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Abstract: The paper considers distributed model predictive control (MPC) strate-
gies that are appropriate for controlling large-scale systems such as power sys-
tems. The overall system is decomposed into subsystems, each with its own
MPC controller. To achieve performance equivalent to centralized MPC, these
distributed regulators must work iteratively and cooperatively towards satisfy-
ing a common, systemwide control objective. Automatic generator control (AGC)
provides a practical example for contrasting the performance of centralized and

decentralized controllers.
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1. INTRODUCTION

Model predictive control (MPC) is emerging as
a sophisticated, yet practical, control technology.
This model-based control strategy uses a predict-
ion of system behaviour to establish an appro-
priate control response. A number of benefits
follow from using MPC, including the ability
to account systematically for process constraints.
The effectiveness of MPC depends on models
of appropriate accuracy and on the availabil-
ity of sufficiently fast computational resources—
requirements that limit the application base for
MPC. Even so, applications abound in the pro-
cess industries, and are becoming more wide-
spread (Qin and Badgwell, 2003; Camacho and
Bordons, 2004).

Traditionally, control of large, networked sys-
tems is achieved by designing local, subsystem-
based controllers that ignore the interactions be-
tween the different subsystems. These controllers
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often perform poorly when the subsystem inter-
actions are significant. Centralized MPC, on the
other hand, is impractical for control of large-
scale, geographically expansive systems, such as
power systems. A distributed MPC framework is
appealing in this context, but must be designed
to take account of interactions between subsys-
tems. Interaction issues are crucial to the success
of distributed MPC, and are discussed further in
Section 3.

Automatic generation control (AGC) provides a
topical example for illustrating the performance
of distributed MPC in a power system setting.
The purpose of AGC is to regulate the real power
output of generators, with the aim of control-
ling system frequency and tie-line interchange
(Wood and Wollenberg, 1996). AGC must ac-
count for various limits, including restrictions on
the amount and rate of generator power devia-
tions.

Flexible AC transmission system (FACTS) de-
vices allow control of the real power flow over
selected paths through a transmission network
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(Hingorani and Gyugyi, 2000). As transmission
systems become more heavily loaded, such con-
trollability offers economic benefits (Krogh and
Kokotovic, 1984). However FACTS controls must
be coordinated with each other, and with AGC.
Distributed MPC offers an effective means of
achieving such coordination, whilst alleviating
the organizational and computational burden as-
sociated with centralized control.

2. MODELS

Distributed MPC relies on decomposing the over-
all system model into appropriate subsystem
models. A system comprised of A intercon-
nected subsystems will be used to establish these
concepts.

2.1 Centralized model

The overall system model is represented as a
discrete, linear time-invariant (LTT) model of the
form

z(k + 1) = Az(k) + Bu(k)

y(k) = Cx(k), ()

in which k denotes discrete time and

(A1 A2 ... Aim Bi1 Bi2 ... Bim
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L O ... ... Crum
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For each subsystem ¢ = 1,...,M, the triplet
(ui, x4, y;) represents the subsystem input, state
and output vector respectively.

2.2 Decentralized model

In the decentralized modeling framework, the ef-
fect of the external subsystems on the local sub-
system is assumed to be negligible. The decent-

ralized model for subsystem i, i = 1,...,M is
written as
:L‘z(k + 1) = A":lil(k) + B“ul(k)
yi(k) = Cyzq (k). 2

2.3 Partitioned model (PM)

The PM for each subsystem i incorporates the
effect of the local subsystem variables as well as
the effect of the states and inputs of the intercon-
nected subsystems. The PM for subsystem ¢, as
the name suggests, is obtained by considering an
appropriate partition of (1), as follows:

JF#i
yi(k) = Cizzq (k). (©)

3. DISTRIBUTED MPC FOR POWER SYSTEM
CONTROL

3.1 Preliminaries

Given the PM for each subsystem i = 1,..., M,
we consider two formulations for distributed
MPC: communication-based MPC and cooperation-
based MPC. The suitability of either distributed
MPC framework for systemwide control is as-
sessed in the sequel. In both approaches, an opti-
mization and exchange of variables between sub-
systems is performed during a sample time. We
may choose not to iterate to convergence.

The set of admissible controls for subsystem
1,€Q; C R™¢ is assumed to be a non-empty, com-
pact, convex set containing the origin in its inte-
rior. The set of admissible controls for the whole
plant Q is defined to be the Cartesian product of
the admissible control sets of each of the subsys-
tems. For subsystem ¢ at time k, the predicted
state vector at time ¢ > k is denoted by x;(t|k).
We have z;(k|k) = z;(k).

The cost function for subsystem i is defined over
an infinite horizon as follows:

@i (4, wg; x4 (k))

= Zmi(ﬂk)’Qi(t)mi(ﬂk) + ui(tk) Ri (H)ui(t|k), (4)
t=k

where Q; > 0, R; > 0 are symmetric weighting
matrices and x; (k) = [z;(k+1|k), z;(k+2|k),. ..

L ui(k) = [u(klE)  wi(k+1E) ..o " de-
note the infinite horizon state and input trajec-
tories, respectively, for subsystem i.

3.2 Communication-based MPC 2

For communication-based MPC, the optimal state-
input trajectory («(k), u? (k)) for subsystem i at
iteration p is obtained as the solution to the fol-

lowing optimization problem
min  ¢; (@5, wi; x4 (k))
Li,Uq
s.t. Ii(t + 1|k) = Amwl(t“ﬂ) + Bmul(t|k), k<t
+ ) [yl (k) + Bigul T (k)]

J#i
ui(t|k>eﬂi, k<t<k+N-1
ui(tlk) =0, k+ N < t. (5)

The integer N denotes the control horizon. For

notational simplicity, we drop the time depen-

dence of (2% (k), u? (k)) and representitas (z%, ul).
For each subsystem i at iteration p, only the sub-

system input sequence u! is optimized and up-

dated. The other subsystems’ inputs are not al-

tered during the solution of (5); they remain at

their values from iteration p — 1. The objective

function is the one for subsystem i only.

In the communication-based MPC framework,
each subsystem’s MPC has no information about

2 Similar strategies have been proposed by (Jia and Krogh,
2001; Camponogara et al., 2002)
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the objectives of the interconnected subsystems’
MPCs. Convergence of the exchanged state and
input trajectories must therefore be assumed—a
drawback of this formulation. Not uncommonly,
this MPC formulation leads to unstable closed-
loop behavior, so it is an unreliable strategy for
systemwide control.

3.3 Feasible cooperation-based MPC (FC-MPC)

To arrive at a reliable, distributed, systemwide
MPC framework, we modify the objectives of the
subsystems” MPCs to provide a means for coop-
erative behaviour among the controllers. Each lo-
cal controller objective ¢; is replaced by one that
measures the systemwide impact of local control
actions. Here, we choose the simplest such mea-
sure - a strong convex combination of the indi-
vidual subsystems’ objectives i.e., ¢ = Y w;¢p;,
where w; are the weights. We set w; = 1/M for
all i = 1,...,M in our discussion below, but
our results hold for any combination of weights
satisfying w; > 0, > w; = 1.

In large-scale implementations, the system sampl-
ing interval may be insufficient for the converg-
ence of the iterative, cooperation-based algo-
rithm. In such cases, the algorithm has to be
terminated prior to convergence of the state
and input trajectories and the last calculated in-
put trajectories used to compute a suitable con-
trol law. To facilitate intermediate termination,
it is imperative that all iterates generated by
the cooperation-based algorithm are systemwide
feasible (i.e., satisfy all model and inequality con-
straints) and the resulting distributed control law
is closed-loop stable.

We define the finite horizon state and input tra-

jectories for subsystem i as ®;(k) = [zi(k +
1k) ..., zi(k+N|k) | and @i (k)" = [us(k|k)’, us(k+
1/k),...,us(k + N — 1|k)']. For convenience, we

drop the k dependence of z; and u; in the follow-
ing discussion. It is shown in Appendix A that for
eachi =1,..., M, =; can be expressed as follows:

T; = By + fuwi(k) + Z[Eijﬁj + fijzi(k)].  (6)
i#i

The infinite horizon input trajectory u; is ob-

tained by augmenting w; with the input sequence

u;(t|k) = 0 for all t > k 4+ N. The infinite horizon

state trajectory x; is derived from x; by propa-

gating the terminal state z;(k + N|k) using (3)

and u;(tlk) = 0,t > k+ N,Vi=1,..., M. For

subsystem ¢, the FC-MPC optimization problem
is

W™ (k) € arg(FC-MPC,) (7a)
in which
FC-MPC; £
1 M
min MZ%(uf_l7---7uf__117ui,uf;f,---,uﬁf_l;w(k))
r=1
(7b)
st. wi(jlk) €, k<j<k+N-1 (7c)
ui(jlk) =0, k+ N <, (7d)

in which each cost function ®;(-) is obtained by
eliminating the state trajectory «; from (4), using
(3). For this case, the FC-MPC optimization prob-
lem for each subsystem ¢ = 1,..., M can be ex-
plicitly written as the finite horizon optimization

FC-MPC, &

M
1
min La R <ZE S 3 (B )
1

s#£j 1#i

M
+ Z Eji'Q; Z (EjzifFl + gj(f(k)))> ",
j=1

I#i

St w(Glk) €Qi, k<j<k+N-1, 6)
in which
M M
Ri=R;+ Z E;i'Q;Ej: + Z Eji! Z M5 Esi,
Jj=1 Jj=1 s#j

Q; = diag (Q(1),...,Q:i(N —1),Qy) ,
M;; = diag (0,...,0,Q;;) ,
R; = diag (Ri(0), Ri(1),..., Ry(N = 1)),

M
gi(a(k)) = > figa; (),

j=1
while
Qll le ------ QIM
— Q21 QZZ """" Q2M
Q= . oo ; ©)
Qn1 Qg v oo Qnm

is a suitable terminal penalty matrix. Restricting
attention to open-loop stable systems simplifies
the choice of Q. Foreachi =1,..., M, let Q;(0) =
Qi(1) = -+ = Qi(N — 1) = Q. The terminal
penalty Q can be obtained as the solution to the
centralized Lyapunov equation

AQA-Q=-Q (10)
in which Q = diag(Q1,Q2....,Qwm).

3.4 FC-MPC algorithm and properties

The state trajectory for subsystem ¢ generated by
the set of subsystem input trajectories w1, ..., un
and initial state z is represented as x;(u1, ..., Uy
; z). For notational simplicity, we drop the func-
tional dependence of the state trajectory and
write @; <« x;(uq,...,u; 2). The following al-
gorithm is employed for cooperation-based dis-
tributed MPC.

Algorithm 1.
Given (u?,z;(k)),Q; > 0,R; > 0,i=1,...,M
Pmax(k) > 0and e > 0
p—1Llp —Tel'>1
while p; > eforsomei =1,..., M and p < pmax
fori=1,...,M
u?™) € arg(FC-MPC;), (see (7), (8))

W= )+ (1 )y
T

pi = |luf —u;
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end (for)

Transmit w”, ¢ = 1,..., M to interconnected
subsystems.

Calculate z;(ul, ..., ul;;2(k)),i=1,..., M.
p—p+1

end (while)

After p iterates, denote the cooperation-based
cost function by ®(ul, ..., uh,; 2(k)). The follow-
ing properties can be established for the FC-MPC
formulation (8) employing Algorithm 1.

Lemma 1. Given the distributed MPC formula-
tion FC-MPC; defined in (7), (8),V i =1,..., M,
the sequence of cost functions {®(uf, ...
generated by Algorithm 1 is a non-increasing
function of the iteration number p.

Using Lemma 1 and the fact that ®(-) is bounded
below assures convergence with iteration num-
ber p.

Lemma 2. All limit points of Algorithm 1 are op-
timal.

Lemma 2 implies that the solution obtained at
convergence of Algorithm 1 is Pareto optimal i.e.,
the solution at convergence is identical to the
centralized MPC solution.

3.5 Distributed MPC control law

Let X represent the constrained stabilizable set
for the system under the set of input constraints
Q1 xQa ... xQ. At time £, let the FC-MPC algo-
rithm (Algorithm 1) be terminated after p(k) = {
iterates, with

ul(z(k) = [ub(k;2(k)), ub(k + Lak)),..., ], (1)

i=1,...,M

representing the solution to Algorithm 1 after /
cooperation-based iterates. The distributed MPC
control law is obtained through a receding hori-
zon implementation of optimal control whereby
the input applied to subsystem i at time &, u;(k),
is

ui (k) = ul (ks (k). (12)

Lemmas 1 and 2 lead to the following theorem on
closed-loop stability of the nominal system.

Theorem 3. Let Algorithm 1, the distributed MPC
formulation (7), (8) with N > 1, and the dis-
tributed control law defined in (12) be given. If

A is stable, Q is obtained from (10), and

Qi(0)=Qi(1)=...=Qi(N-1)=Q; >0
Rl( ) Rl(l): _Rl( ):Rz >0
i=1,...,M

then the origin is an exponentially stable equilib-
rium for the closed-loop system

x(k+ 1) = Az(k) + Bu(z(k))

yubso(k)}

in which
u(a(k)) =
forall (k) € X and any p(k) = 1,2,...

FW () . B (i) |

Remark 4. If (A, Q?) is detectable and @; > 0 for
all i = 1,..., M, then the closed-loop system is
asymptotically stable under the distributed MPC
control law.

4. EXAMPLES
4.1 Performance comparison

The examples use the cumulative stage cost as an
index for comparing the performance of different
controller paradigms. Accordingly, define

t—1 M

- %Z Z T4 k) Qix; k) + “1( )/Rzuz(k)] . (13)
k=0 i=1

4.2 Two area power system network

We consider an example with two control ar-
eas interconnected through a tie line. For a 25%
load increase? in area 2, the load disturbance
rejection performance of the FC-MPC formula-
tion is evaluated and compared against the per-
formance of centralized MPC (cent-MPC), de-
centralized MPC (decent-MPC), communication-
based MPC (comm-MPC) and the standard au-
tomatic generation control (AGC) with anti-reset
windup. The load reference setpoint in each area
is constrained between +0.3.

The relative performance of standard AGC, cent-
MPC and FC-MPC (terminated after just 1 cooper-
ation-based iteration) is depicted in Fig. 1, where
the transient responses of the tie-line power flow
and the area 2 load reference setpoint are shown.
Under standard AGC, the system takes more
than 400 sec to drive the tie-line power flow de-
viation to zero. With cent-MPC or FC-MPC (ter-
minated after just 1 iteration), the tie-line power
flow disturbance is rejected in less than 100 sec.
The closed-loop performances of the various con-
trol formulations are compared in Table 1.

Table 1. Performance of different
control formulations w.r.t. cent-MPC,

AN = ReontisReent 0,
cent
A AAN%
standard AGC 39.26 158.32
decent-MPC 17.683 164
comm-MPC 17.42 14.62

FC-MPC (1 iterate) 15.24 0.24
FC-MPC (5 iterates) ~ 15.2 ~0
cent-MPC 15.2 -

3 In practice, such a large load change would result in cur-
tailment of AGC, and activation of other, more drastic con-
trols such as load shedding. This exaggerated disturbance is
useful, however, for exploring the influence of constraints on
the various control strategies.
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Fig. 1. Change in tie line power flow (AP;2) and
load reference setpoint (A Pyet, ).

4.3 Four area power system network

An example with four control areas is shown in
Fig. 2. Power flows through tie-line connections
1—-2,2—3,and 3 — 4 are the sources of inter-
actions between the control areas. The relative
performance of cent-MPC, comm-MPC and FC-
MPC is analyzed for a 25% load increase in area
2 and a simultaneous 25% load drop in area 3.
In the comm-MPC and FC-MPC formulations,
the load reference setpoint (P,t) in each area is
manipulated independently to reject the load dis-
turbances and drive the deviations in frequencies

(Aw;) and tie-line power flows (AP?) to zero. In
the cent-MPC framework, a single MPC controls
the entire power network. The load reference set-

point for each area is constrained between +1.

Fig. 3 shows the performance of cent-MPC, comm-

MPC and FC-MPC (terminated after 1 cooperation-

based iterate.) Based on calculated closed-loop
control costs, the performance of comm-MPC is
worse than that of cent-MPC by about 25%. The
closed-loop performance of the FC-MPC formu-
lation, terminated after just 1 cooperation-based
iterate, is within 3.2% of cent-MPC performance.
Performance of the FC-MPC framework can be
driven to within any pre-specified tolerance of
cent-MPC performance by allowing the coopera-
tion-based iterative process to converge.

CONTROL AREA 1 CONTROL AREA 4

CONTROL AREA 2 CONTROL AREA 3

Fig. 2. Four area power network.

0.15

cent-MPC -

[A setpoint —
| comm-MPC ----

0 10 20 30 40 50
Time (sec)

target —

0.5 i cent-MPC -

e comm-MPC ----

API‘(‘fl 0 - -t L i S
051
14 bt

0 10 20 30 40 50
Time (sec)

Fig. 3. Change in tie line flow (AP}2), and load
reference setpoint (AP, ).

4.4 Two area power system with FACTS device

This example returns to the two area network.
In this case, the interconnection between the two
areas incorporates a FACTS device that is em-
ployed by area 1 to manipulate the effective
impedance of the tie line. We investigate the rel-
ative performance of the cent-MPC, comm-MPC,
and FC-MPC formulations, in response to a 25%
increase in the load of area 2.

Under the comm-MPC formulation, the system
takes about 300 sec to reject the load distur-
bance. The comm-MPC formulation incurs a per-
formance loss of 192.51% relative to cent-MPC.
Under the FC-MPC formulation, terminated af-
ter 1 iterate, the performance loss is only 6.2%
compared to cent-MPC. The system rejects the
load disturbance in less than half the time re-
quired by comm-MPC. Fig. 4 shows the relative
phase deviation in the two areas, and the change
in impedance due to the FACTS device, for the
different MPC frameworks.

5. CONCLUSIONS

Centralized MPC is not well suited for control
of large-scale, geographically expansive systems
such as power systems. However, the perfor-
mance benefits obtained with centralized MPC
can be realized through distributed MPC strate-
gies. Such strategies rely on decomposition of the
overall system into interconnected subsystems,
and iterative exchange of information between
these subsystems. An MPC optimization prob-
lem is solved within each subsystem, using local
measurements and the latest available external
information.

Various forms of distributed MPC have been
defined. Feasible cooperation-based MPC (FC-
MPC) assigns a common, system-wide objective
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0.05
setpoint —
0.04 - i cent-MPC -
0.03 i comm-MPC ----
A8, — ASy 0.02 - . \ FC-MPC (1 iterate) ------
0014 °
U s e
-0.01 T T T T T T T T
0 20 40 60 80 100 120 140
Time (sec)
015+ target —
01 P cent-MPC -
Tl comm-MPC ----
HEEE. FC-MPC (1 iterate) ------
N 0.05 P C-MPC (1 iterate)
0 ! \ R
-0.05 - l,/ N
-0.1 L

0 20 40 60 80 100 120 140
Time (sec)

Fig. 4. Relative phase difference (Ad; —Ady), and
change in FACTS impedance (AX;2).

to all subsystem problems, and has the prop-
erty that the converged solution is identical to
centralized MPC. In addition, the FC-MPC al-
gorithm can be terminated prior to convergence
without compromising feasibility or closed-loop
stability of the resulting distributed controller.
This feature allows the practitioner to terminate
the algorithm at the end of the sampling interval,
even if convergence is not achieved.

The paper has presented a number of power sys-
tem examples that have applied distributed MPC
to automatic generation control (AGC). MPC out-
performs standard AGC, due to its ability to ac-
count for process constraints. FC-MPC achieves
performance that is equivalent to centralized
MPC, and superior to other forms of distributed
MPC. The FC-MPC framework also allows co-
ordination of FACTS controls with AGC. In this
case, the cooperative aspect of FC-MPC was very
important for achieving acceptable response.
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Appendix A. MODEL MANIPULATION

To simplify the development of the FC-MPC al-
gorithm, it is convenient to eliminate the states
x;, @ = 1,..., M using the PM (3). Propagating
the model for each subsystem through the con-
trol horizon N gives

T = Eit; + fymi(k) + Z[E‘jﬁj + 95T + fijzi (k)]
i
Vi=1,...,M (A1)

in which
[ By 0 ... 0 Ay
. AiiBij Bi; 0 0 B Aiifgij
Ei; = fij = :
N-—-1 7‘1
_A“ Bi]' ......... B” A“ Ai]'
o 0o ... 0
Ay 0 0 ...0
95 = : : .
ANTA;; ANTPAG o0

Combining the models in (A1), Vi =1,..., M,
gives the following system of equations

Az = Eu + G (k) (A.2)
in which
[fi1 fi2 oo fim [Ei1 Ei2 ... Eim
far faz oo fom Es1 Eaz ... Eam
G=1. . . &=
_?Al 1 e e ?Al M _E}\[ B E]\] M
r I =912 -« —Ginm [ U1
—921 I o =gom | _ T2 | U2
A= = u =
S L% Wt
(A3)

Since the system is LTI, a solution to the sys-
tem (A.2) exists for each permissible RHS. Matrix
A is therefore invertible and consequently, we
can write foreachi =1,..., M

T; = By + fuzi(k) + Z[Eijﬁj + fijei(K)].  (A4)
Jj#i
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