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Abstract— Analytical investigations of real-world, hybrid dynamical systems are technically challenging. Con-
sequently, simulation plays a vital role in their analysis. Simulation typically addresses forward problems though,
offering limited insights into parametric influences. The paper addresses this issue, presenting computationally
efficient algorithms that extend the capabilities of simulation. The starting point is a model that captures the
intricacies of hybrid systems, yet is suited to numerical integration. It will be shown that trajectory sensitivities
are well defined for hybrid systems, and can be computed efficiently. These sensitivities allow the mapping of
parameter uncertainty into approximate error bounds on nominal (piecewise smooth) trajectories. Furthermore,
they provide gradient information that facilitates the solution of inverse problems. A range of problems will be
considered, including shooting methods for locating (possibly non-smooth) limit cycles and grazing phenomena,
and optimization algorithms for parameter estimation and controller tuning.

Keywords— Hybrid dynamical systems, inverse problems, parameter uncertainty, shooting methods, trajec-
tory sensitivities.

1 Introduction

Tools for systematically exploring large distur-
bance behaviour of hybrid dynamical systems,
such as power systems, are quite limited. Gener-
ally such analysis relies on time domain simulation
and intuition. Whilst simulation provides a vast
amount of information describing the behaviour
of system states, it fails to provide insights into
underlying parametric influences. Furthermore, it
often fails to (directly) address the questions of
importance to analysts.

Normal simulation-based investigations are
limited to forward problems. The system model
and parameters are given, and the corresponding
system dynamic response is determined. How-
ever analysis frequently takes the form of inverse
problems (Groetsch, 1999; Kirsch, 1996). In this
case, the output is specified, and the problem is
to determine parameters that induce (as closely
as possible) the desired behaviour. System iden-
tification epitomizes this class of problems. Other
forms of inverse problems abound though, with
the paper considering, for example, the locating
of limit cycles and grazing phenomena (Donde and
Hiskens, 2006). In the context of hybrid systems,
such problems are traditionally addressed by ad
hoc repetition of forward (simulation) problems.
The paper shows that systematic modelling es-
tablishes a foundation for algorithms that directly
address inverse problems.

The paper is structured as follows. An
overview of hybrid system modelling is provided
in Section 2, and trajectory sensitivity concepts
are presented in Section 3. Trajectory approx-
imation and parameter uncertainty are discussed
in Section 4, and various inverse problems are con-
sidered in Section 5. Conclusions are provided in
Section 6.

2 Model

Systems that exhibit intrinsic interactions be-
tween continuous dynamics and discrete events
have become known generically as hybrid dynami-
cal systems (Liberzon, 2003; van der Schaft and
Schumacher, 2000; Branicky et al., 1998). Nu-
merous formal models, such as petri nets (David
and Alla, 1992) and hybrid automata (van der
Schaft and Schumacher, 2000), exist for rigor-
ously describing hybrid system dynamics. How-
ever, those representations are not immediately
amenable to numerical implementation. Analysis
of large systems, such as power systems, requires a
non-restrictive model formulation that is capable
of capturing the full range of continuous/discrete
hybrid system dynamics, yet is computationally
efficient.

It was shown in (Hiskens, 2004; Hiskens
and Pai, 2000) that these specifications can
be met by a model that consists of a set of
differential-algebraic equations, adapted to incor-
porate switching of the algebraic equations, and
impulsive (state reset) action. This DA Impulsive
Switched (DAIS) model has its genesis in the fa-
miliar DAE model

ẋ = f(x, y) (1)
0 = g(x, y) (2)

where x ∈ Rn are dynamic states, y ∈ Rm are
algebraic states, f : Rn+m → Rn, and g : Rn+m →
Rm.

Switching events can be incorporated into the
DAE model by requiring the algebraic equations
(2) to switch between sets of equations that de-
scribe pre- and post-event conditions. Consider-
ing a single switching event, (2) can be replaced



by

0 = g(x, y) ,
{

g−(x, y) s(x, y) < 0
g+(x, y) s(x, y) > 0,

(3)

where the superscripts ‘−’ and ‘+’ index the two
sets of algebraic equations.1 A switching event
coincides with a zero crossing of the trigger func-
tion s(x, y). Note that the concept of crossing is
important. If the trajectory just touches (grazes)
the triggering surface

S = {(x, y) : s(x, y) = 0} (4)

then behaviour beyond that point is indetermi-
nant, as switching may or may not occur (Donde
and Hiskens, 2005). Therefore the following as-
sumption is required.
Assumption 1: The trajectory encounters the
triggering surface S transversally.

The precise behaviour of the model at a
switching event is not well defined by (3), and re-
quires further explanation. Let the event occur
at trigger time τ , and define τ− as the time in-
stant just prior to τ , and τ+ as the instant just
after τ . The limit values of the states can then be
expressed as,

x− ≡ x(τ−) := lim
t↑τ

x(t), x+ ≡ x(τ+) := lim
t↓τ

x(t)

(5)

y− ≡ y(τ−) := lim
t↑τ

y(t), y+ ≡ y(τ+) := lim
t↓τ

y(t),

(6)

where t ↑ τ implies t < τ approaches τ from be-
low, and t ↓ τ implies t > τ approaches τ from
above. Clearly, two sets of variables (x−, y−) and
(x+, y+) are required to fully describe behaviour
at an event (Lee and Zheng, 2005).

By definition s(x−, y−) = 0, but s(x+, y+)
may not necessarily equal zero. Furthermore, as-
sume without loss of generality that s(x(t), y(t)) <
0 for t < τ . Then well defined switching be-
haviour requires s(x(t), y(t)) > 0 for t > τ . Also,
this sign assumption implies g−(x−, y−) = 0 and
g+(x+, y+) = 0. Dynamic states are unaltered
at a switching event, so x− = x+. In order to
satisfy the altered algebraic equations, however,
often y− 6= y+.

Switching events cannot efficiently capture all
forms of discrete behaviour. Modelling approx-
imations that introduce discrete jumps into the
dynamic x-states are often convenient. Such be-
haviour has the form of an impulse, and can be
described by a reset equation

x+ = h(x−, y−) when s(x, y) = 0, (7)

1The functions g− and g+ may themselves have a
switched form, resulting in a hierarchical switching struc-
ture.

where h : Rn+m → Rn. The superscript notation
is consistent with earlier use, with x+ denoting the
value of x just after the reset event, while x− and
y− refer to the values of x and y just prior to the
event. As in the case of a switching event, a re-
set event is triggered when s(x, y) passes through
zero. Away from that zero crossing condition, the
evolution of the dynamic x-states is described by
the differential equations (1).

Dynamic behaviour, generated numerically by
simulation, can be described analytically by the
flow,

x(t) = φ(x0, t) (8)
y(t) = ψ(x0, t). (9)

Initial conditions imply

φ(x0, t0) = x0 (10)
g(φ(x0, t0), ψ(x0, t0)) = 0. (11)

A compact development of trajectory sensitiv-
ities results from incorporating parameters p ∈ R`

into the dynamic states x. (Numerical implemen-
tation is also simplified.) This is achieved by in-
troducing trivial differential equations

ṗ = 0 (12)

into (1), and results in the natural partitioning

x =
[

x
p

]
, f =

[
f
0

]
, h =

[
h
p

]

(13)
where x are the true dynamic states, and p are pa-
rameters. Accordingly, initial conditions and pa-
rameters will be treated synonymously through-
out the remainder of the paper.

3 Trajectory Sensitivity

3.1 Motivation

The functional form of the flow (8)-(9) motivates
the Taylor series expansions,

φ(x0 + ∆x0, t) = φ(x0, t) +
∂φ(x0, t)

∂x0
∆x0

+ Eφ(x0, t, ∆x0) (14)

ψ(x0 + ∆x0, t) = ψ(x0, t) +
∂ψ(x0, t)

∂x0
∆x0

+ Eψ(x0, t, ∆x0) (15)

where Eφ and Eψ capture the higher order terms.
For small ‖∆x0‖, the higher order terms may be
neglected, giving

∆x(t) = φ(x0 + ∆x0, t)− φ(x0, t)

≈ ∂φ(x0, t)
∂x0

∆x0 ≡ Φ(x0, t)∆x0 (16)

∆y(t) = ψ(x0 + ∆x0, t)− ψ(x0, t)

≈ ∂ψ(x0, t)
∂x0

∆x0 ≡ Ψ(x0, t)∆x0 (17)



where Φ and Ψ are the sensitivity transition ma-
trices, or trajectory sensitivities, associated with
the x and y flows (Frank, 1978). Equation (16)
describes the approximate change ∆x(t) in a tra-
jectory, at time t along the trajectory, for a
given small change in initial conditions ∆x>0 =
[∆x>0 ∆p>]. Likewise, the change ∆y(t) is given
by (17).

3.2 Variational equations

Away from events, where system dynamics evolve
smoothly, the sensitivities Φ and Ψ are obtained
by differentiating (1)-(2) with respect to x0. This
gives

Φ̇ = fx(t)Φ + fy(t)Ψ (18)
0 = gx(t)Φ + gy(t)Ψ (19)

where fx ≡ ∂f/∂x, and likewise for the other
Jacobian matrices. Note that fx, fy, gx, gy

are evaluated along the trajectory, and hence
are time-varying matrices. The computational
burden of numerically integrating this (poten-
tially high order) linear time-varying DAE sys-
tem is minimal though. It is shown in (Feehery
et al., 1997; Hiskens and Pai, 2000; Li et al., 2000)
that when an implicit numerical integration tech-
nique such as trapezoidal integration is used, the
solution of (18)-(19) can be obtained as a by-
product of computing the underlying trajectory.

Initial conditions for Φ are obtained from (10)
as

Φ(x0, t0) = I (20)

where I is the identity matrix. Initial conditions
for Ψ follow directly from (19),

0 = gx(t0) + gy(t0)Ψ(x0, t0). (21)

Equations (18)-(19) describe the evolution of
the sensitivities Φ and Ψ between events. How-
ever the sensitivities are often discontinuous at
events. It is necessary to calculate jump condi-
tions describing event-induced step changes in Φ
and Ψ. Consider the most general case of a co-
incident switching/reset event, described by (3)
and (7). (The jump conditions appropriate for
separate switching or reset events follow directly
from this more general situation.) It was shown by
Hiskens and Pai (2000) that the jump conditions
for the sensitivities Φ are given by

Φ(x0, τ
+) = h∗x Φ(x0, τ

−)− (
f+ − h∗x f−

)
τx0

(22)
where

τx0 ≡
∂τ

∂x0
= −s∗x Φ(x0, τ

−)
s∗x f−

(23)

and

f− ≡ f(x−, y−) (24)

f+ ≡ f(x+, y+) (25)

h∗x =
(
hx − hyg−1

y gx

)∣∣
τ−

(26)

s∗x =
(
sx − syg−1

y gx

)∣∣
τ−

. (27)

Note that jump conditions are only well defined
when Assumption 1 is satisfied. Otherwise, if the
trajectory encounters S tangentially rather than
transversally, the denominator of (23) will equal
zero. The sensitivities Ψ immediately after the
event are given by

Ψ(x0, τ
+) = − (

g−1
y gx

)∣∣
τ+ Φ(x0, τ

+). (28)

Keep in mind that g in (26)-(27) refers to its pre-
event form, whereas post-event conditions apply
in (28).

Subsequent to the event, for t > τ+, calcula-
tion of the sensitivities proceeds according to (18)-
(19). The jump conditions (22) and (28) provide
the initial conditions for this post-event integra-
tion.

4 Parameter Uncertainty

4.1 Trajectory approximation

For general nonlinear systems, the flow functions
φ and ψ, given by (8)-(9), cannot be expressed
in closed form. Any change in initial conditions
(and/or parameters) therefore requires a complete
re-simulation of the dynamic model. However if
changes are relatively small, the computational
effort of repeated simulation can be avoided by
forming approximate trajectories.

Rearranging (16)-(17) gives the first-order ap-
proximations of the flow,

φ(x0 + ∆x0, t) ≈ φ(x0, t) + Φ(x0, t)∆x0 (29)
ψ(x0 + ∆x0, t) ≈ ψ(x0, t) + Ψ(x0, t)∆x0. (30)

As mentioned previously, the trajectory sensitiv-
ities Φ and Ψ can be computed efficiently as a
byproduct of simulating the nominal trajectory.
Therefore a range of (approximate) perturbed tra-
jectories are available via (29)-(30) for the compu-
tational cost of a single nominal trajectory. This
computational efficiency will be exploited in Sec-
tion 4.2 to explore the influence of parameter un-
certainty.

The single machine infinite bus system of Fig-
ure 1 will be used to illustrate the quality of trajec-
tory approximation achievable by (29)-(30). The
generator in this system was represented by a
sixth order machine model (Sauer and Pai, 1998).
Its AVR/PSS was modelled according to the IEEE
standard representation shown in Figure 2. The
system was subjected to a balanced three phase



AVR

Exciter

PSS

~

VtV∞
Efd

Figure 1: Single machine infinite bus system.

Vmax

Vmin

1+sT1

1+sT2

sTw

1+sTw
KPSS ∆ω

VPSS

1

1+sTR

1+sTC

1+sTB

KA

1+sTA
Σ Efd

Vref

Vt
−

+

+

Efdmax

Efdmin

1+sT3

1+sT4

Figure 2: AVR/PSS standard models.

fault on the generator terminal bus. The fault
was cleared without line tripping.

The nominal trajectory, shown in Figure 3 as
a dashed line, was obtained for a fault clearing
time of tcl = 0.23 sec, and a maximum field volt-
age limit of Efd,max = 5.8 pu. Notice that be-
haviour is quite non-smooth, due to the fault and
limit-related events.

Trajectory sensitivities were used to synthe-
size the approximate behaviour that would oc-
cur for altered parameter values tcl = 0.21 sec
and Efd,max = 5.0 pu (cf. the original values of
0.23 sec and 5.8 pu respectively.) This synthesized
trajectory is shown as the solid line in Figure 3.
For comparison purposes, the full simulation was
repeated using these altered parameters. The cor-
responding trajectory is shown as a dash-dot line
in Figure 3.

The parameters chosen for this illustration ex-
ert a significant nonlinear, non-smooth influence
on system behaviour. However, even though the
change in these parameters is large, the approx-
imated trajectory closely tracks the actual per-
turbed trajectory.

4.2 Bounding parallelotopes

It is common for models of real-world systems to
involve parameters that are not known with cer-
tainty. In the case of power systems, for example,
load behaviour is notoriously difficult to model ac-
curately. A thorough understanding of the influ-
ence of uncertain parameters requires many sim-
ulations. However the computational effort in-
volved in each simulation generally precludes any-
thing more than a cursory examination of para-
metric dependencies.

Trajectory approximations, given by (29)-
(30), overcome the need for repetitive simula-
tion, though at the cost of some loss of accuracy.
The affine nature of (29)-(30) allows straight-
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Figure 3: Field voltage behaviour: comparison of
actual and approximate trajectories.

forward approaches to quantifying the effects of
uncertainty. Worst-case analysis is considered
here, with probabilistic assessment discussed in
(Hiskens and Alseddiqui, 2006).

Under a worst-case scenario, uncertain pa-
rameters may lie anywhere within the (convex)
orthotope2

B = {∆x0 : ∆min ≤ ∆x0 ≤ ∆max} (31)

where ∆x0 describes the deviations from the nom-
inal parameter values, ∆min and ∆max are vec-
tors of minimum and maximum allowable devia-
tions respectively, and the inequalities are on an
element by element basis. The dimension of the
orthotope B matches the number of uncertain pa-
rameters. Its vertices are extremes where every
element of ∆x0 takes either its maximum or min-
imum value. Trajectory approximations (29)-(30)
describe a time-dependent affine transformation of
initial conditions ∆x0 ∈ B, provided the following
assumption is satisfied.

Assumption 2: All trajectories emanating from
the set x0 + B have the same event history, i.e.,
the same events occur and in the same order.

Under the affine transformations (29)-(30),
the orthotope B is shifted and distorted to form
time-dependent parallelotopes3

Pφ(t) = φ(x0, t) + Φ(x0, t)B (32)

Pψ(t) = ψ(x0, t) + Ψ(x0, t)B. (33)

Importantly, the affine transformation maintains
convexity (Rockfellar, 1970), with vertices of B

2An orthotope is a high dimensional generalization of a
rectangle (Coxeter, 1973).

3A parallelotope is a high dimensional generalization
of a parallelogram (Coxeter, 1973). Parallel faces remain
parallel under the affine transformation, but orthogonal-
ity of adjacent faces is lost. Full details can be found in
(Brøndsted, 1983).



0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−6

−4

−2

0

2

4

6

8

Angle, α (rad)

F
re

qu
en

cy
, ω

 (
ra

d/
se

c)

Figure 4: Phase portrait view of parallelotope
propagation.

mapping to vertices of Pφ(t) and Pψ(t). There-
fore, (32)-(33) describe the propagation of a con-
vex set through state space. Initial conditions that
lie within x0 + B give rise to (approximate) tra-
jectories that remain within the time-propagated
parallelotopes.

To illustrate, the power system example of
Figure 1 will be used, though with the AVR/PSS
limits (see Figure 2) disabled. The thicker solid
trajectory in Figure 4 shows the angle-frequency
phase portrait when all states are initially in
steady-state, except for ω(t0) = 6 rad/sec. An
error bound of −0.1 ≤ ∆α(t0) ≤ 0.1 was cho-
sen for the initial value of the angle α, and −1 ≤
∆ω(t0) ≤ 1 for frequency ω. Also, it was as-
sumed the generator inertia could be in error by
−0.075 ≤ ∆H

H ≤ 0.075. This initial error ortho-
tope B is projected onto the α−ω plane as the rect-
angle symmetrically surrounding the initial point
of the nominal trajectory.

Figure 4 shows the propagation of B according
to (32)-(33). The approximate trajectories ema-
nating from the vertices of B are shown as thin-
ner solid lines, while the distortion of B along the
trajectory is shown as the sequence of parallelo-
topes. The projection onto the α − ω plane flat-
tens these parallelotopes. Their outline, or convex
hull (Rockfellar, 1970), is shown as a darker line.

Forty sets of initial conditions were randomly
selected from x0 + B, assuming a uniform distri-
bution. The true (simulated) trajectories arising
from those initial conditions are shown as lighter
dashed lines. It can be seen that these trajecto-
ries lie (almost completely) within the region cov-
ered by the propagated parallelotopes, the outline
of which is given by the approximate trajectories
arising from the vertices of B.
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Figure 5: Parameter estimation.

5 Applications

5.1 Parameter estimation

Parameter estimation is a huge field. Even so,
for hybrid systems that do not possess special
structure, such as power systems, parameter es-
timation typically reverts to iterative solution of
Gauss-Newton based algorithms. Such ideas are
not new (Frank, 1978). The number of parameters
that could be estimated using those earlier ideas
was limited though, because trajectory sensitiv-
ities were generated numerically. By exploiting
more computationally efficient methods of calcu-
lation (Hiskens and Pai, 2000), it is possible to
consider many system-wide parameters. Further-
more, the extension of trajectory sensitivities to
hybrid systems allows parameters associated with
discontinuities to be estimated. Figure 5 provides
an illustration.

A voltage measurement from an actual dis-
turbance on the Nordel system (Hiskens and
Akke, 1999; Hiskens, 2001) is shown. The fig-
ure also shows the simulated voltage trajectory
obtained using the utility’s “standard” parameter
values. This set of parameters did not predict be-
haviour particularly well. The single voltage mea-
surement was therefore used to estimate a number
of parameters, including the switching time of an
important reactor. Figure 5 shows that this re-
sulted in a much closer match between simulated
and measured response.

5.2 Dynamic embedded optimization

Optimization problems arise frequently in the
analysis of dynamical systems. In power systems,
for instance, examples range from tuning genera-
tor AVR/PSSs to determining the optimal loca-
tion, amount and switching times for load shed-
ding (Moors and Van Cutsem, 1999). Most prob-
lems can be formulated using a Bolza form of ob-



jective function

min
θ,tf

J (x, y, θ, tf ) (34)

where

J = K(
x(tf ), y(tf ), θ, tf

)
+

∫ tf

t0

L(
x(t), y(t), θ, t

)
dt,

(35)
θ are the design parameters, i.e., the parameters
adjusted to achieve the objective, and tf is the
final time.

The solution of (34) for hybrid systems is
complicated by discontinuous behaviour at events.
However those complications largely disappear
under the assumption that the order of events does
not change as θ and tf vary. This assumption is
common throughout the literature, though it is ex-
pressed in various ways: transversal crossings of
triggering hypersurfaces were assumed by Bran-
icky et al. (1998), existence of trajectory sensi-
tivities was assumed by Galán and Barton (1998),
and Piccoli (1998) assumed all flows have the same
history. All statements are equivalent.

Under that assumption, and other mild as-
sumptions, it was concluded by Piccoli (1998) that
if J is continuous in its arguments then a solution
to (34) exists. Furthermore, Galán and Barton
(1998) showed that if J is a smooth function of its
arguments, then it is continuously differentiable
with respect to θ and tf . The minimization can
therefore be solved using gradient-based methods.
Trajectory sensitivities, as provided by the DAIS
model, underlie the gradient information.

If the event ordering assumption is not satis-
fied, J may be discontinuous. The optimization
problem then takes on a combinatorial nature, as
each continuous section of J must be searched for
a local minimum.

Non-traditional design capabilities arise from
embedding the DAIS model within the optimiza-
tion framework (34)-(35). To illustrate, consider
the generator AVR/PSS shown in Figure 2. Typ-
ically PSS output limits are assigned on an ad
hoc basis. However Hiskens (2002) determined
optimal limit values by establishing a cost func-
tion (35) that maximized damping whilst mini-
mizing deviations in the generator terminal volt-
age. Figure 6 compares optimal performance with
that obtained using standard limit values. (Note
that only the limit values differ between these two
cases. All other parameters are fixed.)

5.3 Shooting methods

System analysis is often tantamount to under-
standing the influence of parameters on system be-
haviour, and applying that knowledge to achieve
a desired outcome. The “known” information is
the desired outcome. The parameters that achieve
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Figure 6: Generator angle response.

that outcome must be deduced. Such inverse
problems can often be formulated as

F (z) = 0 (36)

where F incorporates the flows φ and ψ. Two im-
portant cases are considered below, namely locat-
ing limit cycles, and determining conditions that
induce grazing, though other applications abound.

Nonlinear problems of the form (36) can be
solved using Newton’s method, though in this case
evaluation of F involves numerical integration.
For that reason, solution processes are known as
shooting methods (Seydel, 1994; Stoer and Bu-
lirsch, 1993). The Jacobian DF required by New-
ton’s method incorporates trajectory sensitivities
Φ and Ψ, which must be evaluated in conjunction
with the numerical integration.

5.4 Limit cycles

Periodic (limit cycle) behaviour occurs in a wide
variety of systems, from biological processes to
power systems. Limit cycles and their stability are
determined using Poincaré maps (Seydel, 1994;
Parker and Chua, 1989). A Poincaré map effec-
tively samples the flow of a periodic system once
every period. The concept is illustrated in Fig-
ure 7.

To define a Poincaré map, consider the limit
cycle Γ shown in Figure 7. Let Σ be a hyperplane
transversal to Γ and defined by

Σ = {x : σ>(x− x̃) = 0} (37)

where x̃ is a point anchoring Σ, and σ is a vec-
tor normal to Σ. The trajectory emanating from
x∗ will again encounter Σ at x∗ after T seconds,
where T is the minimum period of the limit cy-
cle. The existence of trajectory sensitivities en-
sures continuity of the flow φ with respect to ini-
tial conditions. Therefore trajectories starting on
Σ in a neighbourhood of x∗ will, in approximately
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Figure 7: Poincaré map.

T seconds, intersect Σ in the vicinity of x∗. Hence
φ and Σ define the Poincaré map

xk+1 = P (xk) := φ(xk, τr(xk)) (38)

where τr(xk) ≈ T is the time taken for the tra-
jectory to return to Σ. Complete details can be
found in (Seydel, 1994; Parker and Chua, 1989).
Note that the Poincaré map is well defined even
though the underlying flow may be non-smooth.

From (38), it can be seen that a point x∗

on the limit cycle can be located using Newton’s
method to solve the nonlinear algebraic equations

Fl(x∗) = φ(x∗, τr(x∗))− x∗ = 0. (39)

5.5 Grazing

Grazing refers to situations where the trajectory
just touches a triggering hypersurface. Figure 8
provides an illustration. At a parameter value θg,
lying between θhit and θmiss, the trajectory tan-
gentially encounters (grazes) the triggering hyper-
surface. This bounding case separates trajectories
that encounter the hypersurface from those that
do not.

A grazing trajectory must touch the target
hypersurface, which can be described by4

b(x) = 0. (40)

Furthermore, the trajectory must be tangential to
the hypersurface at the point of contact. It fol-
lows from (1) and (40) that tangential contact is
described by

∇b(xg)>f(xg, yg) = 0, (41)

as f(xg, yg) specifies the trajectory direction at
the grazing point. Collecting together appropriate

4The more general case of b(x, y) = 0 is presented in
(Donde and Hiskens, 2006). The dependence on algebraic
variables y is neglected here to simplify the presentation.

Parameter values

Triggering hypersurface

xg

xhit

θg
θhit
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Figure 8: Trajectory grazing triggering hypersur-
face.

equations, a grazing point is described by

φ(x0(θ), tg)− xg = 0 (42)
b(xg) = 0 (43)

∇b(xg)>f(xg, yg) = 0 (44)
g(xg, yg) = 0. (45)

This set of equations can be solved using a shoot-
ing method. Full details are provided in (Donde
and Hiskens, 2006), with a similar development
given by Zhao et al. (2004).

5.6 Example

The single machine infinite bus system of Figure 1
was used to explore the existence and nature of
limit cycles. It was found that a Hopf bifurca-
tion occurs at an AVR gain of K∗

A = 208.22. The
equilibrium point is unstable for KA > 208.22.
For example, with a gain of KA = 212, lineariza-
tion around the equilibrium point gave an unsta-
ble eigenvalue pair of 0.0053 ± j5.86. However
it was found that the unstable behaviour was re-
stricted by the field voltage limit Efdmax = 5.4,
with behaviour stabilizing to a non-smooth limit
cycle.

The shooting method of Section 5.4 was used
to locate this stable limit cycle. It was found that
all characteristic multipliers lay within the unit
circle, with the largest having a magnitude of 0.83.
This confirmed the limit cycle was indeed an at-
tractor.

Further investigation of the Hopf bifurca-
tion revealed that it was in fact supercritical.
The bifurcation diagram of Figure 9, produced
using the continuation process of (Donde and
Hiskens, 2006), shows a branch of stable limit cy-
cles emanating from the Hopf bifurcation.5 This
branch of limit cycles undergoes a cyclic fold at
KA = 209.9, beyond which the branch comprises
unstable limit cycles.

5The limit cycles are presented in Figure 9 as dots that
give the extreme values of Efd.
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Figure 9: Bifurcation diagram.

As shown in Figure 9, the stable non-smooth
limit cycles, induced by the Efdmax limit, coexist
with the smooth limit cycles that result from the
Hopf bifurcation. Over the range 208.22 < KA <
209.9, the system exhibits an unstable equilibrium
point, an unstable limit cycle, and two stable limit
cycles (one smooth and one non-smooth). These
limit sets are shown in Figure 10, for a gain KA =
209.

The shooting method of Section 5.4 was used
to obtain the limit cycles of Figure 10. In all cases,
convergence was obtained in three iterations, with
each iteration requiring a single simulation of one
period of the oscillation. On the other hand, re-
liance on time-domain simulation would be fu-
tile. The unstable limit cycle has characteristic
multipliers both inside and outside the unit cir-
cle, so time reversal would not achieve convergent
behaviour. Furthermore, transient behaviour is
poorly damped in the vicinity of the Hopf bifur-
cation. Therefore lengthy simulation would be re-
quired for adequate convergence to the stable limit
cycles. Shooting methods are however unaffected
by the stability properties and damping associated
with a limit cycle.

As the gain KA was reduced, the branches
of limit-induced and smooth limit cycles con-
verged to a point where the smooth limit cycle
became tangential to (grazed) the Efdmax sur-
face. Using the shooting method of (Donde and
Hiskens, 2006), it was found that this grazing limit
cycle occurred at KA = 206.26. As KA reduced
towards this critical value, the non-smooth limit
cycle spent less and less time on the Efdmax sur-
face. Correspondingly, one of its characteristic
multipliers approached unity. The smooth and
non-smooth limit cycles coalesced at grazing. As
KA was further reduced beyond the grazing value,
the limit cycles vanished, with structural stabil-
ity lost due to a grazing bifurcation (di Bernardo
et al., 2001).
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Figure 10: Co-existing limit cycles and equilib-
rium point, KA = 209.

6 Conclusions

The dynamic response of many real-world systems
involves interactions between continuous dynam-
ics and discrete events. Such hybrid behaviour can
be captured by a model that consists of a set of
differential-algebraic equations, modified to incor-
porate impulse (state reset) action and constraint
switching (DAIS model).

For such systems, analysis of large distur-
bance behaviour is largely reliant on time domain
simulation. Underlying parametric influences can-
not, however, be easily deduced from such anal-
ysis. The paper proposes the use of trajectory
sensitivities to complement time domain analy-
sis. Trajectory sensitivities can be obtained as a
by-product of implicit numerical integration tech-
niques, incurring little additional computational
cost.

Trajectory sensitivities facilitate trajectory
approximations that enable efficient assessment of
parameter uncertainty. Furthermore, trajectory
sensitivities provide gradient information that un-
derlies a number of inverse problems, including pa-
rameter estimation, dynamic embedded optimiza-
tion, and shooting methods.
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