while new pattern comes in. The past patterns are not allowed to

change their clusters during this phase. In stabilization phase, the entire pattern set

is being presented numerous times and the process is similar to that in the initializa-

tion phase. By measuring the Euclidean distance to each existing cluster, a pattern

Unsupervised Learning
Supervised

Learning

Reduce Threshold

All

Homogeneous

Clusters?

Start Initialization Stabilization
Cluster

Extraction
Stop

N

Y

(Pattern Set 

Presented Once)

(Pattern Set 

Presented k times)

Fig. 16. Flowchart of neural network training
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I

I
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Fig. 17. Graphic demonstration of initialization stage

either remains unchanged from previous cluster or will be allocated to a new “near-

est” cluster. The iterations will not end until the initial unstable cluster structure

becomes stable and no patterns change clusters after single iteration. Unsupervised

learning produces a set of stable clusters, including homogenous clusters containing

patterns from same category, and non-homogenous clusters containing patterns from

other categories.

In supervised learning process, as demonstrated in Fig. 18, class label is associ-

ated with each input pattern allowing separation of homogenous and non-homogenous

clusters produced in unsupervised learning. For homogeneous clusters, their position,

size, and category are stored to the memory and the patterns from those clusters

are removed from initial training pattern set. The remaining patterns, presented in

non-homogenous clusters are left for new learning iterations. When all clusters are
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Fig. 18. Graphic demonstration of supervised learning stage

examined, the new data set is sent to next unsupervised/supervised learning itera-

tions with reduced threshold parameter ρ, as shown in Fig. 16. The entire learning

process is completed when all the patterns are grouped into homogeneous clusters

with predefined class labels.

3. Testing

The prototypes (clusters) are obtained during the training process to represent

the characteristics of the input pattern. When classifying the unknown pattern that

is not presented in the training process, we will face two situations. When the new

pattern falls into one of the trained clusters, it is easy to assign the category of the

cluster to the unknown pattern. While when the new pattern falls into the unclaimed

space, the fuzzy K-NN algorithm is used to classify the unknown patterns according to

their similarity to the neighboring clusters, as shown in Fig. 19 [41]. The membership
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Fig. 19. Graphic demonstration of fuzzy K-NN algorithm

degree of a new pattern xi belonging to a category c is calculated by

µc(xi) =

∑K
k=1 [µc(wk)/dk(xi)]
∑K

k=1[ρk/dk(xi)]
(3.3)

where K is the predefined number of nearest neighbors. Compared with the

regular K-NN classifier, fuzzy K-NN classifier takes into account both the effect of

weighted distances and cluster size of the neighboring clusters to the tested new

pattern. In (3.3), distance dk(xi) is usually selected to be the weighted Euclidean

distance between pattern xi and prototype wk

dk(xi) = ‖xi − wk‖
2

m−1 (3.4)

where parameter m is fuzzyfication variable and determines how heavily the

distance is weighted when calculating each neighbor’s contribution to the pattern

class membership.

In (3.3), µc(wk) is the membership degree of cluster k belonging to category c.
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In fuzzy K-NN algorithm, µc(wk) is defined to reflect the relative size of the cluster k

µc(wk) =















ρk if cluster k belongs to category c

0 Otherwise

(3.5)

where ρk is a membership degree value that is proportional to the radius of cluster

k.

When the membership degree of pattern xi belonging to each category is calcu-

lated by (3.3), the most representative category is assigned to the pattern

g(xi) = maxc[µc(xi)] (3.6)

D. Application Issues

The previous research contribution to fuzzy ART neural network algorithm [41]

was focused on the inside tune-up of the algorithm to achieve an effective training

and testing mechanism. Its application for classifying transmission line fault is also

reported [41, 72].

The previous implementation of the fuzzy ART neural network algorithms uses

one neural network to implement both fault detection and classification tasks [41,72].

Although the ART algorithm has better solutions to handle the convergence issue

when dealing with the large data set, it is still time-consuming and inefficient when

considering thousands of system-wide fault scenarios. The previous approach does

not require feature extraction. The input pattern is directly arranged using raw

samples of three-phase voltage and current waveforms. Although that simplifies the

implementation, it may fail to distinguish the snapshot of a fault from that of the

power swing or overload situation. As shown in Fig. 9, the power swing can present

low voltage and high current at certain time, which is very similar to the waveform
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observed during a fault. The approach also can not differentiate two-phase fault from

two-phase-to-ground fault very well. Fig. 20 shows that the two fault scenarios present

similar waveforms when other fault parameters are identical. At last, the previous

approach is lacking a method to locate the fault inception point, which may limit it

for the on line use. A new fault detection and classification scheme is proposed below

to solve the mentioned issues.

E. New Fault Detection and Classification Scheme

1. Use of Multiple Fuzzy ART Networks

To deal with the system-wide disturbances effectively, the task of fault detection

and classification is improved by defining and training two neural networks. The

scheme is demonstrated using a system with specific configuration shown in Fig. 21.

Fig. 20. Waveform comparison for an A-B-G fault and A-B fault
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To protect the line of interest in Fig. 21, the first neural network (NN1) makes

a crude differentiation of the disturbances occurring within and around the line of

interest (the highlighted area) from those occurring outside that area. The training

of NN1 will take into account as many faults as possible throughout the entire system

that may affect the desired fault detection and classification. The training process

is not significantly involved since there are only two outputs, “fault” and “no fault”.

The second neural network (NN2) refines the classification within the highlighted area.

It is well trained by a comprehensive scenario set including many fault parameters

and system operating conditions. More scenarios are obtained around the boundaries

of the protection zone to achieve more accurate conclusions. The output of NN2 is

the combination of all 11 fault types (including “normal”) and 2 fault zones. The

final conclusion is drawn by taking into account the outputs from NN1 and NN2

simultaneously. The advantage of coordinating the two neural networks is distributing

the large input set into different neural networks to reduce the burden of training and

testing. NN1 has large number of inputs but fewer outputs, providing an initial

crude conclusion where the faults may be located. NN2 takes more patterns from

limited areas to refine the classification. By coordinating the two neural networks,

the training process achieves great efficiency when dealing with system-wide events

Line of Interest

Fig. 21. A specific system configuration
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and hence the online performance will be greatly improved.

2. Feature Extraction

The pattern arrangement for the neural networks is shown in Fig. 22. The pattern

is arranged using the post-fault samples of three phase voltage and current signals.

Typically, the data window length in each phase is one cycle or half a cycle. The

zero sequence values of voltage 3v0 = va + vb + vc and current 3i0 = ia + ib + ic are

also included to precisely detect ground faults. In this case, all fault types can be

differentiated very well.

For each element as shown in Fig. 22, we define:

u(k) = u(k) + 2u(k − N

2
) + u(k −N) (3.7)

where u represents the signals of related voltage or current phases, k is the present

sampling point, and N is the number of sampling points in a cycle.

Such method of pattern arrangement uses only the fault generated superimposed

voltage and current waveforms as the major feature. If there is no significant variation

of the original waveforms during one cycle, which happens in most cases in overload

and power swing conditions, the pattern will appear as very low value close to the

Va Vb Vc IcIa Ib3V0 3I0

Fig. 22. Pattern arrangement for proposed neural network algorithm
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normal system situations. The effect is shown in Fig. 23. From Fig. 23 (a) and (b),

we can see that the preprocessed signal during the power swing is very close to zero.

From Fig. 23 (c) and (d), we can see that the prefault steady state signal is eliminated

after preprocessing while the fault signal is clearly presented after preprocessing. Such

a preprocessing step makes the appearance of the power swing close to the normal

situation, and not the fault situation. The input pattern is finally normalized into

the space of [−1, 1] before used for training and testing.

Equation (3.7) can be modified as the criterion to locate the fault inception point:

∣

∣

∣

∣

i(k) + 2i(k − N

2
) + i(k −N)

∣

∣

∣

∣

≥ T (3.8)

where i is the current sample in any of the three phases, threshold T is set to

take into account the model and measurement imperfection.

From Fig. 23 (d), we can see that the fault inception point can easily be located

using this approach. If (3.8) is satisfied in any of the three phases for a successive

cycle, the first sample point is considered as the inception time to trigger the neural

(a) Power swing: original signal

(b) Power swing: processed signal

(c) Fault: original signal

(d) Fault: processed signal

Fault inception point

Fig. 23. Comparison of original signals and preprocessed signals
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network based fault diagnosis.

3. Implementation of the New Scheme

The proposed scheme uses one-end data to perform transmission line fault de-

tection and classification. The block diagram is shown in Fig. 24. It takes the same

input and output as distance relay and can be used as independent protection scheme.

The training and testing process of the two neural networks are the same as in the

previously mentioned scheme shown in Fig. 14.

4. Advantages of Proposed Fault Diagnosis Scheme

The advantages of the proposed fault diagnosis scheme are summarized as follows:

• The applied fuzzy ART neural network uses time-domain data and elaborate

training to get away from traditional phasor and relay setting concept.
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Fig. 24. The block diagram of proposed fault diagnosis scheme
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• Task allocation of the two neural networks provides an effective approach in

handling the large input data set.

• Feature extraction method helps to precisely locate the fault inception point

and eliminates the impact from power swing and pre-fault loading condition.

F. Summary

The background of neural network is reviewed in this chapter. It was proven to be

a useful tool to solve the complex nonlinear problems which are the obstacles for the

traditional methods. The theory of the neural network itself is still being improved.

Its application in transmission line protection has been extensively studied. The

idea of the previous research of the fuzzy ART neural network algorithm is explored

and the application limits in handling the large input data set, removing the impact

from power swing and overload, and locating the fault inception point are discussed.

The newly proposed scheme uses coordinated neural networks and enhanced feature

extraction approach to solve the mentioned problems. The performance study of the

proposed scheme will be reported in Chapter X. ART based neural network has a

better scheme to train the large data set. Since this type of neural network is a

pattern recognition technique, it can not be used as a fault location scheme since the

fault location is a continuous variable which will produce infinite categories in the

sense of pattern recognition. In this sense, the feed-forward neural network which is

good at input-output mapping could be one of the choices for fault location problems.

Some solutions can be found in [31, 84–89].
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CHAPTER IV

BOUNDARY PROTECTION USING NEURAL NETWORK AND WAVELET

TRANSFORM∗

A. Introduction

A perfect transmission line protection scheme is expected to differentiate the in-

ternal faults from external using one-end measurements only. That can not be realized

by the traditional non-unit protection schemes, which are mostly based on the funda-

mental frequency components of fault signals. They can not protect the entire length

of the primary line because they can not differentiate the internal faults from external

occurring around the multi-zone boundaries. As introduced in Chapter II, time-step

backup protection is therefore introduced as a trade-off scheme for protecting the

entire length of the transmission line. As mentioned earlier, unintended operation

of backup protection is the most troublesome factor in the power system blackouts

because the extended zone settings in backup protection may be too close to the relay

apparent impedance during power swing and overload in some extreme conditions.

Recently, new techniques using high frequency components of the fault generated

transient signals were studied and some useful solutions were obtained [34,39,40,111].

An approach called “boundary protection” for solving the disadvantages of conven-

tional non-unit protection schemes was proposed [39,112]. This approach introduces

a possibility of precisely differentiating the internal faults from external using mea-

surements from one end only. In this case, the relay at one end can protect the entire

line length with no intentional time delay.

∗Part of the material in this chapter is reprinted from “Transmission line bound-
ary protection using wavelet transform and neural network” by Nan Zhang and
Mladen Kezunovic, IEEE Trans. Power Delivery, (Accepted, In Press), paper no.
TPWRD.00747.2005 c©2006 IEEE, with permission from IEEE.
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This chapter proposes a new approach based on wavelet transform and the previ-

ously introduced fuzzy ART neural network to realize accurate boundary protection

and fault type classification using one end measurements from a transmission line.

The new method retains both low frequency and high frequency components of the

fault signal to achieve high reliability and selectivity of the protection scheme. It

inherits many advantages from different techniques it utilizes. The proposed ap-

proach in this chapter is an extension of neural network based fault diagnosis scheme

introduced in the last chapter. If this approach can be realized with the available

hardware, one can expect to use one-end measurements of a transmission line to re-

alize accurate unit protection scheme. This kind of scheme is very attractive both in

theoretical analysis and practical deployment.

In Section B, the background of boundary protection is reviewed. Brief intro-

duction of wavelet transform is then provided in Section C. Section D describes the

entire design procedure of the new protection scheme.

B. Background of Boundary Protection

The principle of boundary protection is studied in [39]. The previous work is

explored in this section to provide background of the new approach introduced in

this dissertation. The system shown in Fig. 25 is a typical multi-line system. We

assume the relay is installed at the bus 2 to protect the line 2 − 3 shown in the

figure. A fault on the lines will generate wideband transient voltage and current

signals. The signals will travel in both directions with reflections and refractions at

the discontinuity points, which are usually the busbars and faults. The busbar of the

power system is always connected to many power system apparatus and they usually

represent the capacitance at high frequency. This effect is shown in Fig. 25. For an
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F1 F2F3F4

I1 I2

I0

Primary LineBackward Line Forward Line1 2 3 4

Fig. 25. An example of multi-line system

external fault F2 close to the bus 3, the high frequency portion of the fault current

signal I2 will be shunted to earth (in I0) significantly due to the busbar capacitance.

The higher the frequency, the more significant portion of the current signal will be

shunted. From the viewpoint of the relay, the magnitude of high frequency portion

of the fault current signal I1 is reduced. In contrast, for the internal fault F1 close

to the bus 3, the fault current of the entire frequency band can be seen by the relay.

That means, if other fault conditions (fault type, fault resistance, fault angle) are

identical, we can differentiate the internal fault F1 from the external fault F2 by

comparing the high frequency portions of their signals. Similarly, the same method

can be used to differentiate the faults at F3 and F4. Using the voltage signals, we

can still differentiate faults at F1 and F2 but can not differentiate faults at F3 and

F4 because the voltage measurements of the relay are obtained from bus 2.

The feature differences of the faults on different line sections seen by the relay

at bus 2 in Fig. 25 can be summarized as follows:

• For faults on the primary line, the energy of high frequency portion of the

voltage and current signals will be seen as “big” values.

• For faults on the backward line, the energy of high frequency portion of the

voltage signals will be seen as “big” values while the energy of high frequency

portion of the current signals will be seen as “small” values.
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• For faults on the forward line, the energy of high frequency portion of the voltage

and current signals will be seen as “small” values.

It should be emphasized that the above statements are based on the assumption

that all other fault parameters are the same and the “big” and “small” values are

indicating relative numbers. The absolute values are dependent on fault type, fault

resistance, fault angle, etc.

In [39], the author uses a specially designed multi-channel filter to extract the

transient current signals for two signal outputs If1, If2 with center frequency at

80kHz and 1kHz respectively. Then the ratio of the energy spectrum for If1, If2 is

calculated and compared to a threshold to find out whether the fault is internal or

external. The advantage of this method is justified by the result from a performance

study.

Still some issues are remaining in this method: a) The direction of the external

faults can not be distinguished since only the current signal is used. The method

also has no phase selection function available; b) The theoretical basis for selection

of the center frequency of the extracted features and selection of the thresholds is

not apparent; c) The reliability of the method is unknown since only high frequency

signal is used. It may be affected by the disturbance from noise, switching, lightning,

etc; d) There are no extensive studies provided for the performance evaluation under

various fault conditions. As mentioned earlier, the boundary condition are highly

dependent on fault type, fault resistance, fault angle, etc.

This chapter provides a new boundary protection scheme aimed at solving those

issues. First of all, the voltage and current signal will both be used; this can provide

more information about the direction of the fault point. The new scheme uses wavelet

transform as the feature extraction tool thus there is no need to design extra filters.
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Wavelet transform has a strong capability of extracting the signal component under

different frequency bands while retaining the time domain information. Secondly, the

extracted features will be handled using the fuzzy ART neural network introduced

in last chapter. With its strong capability of generalization and training mechanism,

it can be used as an alternative solution when theoretical basis for dealing with

the fault generated high frequency signal components is not well defined. The fault

classification scheme mentioned in last chapter can also be further improved if the

faulted line section is indicated in advance. Only the scenarios for the internal faults

are considered. The inputs for training the neural network are reduced significantly

and the accuracy of classification will be improved. Finally, the new scheme will use

both the low and high frequency components of the fault signal to eliminate impact

from non-fault disturbances. The reliability and robustness of the method will be

verified by an extensive study for various kinds of faults.

C. Wavelet Transform

Wavelet analysis is a relatively new signal processing tool and is applied recently

by many researchers in power systems due to its strong capability of time and fre-

quency domain analysis [113, 114]. The two areas with most applications are power

quality analysis and power system protection [115–117].

The definition of continuous wavelet transform (CWT) for a given signal x(t)

with respect to a mother wavelet ψ(t) is:

CWT (a, b) =
1√
a

∫ ∞

−∞
x(t)ψ

(

t− b

a

)

dt (4.1)

where a is the scale factor and b is the translation factor.

For CWT, t, a, b are all continuous. Unlike Fourier transform, the wavelet
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transform requires selection of a mother wavelet for different applications. One of

the most popular mother wavelets for power system transient analysis found in the

literature is Daubechies’s wavelet family. In the new scheme, the db5 wavelet is

selected as the mother wavelet for detecting the short duration, fast decaying fault

generated transient signals.

The application of wavelet transform in engineering areas usually requires dis-

crete wavelet transform (DWT), which implies the discrete form of t, a, b in (4.1).

The representation of DWT can be written as:

DWT (m,n) =
1√
a0

m

∑

k

x(k)ψ

(

k − nb0a
m
0

am
0

)

(4.2)

where original a and b parameters in (4.1) are changed to be the functions of

integers m, n. k is an integer variable and it refers to a sample number in an input

signal.

A very useful implementation of DWT, called multi-resolution analysis, is demon-

strated in Fig. 26. The original sampled signal x(n) is passed through a highpass filter

h(n) and a lowpass filter l(n). Then the outputs from both filters are decimated by 2

to obtain the detail coefficients and the approximation coefficients at level 1 (D1 and

A1). The approximation coefficients are then sent to the second stage to repeat the

procedure. Finally, the signal is decomposed at the expected level. In the case shown

h(n)

l(n)

x(n)
h(n)

l(n)

h(n)

l(n)

Detail 1 (D1)

Detail 2 (D2)

Detail 3 (D3)

Approximation 3 

(A3)

Fig. 26. The idea of wavelet multi-resolution analysis
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in Fig. 26, if the original sampling frequency is F , the signal information captured

by D1 is between F/4 and F/2 of the frequency band. D2 captures the information

between F/8 and F/4. D3 captures the information between F/16 and F/8, and A3

retains the rest of the information of original signal between 0 and F/16. By such

means, we can easily extract useful information from the original signal into differ-

ent frequency bands and at the same time the information is matched to the related

time period. An example, given in Fig. 27, illustrates the procedure. The original

signal is one cycle of a post-fault current signal, as shown in Fig. 27 (a). We use db5

wavelet to make a 5 level decomposition. The reconstructed versions of each detail

and the approximation are shown in Fig. 27 (b). The information of original signal is

clearly represented at each frequency band. The original signal can be reconstructed

by adding up those wavelet signals at the same sample point. The wavelet toolbox

in MATLAB provides a lot of useful techniques for wavelet analysis [118].

(a) Original Signal

(b) Decomposed Signal

Fig. 27. Wavelet multi-resolution analysis for a fault signal
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D. Design of the New Protection Scheme

1. Overview of the Scheme

The framework of the entire protection scheme is shown in Fig. 28. The goal

is to implement boundary protection and at the same time provide the fault type

classification using one end transmission line data. We assume that standard design

of an intelligent electronic device (IED) can be adjusted to meet the requirement of

the proposed scheme.

The three-phase secondary voltage and current signals shown in Fig. 28 are ob-

tained at the sampling rate of 200kHz. The zero-sequence voltage and current are

obtained by adding up the phase values. Through the signal preprocessing stage,

the pre-fault steady state component is removed from each signal. Then the wavelet

multi-resolution analysis is used for decomposing each signal into low frequency ap-

proximation and high frequency details. The information is used for extracting the
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features and forming the patterns for neural network algorithm. Two neural networks

are trained to handle the boundary protection and fault classification respectively.

The final conclusion can be made by simultaneously combining the conclusions of the

two neural networks and then appropriate actions should be issued by the relay. A

pick-up unit is introduced in front of the neural network algorithms as a threshold

to screen the non-fault disturbances in low frequency band (such as overload, power

swing, etc.) and in high frequency band (such as noise, switching, lightning, etc.).

2. Feature Extraction

The obtained voltage and current samples are preprocessed using (3.7) in last

chapter to reduce the impact from the pre-fault load and non-fault disturbances such

as overload and power swing. Only the post-fault superimposed voltage and current

waveforms are presented in the selected features.

The features used as inputs of the neural network are extracted from samples in

a half cycle sliding window. At every time step after preprocessing stage, the eight-

channel signals are sent to the wavelet transform stage. Using the scheme shown in

Fig. 26, the signals are decomposed using db5 wavelet to level 5. Since the sampling

rate is 200kHz, the obtained coefficients A5, D5, D4, D3, D2 and D1 match the

frequency band of 0−3.125kHz, 3.125−6.25kHz, 6.25−12.5kHz, 12.5−25kHz, 25−

50kHz, 50− 100kHz respectively. Those values are used for feature extraction in the

pick-up unit and in the neural networks.

For the pick-up unit, the purpose is to avoid the non-fault disturbances. The

method is flexible and easy to realize. For instance, we can compare the energy

spectrum of the approximation A5 and detail D3 of three-phase currents with the

pre-defined thresholds, as shown in (4.3). If the condition is met in any phase, the
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boundary detection and fault classification are activated.

[E (A5) > Threshold1] & [E (D3) > Threshold2] (4.3)

where

E (A5) =
n

∑

k=1

I2
p−app−A5(k)△t; p = a, b, c

E (D3) =

n
∑

k=1

I2
p−det−D3(k)△t; p = a, b, c

Ip−app−A5 and Ip−det−D3 represent the wavelet signals at A5 and D3 respectively,

as shown in Fig. 27.

△t is the time step for the samples. n is the number of total samples in a data

window.

The pattern arranged for boundary protection is shown in Fig. 29 (a). For that

pattern, there are four features obtained for one of the phase voltages and currents.

Therefore the pattern dimension is 24×1. The four features in each phase are defined

as follows:

x1 = log [E (D1) /E (D5)]

x2 = log [E (D1) /E (D4)]

x3 = log [E (D2) /E (D5)]

x4 = log [E (D2) /E (D4)]

(4.4)

where E(Dx) is the energy spectrum at detail x and the definition is the same

as in (4.3).

The reason for this arrangement is explained next. As mentioned in Section

B, the main feature differences between the external faults and internal faults are

preserved in their high frequency components. The higher is the frequency, the more
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Fig. 29. Pattern arrangement for two neural networks

prominent the feature difference. Therefore, the energy spectra of higher frequency

details are taken as the main features. The absolute values of the energy spectra of

higher frequency details are strongly dependent on different fault type, fault resistance

and fault angles, etc. To reduce that influence, the energy spectra of the lower

frequency details are taken as the reference. If only one high frequency detail and

one low frequency detail are used, it is easy to lose the robustness and the redundant

information obtained by wavelet transform is wasted. Therefore, as shown in (4.4), we

take the two highest frequency details as main features and the two lowest frequency

details as references.

The pattern arranged for fault classification is shown in Fig. 29 (b). For that

pattern, there are 16 features per phase obtained in one cycle of voltage or current

signals. The zero-sequence voltage and current are also taken into account for in-

dicating whether the ground is involved during the fault. The entire input pattern

dimension is 128 × 1. The features are the samples decimated through the approxi-
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mation coefficients:

(y1, . . . , y16) = Decimated[Coef(A5)] (4.5)

3. Neural Network Training and Testing

The final stage of this approach is to train and test the two neural networks using

simulation and field data. Thousands of fault scenarios could be generated taking

into account the different fault types, locations, resistances and inception angles. For

a single scenario, two corresponding patterns as shown in Fig. 29 are formed for the

two neural networks respectively. Both of the networks form their pattern prototypes

(clusters) during the training. The neural networks are then tested by another data

set. If the performance is acceptable, it can be used online.

It should be noted that the patterns shown in Fig. 29 (a) and Fig. 29 (b) need

to be normalized into the range of [−1, 1] before the training and testing process. A

general equation is defined as:

p = 2 × [p−min(p)]/[max(p) −min(p)] − 1 (4.6)

where min(p) and max(p) are the minimum and maximum values of the entire

input space of feature p.

For neural network #1, the min(p) and max(p) must be found individually for

each feature, and they are defined as:

min(xi) = min[x1i, . . . , xki];

max(xi) = max[x1i, . . . , xki]

(4.7)

where k represents the number of the training patterns.

For neural network #2, only four min(p) and max(p) are needed. Equation (4.8)
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gives the pairs for features of phase voltages yi(Va, Vb, Vc). The values for yi(3V0),

yi(Ia, Ib, Ic) and yi(3I0) are calculated in a similar way.

min[yi(Va, Vb, Vc)] = min













y1,1(Va), . . . , yk,16(Va)

y1,1(Vb), . . . , yk,16(Vb)

y1,1(Vc), . . . , yk,16(Vc)













max[yi(Va, Vb, Vc)] = max













y1,1(Va), . . . , yk,16(Va)

y1,1(Vb), . . . , yk,16(Vb)

y1,1(Vc), . . . , yk,16(Vc)













(4.8)

4. Advantages of Proposed Boundary Protection Scheme

The advantages of the proposed boundary protection scheme are summarized as

follows:

• The wavelet transform provides an efficient way to extract signal components

at different frequency bands.

• The protection tasks are distributed into two neural networks so that each

neural network has different task.

• The signal preprocessing stage eliminates most of the influences from pre-fault

loads, system conditions and power swings.

• Both high frequency details and low frequency approximations are being used

in the proposed method and that can avoid confusing faults with other kinds

of non-fault disturbances.

• Both neural networks take half cycle data window, therefore the protection

speed is satisfied.
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E. Summary

A new approach is introduced aiming at solving the problem of differentiating the

internal faults from external using local measurements from one end of transmission

line and providing the exact fault type at the same time. The proposed approach

is an extension of the neural network based fault diagnosis introduced in last chap-

ter. The design of the new approach is more attractive in its application. It utilizes

advanced signal processing and artificial intelligence techniques to realize accurate

boundary protection. It should be pointed out that the implementation of the pro-

posed method needs to take into account the capability of existing instrument trans-

formers and IEDs to provide the required input signals. With the fast development of

computer hardware, optical instrument transformer, signal processing techniques, the

implementation of the proposed approach could be realized in the near future. The

main shortcoming of existing non-unit transmission line protection scheme, which is

inability to protect the entire length of the transmission line, will be greatly improved.

In Chapter VI, an integrated real time fault analysis tool combining neural network

and synchronized sampling based approaches will be introduced. In order to make

the integrated analysis tool feasible based on the existing available equipment in the

industry, the neural network based fault diagnosis approach introduced in the last

chapter is used. From the performance study to be shown in Chapter X, the neural

network based approach still has difficulties detecting faults occurring around the

line boundaries. When the required hardware is available, the approach introduced

in this chapter can substitute the neural network part of the integrated analysis tool

to achieve very accurate fault diagnosis, even for the faults occurring around line

boundaries. The proposed protection scheme in this chapter will be verified by the

transient simulation program, and its performance will be reported in Chapter X.
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CHAPTER V

FAULT DIAGNOSIS USING SYNCHRONIZED SAMPLING ∗

A. Introduction

As mentioned in Chapter II.B, the fault diagnosis schemes for transmission line

protection can be classified into two categories: (a) non-unit protection using mea-

surements from one transmission line end, and (b) unit protection using measurements

from two ends. When using measurements from one end the algorithm usually needs

to have assumptions about fault resistance, source impedance, remote end infeed,

etc. When the relay settings are calculated to cover certain system condition, the

performance of relay maybe degraded when the system conditions are quite differ-

ent from expected. The methods based on the neural networks as described in the

last two chapters could improve the performance against those problems by elaborate

training and enhanced feature extraction. When using measurements from two ends

the algorithms are more accurate because the required information to derive explicit

fault characteristics is available. That is more important when developing accurate

fault location schemes. Currently, the approaches using two ends data become more

feasible since the new techniques such as Global Positioning System (GPS), Phasor

Measurement Unit (PMU), Fiber Optics and high-speed Ethernet are further devel-

oped and applied in power system [15,119,120].

In this chapter, an fault diagnosis technique using synchronized sampling [42,43,

121] is enhanced to achieve very accurate fault analysis scheme using measurements

from two ends of a transmission line. A complete fault diagnosis scheme including

∗Part of the material in this chapter is reprinted from “Complete fault analysis
for long transmission line using synchronized sampling” by Nan Zhang and Mladen
Kezunovic, Presented in IFAC Symposium on Power Plants and Power Systems Con-
trol, Kananaskis, Canada, June 2006, c©2006 IFAC.
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fault detection, classification and location is designed based on the previously devel-

oped fault location algorithms described in [42, 43, 121]. A review of the background

of synchronized sampling algorithm is presented in Section B, and it is followed by

the description of new fault diagnosis scheme in Section C.

B. Background of Synchronized Sampling Algorithm

The synchronized sampling algorithm was originally developed for the fault lo-

cation techniques [43, 121–123]. The implementation of fault location for short line

model and lossless long line model is described in [43]. The modified version to take

into account the series losses in the line is developed in [121].

The theoretical principle of the synchronized sampling algorithm is demonstrated

using Fig. 30, which shows a section of three-phase transmission line that is simplified

using a one-line diagram. The inputs of the algorithm are raw samples of voltage and

current synchronously taken from two ends of the transmission line. The synchronized

samples are obtained with the help of Global Positioning System (GPS) and the data

will be communicated from one end of transmission line to another.

For a healthy transmission line, the line parameters are homogeneous. The volt-

age and current at one point of the line can be expressed using the voltage and current

at any other point along the line by certain linear relationship:

vp = Lv
(

vq, iq, d
′
)

; ip = Li
(

vq, iq, d
′
)

(5.1)

where d
′

is the distance between the point p and q.

With this idea, the voltage and current at any point of the line can be expressed

using sending end voltage and current samples and receiving end samples at the same

time by such linear relationship as in (5.1):
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When the fault is incepted, the transmission line is broken up into two homoge-

neous sections, as shown in Fig. 30. In this case, the above statement is true only at

the fault location [43].

vF = Lv (vS, iS, dS) ; vF = Lv (vR, iR, dR) (5.2)

A universal equation for the fault location can be derived as (5.3).

Lv (vS, iS, dS) − Lv (vR, iR, dR) = 0 (5.3)

Since dS + dR equals to ling length d, the only unknown variable in (5.3) will be

fault location dS. That is the basic idea of how to derive fault location algorithms [43].

Different algorithms use different linear relationship Lv to find fault location.

For transmission line, the voltage and current along the line are functions of the

is(k)

vs(k)

iR(k)

vR(k)

Sending end Receiving end 

GPS Satellite

ds dR

Fault Location

R L

R L

C

Short line Model Lone line Model

iF(k)

Fig. 30. A hypothetical three-phase transmission line



75

distance x and the time t,

∂v(x, t)

∂x
= −Ri(x, t) − L

∂i(x, t)

∂t
∂i(x, t)

∂x
= −Gv(x, t) − C

∂v(x, t)

∂t

(5.4)

where R, L, G, C are per-unit-length resistance, inductance, conductance and

capacitance respectively.

For short transmission line model that can be represented using lumped param-

eters, G, C in (5.4) can be neglected. The fault location can be calculated directly

by solving the differential equations. The explicit form of fault location can be rep-

resented using least square estimate method for a three-phase system [43].

dS =
−∑

m=a,b,c

∑N
k=1 Pm(k)Qm(k)

∑

m=a,b,c

∑N
k=1Q

2
m(k)

(5.5)

where

Pm(k) = vmR(k) − vmS(k) − d
∑

p=a,b,c

[(

Rmp +
Lmp

△t

)

ipR(k) − Lmp

△t ipR(k − 1)

]

m = a, b, c

(5.6)

Qm(k) =
∑

p=a,b,c

{(

Rmp +
Lmp

△t

)

[ipR(k) + ipS(k)] − Lmp

△t [ipR(k − 1) + ipS(k − 1)]

}

m = a, b, c

(5.7)

where k is the present sample point; △t is the time period with respect to the

sampling frequency; subscripts S and R stand for the values at sending end and

receiving end respectively.

For long line model represented by distributed parameters, the C can not be

neglected in (5.4). A pair of recursive equations are obtained [121]. ∗

∗ The original reference [121] has a typo for a sign in (5.8)
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vj(k) =
1

2
[vj−1(k − 1) + vj−1(k + 1)] +

Zc

2
[ij−1(k − 1) − ij−1(k + 1)]

− R△x
4

[ij−1(k − 1) + ij−1(k + 1)] − R△x
2

ij(k)

(5.8)

ij(k) =
1

2Zc
[vj−1(k − 1) − vj−1(k + 1)] +

1

2
[ij−1(k − 1) + ij−1(k + 1)]

+
R△x
4Zc

[ij−1(k + 1) − ij−1(k − 1)]

(5.9)

where △x = △t/
√
LC is the distance that the wave travels with a sampling

time step △t; Zc =
√

L/C is the surge impedance. Subscript j is the position of the

discretized point of the line and k is the sample point.

Since the explicit form of fault location can not be obtained, an indirect approach

is used to calculate the final fault location [121]. The scheme is demonstrated using

Fig. 31.

  Discretize the line into equal segments with length of

x; build voltage profiles for each point  using equation 

(5.8) and (5.9); do the calculation from sending end and 

receiving end respectively 

Locate the approximate fault point by finding the point 

that has minimum square of voltage difference calculated 

from the two ends 

Build a short line model surrounding the  approximate

fault point, and refine the location using the algorithm

based on lumped line parameters

x x x

FF-1 F+1

2 x

Fig. 31. Procedure of fault location
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C. Design of the Complete Fault Diagnosis Scheme

As an extension of previously developed fault location scheme [42, 43, 121], a

complete fault diagnosis tool will be developed in this section. Fault detection and

classification part will be added and the improvement of the fault location part will

be provided. The previous approach, especially for the long line model, requires

transmission of large data-set and a very complex calculation procedure. Those issues

make it too slow for online application. Since the information obtained from fault

detection and classification may be used for fault location, the calculation only needs

to be performed using post-fault value in the faulted phase. The accuracy will be

improved and calculation time will be reduced.

1. Theoretical Basis for Fault Detection and Classification

For short line model, define

id(k) = iS(k) + iR(k) (5.10)

As shown in Fig. 30, when there is no fault on the transmission line, id(k) equals

to zero at any data sample. When there is an fault on the line, id(k) equals to

the fault current iF (k). Since the current samples are synchronized at both ends of

the transmission line, id(k) can be obtained at every sample to detect if there is an

internal fault. It is used as the main feature for the short line model in the following

fault diagnosis scheme.

For long line model, the two equations (5.8) and (5.9) define the relation of voltage

and current samples between two points on the transmission line with the distance

of △x, as shown in Fig. 32. Combining (5.8) and (5.9) to eliminate vj−1(k+ 1) and
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is(k)

vs(k)

iR(k)

vR(k)ij-1(k)

vj-1(k)

j-1 j

ij(k)

vj(k)

x

Fig. 32. A homogeneous transmission line

ij−1(k + 1) , we get

ij(k)

[

1 +
R△x
2Zc

]

+
vj(k)

Zc

=
vj−1(k − 1)

Zc

+ ij−1(k − 1)

[

1 − R△x
2Zc

]

(5.11)

When there is no internal fault on the line, which means the line parameters are

homogeneous, equation (5.11) can be expressed as the relation between the sending

end and receiving end samples. Substitute j − 1 with S and j with R and note the

direction of IR . Equation (5.11) is changed to

−iR(k)

[

1 +
Rd

2Zc

]

+
vR(k)

Zc
=
vS(k − P )

Zc
+ iS(k − P )

[

1 − Rd

2Zc

]

(5.12)

where d is the length of the transmission line, P is the sample difference if the

wave travels from the sending end to the receiving end with the time of P△t.

Define

id1(k) = iS(k − P )

[

1 − Rd

2Zc

]

+ iR(k)

[

1 +
Rd

2Zc

]

+
vS(k − P )

Zc
− vR(k)

Zc
(5.13)

Similarly, we can get another form of (5.12) as

−iS(k)

[

1 +
Rd

2Zc

]

+
vS(k)

Zc
=
vR(k − P )

Zc
+ iR(k − P )

[

1 − Rd

2Zc

]

(5.14)

And define

id2(k) = iR(k − P )

[

1 − Rd

2Zc

]

+ iS(k)

[

1 +
Rd

2Zc

]

+
vR(k − P )

Zc
− vS(k)

Zc
(5.15)

When there is no internal fault on the line, obviously id1(k) and id2(k) should
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equal to zero.

Now consider the situation of an internal fault. As shown in Fig. 33, at a certain

time, the fault current and voltage at the fault point can be expressed as the signals

from sending end and receiving end:

iF (k) = iFS(k) + iFR(k)

vF (k) = vFS(k) = vFR(k)

(5.16)

Note that for long transmission line with distributed line parameters, iS(k) 6=

iFS(k) and iR(k) 6= iFR(k) since there is a time delay for the wave traveling from

one point to another. According to (5.12), if we note the current direction for each

current signal shown in Fig. 33, we have

vS(k − PS)

Zc
+ iS(k − PS)

[

1 − RdS

2Zc

]

= iFS(k)

[

1 +
RdS

2Zc

]

+
vFS(k)

Zc
(5.17)

−iR(k)

[

1 +
RdR

2Zc

]

+
vR(k)

Zc
=
vFR(k − PR)

Zc
− iFR(k − PR)

[

1 − RdR

2Zc

]

(5.18)

where PS and PR are the sample differences if the wave travels from the fault

point to the sending end with the time of PS△t and to the receiving end with the

time of PR△t respectively. dS and dR are the distances from the fault point to the

sending end and to the receiving end respectively.

Substitute k with k − PR in (5.17), and minus (5.18) to eliminate vF (k − PR).

iF(k)

Fault
iS(k)

vS(k)

iR(k)

vR(k)

iFS(k) iFR(k)

Fig. 33. A faulted transmission line
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Note that P = PS + PR and d = dS + dR, then the left-hand side is changed to

iS(k − P )

[

1 − Rd

2Zc

]

+ iR(k)

[

1 +
Rd

2Zc

]

+
vS(k − P )

Zc
− vR(k)

Zc

+ iS(k − P )
RdR

2Zc
− iR(k)

RdS

2Zc

= id1(k) + iS(k − P )
RdR

2Zc
− iR(k)

RdS

2Zc

(5.19)

And the right-hand side is changed to

iFS(k − PR)

[

1 +
RdS

2Zc

]

+ iFR(k − PR)

[

1 − RdR

2Zc

]

= iF (k − PR) + iFS(k − PR)
RdS

2Zc

− iFR(k − PR)
RdR

2Zc

(5.20)

For realistic transmission line, RdS

2Zc
≪ 1 and RdR

2Zc
≪ 1, then

id1(k) ≈ iF (k − PR) (5.21)

Similarly, if we start from (5.14), we can get

id2(k) ≈ iF (k − PS) (5.22)

With the help of synchronized sampling, the current and voltage samples used

for calculating id1(k) or id2(k) are available from the both ends of transmission line.

In our fault diagnosis scheme, id1(k) is used as the main feature for long line model

in fault detection and classification. The equations (5.8) and (5.9) are the recursive

equations used for fault location.

For a three-phase system, all the line parameters and the measured voltage and

current signals should be transformed into modal domain first to get the decoupled

systems and the derivation in previous section is still fulfilled for each modal compo-

nent.
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We use Clarke transformation matrix T to transfer the line parameters and the

measured phase values into the modal domain,

T =
1√
3













1
√

2 0

1 −1/
√

2
√

3/
√

2

1 −1/
√

2 −
√

3/
√

2













(5.23)

inv(T ) =
1√
3













1 1 1
√

2 −1/
√

2 −1/
√

2

0
√

3/
√

2 −
√

3/
√

2













(5.24)

[Z, Y ]0,1,2 = inv(T )[Z, Y ]a,b,cT (5.25)

[v(k), i(k)]a−0,1,2 = inv(T )













[v(k), i(k)]a

[v(k), i(k)]b

[v(k), i(k)]c













(5.26)

It is noted that the transformation matrix T and its inverse matrix have the

unsymmetrical form. From (5.26), we can get the modal components with respect to

the reference phase “a”. Similarly, we can get the modal components with respect

to the phases “b” and “c” by rotation. Note that the 0-mode has the same form

irrespective what the reference phase is. We can get seven sets of modal components:

[v(k), i(k)]0; [v(k), i(k)]a−1,2; [v(k), i(k)]b−1,2; [v(k), i(k)]c−1,2 (5.27)

Those components will be selected for the uses in fault detection, classification

and location. From the sequence network analysis, we can find the availability of

each modal component to detect the different fault type, as shown in Table IV. It

is noted that there is no unique modal component that can be used to detect all the
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Table IV. Availability of different modal components to correctly detect the different

fault type

AG BG CG AB BC CA ABG BCG CAG ABC

0
√ √ √ × × × √ √ √ ×

a − 1
√ √ √ √ × √ √ √ √ √

a − 2 × √ √ √ √ √ √ √ √ √

b − 1
√ √ √ √ √ × √ √ √ √

b − 2
√ × √ √ √ √ √ √ √ √

c − 1
√ √ √ × √ √ √ √ √ √

c − 2
√ √ × √ √ √ √ √ √ √

fault types. That should be noted when designing the fault diagnosis algorithms.

2. Fault Detection

In the following two sections, the fault detection and classification schemes are

described for long line model. For the short line model, we just need to substitute

the feature of long line model id1 with the feature of short line model id.

Define

Id1−m =

∑

j |id1(j)|m
N

; j = k −N + 1, k −N + 2, . . . , k (5.28)

where m is the related modal component, N is the number of samples in one cycle.

The criterion for detecting an internal fault is given as

max[Id1−a−1, Id1−b−1, Id1−c−1] ≥ T1 (5.29)

In (5.29), a threshold is set to tolerate the model and measurement imperfection.

The average value of id1(k) in one cycle is compared to that threshold. The calculation

is carried out using “a-1”, “b-1” and “c-1” modal components.
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3. Fault Classification

Through sequence network analysis with different boundary conditions, we can

find the features for classifying the fault type using different modal components [124],

as shown in Table V. The entries in the table are the modal fault current compo-

nents at the fault point. As derived in (5.21), id1(k) is directly related to the fault

current with several samples delay. Therefore, we can use id1(k) to design the fault

classification scheme according to the Table V.

The flowchart of fault classification is shown in Fig. 34, where id1−m has identical

definition as (5.28). The thresholds T2 and T3 are set to tolerate the model and

measurement imperfection, as well as the algorithm approximation.

4. Fault Location

For short line model, the fault location is calculated using (5.5). Since the fault

type is obtained from the fault classification, the calculation is only involved in the

faulted phase.

For long line model, the fault location calculation follows the methods shown in

Table V. Features for classification of different fault types

Fault Type Features (Phasors)

AG IF−0 6= 0; IF−a−2 = 0

BG IF−0 6= 0; IF−b−2 = 0

CG IF−0 6= 0; IF−c−2 = 0

AB IF−0 = 0; IF−c−1 = 0

BC IF−0 = 0; IF−a−1 = 0

CA IF−0 = 0; IF−b−1 = 0

ABG IF−0 6= 0; IF0
+ IF−c−1 = 0

BCG IF−0 6= 0; IF0
+ IF−a−1 = 0

CAG IF−0 6= 0; IF0
+ IF−b−1 = 0

ABC IF−0 = 0; IF−a−1 6= 0; IF−b−1 6= 0; IF−c−1 6= 0
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Fig. 34. Flowchart of fault classification

Fig 31. According to the fault type, the calculation will based on the selection of the

prominent modal components to achieve an accurate result. The selection scheme is

as follows:

• For ground fault (AG, BG, CG, ABG, BCG, CAG), the calculation is imple-

mented using “mode 0” components. The obtained fault location is the final

one.

• For AB fault, the calculation is implemented using “a-1” and “b-1” modal

components. The final fault location is the average of the two results.

• For BC fault, the calculation is implemented using “b-1” and “c-1” modal com-
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ponents. The final fault location is the average of the two results.

• For CA fault, the calculation is implemented using “c-1” and “a-1” modal com-

ponents. The final fault location is the average of the two results.

• For three-phase fault, the calculation is implemented using “a-1”, “b-1” and

“c-1” modal components. The final fault location is the average of the three

results.

5. Implementation of Entire Fault Diagnosis Scheme

The entire synchronized sampling based fault diagnosis including fault detection,

classification and location can be implemented in the same software package. The

flowchart is shown in Fig. 35. The data window used for calculation is one cycle,

and the data window is moving forward with selected time step △t. The fault is

detected if the (5.29) is fulfilled for a successive cycle. Then the post-fault values are

used for fault classification and fault location, using the methods demonstrated in

the previous sections.

6. Advantages of Proposed Fault Diagnosis Scheme

The advantages of the proposed fault diagnosis scheme are summarized as follows:

• The proposed scheme provides a complete solution of fault detection, classifica-

tion, and fault location that can be used as an independent fault analysis tool

or transmission line protection scheme.

• Only time-domain data measurements are used in the calculation, and no phasor

computation or relay setting issues will be involved.
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Fig. 35. Flowchart of fault diagnosis scheme using synchronized sampling

• Since synchronized sampling provides enough information for fault diagnosis,

there are no assumptions about fault parameters and system conditions. The

algorithm will not be affected by power swing, overload, and other non-fault

situations.

D. Summary

As the previous two chapters improved the one-end measurements based pro-

tection schemes by using neural network, this chapter improves the unit protection

scheme by using synchronized data samples measured at two ends of a transmission
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line. The traditional unit protection relies on coordinating the decisions from the

non-unit protection schemes at the two ends of the transmission line, such as direc-

tional relay and distance relay. Therefore the performance will be affected by the

non-unit relays. The proposed fault diagnosis scheme in this chapter collects the

samples from two ends of transmission line and performs fault diagnosis using elabo-

rate time-domain approach. The accuracy will be very high since the characteristics

to describe the fault are sufficient. During the derivation of the entire scheme, there

are no assumptions about the fault parameters and system conditions, therefore it

is less affected by those factors. The proposed algorithm will not misoperate during

the power swing since the line parameters are still homogeneous as in the normal

situation. Having the accurate information from the fault detection, classification

and location, one can quickly conclude whether the fault is inside of the protected

line and where exactly the fault is. It will help to decide the expected operation of

the relay system and correct the false trip of the healthy part of the system. The

performance study of proposed approach will be reported in Chapter X.
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CHAPTER VI

REAL TIME FAULT ANALYSIS TOOL INTEGRATED WITH NEURAL

NETWORK AND SYNCHRONIZED SAMPLING∗

A. Introduction

As mentioned in Chapter II, relay misbehavior has been a most contributing factor

in power system blackouts according to the historical record [2]. To reduce the risk of

a large-scale blackout, the traditional transmission line protection systems, especially

those at the vulnerable areas, need to be closely monitored [125, 126]. An advanced

fault analysis tool that can provide accurate and detailed fault information such as

fault detection, fault type classification, internal/external fault differentiation, fault

location, etc could be used as a reference to monitor traditional relays.

Different new techniques have been used as the fault analysis tools in the past.

An expert system based approach is described in [127] and a phasor measurement unit

(PMU) based approach is described in [128]. Those approaches still depend on the

phasor calculation. A neural network based fault analysis tool is developed in [129],

but it is hard to obtain a precise fault location since neural network is not good at

precisely classifying the continuous variables. A synchronized sampling based fault

analysis is introduced in [42], but the application is limited to short lines.

When used online as a relay monitoring reference, the fault analysis tool must be

very fast and accurate, providing comprehensive information for system operator to

better understand the disturbances and hence issue a correct response to reduce the

impact from the disturbances. It is still hard to find a perfect and unique technique so

∗Part of the material in this chapter is reprinted from “A real time fault analysis
tool for monitoring operation of transmission line protective relay” by Nan Zhang
and Mladen Kezunovic, Electric Power Systems Research, (Accepted, In Press),
doi:10.1016/j.epsr.2006.03.015 c©2006 Elsevier B.V., with permission from Elsevier.
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far to provide a superior protection scheme due to the algorithm and hardware limits.

A combination of different new techniques might be a better solution to achieve a

high performance and simplify the real time decision making.

Chapter III to Chapter V introduced new fault diagnosis approaches using neural

networks and synchronized sampling. They can be successfully implemented as inde-

pendent relays or referent solutions in a fault analysis tool including the functions of

fault detection, classification and location. They can be integrated as a powerful real

time fault analysis tool since both of the techniques use time-domain signals directly

and are derived using the principles that are much more accurate than the traditional

transmission line relays.

This chapter proposes a new integrated fault analysis tool for transmission lines

using mentioned two techniques. An overall consideration of the application of the

fault analysis tool is discussed in Section B. The functions of fault analysis tool are

provided in Section C. Section D and E outline the detailed hardware configuration

and software implementation respectively. Section F summaries the benefits of the

proposed fault analysis tool.

B. Overall Considerations

The objective of the automated fault analysis tool proposed in this chapter is

to work in parallel with traditional relay and to be a relay monitoring tool which

uses more accurate fault detection, fault type classification and fault location. The

new fault analysis tool should have the capability to confirm if the relay operation is

correct. Such a fault analysis tool can be used as one of the following three schemes:

Localized scheme: By this scheme, the fault analysis tool is installed in the

substation and used as real time relay monitoring tool. If authorized, it can correct
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the relay operations when it confirms that the relay has made a wrong decision and

misoperated. Only the fault analysis result is sent to the control center.

Centralized scheme: By this scheme, the fault analysis tool is installed in the

control center and performs the analysis for all relays that detect the disturbance.

The tool will not correct the relay operations directly but will serve as a reference

for the system operator. The system operator will coordinate the system and control

means to make a better decision to mitigate the disturbance.

Hybrid scheme: By this scheme, part of the fault analysis tool such as fault detec-

tion and classification can be installed in local substation to monitor the traditional

relays. If different results are obtained between fault analysis tool and traditional

relay, an alarm signal is sent to the control center. Then another part of the tool

such as fault location confirms the outcome and the system operator will take the

corrective controls.

The combination of neural network algorithm and synchronized sampling algo-

rithm can realize any of the above schemes. This chapter will focus on the fault

analysis tool design aimed at a localized scheme since the local monitoring tool is

the major concern of this dissertation. The design can also be used in the other two

schemes with minor changes in hardware and software. Chapter III and Chapter IV

described two kinds of neural network based fault diagnosis scheme. The former one is

based on simple preprocess of the raw samples and the latter one requires the wavelet

transform of high-sample-rate data. The scheme incorporating the former neural

network approach is the focus since it can be realized using the existing technology

available in the industry. When high-speed sampling unit and optical transformers

are commonly used in the near future, the developed boundary protection scheme

in Chapter IV can be used along with the synchronized sampling scheme to achieve

a much better fault analysis tool since the neural network based approach can also
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distinguish the internal faults from the external in this case.

C. Functions of Integrated Fault Analysis Tool

The functions of the integrated fault analysis tool are taken from the fault diag-

nosis schemes from the previous chapters. The major components of the integrated

analysis tool are introduced here and their role in the entire scheme will be demon-

strated in Section E.

Pick-up Unit : Equation (3.8) in Chapter III is used for pick-up function. As

mentioned earlier, it is effective in locating the exact fault inception point, which is

important for both neural network based and synchronized sampling based approaches

since both approaches use the post-fault values in calculation.

Neural Network based Fault Detection and Classification (NNFDC): Neural net-

work based approach as shown in Fig. 24 is used for fault detection and classification.

It is also make an initial estimate of the fault zone. Since it uses one-end measure-

ments, it can detect the fault as fast as distance relay. If necessary, a first comparison

could be made between the result of NNFDC and distance relay.

Synchronized Sampling based Fault Detection and Classification (SSFD, SSFC):

Synchronized sampling based fault detection and classification introduced in Chapter

V are used in the proposed fault analysis tool. Since it uses two-end measurement, it

can verify whether the fault is internal or external, which is very helpful in eliminating

the unnecessary removal of healthy lines. SSFC also provides a verification of the

result of NNFDC. Since SSFD and SSFC do not require high-sampling-rate data, the

delay in data communication is moderate.

Synchronized Sampling based Fault Location(SSFL): Synchronized sampling based

fault location algorithm mentioned in Chapter V are used here. It is the last step in
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verifying the previous conclusion and finding the exact fault location for fast restora-

tion of the system. It requires relatively high-sampling-rate data, but it can still

complete the computation in the range of seconds.

D. Hardware Configuration

A potential hardware configuration of proposed fault analysis scheme is shown

in Fig. 36. GPS receiver, high-speed communication link and high-speed sampling

unit are required for SSFL to achieve a high accuracy of fault location. The com-

munication can be through fiber-optic links or high-speed Ethernet. The sampling

unit can be phasor measurement unit (PMU) or digital fault recorder (DFR) as long

as synchronized samples are made available. Unlike traveling wave based algorithms

which typically require the sampling rate in the order of 300kHz, the fault location

algorithm in this fault analysis tool typically needs 20kHz for long transmission line

and lower sampling rate (such as 32 points per cycle) for short line. Such a sampling

rate can be reached by existing PMU [130], DFR [131], or other devices. The other
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Fig. 36. Hardware configuration of real time fault analysis tool
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components in the fault analysis tool, PU, NNFDC, SSFD and SSFC, just need the

data with low sampling rate. As long as the hardware requirements are satisfied

for the SSFL, the measured data may be obtained by software decimation from the

original sampled data set obtained with higher sampling rate.

E. Software Implementation

The flowchart of the integrated fault analysis tool is demonstrated using Fig. 37

and described as follows:

Step 1. Initialization. count = 0.

Initialization

x(1)x(2) x(i)
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…………..

… y(j)
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Fig. 37. Flowchart of the real time fault analysis tool
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Step 2. Interruption routine. At every △t1, save the new data sample set x(i) from

the high-speed sampling unit to the buffer. △t1 is the time step of the high-

speed sampling unit.

Step 3. At △t2 , read the newest data y(j) from the buffer. △t2 is the time step

used in PU, NNFDC, SSFD and SSFC. Use equation (3.8) to calculate if the

potential fault is detected. If yes, count = count+ 1. Otherwise, count = 0,

go to step 3.

Step 4. If count ≥M (M is the number of samples in one cycle with respect to time

step △t2), record the present sample point k, load one cycle of decimated

post-fault data y(k − M + 1), . . . , y(k) to NNFDC, SSFD and SSFC, and

request the related data from remote end. Otherwise, go to step 3.

Step 5. Run fault detection and fault classification using NNFDC.

Step 6. Receive measured data from the remote end. Confirm whether there is an

internal fault using SSFD. Run fault fault classification using SSFC.

Step 7. Compare the fault analysis result with relay action. Correct the relay unin-

tended operation if necessary.

Step 8. If an internal fault is confirmed, load one cycle of post-fault data x(l −N +

1), . . . , x(l) with high sampling rate to SSFL, and request related data from

remote end. Note that x(l) = y(k) and N is the number of samples in one

cycle with respect to time step △t1 . Otherwise, go to step 10.

Step 9. Receive measured data from the remote end. According to the fault type

concluded by NNFDC and SSFC, select the mode to locate the fault precisely

using SSFL.



95

Step 10. Generate the fault analysis report and send to control center. count = 0. Go

to step 3.

The time delay for the data transmission from one end of transmission line to

the other end can be crudely estimated as:

T =
size of data

baud rate
(6.1)

When transmitting a data package of one cycle of three-phase voltage and current

samples using a baud rate of 1Mb/s, the time delays for the SSFD and SSFL are

0.012s and 0.128s respectively. Note that the sampling rates are 32 points per cycle

for SSFD and 333 points per cycle for SSFL and assume the data set of the sample

is doubled (64bits).

F. Benefits of Proposed Fault Analysis Tool

The benefits of the proposed fault analysis tool are summarized as follows:

• Both techniques use time-domain measurements. It is easy to share the data

internally and get away from the phasor calculation.

• The integrated solution inherits the advantages from both techniques. It pre-

serves the strength of neural network algorithm in fault classification and that

of synchronized sampling algorithm in fault location.

• Using two different techniques, it is easy to check the consistency of decisions

made by each technique to get a more convincible fault analysis result.

• The speed of the algorithm can be guaranteed for real time application.
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G. Summary

An integrated real time transmission line fault analysis tool that can offer accurate

fault detection, classification, internal/external fault differentiation, and fault location

is proposed. Based on the advantages described in this chapter, the fault analysis

tool may be used as online reference for traditional distance relay and is a major part

of local relay monitoring tool, which will be introduced in Chapter VIII. The two

techniques used in the fault analysis tool complement each other to achieve complete

fault analysis functions and provide self-confirmation. The integrated tool uses time-

domain data as inputs. The data processing errors in calculating phasors are avoided.

The relay setting and coordination work when applying traditional relays is also

avoided. As mentioned in Chapter I, the phasor calculation error and improper relay

setting during the extreme system conditions may be a potential factor contributing

to a cascading blackout. The integrated tool gets away from those issues and hence it

is immune from triggering cascading blackouts in that sense. The performance study

of the proposed scheme is compared to the traditional distance relay, as shown in

Chapter X.
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CHAPTER VII

REAL TIME RELAY MONITORING TOOL USING EVENT TREE ANALYSIS

A. Introduction

Last chapter proposed a powerful real time fault analysis tool, which can be used

in parallel with distance relay to provide a fault diagnosis reference. In order to

effectively use the proposed fault analysis tool to monitor relay actions and provide

a local diagnostic support to the system operator, a handy tool for monitoring relay

operation is needed.

Event tree analysis (ETA) is a commonly used technique for analyzing the re-

liability of an event-response system [132–134]. It was first applied in the risk as-

sessments for the nuclear industry but is now utilized by a lot of other industries

such as chemical processing, gas production and transportation. It is also been used

recently in protection system reliability analysis and dynamic analysis in power sys-

tem [135–138]. The Event Tree Analysis, as indicated by its name, has a structure of

forward (tree-like) symbolic logic modeling technique. This technique explores system

responses to an initial “challenge” and enables assessment of the probability of an

unfavorable or favorable outcome [132]. It fits our need for real time relay monitoring,

whose objective is to explore the relay actions following the initial event of a distur-

bance. Thus ETA is selected and modified as our event analysis tool for monitoring

relay operations.

In Section B, the original structure of ETA is outlined. A modified structure

to fit relay monitoring purpose is provided in Section C. A prototype design of the

different event trees for relay is given in Section D. Section E describes the application

procedures when using the event trees in the field. A case study is demonstrated in
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Section F. Section G summarizes the benefits of the proposed relay monitoring tool.

B. Original Structure

The original structure of the event tree is demonstrated using an example of a gas

leak protection system of an offshore platform. The system includes a gas detection

device and two isolation valves. The event tree for this system is shown in Fig. 38.

It has a forward structure with initiating contingency of the gas leak. The binary

branches of the event tree consider the success (S) and failure (F) of the gas protection

system according to the sequence of its actions. The outcome determined by the end-

point of each event tree branch identifies all the possible consequence following the

initiating event. The probability of each outcome can be evaluated if we know the

individual probability of each node passing along the branches.

C. Modified Structure

The original structure is a flat design for analyzing the system reliability or per-

forming risk assessment. In order to be more user-friendly and self-understandable

for real time relay monitoring purpose, the original structure is modified, as shown
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Fig. 38. An example of event tree for gas leak protection system
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in Fig. 39. By using different color and shapes, the user can easily find the problem

in the system. A table should be associated with the event tree to explain the event

at each node and provide the reference corrective actions. That will be shown in the

following section.

D. Design of the Event Trees for Protective Relaying System

The forward, tree-like structure of the event tree provides a useful tool that can be

effectively used for monitoring protective relay operations with respect to a triggering

disturbance. However, there must be a smart way to design the event trees to ensure

they can be simply and generally applied to thousands of different relays in ta large-

scale power system.

To utilize the event tree analysis more efficiently, the initial event and the con-

sequences must be foreseen. By doing this, all of the possible events and actions can

be covered by the event tree analysis. Regarding the transmission line protection

system, if the event tree is built at the centralized system level, the initial events and

possible relay actions would be infinite since there are thousands of transmission lines

Root node - initial event

Action node - correct action

Action node - incorrect action,
cannot be solved online

Action node - incorrect action,
can be solved online

Outcome node - Acceptable

Outcome node - Unacceptable

Fig. 39. The modified structure of event tree
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and associated relays. An efficient way is to distribute the event tree design to each

single relay.

Considering a typical transmission line protection system, which consists of a

distance relay, its associated circuit breaker and communication equipment, the pos-

sible contingencies are finite and can be foreseen. In spite of the differences in relay

settings and system configurations, the functions of transmission line protective re-

lays are mostly identical. We can design the event trees starting from a typical relay

as a guide. The other relays with different applications can be modified from the

prototype design.

Assume we have a regular distance relay that uses a pilot protection scheme.

The distance relay device is used for detecting the fault. Circuit breaker receives the

relay trip signal to open the line. It also can trip the line if it receives the command

from the transfer trip signal sent by a relay at remote end or if it receives manual trip

signal by local command. The circuit breaker can be blocked the same way. The relay

is also associated with the breaker failure protection. If the breaker has an interior

defect and can not open the line, the breaker failure protection is activated to open

all other circuit breakers on the same bus.

In a common situation, the transmission line protection system will face three

kinds of initial events: (a) No fault in preset zones; (b) Fault occurring in the primary

zone; and (c) Fault occurring in backup zones. The third condition can be separated

further into the Zone 2, Zone 3, and reverse zone if the logic has significant differences.

In this section, we just assume the backup protections have similar configuration and

logic. The event trees for the three initial events are shown in Fig. 40 through Fig. 42.

The associate node explanation and reference actions are list in Table VI through

Table VIII.



101

Fig. 40. Event tree #1: no fault

Table VI. The scenarios and reference actions for the nodes of event tree #1

Node Status Reference Action

1 No fault in any protection zone

2 Relay dose not detect a fault

3 Relay detects a fault and initiates a trip signal Check relay settings and hardware

4 Trip signal is blocked by other devices

5 Trip signal fails to be blocked Send blocking Signal, check communication chan-
nel

6 Circuit breaker opens the line

7 Circuit breaker fails to open the line Check the breaker circuit

8 Autoreclosing succeeds to restore the line

9 Autoreclosing fails Send reclosing signal to the breaker

10 Breaker failure protection trips all the breakers

11 Breaker failure protection does not work Check the circuit of the breaker failure protection
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Fig. 41. Event tree #2: fault in primary zone

Table VII. The scenarios and reference actions for the nodes of event tree #2

Node Status Reference Action

1 Fault occurs in primary zone

2 Relay detects the fault

3 Relay does not detect the fault Check relay settings and hardware

4 Relay detects the fault in a correct zone

5 Relay detects the fault in an incorrect zone Check relay settings and hardware

6 Transfer trip signal is received

7 Transfer trip signal is not received Send trip signal manually, Check communication
channel

8 Circuit breaker opens the line

9 Circuit breaker fails to open the line Check the breaker circuit

10 Breaker failure protection trips all the breakers

11 Breaker failure protection does not work Check the circuit of the breaker failure protection
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Fig. 42. Event tree #3: fault in backup zone

Table VIII. The scenarios and reference actions for the nodes of event tree #3

Node Status Reference Action

1 Fault occurs in backup zone

2 Relay detects the fault

3 Relay does not detect the fault Check relay settings and hardware

4 Relay detects the fault in a correct zone

5 Relay detects the fault in an incorrect zone Check relay settings and hardware

6 Primary relay clears the fault successfully

7 Primary relay does not clear the fault successfully Correct the primary relay, Restore the line

8 Backup function is reset or blocked

9 Backup function is not reset or blocked

10 Relay trips the breaker in backup zone

11 Circuit breaker fails to open the line Check the breaker circuit

12 No unnecessary trips

13 Unnecessary trip occurs Reclose the line

14 Breaker failure protection trips all the breakers

15 Breaker failure protection does not work Check the circuit of the breaker failure protection
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E. Use of the Event Trees

This section discusses the method for online event analysis using previously de-

signed event trees. The event trees should be built in advance for each relay that

needs to be monitored. The design of each event tree should reflect the specific sys-

tem configuration and relay settings and should be able to explore all the required

relay activities useful for a system view. After the event trees at local level are built,

they should be stored at the system level as an event tree database, as the example

shown in Fig. 43 suggests. During the disturbances, the system collects the local di-

agnostic information for a graphic view of the event analysis by activating the related

event trees.

Local Relay Event Trees

System Event Tree Database

Relay 1 Relay 2 Relay N

Fig. 43. Event tree database
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When used online, the integrated fault analysis tool introduced in the last chapter

works in parallel with the traditional relays as a real time comparison reference for

traditional relays to provide accurate fault analysis. When either the fault analysis

tool or traditional relay detects a fault, the event tree analysis is triggered. For

each corresponding relay that operates upon a fault, one of the three event trees is

selected according to the fault analysis result. The criterion is that the root node of

the selected event tree should meet the conclusion of the fault analysis tool (no fault,

fault in primary zone or fault in backup zone). In the related event tree, the expected

relay operation branch is the very top one including only “white” nodes. When there

is an incorrect operation, the branch will be changed. If the relay operation branch

contains a “dark” node, corrective action needs to be taken to reach the “white”

outcome node. A correction of the relay misoperation and unintended operation is

first attempted locally. The detailed event analysis report of each relay will be sent

to the control center shortly so that it is easier for system operator to understand

what has happened in the system and more efficient control operation can be taken

before the disturbance evolves into a cascading event.

F. Case Study

In order to illustrate the procedure of event tree analysis, a case study is demon-

strated in this section. For the example system shown in Fig. 44, assume all the relays

are distance relays which have four-zone protection scheme. For convenience, assume

all the transmission lines in the system have the same length and relay settings. For

each relay, Zone 1, Zone 2 and Zone 3 are set in the forward direction and reach 80%,

120% and 200% of the line length respectively. Zone 4 is in the reverse direction and

reaches 20% of line length. Pilot scheme is used to speed up the fault clearing in Zone
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Fig. 44. A multi-bus system for demonstrating event tree analysis

1. The fault scenario of this example is the Phase A-to-ground fault on line 3, fault

location is 15% of line 3 away from bus D, as shown in Fig. 44.

Assume all the relays have the mentioned fault analysis tools and they can suc-

cessfully provide correct fault information. The expected fault zones for the corre-

sponding relays are marked in Fig. 44. Assume two contingencies in two of the relays:

a) Relay 5 failed to detect the fault in line 3 because of a DC battery defect in relay

hardware. The transfer trip signal is not obtained by this relay as a result. b) Relay

9 falsely detects the fault as a Zone 2 fault. Because of these two contingencies, the

circuit breakers associated with relay 3, 11, 13 open at line 2, 6, 7 to remove the

Zone 2 fault. The autoreclosing fails because the breaker for relay 5 still has not

opened. The circuit breakers associated with relay 9 also falsely open the line 5. The

autoreclosing fails because the synchronism check is not passed. The monitored relay

operation is shown in Table IX.

The relay operation information in Table IX will be collected by the system

Table IX. The result of event tree analysis

Relay Event Tree Expected Actions Actual Actions

5 2 1 → 2 → 4 → 8 → white 1 → 3 → 7 → dark

9 1 1 → 2 → white 1 → 3 → 5 → 6 → 9 → dark

3, 11, 13 3 1 → 2 → 4 → 6 → 8 → white 1 → 2 → 4 → 7 → 10 → white
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operator to issue corrective actions. Relay 5 and relay 9 have the higher priority since

they correspond to the primary and unrelated protection respectively. For relay 5,

the latest incorrect operation is at node 7. According to the reference action list in

Table VII at node 7, first a trip signal will be sent manually to open the breaker for

relay 5. Similarly for relay 9, a reclosing signal will be sent according to Table VI.

Then consider the other three relays corresponding to the backup protection. For

relay 3, 11 and 13, although the final outcome is a “white” node, which means it is

acceptable, there is still a “dark” node 7 in their operation routes. After the faulted

line 3 is corrected, the line 2, 6, 7 should be restored according to Table VIII.

G. Benefits of the Proposed Relay Monitoring Tool

The benefits of the proposed relay monitoring tool are summarized as follows:

• The modified event tree analysis provides a self-explainable, easy-to-use tool for

real time monitoring of relay operations.

• The design of event trees predefines a remedial action in the case of the relay

misoperation or unintended operation.

• The generic design of event trees is distributed to each single relay (for each

relay, there are three types of events: no fault, fault in primary zone, fault in

backup zone). The number of event trees is finite and the design is feasible.

H. Summary

Based on the widely used event tree analysis tool in reliability and risk assess-

ment, this chapter proposed an event analysis approach for monitoring operation of

protective relays, aimed at providing the system operator an accurate information
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about the relay operations under a disturbance. The structure of the original event

tree has been modified to be more user-friendly and self-understandable for use in

online monitoring purpose. Three event trees have been designed for a typical relay.

The use of the event trees is discussed and demonstrated by a case study. The pro-

posed approach can be extended for offline risk assessment of the relay operation if

the probability of each action node is known. It can be implemented with Fault Tree

Analysis (FTA) [139] to identify the causes of the intermediate subsystem failures.

Some of the solutions of combined ETA/FTA can be found in [134,140].
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CHAPTER VIII

INTERACTIVE SCHEME TO PREVENT AND MITIGATE CASCADING

BLACKOUTS

A. Introduction

As mentioned in Chapter I, consequences of power system blackouts may be

catastrophic. Prevention of the blackout is a complex task due to its multiple po-

tential causes. In the final report of August 14, 2003 blackout, NERC proposed

46 recommendations to enhance the system performance to prevent future large-

scale blackouts [1]. Several research efforts in the literature are dedicated to un-

derstanding the blackouts [141–144] and proposing the solutions to prevent the fu-

ture blackouts [4, 11, 125, 126, 137, 145–148]. A systematic defensive approach for

online prevention, detection, and mitigation of the cascading blackouts is proposed

recently [51, 149, 150]. By such means, the cascading blackout could be prevented or

mitigated at different stages by three coordinated steps, including: a) Detection of

major disturbances and protective relay operations leading to cascading events, b)

Wide area measurement based remedial action, and c) Adaptive islanding with se-

lective underfrequency load shedding. Among these, the first step is most important

since the blackouts, whether involving the relay misoperation or unintended operation

or not, usually start in some small area where one or more components are removed

from the system. This chapter will introduce the role of the previously introduced

techniques in the first step, namely in detecting the cascading blackouts.

In Section B, the structure of a local relay monitoring tool is presented. A system

monitoring and control tool is briefly reviewed in Section C. The interactive scheme

of system and local monitoring and control is described in Section D. A case study
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based on the IEEE 39-bus system is demonstrated in Section E. Section G summaries

the benefits of the proposed interactive scheme.

B. Local Relay Monitoring Tool

The local relay monitoring tool is intended for installation at local substations. As

shown in Fig. 45, it consists of the previously introduced real time fault analysis tool

using neural network and synchronized sampling, as well as relay operation monitoring

tool using event tree analysis. The real time fault analysis tool takes the inputs from

a traditional relay including the measurements from the instrument transformers,

the relay detection signals from the digital outputs of relay device, and the contact

status from the circuit breaker. It also provides outputs to relay and circuit breaker

to issue necessary control commands such as blocking and tripping signals. The real

time fault analysis tool, primarily based on neural network (NN) and synchronized

sampling (SS), works in parallel with traditional relays to detect the fault. For a

specific relay, once the fault is detected by relay itself or the real time fault analysis

Relay

System

Event Tree 

Analysis

Real Time Fault 

Analysis Tool

Other Relay 

monitoring

Tools

Control

Center

Fig. 45. Local relay monitoring tool
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tool, the event tree analysis will be triggered and the monitored information will be

shared with the local monitoring tools for neighboring relays as well as the system

operator in the control center. The steps for real time fault analysis and event tree

analysis have been described in Chapter VI and VII respectively.

C. System Monitoring and Control Tool

Besides the local relay monitoring tool at the substation level, the system level

monitoring and control scheme for use at the control center plays an important role in

preventing and mitigating the blackout since it is expected to help operator keep the

system security and stability based on the collected system-wide data. The system-

wide monitoring and control tool should have routine security analysis and event

based security analysis [50].

Routine security analysis runs in regular periods to perform the contingency

analysis. For the contingencies that can lead to overload, voltage dip, voltage and

transient instability, the candidate corrective control means should be identified and

saved. The vulnerable area by those contingencies should also be identified. The

related relay should be marked for close monitoring.

Event-based security analysis is triggered when a disturbance occurs. If it is the

contingency that is studied in the routine security analysis, the corresponding control

means can be selected form the saved methods. If it is not studied before, that will

require online high-speed security analysis to indicate whether the emergency control

is needed to mitigate the overload or transient stability problem.

Two major techniques for the both security analysis tasks are based on the fast

power flow and transient stability analysis. Some of the improved methods have been

reported in [151–153].
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D. Interactive Scheme to Prevent Blackouts

An example of a field application of the proposed local and system monitoring

and control tools is shown in Fig. 46. The local relay monitoring tool is synchronized

by GPS satellite and hence the synchronized sampling based fault diagnosis approach

in the integrated fault analysis tool can reach an accurate analysis result. High-speed

communication medium is preferred between the system tool and local tool, as well

as between the different local tools. The information and control command can be

rapidly delivered. That idea is a fit to recently introduces of Wide Area Measurement

Systems (WAMS).

The interactive scheme between the system and local monitoring tools is shown

in Fig. 47.

G
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G
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Local Relay 

Monitoring Tool

System Monitoring 

and ControlTool

Fig. 46. Field application for proposed system and local monitoring and control
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Fig. 47. Interactive scheme for system and local monitoring and control

When the system is operating in the steady state, the system monitoring and

control tool performs vulnerability and security analysis and decides the system se-

curity level and identifies the vulnerable relays. The information will be sent to the

corresponding local relay monitoring tool. Depending on the system emergency level,

the system tool may give the authorization to the local tool to send block or trip

signal to the circuit breaker directly. At the same time the system tool also identifies

the critical contingencies, and selects the associated control means for those expected

events.

The local relay monitoring tool performs real time fault analysis along with the

traditional relays. When the system experiences a disturbance due to a transient

event, such as fault, switching, etc, event tree analysis is triggered to verify if the

relay operation is correct. If relay misoperation or unintended operation is found,

the relay monitoring tool will directly correct the misoperation or report the problem

to the system tool. That provides a local event diagnostic support to the system

tool. Typically, when the system emergency level is low, which means there is no
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operating violation in the system, the local monitoring tool should not intervene in

relay operations. In this case even a relay misoperation or unintended operation will

not likely initiate a cascading blackout. There is enough time for the system operator

to issue the control means based on a broad view of the system status. When the

system emergency level is high, which means there are operating violations in the

system and the probability of a cascade is high, the local monitoring tool should

be assigned the priority to correct relay operation since every relay misoperation or

unintended operation could result in an unfolding event. By preventing the relay

from tripping during the power swing, the system operator could have the time to

perform the controlled islanding and hence reduce the loss of a probable blackout.

No matter how the local relay monitoring tool intervenes to correct relay mis-

behavior, the information will be collected by the system tool to aid operator in

event-based analysis. If such events are studied by the routine security analysis, pre-

determined emergency control means will be activated. If the events are unexpected,

transient stability analysis and power flow analysis will be run to see whether there

are transient stability or steady state problems. If so, associated control means will

be found and issued to mitigate such events.

E. Case Study

In order to illustrate the interactive scheme of system-wide and local monitoring

and control, a case study is demonstrated in this section using the IEEE 39-bus New

England test system shown in Fig. 48. The detailed system data can be found in [154].

In the steady state condition, the routine security analysis of the system monitor-

ing tool is implemented offline and the vulnerable lines in the system are identified us-

ing the vulnerability index (VI) and network contribution factor (NCF) method [153].
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The top 2 most vulnerable lines according to their vulnerable indices are: Line 21-22,

28-29. The outage of those lines will have a large impact for the system stability

since the original loads in those two lines will be re-distributed to the neighboring

lines causing more overloading issues. The system monitoring tool will inform the

local relay monitoring tool on those lines to monitor the relay operations closely.

Assume a series of disturbances occur in the system, with the event sequence

shown in Fig. 49. The related system components are marked in Fig. 48. These two

faults are permanent faults and thus removed by the relays. After the line 21-22 are

removed due to the first fault, the top 2 most vulnerable lines are changed to: Line

28-29, 2-3. After the line 28-29 are removed due to the second fault, the top 2 most

vulnerable lines are changed to: Line 23-24, 26-29.

This contingency may cause relay at Bus 26 of Line 26-29 to misoperate. The

trajectory of impedance seen by that relay is shown in Fig. 50 with the event sequence

labeled. Although the two faults are not related to the healthy line 26-29, the power
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Fig. 49. The sequence of simulated fault scenarios

Fig. 50. Apparent impedance seen by distance relay at Line 26-29 during the distur-

bances



117

swing caused by the two faults will have an impact on the distance relay. It observes

a Zone 3 fault at 1.627s after the second fault clearing until the trajectory leaves

Zone 3 circle at 1.998s. The distance relay may trip Line 26-29 when its Zone 3 timer

expires. As a result, buses 29, 38 will be isolated from the system, including the G9

and loads at bus 29. This will results in the oscillation in the rest of the system and

further cascading outage may happen.

The mentioned situation can be prevented by the proposed interactive system

and local monitoring tool. When the first fault occurs, the faulted line 21-22 is

removed and no other operation happens. The relay monitoring tool for the relay at

Line 21-22 will inform the system monitoring tool about the relay operation for the

three-phase fault. The event-based system security analysis is activated after the first

fault. An alert signal will be sent to the local relay monitoring tool at vulnerable lines

at this stage. Since the first fault will not degrade the system stability very much, the

local relay monitoring tool will not be authorized to intervene with relay operations at

this stage. When the second fault happens and Line 28-29 is removed, the local relay

monitoring tools for the most vulnerable lines 23-24 and 26-29 will be authorized to

correct the potential relay misoperation or unintended operation in real time since

the misoperation of those relays will directly separate the system. After the second

fault, the local relay monitoring tool at Line 26-29 will draw a conclusion to block the

relay from tripping for Zone 3 fault. That information will be sent back to the system.

The system will issue appropriate control means to mitigate the disturbances.

In an actual large scale system, it is impossible that one or two contingencies like

the ones discussed in this scenario can cause large scale system oscillation. Usually

there is enough time for coordinating the system-wide and local analysis in the initial

stages of the disturbances to mitigate the impact of the disturbances before they

unfold into the large one. An interactive system-wide and local monitoring and
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control means can really help reduce the probability of a cascading blackout since

the disturbances can be fully analyzed at both the local and system level.

F. Benefits of Proposed Interactive Scheme

The benefits of the proposed interactive scheme are summarized as follows:

• Through the analysis result from the local relay monitoring tool, the system

side can understand exactly the disturbance information in real time. It will

help system operator evaluate system security and make better control actions

to preserve it.

• Through the analysis result from the system-wide monitoring tool, the local

side can know whether its relay system needs to be monitored closely.

• The two monitoring tools monitor the system security level and the system

disturbances in an precise way to help preventing the cascading blackout.

G. Summary

The power system cascading blackouts are usually initialized by a chain of accu-

mulated disturbances and relay operations in the system. The first effort to prevent

the blackout is to rapidly and precisely understand the system disturbances and issue

the corrective countermeasures. The proposed interactive scheme in this chapter is

aimed at this effort. The role of the system-wide monitoring and control tool is to

evaluate the security level of the system components and inform the related local mon-

itoring tool, as well as to select effective corrective control means when disturbances

occur. It should consist a preventive step achieved by the routine security analysis

and control, as well as a fast-response step achieved by the event-based security anal-
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ysis and control. The role of the local relay monitoring tool is to provide detailed

disturbance information using its advanced fault diagnosis techniques and inform the

system about what exactly happened in the local relay. It assists the system tool

to effectively understand the disturbance, evaluate system security and make better

control actions to preserve it. A simple heuristic case study in this chapter illustrated

the basic idea and benefits of the proposed scheme in preventing cascading blackout.
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CHAPTER IX

COMPREHENSIVE SIMULATION TOOL∗

A. Introduction

In order to study the performance of proposed fault diagnosis approaches dis-

cussed in Chapters III through VI, a comprehensive simulation tool is needed. Some

solutions can be found in the literature [155–157]. In [72], a simulation tool using

MATLAB [54] and Alternative Transients Program (ATP) [55] is developed. The

model-dependent design of the tool limits its flexibility when used in different power

system applications. In this chapter, the simulation tool further enhanced for the use

in the performance studies is described.

In Section B, the overall framework of the simulation software is introduced. De-

tails about the power system simulation part and fault diagnosis algorithm evaluation

part are given in Section C and Section D respectively.

B. Framework of the Simulation Tool

The overall framework of the developed software simulation package is shown

in Fig. 51. The software has an interactive structure by using MATLAB and ATP.

MATLAB is a widely used general purpose modeling and simulation tool and ATP

is free version of Electromagnetic Transient Program (EMTP) [158], which is widely

used to implement accurate and fast electromagnetic transient simulation. The com-

bination of these two simulation tools can benefit from advantages of both. The

∗Part of the material in this chapter is reprinted from “Implementing an ad-
vanced simulation tool for comprehensive fault analysis” by Nan Zhang and Mladen
Kezunovic, In Proc. IEEE PES Transmission and Distribution Conference and Exhi-
bition: Asia and Pacific, Dalian, China, August 2005 c©2005 IEEE, with permission
from IEEE.
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Fig. 51. The framework of the simulation tool

existing ATP software does not have the capability to automatically generate the

scenarios in a batch. That is very inconvenient in our performance studies that re-

quire simulation of thousands of scenarios to be carried out. MATLAB is a powerful

programming and simulation software. It can be used to implement flexible control

of the ATP simulation and interface used to evaluate the performance of the fault

diagnosis algorithms.

The entire software consists of two parts: simulation of power system and evalua-

tion of fault diagnosis algorithm. In the part devoted to simulation of power systems,

the power system model of interest is built in ATPdraw and a template .atp file

without any events is then generated. The system components and their parameters
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are set in MATLAB. The user defines disturbance scenarios through the interface in

MATLAB. For each scenario, the MATLAB program will load the template .atp file

and create a temporary file by modifying the settings of the template .atp file. After

the ATP is executed, the transient measurements for each scenario are then stored

for evaluation of relays or other fault analysis algorithms.

In the part devoted to evaluation of fault diagnosis algorithms, the raw data

obtained from measurements are then preprocessed according to the algorithm re-

quirements. The processed data is analyzed by different fault diagnosis algorithms

and the analysis results are recorded and compared based on the actual characteristics

of the fault scenarios.

When applied for different power system models, the software only needs to

rebuild the ATP template and update the system configuration settings in MATLAB.

The other parts need not be changed.

C. Simulation of Power Systems

The power system is modeled using the graphic tool of ATP, ATPdraw, and the

corresponding system parameters are set in MATLAB. There are several features in

the modeling stage that can facilitate the programming and simulation procedure: a)

In ATPdraw modeling, all the lines of interest should be identified and the components

representing line faults, switches, and measurements on the transmission lines of

interest on those lines preserved. As the example shown in Fig. 52, the line is broken

up into two sections. The name of each node should be easily identifiable. Numbers

are preferred when naming the nodes, and all the components in a line section should

refer to the same numbers of their two bus nodes. This helps to easily locate the

system component in MATLAB program. b) In MATLAB setup, a component list file
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Fig. 52. Setup for the line of interest

should be generated to identify the system components and configure their parameters

when setting the scenarios.

After the power system models are built in ATP and configured in MATLAB,

the next steps are setting the scenarios and initiating simulation automatically. The

details are as follows:

1) User sets the fault or non-fault scenarios. The scenarios can be set in a batch

using deterministic or random method. By the deterministic method, the user

can define the parameters for fault type, location, impedance, inception angle,

etc. The software then creates a batch of scenarios by combining the parameters

in different sets. By the random method, the user only defines the range of the

parameters and the software generates the parameters and scenarios randomly.

2) Based on the user definition, the software sorts out the fault scenarios or non-fault

scenarios according to the parameters.

3) For all the fault scenarios, the software automatically copies the template .atp file

to a temporary .atp file, modifies the parameters in temporary .atp file, and runs

ATP. As an example .atp file shown in Fig. 53, no matter what system is used,
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Fig. 53. Locate the component in the ATP file

all the system components can be found by locating the names of the nodes at its

two ends. Since the system nodes are easily identifiable by the mentioned method

in the modeling stage, a universal program row locator.m is used for locating any

component’s row position in .atp file. The column positions of the component

parameters are fixed as long as we know the component type. Therefore, we

can create a set of universal programs to modify the parameters for each kind

of system component. By this method, all system component parameters can be

automatically modified in MATLAB. The detailed method can be found in [72].

4) For each scenario, ATP will generate a .pl4 file. Using Pl42MAT.exe, we can

transform the .pl4 file to .mat file and obtain related data in MATLAB format.

As shown in Fig. 54, for each scenario, the three-phase voltage and current data

along with the time label are extracted as the variable “Output” and packed with
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Fig. 54. The structure of the data package

its identity variable “C”. Then the final data package is formed using data and

a header file, which includes the configuration and setting information, such as

scenarios number, sampling rate, etc.

5) Repeat the step 3) and 4) for non-fault scenarios.

D. Evaluation of Fault Diagnosis Algorithms

The data generated in power system simulations are used for evaluating different

fault diagnosis algorithms. The previously mentioned fault diagnosis algorithms, neu-

ral network based fault diagnosis, synchronized sampling based fault diagnosis, along

with the traditional distance relay are programmed in MATLAB. The evaluation

procedure is shown in Fig. 55 and described as follows:
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Fig. 55. The procedure for evaluating fault diagnosis algorithms

1) General Settings. Preset data re-sampling rate, protection zones, and algorithm

parameters.

2) Data Input. Load the source data file, which is generated by simulation of the

power systems, into MATLAB program.

3) Data Extraction. According to the requirement of the algorithm, extract the useful

data from the source data file with re-defined sampling rate.

4) Signal Processing. Signal processing is different for different algorithms. For

distance relay, the waveform is conditioned using low pass filter and fundamental

frequency phasors of voltages and currents are computed using full cycle Fourier

Transform. For neural network based approaches, the three-phase voltages and

currents are normalized and arranged in a row to form a pattern. For synchronized

sampling based approaches, only raw samples in time-domain are required.

5) Fault Diagnosis. The preprocessed data is sent to the algorithm to implement
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fault detection, classification and location.

6) Result Output. The results of fault diagnosis are compared with the scenarios to

measure the analysis errors. The results are saved for further studies.

E. Summary

A handy software simulation tool is helpful for development of new fault di-

agnosis techniques. The improved software package described in this chapter can

handle a variety of complex fault analysis tasks under different system conditions.

Thousands of scenarios can be simulated at one time. The structure of the software

benefits from both programming flexibility of MATLAB and simulation efficiency of

ATP. The software implementation makes it easy to adapt different system models

and evaluate other fault diagnosis algorithms. The performance studies of all the

techniques developed in this dissertation are based on this simulation tool.
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CHAPTER X

PERFORMANCE STUDIES∗

A. Introduction

This chapter presents the performance studies of proposed fault diagnosis ap-

proaches introduced in Chapters III through VI. The result of the performance will

decide how effectively they can be used in the relay monitoring tool mentioned in

Chapter VIII. A lot of studies have been performed in developing the proposed fault

diagnosis approaches [44–48]. The performance of coordinated fuzzy ART neural

networks introduced in Chapter III is compared with the original fuzzy ART algo-

rithm [44]. The simulation result confirms the improvement in accuracy of the new

fuzzy ART algorithm over the original one. Evaluation of the synchronized sampling

based fault location (SSFL) algorithm under power swing and out-of-step conditions

is provided in [45]. The test result indicates that SSFL algorithm performs much

better than distance relay. The complete fault diagnosis approach using synchronized

sampling, which is introduced in Chapter V, is evaluated in [46]. The comprehensive

study proves the excellent accuracy in fault detection, classification and location of

the proposed approach. It is not possible to list all of the performance studies in

this chapter. Two major results, one for integrated fault analysis tool introduced

in Chapter VI and the other for boundary protection introduced in Chapter IV are

reported in Section B and Section C of this chapter respectively.

∗Part of the material in this chapter is reprinted from “A real time fault analysis
tool for monitoring operation of transmission line protective relay” by Nan Zhang
and Mladen Kezunovic, Electric Power Systems Research, (Accepted, In Press),
doi:10.1016/j.epsr.2006.03.015 c©2006 Elsevier B.V., with permission from Elsevier;
“Transmission line boundary protection using wavelet transform and neural network”
by Nan Zhang and Mladen Kezunovic, IEEE Trans. Power Delivery, (Accepted, In
Press), paper no. TPWRD.00747.2005 c©2006 IEEE, with permission from IEEE.
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B. Study of Real Time Fault Analysis Tool

This section implements a comprehensive study aimed at evaluating the perfor-

mance of the integrated fault analysis tool introduced in Chapter VI. The performance

of each individual function in the fault analysis tool is demonstrated and compared

to the traditional relay. The simulation is carried out by the same sets of tests for

each individual functions.

Three types of tests, with their objectives and methods, are listed in Table X.

The first two tests compare the performance of the integrated fault analysis tool

with the distance relay using numerous fault scenarios with different fault parameters

and system operating conditions. The third test compares the performance of the

integrated fault analysis tool with the distance relay using typical non-fault scenarios.

Two complex power system models are selected to implement those tests, as shown

in Fig. 56 and Fig. 57 respectively.

1. Power System Models

Test #1 is performed using Power system #1, which is a model of a real 345kV

system section from CenterPoint Energy [159]. It is suitable to generate realistic

fault scenarios in different system conditions. The STP-SKY line is the line of inter-

Table X. Test cases implemented for integrated fault analysis tool

Test Case System Used Objective and Method

#1 #1 Test the overall dependability/security of the algorithm us-
ing randomly generated scenarios under different fault pa-
rameters and system conditions.

#2 #2 Test the selectivity of the algorithm using randomly gener-
ated system-wide disturbances.

#3 #2 Test the particular security performance of the algorithm
during power swing and out-of-step situation caused by ini-
tial disturbances
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est in this study. This is a long transmission line represented with distributed line

parameters.

Test #2 and #3 are performed using power system #2, which is the WECC

9-bus system usually used in power flow and transient stability studies [160]. Unlike

system #1, which is quite “strong” by having quite a few ideal sources, the 9-bus sys-

tem represents a typical topology suitable for studying the influence of system-wide

disturbances. Since the generator data is also available in this system, a “dynamic”

model is set up using the embedded synchronous machine component SM 59 in ATP.

The dynamic scenarios such as power swing and out-of-step condition can be simu-

lated as a result. The original lumped transmission line parameters are modified to

represent lines with distributed parameters in our studies. The transmission line of

interest in this model is Line 9-6 with length of 200 miles, as shown in Fig. 57.

For both systems, the proposed fault analysis algorithm is installed at the local

transmission line ends and the synchronized data used in SSFD, SSFC and SSFL are

transmitted from the remote ends, as marked in Fig. 56 and Fig. 57.

2. Scenarios

For test #1, the disturbances involve only the events on SKY-STP line since the

faults occurring in other areas have less influence on this line due to the strong in-

feed configuration of the system. The integrated algorithm is used for classifying and

locating the faults occurring on the SKY-STP line.

Instead of scenarios which would only demonstrate the best performance of the

algorithm, the randomly generated scenarios can demonstrate the overall performance

and robustness of the proposed algorithm in different situations. The fault parameters

are randomly selected from uniform distribution of: all fault types, fault distances

(5%− 95%), fault resistances (0− 30Ω), and fault inception angles (0− 360o). There
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are five types of system conditions in this test and each has 500 random scenarios:

a) Nominal system, b) Weak infeed (Disconnect E1 and E9), c) Phase Shift (E1 with

phase shift −30o), and d) Frequency Shift (System frequency of 59Hz).

Test #2 evaluates selectivity of the proposed algorithm on Line 9-6 under system-

wide events occurring in system #2. The test scenarios are generated randomly using

the same fault parameter pool as in test #1. Each of the six lines in system #2

experiences 500 fault cases.

Power swing usually follows line switching, load change, or fault. In test #3,

three kinds of typical scenarios outside Line 9-6 are selected to trigger the power

swing phenomenon caused by oscillation of the machine angles of the three generators.

Stable swing is simulated by line switching and line fault cleared before the critical

clearing time (CCT). Unstable swing (out-of-step) is simulated by the most severe

three-phase fault cleared after CCT. The example of power swing waveforms in Fig. 9

is generated using this method in system #2.

For all three tests, the sampling rate is 20kHz originally used by SSFL. The data

is decimated to 32 points per cycle used for distance relay, as well as the PU, NNFDC,

SSFD and SSFC of the integrated fault analysis tool. The data window for voltage and

current samples is fixed to one cycle. In test #1 and #2, the data window is “static”

and taken from the post-fault value. In test #3, the data window is “dynamic” and

slides throughout the entire power swing process. Before the integrated tool is tested,

NNFDC is trained for both of the two power system models with thousands of well

designed scenarios respectively.

3. Test Results

The results of test set #1 and test set #2 are listed in Table XI, where the decision

errors (%) of each functions against the each group of test scenarios are shown. The
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Table XI. Test results for test case #1 and #2, error(%)

Test Case #1 Test Case #2

norm weak phase freq prim other

Distance Relay

Detection 0.600 0.600 1.000 0.800 0 0

Classification 1.000 1.400 7.400 1.400 1.200 1.440

Zone Estimation 8.600 12.000 15.800 9.000 10.400 11.400

Integrated Fault Analysis Tool

NN: Detection 0 0 0 0 0 0

NN: Classification 0 0 0.200 0.200 0 0

NN: Zone Estimation 5.800 6.600 5.600 5.400 5.600 2.240

SS: Detection 0 0 0 0 0 0

SS: Classification 0 0 0 0 0 0

SS: Location 0.545 0.585 0.513 0.529 0.720 –

error of fault location shown in the table is the average fault location error for each

set of tests.

The error of fault location for a single fault scenario is defined as:

error(%) =
|Actual Location - Computed Location|

Line Length
(10.1)

The functions in distance relay and integrated tools are broken down to make

a clear comparison. In test set #1, “norm”, “weak”, “phase” and “freq” stand for

nominal system, weak infeed, phase shift and frequency shift respectively. In test set

#2, “prim” and “other” stand for the events on the primary line 9-6 and events on

the other lines respectively.

The test results indicate that for all test sets, the integrated tool has much better

performance than distance relay. For all test sets, the pick-up unit can find the fault

inception time within 2 samples with respect to 32 points per cycle, which is suffi-

cient for NNFDC, SSFD, SSFC and SSFL. NNFDC has exactly the same functions

as distance relay. The result shows an overall improvement of the performance over
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distance relay. NNFDC especially provides a good classification for the fault types.

SSFD successfully differentiates all the internal faults from the normal cases and ex-

ternal faults. It can provide an exact confirmation when NNFDC is confused with

the events around the zone boundaries. SSFC successfully classified all fault types.

SSFL provides very good accuracy of fault location. The performance of integrated

tool is less affected by different fault parameters, system operating conditions and

system-wide events than the distance relay. It is expected so since the unique advan-

tages of neural network based approach and synchronized sampling based approach

mentioned in Chapter III and V respectively.

The desired behavior of the line protection in test #3 is that it should not initiate

a trip signal during the power swing. As mentioned in Chapter II, the reason is that

power swing, whether stable or unstable, is not a fault within the line of interest.

Therefore, the distance relay or other fault detection algorithm should not trip during

the power swing unless it receives an order by other out-of-step relays.

The results of test #3 listed in Table XII demonstrate the behavior of both

the distance relay and integrated analysis tool during the power swing caused by

different situations. The result indicates that the distance relay will operate during

some situation but the integrated analysis tool will not be affected in any case.

C. Study of Boundary Protection

1. System Model

The performance study for boundary protection scheme is based on the 500kV

power system model shown in Fig. 58. The system is modeled in alternative transient

program (ATP), where the three transmission lines are J. Marti frequency-dependent

models created in ATP-LCC subroutine in order to observe the frequency effects more
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Table XII. Test results for power swing simulation

Power Swing Case Line Dist. Relay Fault Analysis Tool

6-4 stand-by stand-by

9-8 stand-by stand-by

Line Open 4-5 stand-by stand-by

Stable 5-7 stand-by stand-by

7-8 stand-by stand-by

Line Fault 4-5 Zone 3 pick-up stand-by

(Clear Time 5-7 stand-by stand-by

<CCT) 7-8 stand-by stand-by

Line Fault 4-5 Zone 1 trip stand-by

Unstable (Clear Time 5-7 Zone 1 trip stand-by

>CCT) 7-8 Zone 1 trip stand-by

accurately. The length of the three lines is set identically to 200 miles for simplicity.

The busbar capacitance is set identically to 0.1µF , which is the typical value from

the literature. The detailed parameters are listed in the Appendix.

2. Feature Comparison

This section will give some examples of the feature comparison from different

fault scenarios.

For the boundary protection, six fault points are selected for comparison, as

shown in Fig. 58. Those fault points are located 5 miles away from the nearest bus.

For illustration, we randomly selected an ABG fault, with fault resistance of 10Ω

and fault angle of 70o identical for all six fault points. If the six fault scenarios form

the entire input space, we can obtain the patterns for boundary protection (neural

network #1) as shown in Fig. 59.

The arrangement for each pattern is the same as the one shown in Fig. 29 (a).

The first half represents the voltage features and the second half the current features.

Comparatively, the internal faults at F1 and F2 have higher values for both voltage
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F2 F3F1F5

Primary

Line

Backward

Line

Forward

Line1 2 3 4

F4F6

Fig. 58. The multi-line system for testing boundary protection scheme

Fig. 59. Pattern comparison for boundary protection (neural network #1)
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and current features. The forward faults at F3 and F4 have smaller value for both

voltage and current features. The backward line faults at F5 and F6 have higher

value for voltage features and smaller value for current features. The effect is much

clearer for the fault point pairs (F1 and F6, F2 and F3) located on opposite side of

the same bus. Those results confirm the conclusion that the faults on different line

sections are clearly differentiable.

At F1, a set of scenarios including all fault types is generated to demonstrate

the features for fault type classification. The fault resistance and fault angle are

also selected as 10Ω and 70o respectively. The patterns of all fault types for neural

network #2 are shown in Fig. 60. The arrangement for each pattern is the same as

the one shown in Fig. 29 (b). It is seen that the waveform is clearly presented only

Fig. 60. Pattern comparison for fault classification (neural network #2)
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for the phases involving the fault. In that case, all the fault types are also easily

differentiable by this pattern arrangement approach.

3. Neural Network Training

A set of 3960 fault scenarios was generated for the system shown in Fig. 58 using

interactive ATP and MALTAB as simulation tool for training the neural networks.

For each line section, the selection includes 1320 fault cases taking into account all

the fault types, 5 fault locations at 2.5, 50, 100, 150, 197.5 miles from the bus at the

left-hand side, several fault resistances in the range of 0 − 100Ω, and several fault

angles in the range of 0 − 180o.

For neural network #1, all 3960 cases are used as inputs for training. The

outputs of the neural network are “Normal”, “Primary line fault”, “Forward line

fault” and “Backward line fault”. For a comparison, we select two features from the

input pattern of the entire set of 3960 cases to compare the feature differences, as

shown in Fig. 61. The meaning of those two features of each pattern can be found

using Fig. 29 (a) and equation (4.4). We can see that in general, the features from

different line sections can easily be differentiated since they are generally distributed

in different ranges. We can also see that there are exceptions observed for certain

fault types, fault resistances and fault angles. That is where we can benefit from the

neural network algorithm to deal with the problem. If those exceptions do not exist,

we can use “hard” thresholds directly for the boundary protection.

For neural network #2, only 1320 fault cases on the primary line are used as the

inputs for training since only the events on the primary line are of concern in this

case. The outputs of neural network #2 indicate the fault type directly.
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(a) Va (x1)

(b) Ia (x1)

Fault scenarios 

on primary line

Fault scenarios 

on forward line

Fault scenarios 

on backward line

Fig. 61. Selected two features for generated 3960 cases

4. Performance Testing

Another 2000 fault scenarios were generated for testing the protection schemes.

There are 1000 fault cases on primary line and 500 each of the other two lines. Those

cases are selected from 15 fault points, including the six points shown in Fig. 58 and

nine in other locations distributed along the three lines. The fault points are different

from those in the training scenarios. For each fault point, other fault parameters are

generated randomly for all fault types, fault resistances in the range of 0−100Ω, and

fault angles in the range of 0 − 180o. The randomly generated scenarios may consist

of some extreme cases and thus can demonstrate an overall statistical performance of

the proposed scheme.

For boundary protection, the accuracy of fault detection is 99.7%. Among the
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six incorrect cases, only one involves a fault event on the primary line. For other five

cases, the algorithm confuses the forward faults with the backward faults. Regarding

fault type classification, only one out of 1000 cases is incorrect. The accuracy is 99.9%.

The overall accuracy combining the boundary protection and fault classification can

be calculated as (1 − 7/2000) × 100% = 99.65%. As we can see in Table XI, the

traditional distance relay can only achieve its best accuracy of 91.4% in estimating the

protection zone and 99% in fault classification. Obviously, the overall performance of

the proposed boundary protection scheme is much better than that of distance relay.

D. Summary

Comprehensive performance studies have been implemented in this chapter. For

the proposed fault analysis tool introduced in Chapter VI that includes the neural

network based fault diagnosis approach and synchronized sampling based approach,

the tests are carried out based on the comprehensive fault and non-fault scenarios

using two complex power system models. The test results indicate that the integrated

tool has better dependability/security and selectivity than a distance relay. It is fea-

sible to use it as an accurate reference for relay monitoring. For boundary protection

scheme proposed in Chapter IV, the tests are carried out using a typical system model

based on frequency-dependent line. The results reflect its unique advantages over the

traditional non-unit protection schemes. Compared to the traditional unit protection

schemes, it uses only the measurements from one end of the transmission line and

does not need a communication link.
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CHAPTER XI

CONCLUSIONS

A. Summary of Achievements

Cascading blackout is one of the most catastrophic events in a power system. It

is a result of accumulation of a chain of contingencies and system reactions. Relay

misbehavior is believed to be one of the most contributing factors to the cascading

blackouts according to the historical record. Lacking a verification mechanism for

relay operation is another factor that keeps the system operator from knowing exactly

the disturbance information and enabling a fast corrective control scheme.

This dissertation is proposing an integrated relay monitoring tool to be installed

at major substations of transmission system, aimed at preventing and mitigating cas-

cading bleackouts. The relay monitoring tool includes a real time fault analysis tool

combined by neural network (NN) based approach and synchronized sampling (SS)

based approach. Both NN and SS based techniques use time-domain based schemes

which are more accurate than the traditional phasor based protection schemes. The

integrated solution utilizes the strength of neural network algorithm in fault clas-

sification and that of synchronized sampling algorithm in fault location. It is easy

to check the consistency of decisions made by each technique to improve accuracy

of fault analysis to enhance the dependability and security of protection system si-

multaneously. The relay monitoring tool also contains a relay operation monitoring

tool using event tree analysis. It provides a self-explainable, easy-to-use way for real

time monitoring of relay operations. It also predefines remedial action in the case

of relay misoperation or unintended operation. That will provide a local disturbance

diagnostic support tool to assist operators in preventing and mitigating cascading
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blackouts.

The achievements of this dissertation are summarized as follows:

Chapter II has explored the existing transmission line relaying techniques and its

problems. It is pointed out that the speed and accuracy of transmission line relay will

directly affect system transient stability and its behavior such as overload and power

swing. Such events may affect the judgment of a distance relay so that it can issue

an incorrect command for removal of a healthy line. This phenomenon was evidenced

in different historical account of major blackouts.

Chapter III has been dedicated to enhancing the transmission line fault diagnosis

schemes using neural network. A previously developed fault diagnosis scheme based

on fuzzy Adaptive Resonance Theory (ART) neural network has been explored. The

design improvement proposed in this dissertation applies multiple neural networks

and a feature extraction method. It solves the application issues such as dealing with

large input data set, blocking the impact from power swing and locating the fault

inception time, etc.

A boundary protection scheme has been developed in Chapter IV. It is an exten-

sion of the neural network based fault diagnosis scheme introduced in Chapter III.

It is aimed at solving the problem of differentiating the internal faults from external

using measurements from one end of transmission line only. The wavelet transform is

utilized to extract low frequency and high frequency components of the fault signals

that are then used as inputs for two coordinated neural networks aimed at detecting

and classifying the fault. The new boundary protection scheme accuracy is improved

over the accuracy of traditional non-unit protection. Hence, it can work as a unit

protection scheme to protect the entire length of transmission line while it does not

have to use the communication link.

An alternate fault diagnosis approach based on synchronized sampling algorithm
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has been studied in Chapter V. The effort was made to extend the previously intro-

duced fault location scheme to a complete fault detection, classification and location

scheme. Without extra data requirement, the new approach enhances the functions

of fault diagnosis and improves the performance of the previous approach by the

extended derivation of the synchronized sampling algorithm.

The two fault diagnosis techniques: neural network based, and synchronized

sampling based, are further integrated into a real time fault analysis tool in Chapter

VI. Using the same source of data, the fault analysis tool provides a comprehensive

fault analysis functions and enhanced fault location with an improved accuracy. The

proposed hardware and software solutions make the tool feasible for use as an online

reference for monitoring the traditional transmission line relay.

An effective real time relay monitoring tool based on event tree analysis (ETA)

has been proposed in Chapter VII. The structure of generic event tree proposed in

the literature has been modified to be more self-understandable for online monitoring

purpose. A group of event trees have been designed for a typical relay system. The

demonstrated case study shows its efficiency and easy-to-use feature when monitoring

and correcting the relay operations. Knowing the information delivered by the pro-

posed event tree analysis, the system operator will have accurate information about

the relay operations during a disturbance when the operator needs to issue corrective

control actions.

Chapter VIII proposes an interactive scheme for preventing and mitigating cas-

cading blackouts. The local relay monitoring tool works with the system-wide mon-

itoring and control tool to enable better understanding and interactive control for

the system disturbances. The role of the system-wide monitoring and control tool is

to evaluate the security level of the system components and inform the related local

monitoring tool. The role of the local relay monitoring tool is to provide the detailed
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disturbance information using its advanced fault diagnosis techniques and inform the

system tool what exactly happened in the local relay system. Corrective control

means are issued after the elaborate analysis of the disturbances at both system-wide

and local levels. The detailed scheme is described and demonstrated using a case

study implemented in IEEE 39-bus system.

Chapters IX and X have been devoted to evaluation of the proposed fault diagno-

sis techniques. An improved software package has been developed to handle a variety

of complex fault analysis tasks under different system conditions. The structure of the

software benefits from both programming flexibility of MATLAB and simulation effi-

ciency of ATP. Comprehensive performance studies have been implemented. The test

result indicates that integrated fault analysis tool has better dependability/security

and selectivity than distance relay when analyzing thousands of generated fault sce-

narios in different conditions. It is feasible to use it as a reference for accuracy of the

local relay monitoring. The integration of the two techniques is necessary since they

can complement each other to get an convincible fault analysis result. Neural network

based approach has an enhanced accuracy over the distance relay and duplicates its

fault diagnosis functions. It uses local measurements and implements the fast calcu-

lation. But its accuracy when detecting the fault occurring around transmission line

boundaries is not so good. Synchronized sampling based approach introduces time

delay for transmitting data from remote end. But it is very accurate when deter-

mining whether the fault is internal or external and finding the exact fault location.

The new boundary protection scheme, which is an extension of neural network based

approach, can protect the entire transmission line length accurately when compared

to the traditional relay by using one-end measurements only. As long as the required

data can be readily available from instrument transformers using high-speed sam-

pling unit, the boundary protection scheme can be used as a substitute for the neural
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network part of the integrated fault analysis tool to achieve a much more accurate

result.

B. Research Contribution

Occurrence of power system blackouts is more frequent world-widely recently.

The reason is that power systems operate close to their design limits and with more

uncertainty of the system operating mode due to the ever-increasing load demand and

the advent of the deregulated power market. An urgent task for the power industry

is to seek the solutions to prevent the future blackouts. As mentioned in Chapter

I, the key contributions in preventing the cascading blackout would be reducing the

relay misbehavior and enhancing local level diagnostic support during the system

disturbances.

For several decades, the traditional protective relaying approaches are domi-

nantly based on calculation of phasors and relay settings. As a result, its perfor-

mance may be affected in some extreme system operating conditions with unusual

fault parameters, as explained in Chapter I.

This dissertation introduces and utilizes several new techniques, including self-

organized neural network, fuzzy logic, wavelet transform, GPS based synchronized

sampling, etc. Those techniques are integrated together to achieve a specific goal,

which is to improve the dependability and security of protection system simultane-

ously. This dissertation indicates how the new technology can find a role in improving

transmission line protection and reducing relay misbehavior. Major work of this dis-

sertation has been focused on two kinds of time-domain fault diagnosis approaches,

namely neural network based approach and synchronized sampling based approach.

The comprehensive studies in this dissertation have demonstrated that significant
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improvements over the traditional methods can be achieved. The flexibility of pro-

posed approaches enables them to be used in a variety of feasible applications. They

can be used as a single protective relay to improve overall performance and can be

incorporated in an IED as an additional function. They can also be combined as

a comprehensive fault analysis tool to be a reference for determining accurate fault

detection, classification and location.

In existing practice, the relay operation is automatic. Whether it behaves cor-

rectly in all circumstances is not known due to the lack of verification tool. The

system operator has to assume relay operation is correct and then evaluate it offline

after disturbance unfolds to confirm this assumption. When the system operates

close to its limits, every single relay operation could cause a chain of unfolding events

eventually. Without the verification of relay operations, system operator is not able

to correct the relay misbehavior and make appropriate decision to relief the system

disturbances. The proposed relay monitoring tool based on event tree analysis can fill

the need in this area. As a real time monitoring tool to be installed in the substations,

it works with the system-wide monitoring tool, which is installed in the system con-

trol center, to provide a dynamic picture of the system status. It effectively detects

system disturbances and allows implementation of a control action that will prevent

them from spreading over a larger area.

C. Suggestions for Future Research

The dissertation has made an extensive effort in designing the overall solution

of local relay monitoring tool for preventing and mitigating cascading blackouts and

studying each individual technique of neural network, synchronized sampling and

event tree analysis. The research and study of both the overall scheme and individual
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techniques could be extended in the future to make them more feasible for practical

use.

The understanding of cascading blackouts should be further studied. A scenario

of cascading blackout simulated by the dynamic simulation program based on a large

scale system model is needed for better understanding. The studies about fault

analysis tool and relay monitoring scheme should be evaluated using this blackout

scenario.

The fault diagnosis scheme can be further improved. For fuzzy ART neural

network based method, it is useful to study the way of effectively selecting the training

data. Among the different system configurations and fault parameters, a reasonable

selection of different typical conditions may help to reduce the number of training

data and hence reduce the neural network training burden. It is worth studying

how effectively to implement online testing of the neural network trained by the

simulated power system models. For boundary protection scheme, the actual value

of the substation bus capacitance should be investigated. The adjustment of the

proposed approach with respect to the availability of the hardware could be studied.

For synchronized sampling based algorithm, a field test is necessary to study how the

algorithm is affected by the measurement imperfection and different fault parameters.

The proposed relay monitoring tool and the interactive scheme with the system-

wide monitoring tool should be studied in more specific system configurations. The

design of event trees can be based on an actual protection system in a substation.

The interaction with the system monitoring tool needs to be adjusted considering the

availability of the data and communication links.
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APPENDIX A

MATHEMATICAL ASPECTS FOR FUZZY ART NEURAL NETWORK

TRAINING

Assume K is the length of input pattern, N is the number of clusters or neurons,

nl is the number of patterns that belong to the cluster l. xi = [xi1, xi2, . . . , xiK ]

is i-th input pattern and xij is j-th feature of the i-th input pattern, and wl =

[wl1, wl2, . . . , wlK] is a prototype of l-th cluster.

The Euclidean distance dl between pattern xi and the cluster wl:

dl =
√

(wl − xi)(wl − xi)T for l = 1, 2, . . . , N ;

The nearest cluster for xi is wp for which dp = min
l
dl.

If pattern xi is assigned to the cluster wp, the winning prototype is updated:

wp =
np

np + 1
wp +

1

np + 1
xi, np = np + 1.

If pattern xi is removed from the cluster wp, the original winning prototype is

updated:

wp =
np

np − 1
wp −

1

np − 1
xi, np = np − 1.
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APPENDIX B

ATPDRAW MODELS AND SYSTEM PARAMETERS

Three studied power system model are generated using ATPdraw 3.7p2. The

system model and parameters are given below.

Fig. 62. ATPdraw model of SKY-STP system
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Fig. 63. ATPdraw model of WECC 9-bus system

Fig. 64. ATPdraw model of two-machine system for boundary protection scheme
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Table XIII. SKY-STP system source parameters in steady state

Source ATPdraw |E|(V ) 6 E(deg) R1(Ω) X1(Ω) R0(Ω) X0(Ω)
number Component

1 AC3PH.SUP 340642.65 -53.35 1.512 37.1316 2.135 41.2228
2 AC3PH.SUP 359296.80 -45.32 0.988 22.5195 0.381 13.2594
3 AC3PH.SUP 347349.45 -57.39 1.883 26.8844 1.868 15.0786
4 AC3PH.SUP 386993.40 -15.36 0.345 17.4962 0.272 15.0786

0.950 438.0000 0.950 438.0000
5 AC3PH.SUP 350889.15 -40.89 1.463 18.5016 1.626 21.5459
6 AC3PH.SUP 353932.05 -39.00 0.207 3.9483 0.621 5.6827
7 AC3PH.SUP 347418.45 -36.49 1.070 12.7048 4.495 25.2697
8 AC3PH.SUP 344796.45 -54.64 1.488 30.6251 3.303 40.0388
9 AC3PH.SUP 347287.35 -45.54 1.738 16.8539 4.975 31.0060

Table XIV. SKY-STP system line parameters

ATPdraw Positive-sequence Zero-sequence
Line Component impedance Z1(Ω) impedance Z0(Ω)

R1 X1 R0 X0

SKY-MARION LINESY 3.SUP 1.071 9.403 5.475 36.064
MARION-HILL LINESY 3.SUP 1.785 16.430 9.522 62.840
SPRUCE-SKY LINESY 3.SUP 0.952 12.022 11.308 41.896
SPRUCE-LHILL LINESY 3.SUP 7.500 68.440 66.300 218.050
DOW-WAP LINESY 3.SUP 3.214 33.327 21.540 96.291

Line ATPdraw Length Resistance (Ω/mile) Reactance (Ω/mile) Susceptance (Ω/mile)
Component (miles) R1 R0 ωL1 ωL0 ωC1 ωC0

STP-WAP LINEZT 3.SUP 68.26 0.06134 0.38980 0.56640 2.05080 7.60150 3.83770
STP-HOLMAN LINEZT 3.SUP 90.02 0.06134 0.38980 0.56640 2.05080 7.60150 3.83770
STP-LHILL LINEZT 3.SUP 141.28 0.06134 0.38980 0.56640 2.05080 7.60150 3.83770
STP-DOW LINEZT 3.SUP 45.39 0.03092 0.40502 0.29693 1.63593 14.73960 5.99290
STP-SKY LINEZT 3.SUP 167.44 0.06134 0.43594 0.56640 2.00988 7.62447 4.37250
STP-HILL LINEZT 3.SUP 178.34 0.06134 0.43594 0.56640 2.00988 7.62447 4.37250

Table XV. WECC 9-bus system source parameters in steady state (slightly modified

from original parameters)

Source ATPdraw Voltage(V) Angle(deg) xL(pu) xd(pu) xq(pu) x
′

d
(pu) x

′

q(pu) x
′′

d
(pu)

number Component
1 SM59 NC.SUP 195305 0 0.03 0.146 0.969 0.0608 0.0969 0.04
2 SM59 NC.SUP 192489 9.396 0.01 0.896 0.865 0.1198 0.1969 0.07
3 SM59 NC.SUP 192489 4.706 0.10 1.313 1.258 0.1813 0.2500 0.12

x
′′

q (pu) t
′

do
(s) t

′

qo(s) t
′′

do
(s) t

′′

qo(s) x0(pu) HICO (million kg − m2)

1 0.06 8.96 0.31 0.032 0.05 0.04 0.0333
2 0.13 6.00 0.54 0.032 0.05 0.13 0.0090
3 0.17 5.89 0.60 0.032 0.05 0.12 0.0042
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Table XVI. WECC 9-bus system line parameters

ATPdraw Positive-sequence Zero-sequence
Line Component impedance Z1(Ω) impedance Z0(Ω)

R1 X1 R0 X0

1-4 LINESY 3.SUP 0 30.470 0 91.411
2-7 LINESY 3.SUP 0 33.063 0 99.188
3-9 LINESY 3.SUP 0 30.999 0 92.998
7-8 LINESY 3.SUP 4.4965 38.088 13.4895 114.264

Line ATPdraw Length Resistance (Ω/mile) Reactance (Ω/mile) Susceptance (Ω/mile)
Component (miles) R1 R0 ωL1 ωL0 ωC1 ωC0

4-5 LINEZT 3.SUP 100 0.05290 0.15870 0.44965 1.34895 3.32703 1.66352
4-6 LINEZT 3.SUP 100 0.08993 0.26979 0.48668 1.46004 2.98677 1.49338
5-7 LINEZT 3.SUP 100 0.16928 0.50784 0.85169 2.55507 5.78450 2.89225
6-9 LINEZT 3.SUP 200 0.10316 0.30947 0.44965 1.34895 3.38374 1.69187
8-9 LINEZT 3.SUP 100 0.06295 0.18885 0.53323 1.59970 3.95085 1.97543

Table XVII. WECC 9-bus system load parameters

ATPdraw Phase A Phase B Phase C
Line Component impedance (Ω) impedance (Ω) impedance (Ω)

Ra Xa Rb Xb Rc Xc

Load-A (Bus 6) RLC 3.SUP 542.5424 180.83865 542.5424 180.83865 542.5424 180.83865
Load-B (Bus 5) RLC 3.SUP 361.6244 144.64976 361.6244 144.64976 361.6244 144.64976
Load-C (Bus 8) RLC 3.SUP 486.3748 170.23114 486.3748 170.23114 486.3748 170.23114

Table XVIII. Two-machine system source parameters in steady state

Source ATPdraw |E|(V ) 6 E(deg) R1(Ω) X1(Ω) R0(Ω) X0(Ω)
number Component

1 AC3PH.SUP 500000 15 1.512 100.3 2.135 109.3
2 AC3PH.SUP 500000 0 0.345 42.93 0.272 45.78
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Fig. 65. Parameters setup for all three lines in two-machine system (1)

Fig. 66. Parameters setup for all three lines in two-machine system (2)
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