1808

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 4, NOVEMBER 2006

Sensitivity, Approximation, and Uncertainty
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Abstract—Parameters of power system models, in particular
load models, are seldom known exactly, yet dynamic security
assessment relies upon simulation of those uncertain models. This
paper proposes a computationally feasible approach to assessing
the influence of uncertainty in simulations of power system dy-
namic behavior. It is shown that trajectory sensitivities can be
used to generate accurate first-order approximations of trajecto-
ries that arise from perturbed parameter sets. The computational
cost of obtaining the sensitivities and perturbed trajectories is
minimal. The mathematical structure of the trajectory approx-
imations allows the effects of uncertainty to be quantified and
visualized using worst-case analysis and probabilistic approaches.

Index Terms—Load modeling, parameter uncertainty, power
system dynamic performance assessment, power system simula-
tion, trajectory sensitivity.

I. INTRODUCTION

YNAMIC performance assessment underpins the design
Dand operation of power systems. Postulated system con-
ditions and disturbance scenarios are investigated to ensure
adequate system behavior. Stability should be maintained,
control loops tuned to provide appropriate damping, and safety
thresholds such as over/under-voltage limits enforced. Un-
fortunately, when actual system events occur, post-mortem
analysis invariably reveals discrepancies between modeled and
measured system behavior. The conclusion is simple: models
used for analysis contain erroneous parameters. Resolution of
this predicament is, however, far from straightforward.

All parameter values are uncertain to some extent. Measure-
ment and model validation [1]-[3] plays an important role in
reducing that uncertainty, particularly for well-defined compo-
nents such as generators and network elements. However, load
models provide a conundrum. It is impractical to represent every
load within a large power system. Generally, models are a com-
posite representation of many small, diverse loads.! This loss of
fidelity introduces uncertainty into load model behavior. Fur-
thermore, load composition is continually changing to match
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ICertain loads, though, such as aluminium smelters, are well defined.

consumer requirements. Therefore, even if a load model could
be accurately identified at a certain time, it would likely be in-
accurate at any other time.

A similar argument holds for distributed generation. As the
penetration of smaller distributed resources increases, so will
their effects on overall system dynamic behavior. However, it
is impractical to model every source, so aggregation is again
necessary, and uncertainty is unavoidable.

Accounting for uncertainty in dynamic performance assess-
ment is computationally challenging. A naive Monte Carlo ap-
proach would require a full time-domain simulation for every
randomly generated set of parameters. Clearly, for many uncer-
tain parameters, such an investigation is infeasible. This paper
proposes a computationally efficient approach to assessing the
impact of parameter uncertainty.

Various approaches to addressing uncertainty in dynamic
performance assessment have been proposed. Disturbance and
operating point uncertainty are considered in [4] and [5], for
example, though parametric uncertainty is not discussed. Para-
metric uncertainty is addressed in [6], where the probabilistic
collocation method is used to develop polynomial relationships
between uncertain parameters and quantities (outputs) of in-
terest. This ingenious technique is computationally efficient
when the number of uncertain parameters is relatively small.
Another novel approach, developed in the context of power
electronics, uses polynomial chaos theory [7] to assess the
effects of parameter uncertainty. A discussion of a trajectory
sensitivity-based approach to approximating the effects of
parameter uncertainty was presented in [8]. Those preliminary
results are extended in this present paper.

Sensitivity concepts are generally associated with the lin-
earization of an input-output relationship. Small changes in
inputs map through the linearized relationship to small output
changes.2 Trajectory sensitivities fit this framework by de-
scribing the changes in the trajectory (the output) resulting
from perturbations in the underlying parameters and/or initial
conditions (the inputs). They provide a linearization around the
trajectory, as against small disturbance analysis, which builds
on linearization around the equilibrium point. Full details are
provided in Section III. Trajectory sensitivity concepts are
not new [9]-[11], though until recently, progress on practical
applications was impeded by the following.

» Computational inefficiency. Sensitivity to each parameter

or initial condition required an additional full simulation.

e Nonsmooth behavior. Sensitivities were not well defined

for situations where events influenced behavior.

2Consider, for example, power flow sensitivity, where the inverse Jacobian
maps power perturbations to voltage changes.
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However, both these limitations have recently been overcome,
with efficient computation of trajectory sensitivities now pos-
sible for large-scale, nonsmooth systems [12], [13]. Further de-
tails are provided later.

As mentioned previously, load modeling is a major source of
uncertainty in power system dynamic performance assessment.
A number of the illustrations throughout this paper will there-
fore focus on load modeling. It is common for aggregate load
models to be composed of a static voltage-dependent compo-
nent together with an induction motor [14], [15]. This compo-
sition can be described parametrically by

Stot - VS’H + (1 - V)S'ind (1)

where S;,; is the total complex power of the load

Sy =PV +jQoV™ (@3]

describes the voltage-dependent part of the load, and S;,4 is
the complex power demanded by the induction motor compo-
nent. The dynamics underlying S;,,4 are typically described by
a third-order differential equation model [16]. Each of the load
components in (1) should be sized to match the total bus de-
mand. The parameter v provides the necessary scaling, with
100w specifying the percentage of static load. The distribution of
load between S, and S;,,q4, i.€., the value of v, can have a non-
trivial effect on system dynamic performance. Often, though,
this distribution is imprecisely known. Later examples will con-
sider uncertainty in 7,,, 74, and v.

Disturbances that cascade beyond local events generally do so
as a consequence of unexpected protection operation. The initial
(designed) protection response leaves the system in a weakened
state, vulnerable to subsequent unanticipated protection oper-
ation. These secondary protection trips are often not foreseen
because

1) investigations of dynamic performance focus on questions

of stability/instability, with protection devices not even
monitored, or
2) the nominal trajectory is well behaved with respect to pro-

tection, even though plausible combinations of uncertain
parameters induce unacceptable behavior.

This paper provides an example of the latter situation, where

consideration of load parameter uncertainty suggests exposure

to distance protection operation.

This paper is structured as follows. Section II describes a
model that is structured to capture the full range of nonlinear
nonsmooth behavior exhibited by power systems. An overview
of trajectory sensitivities is provided in Section III. Those sen-
sitivities are used in Section IV to generate trajectory approxi-
mations. Itis shown in Section V that such approximations form
the basis for quantifying and visualizing the influence of param-
eter uncertainty. Conclusions are provided in Section VI.

II. MODEL

In response to large disturbances, power systems typically
exhibit periods of smooth behavior, interspersed with discrete
events. Smooth behavior is driven by devices such as generators,
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which are well described analytically by differential-algebraic
models. Discrete events, arising, for example, from operation
of protection devices or enforcement of controller hard limits,
are not so easy to describe analytically. Systems that exhibit
intrinsic interactions between continuous dynamics and discrete
events have become known generically as hybrid systems [17],
[18] or piecewise smooth dynamical systems [19].

Numerous formal models, such as Petri nets [20] and hybrid
automata [17], exist for rigorously describing hybrid system
dynamics. However, those representations are not immediately
amenable to numerical implementation. Analysis of power
system dynamics requires a nonrestrictive model formulation
that is capable of capturing the full range of continuous/discrete
hybrid system dynamics yet is computationally efficient. It is
shown in [13] and [21] that these specifications are met by a
model that consists of a set of differential-algebraic equations,
adapted to incorporate switching of the algebraic equations,
and impulsive (state reset) action. This DA Impulsive Switched
(DAIS) model has its genesis in the familiar DAE model

&= f(z,y) 3)
0=g(v,y) 4)

where x € R™ are dynamic states, y € R™ are algebraic states,
f:R"™™ - R" and g : R*t™ — R™.

Switching events, such as line tripping, can be incorporated
into the DAE model by requiring the algebraic equations (4) to
switch between sets of equations that describe pre- and post-
event conditions. Considering a single switching event, (4) can
be replaced by

- , Sz, 0
0= gla,y) 249, (@0) s(r.y) < 5
9(z.) {.61*(1’71/), s(z,y) >0 ©
where the superscripts “—" and “+” index the two sets of al-

gebraic equations.? A switching event coincides with a zero
crossing of the trigger function s(z,y). Note that the concept
of crossing is important. If the trajectory just touches (grazes)
the triggering surface

5= {(x.y) : s(z,y) = 0} ©)

then behavior beyond that point is indeterminent, as switching
may or may not occur [22]. Therefore, the following assumption
is required.

Assumption 1: The trajectory encounters the triggering sur-
face S transversally.

The precise behavior of the model at a switching event is not
well defined by (5) and requires further explanation. Let the
event occur at trigger time 7, and define 7~ as the time instant
just prior to 7 and 71 as the instant just after 7. The limit values
of the states can then be expressed as

o =x(r )= ltiTrn:L’(t)7 zt=a(rt) = ltilm:v(t) (7
y” =y(r)=limy(t),  yT =y(r7) = Tlimy(t) )

3The functions ¢~ and gt may themselves have a switched form, resulting
in a hierarchical switching structure.
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where ¢ | 7 implies ¢ < 7 approaches 7 from below, and ¢ |
implies ¢ > 7 approaches 7 from above. Clearly, two sets of
variables (", y~) and (zT,y™) are required to fully describe
behavior at an event [23].

By definition, s(z~,y~) = 0, but s(z*,y™) may not
necessarily equal zero. Furthermore, assume without loss of
generality that s(x(¢),y(t)) < 0 for ¢t < 7. Then well-defined
switching behavior requires s(z(t),y(t)) > 0 for t > T.
Also, this sign assumption implies ¢~ (z~,y~) = 0 and
g7 (x*,y") = 0. Dynamic states are unaltered at a switching
event, so = = xT. However, in order to satisfy the altered
algebraic equations, often, y~ # y™T.

Switching events cannot efficiently capture all forms of dis-
crete behavior. Activities such as transformer tapping or protec-
tion timer resetting [24] are best modeled by impulsive action
that introduces discrete jumps into the dynamic z-states. Such
behavior has the form of an impulse, which can be described by
a reset equation

ot =h(z",y”), whens(z,y)=0 )

where h : R"™™ — R™. The superscript notation is consistent
with earlier use, with 2T denoting the value of = just after the
reset event, while ~ and y~ refer to the values of = and y
just prior to the event. As in the case of a switching event, a
reset event is triggered when s(z, y) passes through zero. Away
from that zero crossing condition, the evolution of the dynamic
z-states is described by the differential equations (3).

This overview of the DAIS model has neglected some of the
technical details required to ensure well-defined behavior. How-
ever, full details are provided in [21]. It should be emphasized
that the DAIS model is nothing more than a formalization of
simulation models that are used for practical power system sim-
ulation. The formalization, however, allows trajectory sensitiv-
ities to be cleanly defined [13].

Dynamic behavior, generated numerically by simulation, can
be described analytically by the flow

x(t) = p(xo, t) (10)
y(t) =(z0,t). (an
Initial conditions imply
B(z0,t0) =m0 (12)
9(d(wo, o), ¥ (w0, t0)) =0. (13)

A compact development of trajectory sensitivities results
from incorporating parameters p € R’ into the dynamic states
z. (Numerical implementation is also simplified.) This is
achieved by introducing trivial differential equations

p=0 (14)
into (3) and results in the natural partitioning
T f h
R I R T A
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where z are the true dynamic states, and p are parameters. Ac-
cordingly, initial conditions and parameters will be treated syn-
onymously throughout the remainder of this paper.

III. TRAJECTORY SENSITIVITY

A. Motivation

The functional form of the flow (10)—(11) motivates the
Taylor series expansions

¢($0 + Ag;07t) :¢($07t) + %Alﬂ + 5¢(:L’0,t7A$0)
0

(16)

1/)('770 + A.’I”,‘(],t) :d)(TUt)+ %ATO + gw(m07t7 ATU)
0

a7

where £¢ and £ capture the higher order terms. For small
[|[Az||, the higher order terms may be neglected, giving
Az(t) = p(wo + Ao, t) — d(z0,1)
~ 8¢(‘T07 t)

~ TAJ}Q = (D(J}Q,t)AfI}O (18)
To
Ay(t) =(zo + Axo,t) — P(zo,t)
~ Mmo = U(x0, ) Az (19)

8:50

where ® and U are the sensitivity transition matrices, or trajec-
tory sensitivities, associated with the =z and y flows [11]. Equa-
tion (18) describes the approximate change Axz(t) in a trajec-
tory, at time ¢ along the trajectory, for a given small* change in
initial conditions Azo = [Azl ApT]T. Likewise, the change
Ay(t) is given by (19).

B. Variational Equations

The evolution of the trajectory sensitivities ® and U is de-
scribed by variational equations? that are developed in [13]. As-
pects of these equations are required for the later discussion of
trajectory approximations, so the following summary draws to-
gether the main concepts.

Away from events, where system dynamics evolve smoothly,
the sensitivities ¢ and U are obtained by differentiating (3)—(4)
with respect to zo. This gives

= f,.(H® + f,(1)¥
0 =g.(t)® + gy ()T

(20)
2

where f, = Jf/0x, and likewise for the other Jacobian ma-
trices. Note that f,, f,, 9., and g, are evaluated along the tra-
jectory and hence are time-varying matrices. The computational
burden of numerically integrating this (potentially high order)
linear time-varying DAE system, though, is minimal. Itis shown
in [12], [13], and [27] that when an implicit numerical integra-
tion technique such as trapezoidal integration is used, the solu-
tion of (20)—(21) can be obtained as a by-product of computing
the underlying trajectory.

It is very difficult to quantify acceptable perturbation size. This issue is ex-
plored further in Sections IV-A and IV-B.

SThese variational equations relate quite closely to the application of calculus
of variations concepts [25] to optimal control problems [26].
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Initial conditions for ¢ are obtained from (12) as

(o, to) = I (22)
where [ is the identity matrix. Initial conditions for ¥ follow
directly from (21)

0= gm(to) + gy(tg)q}(l’o./to). (23)

Equations (20)—(21) describe the evolution of the sensitivities
® and VU between events. However, the sensitivities are often
discontinuous at events. It is necessary to calculate jump condi-
tions describing event-induced step changes in ® and ¥. Con-
sider the most general case of a coincident switching/reset event,
described by (5) and (9). (The jump conditions appropriate for
separate switching or reset events follow directly from this more
general situation.) It is shown in [13] that the jump conditions
for the sensitivities ¢ are given by

O(zo,7") = hi B(wo,77) = (fT —hifT) ey (24)

where

_ or sy ®(wo,77)
0= e = a 25)
and

fm=f="y) (26)
fT=f@Etyh) 27)
hy = (he = hygy ' 9:)] (28)
se= (82— sygglgm)|77 ) (29)

Note that jump conditions are only well defined when Assump-
tion 1 is satisfied. Otherwise, if the trajectory encounters S tan-
gentially rather than transversally, the denominator of (25) will
equal zero. The sensitivities U immediately after the event are
given by

\Il(m(h T+) = - ({];1(]7-) |‘r+ @(.’1707 T+)' (30)
Keep in mind that g in (28)—(29) refers to its pre-event form,
whereas post-event conditions apply in (30).

Subsequent to the event, for ¢ > 77, calculation of the sen-
sitivities proceeds according to (20)—(21). The jump conditions
(24) and (30) provide the initial conditions for this post-event
integration.

C. Example—Parameter Ranking

Trajectory sensitivities provide a basis for ranking the relative
influence of parameters. Large sensitivities imply that param-
eter variations have a large effect on behavior, whereas small
sensitivities suggest behavior changes very little with param-
eter variation. In this example, trajectory sensitivities are used
to rank the importance of voltage indexes at all loads throughout
the IEEE 39-bus system of Fig. 1.
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Fig. 2. AVR/PSS standard models AC4A and PSSIA.

All generators in this system were represented by a fourth-
order machine model [28] and were regulated by the IEEE stan-
dard [29] AVR/PSS representation of Fig. 2. All generator and
network data were obtained from [30]. A three-phase fault was
applied at bus 16 at 0.1 s and cleared (without any line tripping)
0.2 s later. The static load model (2) was used for all loads, with
Np = Mg = 2 in all cases.

The sensitivities of bus 16 voltage Vj¢ to load indexes 7, and
1), at all buses were computed in conjunction with the nominal
trajectory. These trajectory sensitivities are provided in Fig. 3,
where the vertical axis gives the change in the per unit voltage
for a unity change in load index values. It is immediately clear
that the real power index 7),, for bus 20 has a much greater influ-
ence on behavior than all other indexes. (The reason is that gen-
erator 5 is marginally stable for this disturbance scenario, and
bus 20 lies on the corridor linking that generator to the rest of the
system.) The loads at buses 4, 8, and 23 also display a reason-
able, though certainly less pronounced, level of influence. Loads
4 and 8 are influential due to their large size. Load 23 has an im-
portant impact on the dynamics of generator 7. The influence
of all other loads, for this disturbance scenario, is negligible. Of
course, a different disturbance could possibly highlight some
other set of loads.

Field testing loads to determine their (approximate) voltage
dependence is an expensive exercise. However, by utilizing tra-
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Fig. 4. Trajectory and sensitivity variation for increasing system stress.

jectory sensitivities, the most important loads can be identified
and attention focused accordingly. This use of trajectory sensi-
tivities relates to parameter identifiability and was used in [3] to
determine the most influential generator parameters.

D. Example—Indicator of Stressed Conditions

As systems become more heavily stressed, their sensitivity
to parameter variation increases significantly. This can be illus-
trated by continuing the example from Section III-C. The upper
plot of Fig. 4 shows the behavior of generator 5 angle (relative
to generator 10) for a range of fault clearing times. (For com-
parison, the fault clearing time used in Section III-C was 0.2 s.)
The critical clearing time is 0.213 s; slower clearing results in
generator 5 losing synchronism. Notice that the angular devi-
ations do not show a great increase, even though instability is
imminent.

The sensitivity of Vig to the bus 20 load index ), for the
same range of fault clearing times, is shown in the lower plot of
Fig. 4. The deviations exhibited by these trajectory sensitivities

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 4, NOVEMBER 2006

grow dramatically as critical conditions are approached. This
behavior motivated the sensitivity-related measures developed
in [31] and [32] to predict conditions that induce marginal sta-
bility. Further work is required, though, to fully exploit this phe-
nomenon.

IV. TRAJECTORY APPROXIMATION

A. General Concepts

For general nonlinear systems, the flow functions ¢ and
1, given by (10)—(11), cannot be expressed in closed form.
Any change in initial conditions® therefore requires a complete
re-simulation of the dynamic model. However, if changes are
relatively small, the computational effort of repeated simulation
can be avoided by forming approximate trajectories.

Rearranging (18)—(19) gives the first-order approximations of
the flow

QS(.’E(} + AJZ’[}, t) ~ ¢($0,t) + q)(ilf(],t)AlEo
(o + Azo, t) RP(x0,1) + V(20 1) Ao.

(€29
(32)

As mentioned previously, the trajectory sensitivities ® and ¥
can be computed efficiently as a by-product of simulating the
nominal trajectory. Therefore, a range of (approximate) per-
turbed trajectories are available via (31)—(32) for the compu-
tational cost of a single nominal trajectory. This computational
efficiency will be exploited in Section V to explore the influence
of parameter uncertainty.

The errors in the approximations (31)—(32) are given by the
higher order terms £ and £Y of the Taylor series. In general, the
precise forms of these terms are not available. (If they were, the
flow could be expressed in closed form, and repeated simulation
would be unnecessary.) It can be easily shown, though, that for
linear systems, the error terms vanish, i.e., the approximations
are exact. It may be concluded that the error terms will be small
for systems that exhibit near-linear behavior, especially when
the perturbations ||Azg|| are small.

Even though power systems are nonlinear, operation close to
the stable equilibrium point is nearly linear. The following ex-
ample explores the interplay between proximity to the equilib-
rium point, near-linearity, perturbation size, and error magni-
tude. Errors in the approximate trajectories will be normalized
according to

¢ A
err(@0, Ats) = max { €2 (o, t, xo>||oo} .

lI¢i(z0, )l

which utilizes the supremum norm

(1)l (34)

loe =
€)oo =, max

for scalar function &(-). Referring to (16), the numerator of (33)
gives the norm of the higher order terms (the error) for each state
1. It is obtained (numerically) by simulating the true perturbed

6Keep in mind that parameters are incorporated into the initial conditions.
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Fig. 5. Single-machine infinite-bus system.

trajectory and subtracting the corresponding approximate tra-
jectory. The denominator normalizes those errors to allow com-
parison across different states.

B. Example—Smooth Behavior

The single-machine infinite-bus system of Fig. 5 forms the
basis for this illustration of the quality of trajectory approxima-
tion achievable by (31)—(32). The generator in this system was
represented by a sixth-order machine model [28]. Its AVR/PSS
was modeled according to the representation shown in Fig. 2.
For this example, the limits on field voltage and PSS output were
disabled, to ensure smooth behavior. The influence of limits is
considered in subsequent sections.

For this example, the nominal trajectory was not obtained by
subjecting the system to an initiating disturbance. Rather, all
initial conditions were set to their equilibrium values, except
for the generator frequency state w. Various initial (non-equilib-
rium) values of w will be considered, allowing an investigation
of the influence of system stress on the quality of trajectory ap-
proximations.

For the first case, the nominal trajectory was obtained by
setting w to an initial value of w(ty) = —4 rad/s, with all
other states initially at their equilibrium values. Approximate
trajectories were then synthesized using (31)—(32) for a range
of initial conditions o + Amxg, where all elements of Axg
were zero except for the Aw(ty) element, which took values
of 0.5,1.0,1.5,...,6.0. These approximate trajectories were
compared with the corresponding true perturbed trajectories,
and the normalized error was computed according to (33). The
flattest curve in Fig. 6 shows the results, with the normalized
error points shown as circles. These points closely fit a straight
line with very small slope. All errors are small in this case, even
when perturbations are large. This would suggest the system
behaves almost like a linear system, with nonlinearities having
very little influence.

The middle curve in Fig. 6 corresponds to the nominal trajec-
tory obtained by setting w(to) = +4 rad/s, with all other states
initially at their equilibrium values. The above procedure was
repeated, though in this case, approximate trajectories were ob-
tained for Aw(ty) taking values of —0.5, —1.0, —1.5,..., —6.0.
The calculated error points are shown as stars. These points al-
most exactly fit a quartic polynomial and display much greater
curvature than in the previous case. This suggests the nominal
trajectory is more strongly influenced by nonlinearities. In fact,
that is the case, with this nominal trajectory passing closer to
an unstable equilibrium point. This is a very nonlinear effect, as
linear systems do not possess multiple equilibria.

The upper curve in Fig. 6 was obtained for a nominal trajec-
tory with w(tg) = +6 rad/s and all other states again initially
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Fig. 6. Error variation with perturbation size.

at their equilibrium values. Error points were obtained as before
and are shown as diamonds. They again fit a quartic polyno-
mial, though with higher curvature than the previous case. This
nominal trajectory passes even closer to the unstable equilib-
rium point. The higher curvature is consistent with the increased
influence of nonlinearities.

Notice that in all three cases, good approximations are ob-
tained, even for relatively large perturbations.

It is insightful to look more closely at the situations under-
lying the points identified as 1 and 2 in Fig. 6. At point 1, z
consists of equilibrium values, except for w(ty) = —4, and Axg
is all zeros, except for Aw(tg) = 4. Therefore, z¢g + Axg de-
scribes the equilibrium point, and a trajectory initiated at this
point should be constant. Fig. 7 shows the approximate trajec-
tory synthesized for 2o + Az as a dash-dot line. It deviates
from zero by only a small amount. Consider the row of (31)
corresponding to w. The left-hand side should be zero, so the
sensitivity term on the right should ideally be the negative of
the nominal trajectory. Fig. 7 shows that the negated sensitivity
term, shown as a dashed line, closely tracks the nominal trajec-
tory, which is the solid line. Though not shown, all other states
display similar accuracy.

Likewise for point 2, w(tg) = 4, and Aw(ty) = —4, so
xo + Az again describes equilibrium conditions. Fig. 8 shows
the approximated “equilibrium” trajectory as a dash-dot line.
In this case, the approximation to equilibrium conditions is not
so accurate. However, the negated sensitivity term, shown as a
dashed line, does track the nominal trajectory (solid line) quite
closely, except for a slight phase shift. That phase shift, though,
is sufficient to induce the error apparent in the approximate tra-
jectory.

These latter examples have exploited the special nature of
the “equilibrium” trajectories associated with points 1 and 2 of
Fig. 6. Subsequent analysis and examples will, however, estab-
lish much greater versatility in the use of trajectory approxima-
tions.
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Fig. 7. Trajectory approximation, for w(to) = —4 rad/s.
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Fig. 8. Trajectory approximation, for w(to) = 4 rad/s.

C. Correction for Event Time Shifts

Variations in initial conditions (including parameters) fre-
quently cause changes in event triggering times. The sensitivity
of triggering time to initial conditions is given by 7., in (25)
and can be interpreted with the assistance of Fig. 9. This
figure shows the nominal trajectory, together with a perturbed
trajectory induced by a change Az in initial conditions. The
nominal trajectory encounters the triggering hypersurface at
time 7, whereas the perturbed trajectory takes an extra time
AT = 7,,Ax0 to reach triggering conditions. For clarity, the
figure shows positive A7. However, this time difference could
just as easily be negative.

Over the A7 period, the nominal and perturbed trajectories
are driven by different system conditions. In one case, the
event has occurred, whereas in the other, it has not. Under such
circumstances, the Taylor series expansions (16)—(17) are not
valid, so neither are the approximations (31)—(32). A revised
process for approximating perturbed behavior over the AT
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trajectory

Nominal
trajectory

\ (1) + Az Triggering

hypersurface

Fig. 9. Linearized view of behavior at an event.

period is presented in [13]. Motivated by the linearized view of
event behavior given in Fig. 9, it can be shown that for A7 > 0,
approximate trajectories are given by

d(zo + Az, t) = P(x, 77 ) + (30,7 )Axg

+ f x (t —T) (35)
1/)('7"0 + A.’Eo,t) %1/)('7"0’7—_) + \IJ('TO?T_)A'TO
— (g5 '92)|__ [~ x(t—=7) (36)

over the period 7 < t < 7 + Ar, where f~ is defined by
(26). For AT < 0, the perturbed trajectory switches before the
nominal trajectory. In that case

b(wo + Amg,t) = p(x0,7T) + (20, 7T) Ay

+fTx(t—7) (37
w(mo + A'770at) %w(m(]:/r-i—) + ‘1/(11707T+)A.’170
— (95 '92)| _ [T x(t—7) (38)

over the period 7 + A7 < t < 7, with f* given by (27).

D. Example—Nonsmooth Behavior

This example again uses the system of Fig. 5. In this case,
though, the field voltage and PSS limits, shown in Fig. 2, have
been reinstated. The system was subjected to a balanced three-
phase fault on the generator terminal bus. The fault was cleared
without line tripping.

The nominal trajectory, shown in Fig. 10 as a dashed line, was
obtained for a fault clearing time of £,; = 0.23 s and a maximum
field voltage limit of F ¢4 max = 5.8 pu. Notice that behavior is
quite nonsmooth, due to the fault and limit-related events.

Trajectory sensitivities were used to synthesize the approx-
imate behavior that would occur for altered parameter values
te = 0.21 s and Efg max = 5.0 p.u. (cf. the original values of
0.23 s and 5.8 p.u., respectively.) This synthesized trajectory is
shown as the solid line in Fig. 10. For comparison purposes, the
full simulation was repeated using these altered parameters. The
corresponding trajectory is shown as a dash-dot line in Fig. 10.

The parameters chosen for this illustration exert a significant
nonlinear, nonsmooth influence over system behavior. However,
even though the change in these parameters is large, the approx-
imated trajectory closely tracks the actual perturbed trajectory.
The parameter variations have altered the times at which events
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Fig. 10. Field voltage behavior: comparison of actual and approximate trajec-
tories.

Fig. 11. Three-bus system with composite load.

occur, i.e., when limits are encountered. The approximation is
not detrimentally affected though, due to the corrections intro-
duced through (35)-(38).

E. Example—Load Composition

Post-disturbance investigations of power system dynamic
performance often reveal situations where load response is
inadequately represented by available models. Such studies
underlie a perennial desire for improved modeling of load
dynamics [15]. However, load composition is often stochastic,
suggesting that a single set of parameters cannot capture the
full range of expected behavior. Rather, parameters should
be specified in terms of their statistical properties. This issue
is considered in Section V, through the use of approximate
trajectories. For now, trajectory approximations arising from
variations in the load composition, governed by v in the load
model (1), will be explored.

The system shown in Fig. 11 will be used to explore the
quality of such approximations. The composite load has a
steady-state value of Sy,; = 40 + j20 MVA. The static load
component was modeled as constant current, while the in-
duction motor component used parameter values from [16, p.
305], with appropriate per unit scaling. Generator production
of 250 MW resulted in a fairly stressed system, as suggested
by a pre-disturbance angle of 34° at the generator terminal bus.
Note that the composite load exerts a substantive influence on
system dynamics due to its location and size.

Time (sec)

Fig. 12. Comparison of actual and approximate trajectories for varying load
composition.

At 0.1 s, a three-phase fault occurred midway along one of
the parallel lines between the load and generator buses. The line
was tripped at 0.22 s, clearing the fault. The nominal trajectory,
shown as a dashed line in Fig. 12, was obtained with v = 0.5,
i.e., equal amounts of motor and voltage-dependent load. Ap-
proximate trajectories were then formed for Ay = £0.25. (The
positive change gave a load composition of 75% static load,
25% motor load; the negative change gave the reverse percent-
ages.) These approximate trajectories are shown as solid lines.
For comparison, the corresponding exact (fully simulated) tra-
jectories are shown as dash-dot lines. The approximations pre-
sented in this example are very accurate, even though parameter
variation of £0.25 is large.

It may be concluded that the effects of diverse load compo-
sitions can be assessed for the computational cost of a single
simulation.

V. TRAJECTORY UNCERTAINTY

Investigations of power system dynamic behavior typically
involve numerous uncertain parameters. The difficulty of quan-
tifying load behavior has previously been discussed. Distributed
generation provides another example that is growing in impor-
tance. A thorough understanding of the influence of uncertain
parameters requires many simulations. However, the compu-
tational effort involved in each simulation generally precludes
anything more than a cursory examination of parametric depen-
dencies.

Trajectory approximations, given by (31)—(32), overcome the
need for repetitive simulation, though at the cost of some loss
of accuracy. The affine nature of (31)—(32) allows two straight-
forward approaches to quantifying the effects of uncertainty:
worst-case analysis and probabilistic assessment. Details are
provided in the following sections.

A. Worst-Case Analysis

Worst-case analysis builds on an assumption that uncertain
parameters are uniformly distributed over a specified range.
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Based on that assumption, parameter values at the extremes
have the same likelihood of occurrence as any other values
within the specified range. Therefore, worst-case (extreme)
scenarios cannot be treated as inconsequential and should
satisfy dynamic performance criteria.

Uncertainty in numerous parameters gives rise to a uniform
distribution over the (convex) orthotope’

B = {ALEO : Amin S AJZ() S Amax} (39)
where Az describes the deviations from the nominal param-
eter values, A, and A .« are vectors of minimum and max-
imum allowable deviations, respectively, and the inequalities are
on an element-by-element basis. The dimension of the ortho-
tope B matches the number of uncertain parameters. Its vertices
are extremes where every element of Az takes either its max-
imum or minimum value. Trajectory approximations (31)—(32)
describe a time-dependent affine transformation of initial condi-
tions Az € B, provided the following assumption is satisfied.

Assumption 2: All trajectories emanating from the set xo + 3
have the same order of events. In other words, grazing does not
occur along any of these trajectories.

Under the affine transformations (31)—(32), the orthotope 3
is shifted and distorted to form time-dependent parallelotopes8

'Pd)(t) = QS(.Z‘O, f) + ¢>($07 t)B
PY(t) = (w0, t) + U(z,1)B.

(40)
(41)

Importantly, the affine transformation maintains convexity [35],
with vertices of B mapping to vertices of P?(t) and P¥(t).
Therefore, (40)—(41) describe the propagation of a convex set
through state space.® Initial conditions that lie within zo + B
give rise to (approximate) trajectories that remain within the
time-propagated parallelotopes.

As a consequence of convexity, extremes of behavior can be
immediately determined by applying (31)—(32) to just the ver-
tices of B. However, p uncertain parameters result in 27 vertices.
Even approximate propagation of these vertices can become
computationally unwieldy. Fortunately, not all vertices need be
considered. A reduction process is presented in Section V-C,
following an illustration of parallelotope propagation.

B. Example—Parallelotope Propagation

This illustration uses the system described in Section IV-B.
The thicker solid trajectory in Fig. 13 shows the angle-frequency
phase portrait for the third case considered in Section IV-B, with
w(tp) = 6rad/s. An error bound of —0.1 < Aa(tg) < 0.1 was
chosen for the initial value of the angle «v, and —1 < Aw(tg) <
1 for frequency w. Also, it was assumed the generator inertia
could be in error by —0.075 < AH/H < 0.075. This initial

7An orthotope is a high-dimensional generalization of a rectangle [33].

8A parallelotope is a high-dimensional generalization of a parallelogram [33].
Parallel faces remain parallel under the affine transformation, but orthogonality
of adjacent faces is lost. Full details can be found in [34].

9Similar sensitivity-based worst-case concepts have been explored pre-
viously, in the context of component tolerance effects in electronic circuits
[36]-[38]. In that application, though, interest focused on steady-state behavior,
with sensitivities derived from equilibrium conditions.
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Fig. 13. Phase portrait view of parallelotope propagation.

error orthotope B is projected onto the o — w plane as the rec-
tangle symmetrically surrounding the initial point of the nom-
inal trajectory.

The figure shows the propagation of 3 according to (40)—(41).
The approximate trajectories emanating from the vertices of B
are shown as thinner solid lines, while the distortion of B along
the trajectory is shown as the sequence of parallelotopes. The
projection onto the o — w plane flattens these parallelotopes.
Their outline, or convex hull [35], is shown as a darker line.

Forty sets of initial conditions were randomly selected from
o + B, assuming a uniform distribution. The true (simulated)
trajectories arising from those initial conditions are shown as
lighter dashed lines. It can be seen that these trajectories lie (al-
most completely) within the region covered by the propagated
parallelotopes, the outline of which is given by the approximate
trajectories arising from the vertices of B.

C. Worst-Case Vertices

Generally, only a subset of states is of interest in assessing dy-
namic performance. For example, Fig. 13 shows only angle and
frequency states, even though the full state space is 12-dimen-
sional. This projection to a lower dimensional space maintains
convexity. The vertices of the resulting lower dimensional poly-
topes are a subset of the vertices of the corresponding higher di-
mensional parallelotopes. This can be observed in Fig. 13.

At any time ¢ > 1, a particular dynamic or algebraic state
¢(t) will lie (approximately) in an interval P(t) that is the pro-
jection of P?(t) or P¥(t), as appropriate. The upper and lower
bounds on P(t) correspond to two of the vertices of B. Those
vertices describe the parameter deviations that induce worst-
case behavior in the chosen state ( at time .

Even though B may have a large number of vertices, locating
the two that give the upper and lower bounds is straightforward.
Let S(t) be the row of ®(x(,t) or ¥ (g, t), as appropriate, cor-
responding to the quantity of interest ((¢). From (31)—(32), the
deviation A( resulting from a perturbation Az can be written

AC(t) ~ S(t) A (42)
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Fig. 14. Zone 3 protection on line 23-24, worst-case bounds for 0.3 <
Vag, Vag < 0.7.

It follows that the extremes in A((%), i.e., the upper and lower
bounds on the interval P(¢), can be determined directly from
the signs of the elements of S(¢). The upper bound is obtained
by setting the sth element of Az according to

Amax7
[A£0]Z - { Amirn

where S; refers to the ith element of row vector S. Likewise,
the lower bound is given by

if S;(t) > 0

if Si() < 0 43)

Amirn
[A‘/L.O]Z - { Amax:

The critical values of uncertain parameters are revealed directly
by (43) and (44). If behavior is acceptable for the bounding tra-
jectories, then it will be acceptable for any choice of parameters
over the range of uncertainty. In other words, every point within
2o + B gives rise to behavior that lies (approximately) within
the trajectories that bound P(t).

The vertices associated with the bounds on the uncertainty
interval P(t) may change with time. However, the procedure
outlined above allows efficient tracking of the bounding ver-
tices. Generally, worst-case analysis focuses on specific portions
of the trajectory, rather than the complete time response. The
bounds need only be computed over the time periods of interest.

if Sz(t) >0

if S;(t) < 0. “44)

D. Example—Worst-Case Analysis

The IEEE 39-bus system of Fig. 1 will be used to illustrate
worst-case analysis in a more realistic system. The disturbance
scenario for this case involves a solid three-phase fault on line
16-21, at the bus 21 end. The fault was cleared after 0.15 s by
tripping the faulted line. That left buses 21 and 23, and genera-
tors 6 and 7, radially fed over line 23-24.

An aim of this example is to highlight the importance of ac-
counting for uncertainty when assessing protection operation.
Unfortunately, the 39-bus system is not naturally susceptible to
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cascading protection trips.!0 Therefore, to enhance the illustra-
tion, the impedance of line 23—24 has been scaled up by a factor
of 1.5.

The loads at buses 23 and 24 were modeled according to (1),
with 753 and v»4 both nominally set to 0.5. In other words, both
loads were composed of 50% static voltage-dependent load and
50% induction motor load. The static load component was mod-
eled as constant admittance, while the induction motor compo-
nent used parameter values from [16, p. 305], with appropriate
per unit scaling.

An uncertainty of £0.2 was assumed in both load composi-
tion parameters, so that

0.3 S V23, V24 S 0.7. (45)
Worst-case analysis was used to explore bounds on behavior
and, in particular, to determine whether this uncertainty could
affect conclusions regarding protection operation.

The example focuses on zone 3 protection at the bus 23 end of
line 23-24. Fig. 14 shows the separation between the zone 3 mho
characteristic [24] and the apparent impedance seen from bus
23. (This separation goes negative when the apparent impedance
enters the mho characteristic.) The dashed line was obtained
using the nominal set of load parameters. It remains above zero,
suggesting the zone 3 characteristic is not entered. Based on
this nominal trajectory, sensitivities indicated that over the time
frame of interest, where the trip signal approached zero, worst
behavior (lowest dip) occurred for load indexes v»3 = 0.7 and
va4 = 0.3. Best behavior (least dip) occurred for v53 = 0.3 and
v94 = 0.7. The corresponding approximate (sensitivity derived)
bounds on behavior are shown as solid lines in Fig. 14. The
true (simulated) bounds are shown as dash-dot lines. The sensi-
tivity-based predictions are very accurate over this crucial time
period. Every selection of 153 and o4 from the range (45) re-
sults in a trajectory that lies within the bounds shown in Fig. 14.
Notice that the lower bound passes below zero, indicating the
possibility of a zone 3 trip.

This example was extended to incorporate load index uncer-
tainty

1.8 < 1y my < 22 (46)

for all loads throughout the system, together with the load un-
certainty expressed by (45). Fig. 15 indicates that this extra un-
certainty has little effect on the worst-case bounds before about
0.8 s. Beyond that time, though, the bounds grow quite con-
siderably. (For comparison, the bounds from Fig. 14 are shown
as dotted lines in Fig. 15.) Even though uncertainty in a large
number of parameters leads to wide bounds, the approximate
bounds are still very accurate.!!

As mentioned previously, the nominal trajectory does not dip
below zero, implying zone 3 protection is not a concern. How-
ever, the lower bound in Fig. 15 remains below zero for a con-
siderable time, indicating a nontrivial probability of a zone 3

10Many real power systems are susceptible to cascading protection operation.
However, availability of data for those systems is rather limited.

Uncertainty in other parameters, including those describing the induction

motor loads, was also considered. Qualitatively similar outcomes were obtained,
namely, widening of the uncertainty bounds, with good accuracy maintained.
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Fig. 15. Zone 3 protection on line 23-24, worst-case bounds for 1.8 <

Ny, < 2.2 and 0.3 < vz, 04 < 0.7.

trip. This example highlights the importance of considering un-
certainty when assessing protection response.

In both Figs. 14 and 15, the worst-case bounds exhibit rapid
growth over the period 1 to 1.2 s. The explanation lies in the
system stability margin. For the nominal parameter set, the crit-
ical clearing time was 0.163 s, compared with the actual clearing
time of 0.15 s used throughout the example. With load parame-
ters altered to reflect the worst-case behavior in Fig. 15, the crit-
ical clearing time dropped to 0.151 s. The actual clearing time
of 0.15 s therefore induced behavior that was almost unstable.
As indicated in Section III-D, proximity to instability implies
large sensitivity to parameter variations. The rapid growth in
the worst-case bounds reflects that sensitivity. Importantly, even
though the system is only marginally stable, the trajectory ap-
proximations are still accurate.

E. Probabilistic Assessment

Often parameter values are not uniformly distributed over the
range of uncertainty but tend more toward a normal distribution.
Under those conditions, worst-case analysis gives a conservative
view of parametric influences. Less conservatism is achieved
with probabilistic assessment.

A probabilistic approach to assessing the influence of uncer-
tainty assumes x is a random vector!2 with mean g and covari-
ance matrix Y. It follows that deviations

Arg =120 — b 47
have zero mean and covariance . Let the mean p describe the
initial conditions for the nominal flow and trajectory sensitiv-
ities, i.e., i establishes the nominal parameter set. Then from
(42), and basic statistical properties [39], perturbations A( ()
in any particular quantity of interest (, will have mean

E[AC(#)] = S(t) E[Azo] = 0 (48)

12Certain elements of 2y will be known exactly. For such elements, the cor-
responding row and column of X are zero.
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Fig. 16. Zone 3 protection on line 23-24, 95% confidence interval bounds for
Elvs3] = E[voa] = 0.5, Var[vag] = Var[vas] = 0.01.

and variance

Var[A((H)] = S(t) B S(t)" (49)
where S(t) is the row of ®(u,t) or ¥(u,t) corresponding to
(. Furthermore, if the elements of random vector Az are sta-
tistically independent, then 3 becomes a diagonal matrix with
0% ... o2 along the diagonal, and (49) reduces to

n

Var[A(H)] = > Si(t)? o7

=1

(50)

F. Example—Probabilistic Assessment

This example uses the same system and fault scenario as in
Section V-D. In this case, however, the uncertain load compo-
sition variables 153 and vo4 are both normally distributed, with
mean (nominal) values E[vo3] = FElves] = 0.5. It is assumed
the random perturbations in these variables are independent and
have variances Var[vo3] = Var[res] = 0.01. The parameter
range (45) therefore corresponds to £2 standard deviations.
The probability of parameters lying within that range is 95.45%.

The parameter of interest ( in this case, as in the example of
Section V-D, is the zone 3 protection signal. Fig. 16 shows the
response of that signal, with nominal behavior indicated by the
thick dashed line. (This nominal response corresponds exactly
with the nominal trajectory in Fig. 14.) Equation (50) was used
to determine the time varying (approximate) variance of ((t),
given that 2 = 0.01 for both uncertain parameters. The 95%
confidence interval obtained using this variance is denoted in
Fig. 16 by solid lines. For comparison, a Monte Carlo process
was used to generate 100 pairs of random variables (vo3, Va4),
with the corresponding trajectories shown in Fig. 16 by lighter
dashed lines. It can be seen that the 95% confidence interval cap-
tures most of the behavior, though some trajectories lie outside
that interval.
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Fig. 17. Zone 3 protection on line 23-24, signal distribution at 0.9 s, E[123] =
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TABLE I
COMPARISON OF MONTE CARLO AND SENSITIVITY-BASED STATISTICS
Time | Monte Carlo | Sensitivity |
(sec) | Mean [ Stddev [ Mean [ Sid dev |
0.8 0.0022 | 0.0020 [ 0.0023 | 0.0017
0.9 0.0049 | 0.0031 | 0.0050 | 0.0028
1.0 0.0140 | 0.0058 | 0.0141 | 0.0051

A clearer view of the statistical distribution of trajectories
can be obtained by focusing on particular time instants. For ex-
ample, the histogram of Fig. 17 shows the distribution of random
trajectories at £ = 0.9 s. Overlaying that histogram is the prob-
ability density function (pdf) for the normal distribution with
mean given by the nominal trajectory and variance calculated
from the sensitivity-based approximation (50). Given the rela-
tively small number of samples, the histogram matches the pdf
quite closely.

Table I provides a comparison of sensitivity-based statistics
with Monte Carlo results, for three time instants. The sensi-
tivity-based mean corresponds to the nominal trajectory, while
the standard deviation is the square root of the variance given by
(50). It seems the sensitivity-based approximation tends to un-
derestimate the standard deviation slightly. However, the error
is insignificant given the relatively small number of samples in
the Monte Carlo process.

VI. CONCLUSIONS

Parameters of many power system models can never be
known exactly. Composite load models are particularly chal-
lenging to parameterize, due to their stochastic nature. (This is
also the case for high-penetration distributed generation.) Yet
the results of power system simulation studies are routinely
used in planning and operating decisions. Therefore, it is impor-
tant to quantify the errors introduced by parameter uncertainty.
This paper provides techniques for (approximately) bounding
those errors.
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Trajectory sensitivities can be efficiently computed as a
by-product of simulating the nominal trajectory. These sen-
sitivities offer a way of ranking the relative influence of
parameters. More importantly for this paper, they provide the
basis for generating first-order approximations of trajectories
that arise from perturbed parameter sets. Dynamic behavior
can be expressed in functional form (as the flow) and expanded
as a Taylor series. Approximate behavior is obtained by ne-
glecting higher order terms. It is shown in this paper that the
error introduced by truncating the expansion is affected by
proximity to instability (system stress) and the magnitude of
parameter perturbations. As systems become more heavily
stressed, perturbation size must decrease to maintain commen-
surate accuracy. Approximate trajectories are well defined for
nonsmooth behavior.

Sensitivity-based trajectory approximations have an affine
structure, motivating two straightforward approaches to quan-
tifying the effects of uncertainty: worst-case analysis and
probabilistic assessment. Worst-case analysis involves prop-
agating the vertices of an orthotope that describes initial
uncertainty. A simple algorithm allows the bounding (worst
case) vertices to be efficiently, though approximately, deter-
mined. Probabilistic assessment uses trajectory sensitivities
to map variances of uncertain parameters to the time-varying
variances of states. These variances can be used to establish a
confidence interval around the nominal trajectory.

The extra information provided by uncertainty bounds estab-
lishes a clearer view of likely system behavior. This is particu-
larly valuable in assessing the likelihood of risks such as cas-
cade-inducing protection operation. Provision of this supple-
mentary information involves straightforward implementation
and negligible computational burden.

REFERENCES

[1] R. Craven, T. George, G. Price, P. Wright, and I. Hiskens, “Valida-
tion of dynamic modelling methods against power system response to
small and large disturbances,” in Proc. CIGRE General Session, Paris,
France, Aug. 1994.

[2] J. Hauer, W. Mittelstadt, W. Litzenberger, C. Clemens, D. Hamai, and
P. Overholt, Wide Area Measurements for Real-Time Control and Op-
eration of Large Electric Power Systems, DOE Final Rep., 1999.

[3] I. Hiskens, “Nonlinear dynamic model evaluation from disturbance
measurements,” IEEE Trans. Power Syst., vol. 16, no. 4, pp. 702-710,
Nov. 2001.

[4] F. Wu and Y.-K. Tsai, “Probabilistic dynamic security assessment of
power systems,” IEEE Trans. Circuits Syst., vol. CAS-30, no. 3, pp.
148-159, Mar. 1983.

[5] P. Anderson and A. Bose, “A probabilistic approach to power system
stability analysis,” IEEE Trans. Power App. Syst., vol. PAS-102, pp.
2430-2439, Aug. 1983.

[6] J. Hockenberry and B. Lesieutre, “Evaluation of uncertainty in dy-
namic simulation of power system models: The probabilistic colloca-
tion method,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1483-1491,
Aug. 2004.

[7]1 A.Monti, F. Ponci, T. Lovett, A. Smith, and R. Dougal, “Modeling of
uncertainty and applications in monitoring and control of power elec-
tronics,” in Proc. Amer. Control Conf., Portland, OR, Jun. 2005, pp.
2011-2016.

[8] I. Hiskens, M. Pai, and T. Nguyen, “Bounding uncertainty in power
system dynamic simulations,” in Proc. IEEE Power Eng. Soc. Winter
Meeting, Singapore, Jan. 2000.

[9] R. Tomovié, Sensitivity Analysis of Dynamic Systems.
McGraw-Hill, 1963.

[10] J. Cruz Jr., System Sensitivity Analysis.
Hutchinson and Ross, 1973.

New York:

Stroudsburg, PA: Dowden,



1820

[11] P. Frank, Introduction to System Sensitivity Theory. New York: Aca-
demic, 1978.

[12] W. Feehery, J. Tolsma, and P. Barton, “Efficient sensitivity analysis of
large-scale differential-algebraic systems,” Appl. Numer. Math., vol.
25, pp. 41-54, 1997.

[13] I Hiskens and M. Pai, “Trajectory sensitivity analysis of hybrid sys-
tems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no.
2, pp. 204-220, Feb. 2000.

[14] IEEE Task Force Report, “Standard load models for power flow and
dynamic performance simulation,” /EEE Trans. Power Syst., vol. 10,
no. 3, pp. 1302-1313, Aug. 1995.

[15] L. Pereira, D. Kosterev, P. Mackin, D. Davies, J. Undrill, and W. Zhu,
“An interim dynamic induction motor model for stability studies in the
WSCC,” IEEE Trans. Power Syst., vol. 17, no. 4, pp. 1108-1115, Nov.
2002.

[16] P.Kundur, Power System Stability and Control. New York: McGraw-
Hill, 1994, EPRI Power System Engineering Series.

[17] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dy-
namical Systems. London, U.K.: Springer-Verlag, 2000.

[18] D. Liberzon, Switching in Systems and Control. Boston, MA:
Birkhauser, 2003.

[19] M. di Bernardo, H. Chung, and C. Tse, “Guest editorial: Special issue
on switching and systems,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 50, no. 8, pp. 973-974, Aug. 2003.

[20] R.David and H. Alla, Petri Nets and Grafecet. Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[21] 1. Hiskens, “Power system modeling for inverse problems,” IEEE
Trans. Circuits Syst. 1, Reg. Papers, vol. 51, no. 3, pp. 539-551, Mar.
2004.

[22] V.Donde and I. Hiskens, “Dynamic performance assessment: Grazing
and related phenomena,” IEEE Trans. Power Syst., vol. 20, no. 4, pp.
1967-1975, Nov. 2005.

[23] E. Lee and H. Zheng, “Operational semantics of hybrid systems,” in
Hybrid Systems: Computation and Control, M. Morari and L. Thiele,
Eds. New York: Springer, 2005, vol. 3414, Lecture Notes in Com-
puter Science, pp. 25-53.

[24] J. Blackburn, Protective Relaying Principles and Applications, 2nd
ed. New York: Marcel Dekker, 1998.

[25] C. Fox, An Introduction to the Calculus of Variations. New York:
Dover, 1988.

[26] A.Brysonand Y. Ho, Applied Optimal Control. New York: Taylor &
Francis, 1975.

[27] S.Li, L. Petzold, and W. Zhu, “Sensitivity analysis of differential-alge-
braic equations: A comparison of methods on a special problem,” Appl.
Numer. Math., vol. 32, no. 8, pp. 161-174, 2000.

[28] P. Sauer and M. Pai, Power System Dynamics and Stability. Upper
Saddle River, NJ: Prentice-Hall, 1998.

[29] IEEE Recommended Practice for Excitation System Models for Power
System Stability Studies, IEEE Std. 421.5-1992, 1992.

[30] M. Pai, Energy Function Analysis for Power System Stability. Nor-
well, MA: Kluwer, 1989.

[31] I. Hiskens, M. Pai, and T. Nguyen, “Dynamic contingency analysis
studies for inter-area transfers,” in Proc. 13th Power Systems Compu-
tation Conf., Trondheim, Norway, Jun. 1999.

[32] T. Nguyen, M. Pai, and 1. Hiskens, “Sensitivity approaches for direct
computation of critical parameters in a power system,” Int. J. Elect.
Power Energy Syst., vol. 24, pp. 337-343, 2002.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 4, NOVEMBER 2006

[33] H. Coxeter, Regular Polytopes, 3rd ed. New York: Dover, 1973.

[34] A. Brendsted, An Introduction to Convex Polytopes. New York:
Springer-Verlag, 1983.

[35] R. Rockfellar, Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970.

[36] J. Bandler, P. Liu, and J. Chen, “Worst-case network tolerance op-
timization,” IEEE Trans. Microw. Theory Tech., vol. MTT-23, pp.
630-641, Aug. 1975.

[37] R. Spence and R. Soin, Tolerance Design of Electronic Circuits.
Reading, PA: Addison-Wesley, 1988.

[38] M. Tian and C.-J. Shi, “Worst case tolerance analysis of linear analog
circuits using sensitivity bands,” IEEE Trans. Circuits Syst. I, vol. 47,
no. 8, pp. 1138-1145, Aug. 2000.

[39] E.Kreyszig, Introductory Mathematical Statistics. New York: Wiley,
1970.

Ian A. Hiskens (S’77-M’80-SM’96-F’06) is a
Professor of electrical and computer engineering
at the University of Wisconsin-Madison. He re-
ceived the B.Eng. degree in electrical engineering
and B.App.Sc. degree in mathematics from the
Capricornia Institute of Advanced Education, Rock-
hampton, Australia, in 1980 and 1983, respectively,
and the Ph.D. degree from the University of New-
castle, Newcastle, Australia, in 1991.

He has held prior appointments with the Queens-
land Electricity Supply Industry, Australia, from
1980 to 1992, the University of Newcastle from 1992 to 1999, and the Univer-
sity of Illinois at Urbana-Champaign from 1999 to 2002. His major research
interests lie in the area of power system analysis, in particular system dynamics,
security, and numerical techniques. Other research interests include nonlinear
and hybrid systems, and control.

Dr. Hiskens was an Associate Editor of the IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS I from 2002 to 2005 and is currently Treasurer of the
IEEE Systems Council.

Jassim Alseddiqui (S’02) received the B.Sc. degree
in electrical engineering (with distinction) from the
University of Wisconsin-Madison in 2004 and the
M.S. degree in electrical engineering from Cornell
University, Ithaca, NY, in 2005.

He is an Instructor at the Petroleum Institute,
Abu Dhabi, United Arab Emirates, and an Electrical
Engineer Trainee at Abu Dhabi Gas Industries Ltd.
(GASCO). His research interests are nonlinear
systems, power systems, power system planning,
nonlinear optimization, global optimization, and
engineering economics.

Mr. Alseddiqui is a member of Eta Kappa Nu, Tau Beta Pi, Golden Key In-
ternational, and the Burrill Business Association. He is also the founder and the
current president of the Emirates Association for Innovation and Technology.



