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Abstract—This paper proposes a mixed-integer stochastic 

programming approach to the solution of generation expansion 
planning problem. Generation and Transmission line expansion 
planning including system reliability considerations is considered 
a challenging problem.  The optimal solution is expected to yield 
a favorable trade off between system reliability and cost. This 
helps guide the development of additional generation capacity 
that is optimal with respect to cost and reliability. The problem is 
stochastic due to random uncertainties in area generation, 
transmission lines, and area loads. The problem is formulated as 
a two-stage recourse model. Reliability index used in this 
problem is expected cost of load loss. The objective is to minimize 
the expansion cost in the first stage and the expected loss of load 
cost in the second stage. The problem is then solved by L-shaped 
algorithm. The method is illustrated by application to a three-
area power system. 
 

Index Terms—Multi-area Power System, Power System 
Optimization, Reliability, Stochastic Programming, Two-stage 
Recourse Model. 

I. NOMENCLATURE 

A. Indices 
I {1,2,…,n} Set of network nodes  
s Source node 
t Sink node 
i,j Network nodes 
ω  System state (scenario), Ω∈ω  
Ω  State space (all possible scenarios) 

B. Parameters 
gN  Maximum number of additional generation units 

g
ic  Cost of an additional generation unit at area i ($) 
( )ωl

ic  Cost of load loss in area i in stateω   ($/MW) 
g
iM  Additional generation capacity in area i (MW) 
( )ωig  Capacity of generation in area i in stateω  (MW) 
( )ωijt  Tie line capacity between area i and j in stateω  

(MW) 
( )ωil  Load in area i in stateω  (MW) 
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C. Decision variables 
g
ix  Number of additional generators in area i, integer 
( )ωijy  Flow from arc i to j for system stateω  

II. INTRODUCTION 
recent study of long term generation adequacy in a multi-
area power system [2] uses an optimization procedure 

along with MARS  to determine an excess or deficient amount 
of generation in each area. One of the contributions of this 
reference is to show the relationship between each area risk 
level and load changes. The drawback of this procedure [2] is 
that the method requires iterations between optimization and 
risk calculation which is obtained from several runs of MARS. 
In a single MARS run, the outage of each component in the 
system is simulated chronologically by Monte Carlo sampling 
which may demand long history to produce converged results. 

Optimization methods have been previously applied to 
solve generation expansion planning [1], [2], [6], [7], [9] but 
these do not explicitly include system reliability 
considerations. The objective of this research is to solve the 
multi-area generation and transmission expansion problem 
with explicit considerations of reliability. Generation 
expansion problem was initially formulated as linear 
programming as the power flows are continuous variables. 
Mixed-integer programming and dynamic programming [9] 
were proposed to incorporate the discrete decision of 
additional capacity and to obtain the sequence of optimal 
decisions respectively. Depending upon application, power 
system networks are characterized by power flow equations 
(DC flow) or by capacity flow network. The common 
constraints are system capacity constraints and demand 
constraints. The common objective of all formulations is to 
minimize the expansion cost over a certain time period. 
Various optimization techniques; such as, Branch and Bound 
and Bender’s decomposition have been proposed. Heuristic 
techniques such as Fuzzy logic, greedy adaptive search, 
genetic algorithm, and tabu search have been also used Finally 
meta-heuristic technique such as, simulated annealing have 
been also employed to find solution to the problem. 

Attempts have been made to include the reliability aspect as 
a constraint on loss of load probability in [1]. However, the 
solution is obtained using heuristic techniques. In addition, 
unavailability cost resulting from unserved energy has been 
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included in the objective function in [6] but the problem is 
formulated as linear programming and does not account for 
random uncertainties in generation, transmission lines and 
load. The formulation accounting random uncertainties in 
generation capacities and load has been shown in stochastic 
programming literature [11] but consideration of reliability 
indices is not included. In [11], the problem is formulated as 
two-stage recourse model where the first stage decision 
variables are the additional capacity units and the second stage 
decision variables are network flows. The objective is only to 
minimize the expansion cost in the first stage and operation 
cost in the second stage without consideration of reliability 
indices. 

In this paper, the problem is formulated as two-stage 
recourse model. The first stage and second stage variables are 
the same as [11]; however, reliability is included in the second 
stage objective function. Unlike [11], the formulation does not 
require generation to meet demand at all time, it rather 
maximizes reliability within available resource, i.e. minimize 
expected loss of load cost subject to available expansion 
budget. It should be noted that this reliability index is also a 
stochastic variable and minimizing this index makes the 
problem more challenging than incorporating random 
uncertainties in system capacities and load. The overall 
objective is to minimize expansion cost in the first stage and at 
the same time to minimize expected loss of load cost in the 
second stage. L-shaped algorithm [8] is applied to solve the 
problem. The problem is implemented on a three-area power 
system.   

III. PROBLEM FORMULATION 

Multi-area power systems are modeled as capacity flow 
network with area generation, area load, and tie-line 
connections between areas. This type of representation is 
considered adequate for multi-area configurations [3]. The 
problem is to determine the generation capacity requirement in 
each area with minimum cost and maximum reliability. In this 
analysis, it is assumed that tie-line equivalent parameters are 
given. The followings present detailed modeling of each unit 
namely area generation, area load, and tie lines. 

A. Area Generation Model 
The failure rate, mean repair time and capacity of each 

generating unit are assumed to be provided. Discrete 
probability distribution function for generation in each area is 
constructed based on unit parameters assuming two-stage 
Markov process shown in Fig. 1.   

 
Fig. 1.  Two-stage Markov Process 

 
The distribution function is constructed utilizing sequential 

unit addition approach. The probability table contains levels 
of state capacity including zero and their corresponding 
probabilities.  

igv  Generation capacity vector of area i 
g
ipv  Probability vector of generation capacity in area i such 

that ( ) g
ii pg vv =Pr  

For computational efficiency, the generation capacity is 
rounded off to a fixed increment so that only minimum 
capacity state and number of states in each area are stored. 
States with very small probability are ignored. 

B. Area Load Model 
Originally the hourly load data is available in the vector 

form shown in (1).  To improve computational efficiency 
while still preserving correlation between area loads, they are 
grouped together utilizing clustering algorithm [12] to an 
appropriate number of states with corresponding probabilities. 

( )h
n

hhh llll ,,, 21 K
v

=  (1) 
where  

hl
v

 Load vector for the hour h 
h
il  Load for the hour h in area i 

C. Tie Line Model 
Tie-line parameters are its capacity, forced outage rate and 

repair rate. Discrete probability distribution of tie-line 
capacity between areas is constructed based on the given 
parameters assuming two-stage Markov process, up and down 
states. Like area generation model, the distribution function 
construction utilizes unit addition algorithm.  

The Tie-line model is represented by (2), which contains 
the connection areas (from area, to area), its capacity and its 
corresponding probability. 

( )ijijij bft
vvv

,=  (2) 
where 

ijt
v  Tie-line capacity vector from area i to area j 

ijf
v  Tie-line capacity vector from area i to area j in forward 

direction 
ijb
v  Tie line capacity vector from area i to area j in 

backward direction 
t
ijpv  Probability vector of tie line capacity from area i to 

area j such that ( )ij
t
ij tp

vv Pr=  

D. Stochastic Programming Model 
Multi-area power system is formulated as a network flow 

problem where a node in the network represents an area. 
Source and sink nodes are artificially introduced to represent 
area generations and load as shown in Fig. 2. The overall 
objective is to minimize the expansion cost while also 
maximizing system reliability under uncertainty in area 
generation, load, and tie-lines. The capacity of every arc in the 
network is random variable with its discrete probability 
distributions.  

 

Failure rate 

DU

Repair rate 
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Fig. 2.  Power System Network: Capacity Flow Model 

 
An optimization approach based on mixed- integer 

stochastic programming is proposed for the solution of the 
generation expansion planning problem in multi-area power 
systems. Using expected system load loss as a reliability 
index, the problem is formulated as two-stage recourse model. 
The first stage decision variables are number of generators to 
be invested in each area which are determined before the 
realization of randomness in the problem. The second stage 
decision variables are the actual flows in the network. The 
failure probability of additional generators is taken into 
account by using their effective capacities [13]. The 
formulation is given in the following.  

( )[ ]ωω
~,Min ~ xfExcz

Ii

g
i

g
i += ∑

∈

 (3) 

g

Ii

g
i Nx =∑

∈

s.t.  (4) 

integer,0≥g
ix  (5) 

where the only constraint (4) in the first stage is a restriction 
on maximum number of additional generators in the system. 
Constraint (5) is an integer requirement for number of 
additional generators. The function in (3)   is the second stage 
objective value of minimizing cost of load loss under a 
realization ω of Ω  and is given as follows. 

( ) ( ) ( ) ( )( )∑
∈

−=
Ii

iti
l
i ylcxf ωωωω Min,  (6) 

( ) ( ) IixMgy g
i

g
iisi ∈∀+≤ ;s.t. ωω  (7) 

( ) ( ) ( ) jiIjityy ijijji ≠∈∀≤− ,,;ωωω  (8) 

( ) ( ) Iily iit ∈∀≤ ;ωω  (9) 
( ) ( ) ( ) ( ) Iiyyyy it

ij
Ij

ij

ij
Ij

jisi ∈∀+=+ ∑∑
≠
∈

≠
∈

;ωωωω  (10
) 

( ) ( ) ( ) Ijiyyy itsiij ∈∀≥ ,;0,, ωωω  (11
) 

where, constraints (7), (8), and (9) are maximum capacity 
flow in the network under uncertainty in generation, tie line, 
and load arc respectively. Constraint (10) constitutes 
conservation of flow in network. Constraint (11) is non-
negativity requirement for actual flow in the network. 
 It should be noted that the second stage objective function 
coefficient depends on system states. The calculation of this 
coefficient is performed separately and is shown in the 
following section. 

E. Loss of Load Cost (LOLC) Coefficient Calculation 
Loss of load cost depends on interruption duration as well 

as type of interrupted load. The most common approach to 
represent power interruption cost is through customer damage 
function (CDF) [4]. This function relates different types of 
load and interruption duration to cost per MW. In order to 

accurately calculate system expected LOLC, LOLC 
coefficient needs to be evaluated according to the mean 
duration time of each state (ω ).  

Mean duration of each stage can be assessed by taking a 
reciprocal of equivalent transition rate from that state to others 
[4]. State mean duration is presented in (12). Equivalent 
transition rate of all components can be calculated using the 
recursive formula in [10] when constructing probability 
distribution function. Equivalent transition rates of all 
components are shown in Appendix A. 

∑∑∑∑∑
=

≠
∈

−

≠
∈

+

∈

−

∈

+ ++++
=

l

kijijii

m

k
l

ji
Iji

t

ji
Iji

t
Ii

g
Ii

g

D

1,,

24
ωωωωω

ω

λλλλλ

 (12
) 

where 
ωD  Mean duration of stateω  (hours) 
+ωλ
ig

 Equivalent transition rate of generation in area i from a 
capacity of stateω  to higher capacity (per day) 

−ωλ
ig

 Equivalent transition rate of generation in area i from a 
capacity of stateω  to lower capacity (per day) 

+ωλ
ijt

 Equivalent transition rate of transmission line from 
area i to area j from a capacity of stateω  to higher 
capacity (per day) 

−ωλ
ijt

 Equivalent transition rate of transmission line from 
area i to area j from a capacity of stateω  to lower 
capacity (per day) 

ωλ
kl
 Equivalent transition rate of area load from stateω  to 

other load states (per day) 
lm  Total number of area load states 
Customer damage function used in this paper is taken from 

[5]. The function was estimated from electric utility cost 
survey in the US. For small-medium commercial and 
industrial load, interruption cost dollar per kW-h can be 
described, as a function of outage duration, by (13).  

( ) 202248.038489.048005.6 ωω
ω

DDl eDc −+=  (13
) 

IV. SOLUTION PROCEDURE 
L-shaped algorithm [8] is the most common approach for 

stochastic programming procedure. At each iteration, the 
algorithm approximates the second stage objective function by 
generating piecewise linear function and appends it to the 
master problem. The algorithm is implemented with Xpress-
IVE student edition.  

Steps of L-shaped algorithm [8] for this problem are as 
follows. 
Step 0. Initialization 
o Find x0 from solving master problem; discard the 

second stage objective function. 

integer,0

..

Min

≥

=∑

∑

∈

∈

g
i

g

Ii

g
i

Ii

g
i

g
i

x

Nxts

xc

 

o Set upper bound (UB) and lower bound (LB), i.e., 
∞←UB and −∞←LB  

…
…

. 

…
…

. Power system network 
Tie line between areas 

( )ωijt
S T

( )ωil( )ωig
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Step 1. Solve subproblem at iteration k 
o Reset the linear approximation function coefficients, 

, its right-hand-side value , and 
the subproblem objective function value . 

Iik
i ∈∀← ;0β 0←kα

0←kf
o For all states ω  = 1 to Ω , solve sub problem k where 

each scenario has probability,  ωp
( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) Ijiyyy

Iiyyyy
Iily

jiIjityy
IixMgyts

ylcf

itisiij

it

ij
Ij

ij

ij
Ij

jisi

iit

ijijji

kg
i

g
iisi

Ii
iti

l
i

k

∈∀≥

∈∀+=+
∈∀≤

≠∈∀≤−
∈∀+≤

−=

∑∑

∑

≠
∈

≠
∈

∈

,;0,,

;
;

,,;
;..

Min

,

ωωω

ωωωω
ωω
ωωω

ωω

ωωωω

 

o Obtain dual solution, ( )l
i

t
ij

g
i

k
,,, ,, ωωωω ππππ =

r  associated 

with generation, transmission line capacities, and load 
constraints respectively. 

o Update the generated cut from  , and g
i

g
i

k
i Mp ,ωωπβ =+

( ) ( ) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
++=+ ∑∑∑

∈∀
≠

∈∀∈∀ Ii
i

l
i

ji
Iji

ij
t

ij
Ii

i
g

ik ltgp ωπωπωπα ωωωω ,
,

,,
 

o Update subproblem objective value   k
k fpf ωω=+

o Update  , if changed, 

update the incumbent solution,  
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑
∈∀

k

Ii

kg
i

g
i fxcUBUB ,,min

kincumbent xx ←
Step 2. Solve master problem  
o Append the following cut,  ∑

∈∀

+≥
Ii

g
i

k
i

k xβαη

o Obtain solution 1from the following master 
problem  

1, , ++ kkg
ix η

integer,0

,,0;

..

Min

≥

=+≥

=

+

∑
∑

∑

∈∀

∈∀

∈∀

g
i

Ii

g
i

q
i

q

g

Ii

g
i

Ii

g
i

g
i

x

kqx

Nxts

xc

Kβαη

η

 

o Update  
⎭
⎬
⎫

⎩
⎨
⎧

+= +

∈∀

+∑ 11,,max k

Ii

kg
i

g
i xcLBLB η

Step 3. Check convergence 
o Compute percent gap from ( )

UB
LBUBgap −

=%   

o If ε≤gap% , stop and obtain optimal solution, 
, and objective value from upper bound, 

else, , return to step 1. 
incumbentxx ←*

1+← kk

V. EXAMPLE  SYSTEM 
A three area test system is shown in Fig. 3. There are 5, 6, 

and 5 generating units of 100 MW in area 1, 2, and 3 
respectively. Each generator has failure rate of 0.1 per day and 
mean repair time of 24 hours. The system has three 
transmission lines each with 100 MW capacity, failure rate of 

10 per year, and mean repair time of 8 hours. TABLE I, TABLE II 
and TABLE III show area generation, transmission line, and 
load probability distributions.  

 

 
Fig. 3.  Three Area Test System 

 
TABLE I 

THREE AREA GENERATION PROBABILITY DISTRIBUTIONS 
 

Area 1 Area 2 Area 3 State 
of 

Cap. 
arc 

Cap 
(MW) 

Prob. Cap 
(MW) 

Prob. Cap(
MW
) 

Prob. 

7   600 0.564474   
6 500 0.620921 500 0.338684 500 0.620921 
5 400 0.310461 400 0.084671 400 0.310461 
4 300 0.062092 300 0.011289 300 0.062092 
3 200 0.006209 200 0.000847 200 0.006209 
2 100 0.000310 100 0.000034 100 0.000310 
1 0 0.000006 0 0.000001 0 0.000006 

 
TABLE II 

THREE AREA TIE-LINE PARAMETERS 
 

From Area - To Area 
1-2 1-3 2-3 

State 
of 

Cap. 
arc 

Cap 
(MW) 

Prob. Cap 
(MW) 

Prob. Cap 
(MW) 

Prob. 

2 100 0.990950 100 0.990950 100 0.990950 
1 0 0.009050 0 0.009050 0 0.009050 

 
TABLE III 

THREE AREA LOAD  PARAMETERS 
 

Load State Area 1 
(MW) 

Area 2 
(MW) 

Area 3 
(MW) 

Probability 

1 500 600 500 0.028257 
2 400 500 400 0.275288 
3 300 400 300 0.436651 
4 200 300 200 0.259803 

 
  Load cluster data is taken from [4]. It is assumed that the 
maximum number of additional units is 2 and the additional 
generators have capacity of 100 MW each. The cost of 
additional unit of the three-area system is 100 million dollars 
for all area. 

The optimization procedure yields a solution to locate one 
generator in area 1 and one generator in area 2 which gives 
expected loss of load cost of 1.48 million dollar and expansion 
cost of 200 million dollar. The algorithm converges in 6 
iterations. Upper bound and lower bound at each iteration are 
shown in Fig. 4. It should be noted that the expected loss of 
load cost depends on the customer damage function used. The 
objective of this paper is; however, to describe a new method 
of solving the multi area generation and transmission 

Area 
1 

Area 
2 

Area 
3 
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adequacy problem and the study presented here is only for 
illustration purposes. 

1 2 3 4 5 6
196

197

198

199

200

201

202

Iteration

U
B

 a
nd

 L
B

 
Fig. 4.  Upper Bound and Lower Bound of Objective Function 

VI. CONCLUSION 
A solution procedure for multi-area generation adequacy 

planning problem is proposed. The problem is formulated as a 
two stage recourse model with the objective to minimize 
expansion cost and maximize reliability subject to total 
budget. L-shaped algorithm is implemented and applied to 
solve the problem. For larger systems with a very large 
number of scenarios, interior sampling by Monte-Carlo should 
be applied along with L-shaped algorithm.  

If needed, a different reliability index can be used, for 
example, loss of load probability. To calculate loss of load 
probability, number of loss of load states has to be obtained. 
Therefore, minimizing loss of load probability is the same as 
minimizing number of loss of load states with the following 
second stage objective function in (13). The analysis should 
be made to verify that this function is convex on decision 
variables. 

( ) ( ) ( )( )0,Max, ωωω itiIi
ylxf −=

∈
 (13

) 
Expected loss of load can also be used as a reliability index 

in the second stage objective function since it may be difficult 
to assess the loss of load cost coefficient for various systems. 
However, expected loss of load needs to be weighted in order 
to be compatible with the expansion cost in the first stage 
objective function. Instead of requiring maximum number of 
additional units, a budget constraint can be used to allow 
flexibility. Sensitivity analysis on the weight of load loss in 
each area can be conducted to provide the quantified 
information (expected loss of load reduction) of the next best 
generation location that improves system reliability subject to 
budget constraint.  

If the budget constraint is relaxed or the loss of load weight 
in each area is different, the next best generation location will 
also change. Therefore, sensitivity analysis on these 
parameters should also be investigated in future studies. The 
problem can be formulated to minimize cost with subject to 
reliability constraint where reliability index can be obtained 

from different budget values. If reliability index (expected 
loss of load) is above the limit, budget can be increased. The 
algorithm has to be repeated until system reliability is below 
the limit.  

APPENDIX 

A. Equivalent Transition Rate 
TABLE A.I, TABLE A.II and TABLE A.III show equivalent 

transition rate (per day) of area generation, transmission lines, 
and area load respectively. 
 

TABLE A.I 
EQUIVALENT TRANSITION RATES OF THREE AREA GENERATION 

 
Area 1 Area 2 Area 3 

Cap 
(MW) 

+
1gλ  −

1gλ  Cap 
(MW) 

+
2gλ  −

2gλ  Cap 
(MW) 

+
3gλ  −

3gλ  

   600 0.6 0    
500 0.5 0 500 0.5 1 500 0.5 0 
400 0.4 1 400 0.4 2 400 0.4 1 
300 0.3 2 300 0.3 3 300 0.3 2 
200 0.2 3 200 0.2 4 200 0.2 3 
100 0.1 4 100 0.1 5 100 0.1 4 

0 0 5 0 0 6 0 0 5 
 

TABLE A.II 
EQUIVALENT TRANSITION RATES OF THREE AREA TIE-LINE  

 
From Area - To Area 

1-2 1-3 2-3 
Cap 

(MW) 
+
12tλ  −

12tλ  Cap 
(MW) 

+
13tλ  −

13tλ  Cap 
(MW) 

+
23tλ  −

23tλ  

100 0.027
4 

0 100 0.027
4 

0 100 0.027
4 

0 

0 0 3 0 0 3 0 0 3 
 

TABLE A.II 
EQUIVALENT TRANSITION RATES OF THREE AREA LOAD  

 
ij
lλ  Load state, j 

Load state, i 1 2 3 4 
1 0 1.342

9 
0.020

6 
0 

2 0.339
4 

0 1.975
3 

0.027
8 

3 0.008
5 

1.339
9 

0 2.103
6 

4 0 0.045
2 

2.237
0 

0 
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