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Abstract—  Voltage and current measurements are routinely used 
as inputs to transducers in order to obtain sensory information 
on active and reactive power.  If the voltage and current meas-
urements are not collocated, the power measurements will be 
incorrect.  In this paper, a correction is calculated for non-
collocated voltage and current measurements used to obtain 
power.  The correction is obtained utilizing the non-collocated 
power and one voltage magnitude measurement.  One applica-
tion area is in state estimation sensory inputs. 
 
Index Terms— Measurements, instrumentation, state estimation, 
measurement  error, complex power measurement. 

I.  INTRODUCTION 
OWER system measurements may possess error due to 
inherent sensor response, sensor interfaces, and instrument 

placement.  One such power measurement error is non-
collocated complex power measurements.  Complex power is 
usually calculated from voltage and current measurements 
which must be taken at the same place.  The usual instrumen-
tation configuration is that phase-phase voltages and line cur-
rents are measured at the same location (i.e., the measure-
ments are collocated), and these analog measurements are 
passed to a transducer which generates a digital signal corre-
sponding to the active and reactive power.  If the voltage and 
current measurements are not collocated, there will be an error 
in P + jQ.  Non-collocated measurements may result from 
changes in original construction or physical difficulties in 
placement of current and potential transformers.  It will be 
shown that an accurate power measurement can be calculated 
utilizing a non-collocated value plus a correction procedure.  
This correction calculation requires an accurate knowledge of 
the impedance between the points of instrumentation.   One 
application area is in the utilization of active and reactive 
power measurements for use in state estimators [1] and for 
general energy management systems.  

II.  NON-COLLOCATED VOLTAGE AND CURRENT 
MEASUREMENTS 

Complex power is a function of the complex voltage and 
current, where S=VI*.  Power measuring transducers are a 
common part of power systems instrumentation.  These power 
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measurement devices sample the voltage, v(t), and the current, 
i(t), which are rendered to a digital signal by an analog / digi-
tal converter. The average power (P) is calculated from these 
signals, and the reactive power (Q) is calculated through the 
use of a phase shifted version of one of the signals.  These 
values are provided to a remote system operator.  When meas-
uring or calculating complex power, the voltage and current 
must be taken at the same place in the system.  Figure 1 shows 
the assumed single line equivalent configuration for the non-
collocated case with a current transformer (CT) and potential 
transformer (PT) as the sensory elements, under the assump-
tion of balanced conditions.  In the case of a non-collocated 
measurement it is assumed that the instruments are not far 
apart and well within the range of typical short line modeling 
limits.  Resistance in the reactance model has been assumed to 
be negligible.   

 
Fig. 1 Non-collocated power measurement sensory instrument 

placement.  Note that S11 = P11 + jQ11 and S22 = P22 + jQ22. 
 

 The general concept of complex power may be generalized 
as follows:  let V  be a vector of complex voltage values at 
several buses (sinusoidal steady state, phasor notation), and let 
I  be a vector of line currents.  Let the dimensions of V and I 
be NV and NI respectively.  Further let the NV by NI generalized 
complex power matrix S be defined as 

S = VIH, 
where (.)H denotes the hermitian operation (complex conjugate 
followed by transpose).  Then elements of matrix S in posi-
tions like Saa represent the familiar conventional complex 
power.  However, elements like Sab, a ≠ b, represent non-
collocated signals that are dimensionally like P + jQ, but do 
not represent conventional active and reactive power.  The 
issue is the ‘correction’ of non-collocated terms like Sab to 
obtain conventional active and reactive power like Saa.  Con-
sider the case that NV = NI = 2, and the current vector I is writ-
ten with polarity such that both currents are input to the two-
port network.  Then it is a simple matter to show that  
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S = VIH = ZIIH = VVHYH 
where Z and Y are the bus impedance and admittance matrices 
of the two-port.  The use of Z and Y imply that the bus current 
injection vector is [I1 –I2]t using the notation of Fig. 1.  Note 
that S is a complex, non-symmetric matrix which can easily be 
shown to be of deficient rank and hence S11S22 = S12S21.  There 
is a similar quantity s defined as s = IHV which is a scalar 
complex quantity that has the property Re{s} ≥ 0 for a passive 
two-port.  In the field of circuit theory, a general n by n com-
plex matrix Z is said to be a ‘positive real matrix’ if for all 
complex n vectors I, the scalar valued function IHZI has a non-
negative real part [2].  A positive real matrix is characteristic 
of impedance and admittance matrices of passive circuits.  
Other properties of positive real matrices relate to causality, 
pole and zero location of the corresponding characteristic 
equation, and stability of the output / input transfer function.  
These and other properties and tests for ‘positive realness’ 
appear in classic electric circuits analysis texts, e.g., [4]. 

One method for correcting non-collocated measurements 
will be called the “Case A” method.  For Case A, consider S 
as a two by two matrix and let the non-collocated measure-
ments S12, |V1|, X1, X2, and X3 be known or measured.  S11 and 
S22 can be calculated in this case by obtaining a ‘correction 
term’.  This development also may be modified with a simple 
change of subscripts for the case that S21 and |V2| are known.  
Without loss of generality, the voltage V1 can be made the 
reference voltage.  Since S12 = V1 I2* and S12 and V1 are 
known, I2 can be calculated directly.  To calculate S11 and S22, 
V2 and I1 are needed.  The following matrix equation is 
formed to solve for the remaining unknowns using the polarity 
notation in Fig. 1, 
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Equation (1) is a simple consequence of the bus impedance 
analysis of a linear AC circuit, namely Vbus = Zbus Ibus, where 
Zbus is the bus impedance matrix referred to ground [3].  Equa-
tion (1) can be multiplied out to give two equations that can be 
solved for the two unknowns, V2 and I1, 
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A second method denominated “Case B” applies when S21,  
|V1| and the reactances X1, X2, and X3 are known.  To solve for 
S11 and S22, the notation in Fig. 1 is used.  Let 

aVV =°∠= 011 . 

Further, let 
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Using basic power relationships, where S=VI*, P=Real{S}, 
and Q=Imag{S}, the following relationships are evident, 
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Parameters a, P21, and Q21 are known values.  To solve for 

the remaining unknowns, use the relationships between V1 and 
VX, VX and V2 and the Kirchhoff current law, 
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Using these equations and the power relationships, there are 
eight equations with eight unknown parameters.  The eight 
equations are simplified and manipulated to obtain the real 
and imaginary parts of S11 and S22 
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These equations are calculated in the order listed, i.e., the first 
column of equations followed by the second column of equa-
tions.  While it is possible to eliminate the intermediate vari-
ables a, b, and k, the expression for S11 becomes unwieldy. 

The Case B method can also be used when S12 and V2 are 
known by a similar replacement of variables as explained in 
Case A.  

III.  CONCLUSIONS 
Complex power can be calculated from a non-collocated 

measurement by two methods – denominated as Cases A and 
B in this paper.  A local voltage measurement and a detailed 
model of the local impedances are required along with the 
non-collocated power measurements. 
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