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Abstract—The detection of island formation in power networks
is prerequisite for the study of security analysis and control. We
develop a combined graph-theoretic-algebraic approach to detect
island formation in power system networks under multiple line
outages. We construct the approach by gaining insights into the
topological impacts of outaged lines on system connectivity from
the use of power transfer distribution factor information. We
develop a one-to-one relationship between minimal cutsets and
a matrix of the generalized line outage distribution factors for
multiple line outages. This relationship requires computations on
lower order matrices and so is able to provide rapidly essential
information. The proposed approach detects the island formation
and identifies the subset of outaged lines that is the causal factor.
Furthermore, for cases in which the set of outaged lines does not
result in system separation, the method has the ability to identify
whether a set of candidate line outages separates the system. Con-
sequently, the need for establishing nodal system connectivity is
bypassed. We illustrate the capabilities of the proposed approach
on two large-scale networks. The proposed approach provides
an effective tool for both real-time and offline environments for
security analysis and control.

Index Terms—Island formation, Jacobian singularity, line
outage distribution factors, minimal cutsets, multiple line outages,
power transfer distribution factors.

I. INTRODUCTION

POWER systems are continuously subject to various distur-
bances such as changes in the loads and the availability of

components. Our focus in this paper is on the network topology
modifications that separate the system into islands. We study the
causality factors of island formation in the presence of multiple
line outages and develop a general methodology for its detection
and for the identification of the subset of outaged lines causing
island formation.

The detection/identification of island formation provides
the information needed to be able to deal effectively with the
numerous complications that arise. These complications all
stem from the singularity of the Jacobian matrix in the Newton
power flow [1]–[3]. Consequently, the power flow cannot be
used without the introduction of a modified Jacobian matrix.
Furthermore, the impacts of the Jacobian matrix singularity
propagate through all the applications programs that use the
Newton power flow, such as state estimation and various net-
work analysis tools. These complications prevent the use of
such tools in standard form and require their application to the
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connected subnetworks that are formed. Moreover, separation
into two or more islands requires the deployment of different
control strategies to ensure system security. For offline static
security analysis studies, involving the analysis of numerous
what if cases, the line outages that lead to island formation are
regarded as “most problematic” [4], [5]. Indeed, situations with
multiple line outages may require extensive corrective control
efforts, ranging from redispatch to load shedding—a last resort.
The impacts of such line outages are even more pronounced
when stability aspects are included [6].

For both real-time as well as offline applications, the rapid
detection of island formation and the identification of the causal
factors are required to deal with the complications cited above.
In cases where several lines are outaged and no island formation
occurs, additional network analysis is needed to identify which
additional line outage(s) result in system separation into islands.

There exist various methods to detect island formation [1],
[7]–[15]. We may classify the existing tools into three major cat-
egories—linked list approaches, numerical methods, and graph-
theoretic schemes. The pioneering works on real-time island de-
tection are based on the use of linked list tables [7], [8]. Dif-
ferent numerical methods to determine system connectivity use
a sequence of multiplications of the network node-to-node con-
nectivity matrix [14], LU decomposition for detecting Jacobian
singularity [1], and eigen-system evaluation of the nodal sus-
ceptance matrix of the augmented network [15]. The graph-the-
oretic schemes include breadth first search [9], [10], path finding
approaches [11], node fusion [12], and two-stage processes [13].
The underlying concept in these graph-theoretic schemes is the
determination of paths between node pairs of the system. The
topology-based approaches use the status of each line to deter-
mine the system connectivity. The status information simply in-
dicates whether or not a line in the network is connected. When
multiple line outages are involved, the topological approaches
may not be the most appropriate tools because every change in
the topology requires a new application of the topological al-
gorithm starting from “scratch.” It follows, then, that the anal-
ysis of a cascading situation requires the repeated application of
the topology-based scheme to each outage condition whenever
a sequence of outages is considered. Since the information on
any subset of outages is not utilized, the multiple applications of
the topology-based scheme may entail computational inefficien-
cies. While these considerations are critical in online studies,
the many offline studies of various what if cases may also be
impacted by the computational requirements. In this paper, we
address the need of the rapid identification of island formation
in a computationally efficient way in which we make effective
use of the connectivity information of a subset of outaged lines
in a larger set of outaged lines containing that subset.
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Specifically, we propose the development of a combined-
graph-theoretic-algebraic approach to detect island formation
and to identify the causality factors under multiple line outages.
The proposed approach is based on the graph-theoretic notion
of minimal cutsets and the approximate line flow sensitivities,
the so-called power transfer distribution factors (PTDFs). The
marriage of the purely topological minimal cutset notion—the
outages of the elements of the minimal cutset separate the
system—with the circuit theory-based PTDFs embodying
both topology and network parameter information, harnesses
effectively this information. We use the PTDFs to evaluate the
impacts of line outages on the non-outaged lines’ flows in terms
of the so-called line outage distribution factors (LODFs). The
LODF values provide the fractions of the pre-outage flow on
the outaged line that are redistributed to the non-outaged lines
in the post-outage network. Since the focus here is on the study
of multiple line outages, we generalize the LODF concept to
construct what we term the generalized LODFs (GLODFs) for
such cases. In the paper, we establish a one-to-one relationship
between GLODFs and the minimal cutset. The GLODF values
of a set of outaged lines become undefined if and only if the set
of outaged lines constitutes one or more minimal cutsets. We
use this relationship to detect island formation. Moreover, we
can also identify the elements of the minimal cutsets and which
terminal nodes of the minimal cutset elements are located in
the same island.

A salient feature of the proposed approach is its low com-
putational requirements as the computations are carried out on
matrices whose dimension is the number of outaged lines. These
computations take advantage of the structural characteristics of
the proposed method whereby a set of -line outages serves to
establish the results of any larger set of outaged lines containing
this -line set as a subset. For concreteness, under the outages
of -lines, not separating the system, the proposed method eval-
uates the -line GLODF values. For an additional line outage,
resulting in a total of line outages, the -line GLODF
values are used to compute the line GLODF values. If all
the line GLODF values are defined, then the line
outages do not result in island formation; otherwise, two or more
islands are formed. In this way, we can directly pinpoint the im-
pact of the interactions between the additional line outage and
the -line outages as a causal factor for island formation. For
this reason, the proposed method is particularly useful in the
analysis of appropriate preventive/corrective control strategies
in cases involving the domino effect of multiple line outages to
effectively mitigate the impacts of such a sequence of outages.

We limit the scope of this paper to the detection of island for-
mation and the identification of minimal cutset elements. This
paper has four more sections. In Section II, we present the power
system network model and state the graph-theoretic notions we
use. Then, in Section III, we use generalized line outage distri-
bution factors for multiple line outages to evaluate their impacts.
We provide the theoretical basis from which we derive the pro-
posed scheme. In Section IV, we illustrate the application of the
approach to two large networks—the IEEE 118 bus-system and
a 2200-bus network derived from Northeast Power Coordinating
Council network. For improved reading of this paper, we present
the mathematical details in three appendexes. Appendix A pro-
vides the notation for this paper. Appendix B reviews briefly
the basic distribution factors and presents the derivation of the
GLODFs. The proofs of the mathematical statements are given
in Appendix C.

II. POWER SYSTEM NETWORK

Our focus in this paper is on the topological modifications
of the power network due to line outages. Since the interest is
in the connectivity information, it suffices to consider only the
real power flows in the network. For these purposes, we use
the linear network model in our analysis. We briefly review the
power system network model and state specific graph-theoretic
notions we use in this paper.

We consider a power system consisting of buses and
lines. We denote by the set of buses, with

the bus 0 being the slack bus and by the set
of transmission lines and transformers that connect the buses in
the set . We associate with each line ,
the ordered pair of nodes , with the convention that
the direction of the line real power flow is from to .
We denote by , the branch susceptance
matrix and use [16] the reduced incidence matrix
to construct the reduced nodal susceptance matrix by

, which is symmetric positive definite [17].
As the focus of this paper is on the topology structure of the

power system network, we use the DC power flow model [18]
in our analysis. The state is the vector of nodal voltage angles

given by . Here,
is the vector of net nodal real power injections. The vector of
the real power line flows is . We represent a MW
transaction as an injection of MW at node and a withdrawal
of MW at node . We denote the MW transaction from node
to node by the ordered triplet . The impact of the
transaction on line real power flow is given by the PTDF

, with

(1)

The impact of line outage on line real power flow is
, which may be determined in terms of LODF and

the pre-outage real power flow using the relationship

(2)

Here, for . We
review distribution factors and derive the GLODFs for multiple
line outages in Appendix B.

We associate the graph with the power system
network, with the set of vertices and the set of edges of the
graph . We use the terms graph and network interchangeably in
the remainder of this paper. is a connected network if and only
if there exists a path between every pair of nodes and . Two
connected subnetworks and of
are disjoint if , with and

. We call a subset a cutset if and only if the removal
of all the elements in from partitions into two disjoint
connected subnetworks and
with . We refer to the separated subnetworks as
the islanded subnetworks. A cutset is a minimal cutset
if no proper subset of is a cutset [12]. We make use of the
development of this section in the analysis of island formation.

III. DEVELOPMENT OF THE PROPOSED APPROACH

To start out, we focus on island formation. We use the dis-
tribution factors to determine the characterization of a minimal
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cutset of the power network. Consider the single line
and assume that constitutes a minimal
cutset of the connected network . The line con-
nects the two subnetworks and of with and

. We consider a transaction between the terminal nodes
of , which we denote by . From the defini-
tion of the PTDFs in Appendix B, it follows that is a minimal
cutset if and only if

(3)

We infer from (3) that for the singleton minimal cutset , the
PTDFs are binary valued for injection/withdrawal at the ter-
minal nodes of a single element minimal cutset. In fact, any
inter- and intra-subnetwork transaction, , in for
which constitutes a minimal cutset is characterized by

or

or
(4)

In words, if the transaction terminal nodes are in the two dif-
ferent subnetworks with the respective node sets and ,
then the transaction must flow over the line ; else, there is no
net flow on the line when the terminal nodes of the transac-
tion are in the same subnetwork node set or . Note that

makes undefined.
Consider the minimal cutset 1 with
lines connecting two disjoint connected subnetworks

and of . We consider the
outages of the first elements of , resulting in the mod-
ified network , with .
Since is a minimal cutset, is connected. Also, is a
minimal cutset of connecting the two disjoint subnetworks

and of . Therefore, (3) states that for this network

(5)

Since the terminal nodes of each minimal cutset element are in
the two different subnetworks, the discussion after (4) implies

(6)

Thus, once all but one elements of are outaged, the pre-
outage real power flow in each outaged line has to flow over the
minimal cutset element that is not outaged. We can also show
the case of all but two element outages of

(7)

1While ���� is not an ordered set, we reorder the elements from 1 to � so as
to allow the use of simple notation.

Then, by induction, we can rigorously establish that

(8)

We use (8) to prove the following.
Theorem 1: Let be a connected power system

network. The minimal cutset partitions
into two subnetworks and . Each
line has and . Then

(9)

(10)

or (11)

We prove Theorem 1 in Appendix C. This theorem provides
the necessary conditions of minimal cutsets. We also examine
the physical intuitions behind these conditions. The first part
is a generalized restatement of (8). The second part states any
transaction between and results in net power flows on
the minimal cutset elements; the algebraic sum of the minimal
cutset flows equals to the transaction amount. The last part states
that any transaction between nodes of results in 0 net
power flow across the minimal cutset.

We next consider a set of outaged lines denoted by
, which need not be a cutset. To deter-

mine whether contains one or more minimal cutsets, we
make use of the GLODFs. For line with all the

lines in outaged, the vector is given

(12)

where

...
. . .

...

(13)

As long as is nonsingular, (12) uniquely determines the
LODFs for a line of the outaged lines in . We
derive an important relationship between the singularity of
and the existence of minimal cutsets in in the following.

Theorem 2: Let be a connected power system
network. For a set of outaged lines

is singular
contains one or

more minimal cutsets.

We provide the proof in Appendix C. The singularity of
is equivalent to the existence of a , such that

. By definition, is a (left) eigenvector corresponding to a
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zero eigenvalue of , i.e., is an element of the left nullspace
, where

(14)

If has zero eigenvalues, we can use Theorem 2 and
show that each zero eigenvalue has a unique (up to a scaling
factor) eigenvector and is distinct,2 . Conse-
quently, forms a basis for .

Theorem 2 provides graph-theoretic insights into minimal
cutsets. In the realm of the rank of , we establish that the

, and so, there is equivalence of the exis-
tence of minimal cutsets in with that rank. We denote

each such minimal cutset by . By defini-

tion, partitions into the disjoint subnetworks
and .

We next find a basis for dimensional by the
rank revealing QR (RRQR) factorization [20], [21] of

(15)

where . Here, is the
submatrix with the 0 diagonal elements. The set of the columns
of the forms an orthonormal basis for the nullspace of

[20]. We next transform this basis so as to identify the
elements in each minimal cutset using the transformation matrix

...
...

... (16)

The construction of is detailed in Appendix C. It follows that
is a basis for with

(17)

Each identifies the elements of the corre-
sponding minimal cutset, i.e., the subset of lines without which
system separates into two islands. For two lines , we
check . If , then the from (to) ter-
minal nodes of and ( and ) are in the same island. For

, however, and ( and ) are in the two separate
islands.

The analysis of provides insights into the formation of
islands under multiple line outages. For detection of island for-
mation, we use Gaussian elimination, and for identification of
the elements of each minimal cutset, we obtain the RRQR fac-
tors of . In the Gaussian elimination of , a zero diagonal
element at some elimination step corresponds to

(18)

2In fact, the Jordan canonical form of��� has Jordan submatrices that corre-
spond to the 0 eigenvalues with “order unity” [19].

TABLE I
PTDF VALUES FOR A SUBSET OF OUTAGED LINES

By Theorem 2 then, there exists at least one minimal cutset con-
tained in , and therefore, the outages of the elements of
is responsible for the formation of two or more islands. We stop
the Gaussian elimination process and proceed with the RRQR
factorization of . The relations in (15) and (16) establish the
number of minimal cutsets and the identity of the elements of
each minimal cutset. Moreover, the sign of each pair of in
each minimal cutset provides the location of the terminal nodes
with respect to the formed islands.

We determine an analytic bound for the total number of mul-
tiplication/division operations required in the detection of island
formation. For the outage of a set of -lines, the construction of

requires no such operations. We note that the dimension of
is considerably smaller than that of the topological arrays

and . For this single set of -line outages, the number of
multiplication/division operations in the Gaussian elimination
is [23]. When additional line outages are considered, the
factors of are used. For a single additional line, the number
of multiplication/division operations is . For, say, addi-
tional line outages, the number of multiplication/division oper-
ations is . Note that these bounds represent “worst-case
conditions” since no computations are performed once a 0 diag-
onal element is detected that may be done by inspection.

IV. APPLICATIONS

The implementation of the proposed approach is straightfor-
ward. We illustrate the application of the proposed approach
to two different networks—the IEEE 118-bus system and a
2200-bus portion of the large-scale Northeast Power Coor-
dinating Council (NPCC) network. In the connected IEEE
118-bus system, we select a subset of seven of the 194 lines
and study the impacts of the outages of this subset. The line
definitions and the PTDFs are shown in Table I.

For , we compute given in (B9)
and perform the Gaussian elimination, which produces a zero di-
agonal element at step 5. The RRQR factorization for this matrix
determines (19), shown at the bottom of the next page, where
the two 0 diagonal elements indicate that . The cor-
responding given by (15) is in (20) at the bottom of the

next page. The two vectors in given in (20) span .
We construct the transformation matrix

(21)
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TABLE II
IEEE 118-BUS SYSTEM: ���� MINIMAL CUTSET INFORMATION

and obtain the transformed basis vector

... (22)

It follows that the zero diagonal element in the Gaussian elimi-
nation implies that the system separates into two or more islands
when all the seven lines are outaged. However, since ,
we established that there exist two minimal cutsets in the set of

outaged lines. The components of and allow us to
identify the members of the two minimal cutsets as shown in
Table II. We use the relative sign difference of the elements of

to determine the nodes of the subnetworks to which the
terminal nodes of the lines of in each minimal cutset belong.

Thus, the Gaussian elimination and the RRQR factorization
provide comprehensive information on the impacts of the out-
ages of the seven lines for the IEEE 118-bus system case.

Next we examine the network with 2200 buses and 2847
lines to evaluate the effects of the scheduled maintenance,
switched outages, and unplanned outages. The set of outaged

TABLE III
OUTAGED LINES AND LINE DEFINITIONS

lines is given in Table III. We denote the set of outaged lines
corresponding to the scheduled maintenance and the switching
actions by and consider the network with the elements
of outaged. We analyze the impacts of the six unplanned
line outages listed in Table III on the system connectivity for
this network in terms of the so-called updated PTDFs. For this
purpose, we construct (23), shown at the bottom of the page.
The zero diagonal element in (23) implies the singularity of

. Hence, in this case, we detect island formation
simply by inspection.

For the identification of the minimal cutset elements, we con-
sider all the outaged lines, denoted by the set , and construct

. The RRQR factorization results in three zero diagonal ele-
ments in , so that . We evaluate the three basis vec-

tors
...

... spanning using in (24), shown at
the bottom of the next page. The value 3 of indicates the
existence of three minimal cutsets in . The components of

(19)

(20)

(23)
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TABLE IV
LARGE-SCALE NETWORK: ���� MINIMAL CUTSET INFORMATION

and allow us to identify the members of these three min-
imal cutsets and the corresponding subnetworks associated with
the terminal nodes of each minimal cutset. The identification re-
sults are summarized in Table IV.

The proposed approach is flexible and does not require the
updated PTDFs. In fact, to study system connectivity, we first
investigate the impacts of the outages of the elements of .
We construct the corresponding and perform the Gaussian
elimination on . We determine that the outages of the lines
in do not form islands. We next focus on the impacts of
the unplanned outages of the lines using the sequence given in
Table III. For the first outage in this sequence, we augment
by adding a row and a column to form . We perform the
Gaussian elimination on using the factors of . Since
no islanding results, for the second unplanned outage, we again
augment by adding a row and a column and perform the
Gaussian elimination of the resulting using the factors of

. This process continues until either we detect a zero di-
agonal element in the Gaussian elimination of each augmented
matrix in the sequence or we complete the Gaussian elimination
of . We can similarly analyze the impacts of any subset of
additional outages by using the factors of the unaugmented ma-
trix in the Gaussian elimination step of the augmented matrix.

V. SUMMARY

We develop a combined graph-theoretic-algebraic approach
to detect island formation in power system networks under mul-

tiple line outages. Rather than rely on the need to conduct path-
finding approaches, the proposed approach uses some of the
characteristics of minimal cutsets in power system networks.
The application of linear algebraic notions allows us the detec-
tion of island formation and also identification of the causal fac-
tors. We construct the proposed approach making detailed use
of the minimal cutset properties. The new method is very useful
in both online and offline environments so as to effectively deal
with the many complications that arise from island formation.
When the outages of multiple lines result in the formation of
two or more islands, the method is able to identify which out-
aged lines cause the system separation. In cases where several
lines are outaged and no island formation occurs, the method
can identify whether a set of candidate line outages separates
the system into islands. Such identification provides the infor-
mation needed for the deployment of appropriate tools for secu-
rity analysis and control. A salient characteristic of the proposed
approach is the low computing requirements. The extension of
the work to the determination of all the nodes of the formed is-
lands will be reported in a future paper.

APPENDIX A
NOTATION

Set of buses with the slack
bus at node 0.
Line joining nodes with
the ordered bus pair ,
denoting the from and to buses,
respectively.
Set of network transmission lines.

Power system network with and
.

Subset of outaged lines with
.

Subset of transmission lines
constituting a minimal cutset with

.

...
... (24)
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Basic transaction of MW from the
node to the node .
PTDF of a line due to

.
Value of the variable in the
modified network obtained with all
the elements of outaged.
LODF of a line due to the line
outage.
Vector of GLODFs of the line due
to the outages of the line elements
of .

APPENDIX B
REVIEW OF THE BASIC DISTRIBUTION FACTORS

We provide a brief review of key aspects of distribution fac-
tors: injection shift factors (ISFs), PTDF, and LODF. For a more
detailed treatment, the reader is referred to [24] and [25]. In this
section, we also develop a generalized expression for LODFs
under multiple line outages.

For the power system model given in [24] and [25], the ISF
of a line is the approximate sensitivity of the line

real power flow with respect to the injection at some
node and a corresponding withdrawal at the slack bus.
We use to construct the ISF matrix . In fact, we
can state analytically as [24]

(B1)

Note that each has flow direction information on
the line definition. A positive (negative) value
indicates that the injection at node and withdrawal at node 0
results in the flows from to ( to ).

The PTDF is the approximate sensitivity of the real
power flow on line with respect to a change in the
transaction amount for the transaction is [25]

(B2)

This definition ensures that is as shown in [25].
We next construct the PTDF matrix for the entire set of

(B3)

is an matrix with the element in row and
column . We use the notation , since

is defined for the transaction between the terminal node
pairs of as opposed to , where the transaction
is defined between any node pair . We can show that

is symmetric positive definite. Since the
diagonal elements of the diagonal matrix are positive, then

is structurally symmetric with

(B4)

Whenever a change in the network topology occurs, the
PTDFs of the modified network must be determined. The
LODF, , is defined as the portion of the pre-outage real
power flow on line that is redistributed to line and is

(B5)

Note that is not defined if . The pre-outage

and the post-outage relationship is given by [24]

for any (B6)

We next generalize the LODF expression for the case of mul-
tiple line outages. We consider a set of
outaged lines. We denote by the vector

of pre-outage real power flows on elements. For a line

, we define the -dimensional vector , whose
elements are the LODFs with the lines in outaged. We may

view as providing the portions of the pre-outage flows
to flow on in the post-outage network

(B7)

The derivation of the elements of is motivated by con-
sidering the case of the single line outage. In
the post-outage network, the line outage changes the real
power flow on each line connected to node by the fraction
of that is redistributed onto that line. Similarly, the line
outage changes the real power flows on the lines connected to
node by the respective fractions of . Next, we con-
sider the transaction . The impact of the

is to add a flow on line and a net flow of

on all the other lines but connected to node

. We can, however, select the transaction amount to be

. Since this impact on all the lines but

is identical to that of the outage of on the same set of lines,
we may simulate the outage impacts by introducing with

given by . This thought process

leads to the definition of the LODF .
The generalization of LODF to the multiple line outages in

proceeds exactly along the same steps but explicitly takes
into account the interactions between the impacts of the outaged
lines. The simulation of the outages is done by introducing the

transactions between the terminal nodes of each outaged line
with the amounts determined so that

(B8)

where and

...
. . .

...

(B9)
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Due to superposition, the impacts of the transactions on the
real power flow in the line is given by

(B10)

but from (B8), and are related. If is nonsingular,
then we may express (B10) as

(B11)

It follows therefore that

(B12)

Note that is defined if is nonsingular and undefined
otherwise. The expression (B12) appears to be new.

Since is a submatrix of , its components satisfy (B4).
Consequently, the components of satisfy

(B13)

APPENDIX C
PROOFS OF MATHEMATICAL STATEMENTS

Proof of Theorem 1

We use an inductive approach to prove part (i). We first illus-
trate that the statement is true for a minimal cutset, which has a
single element. Consider the network in which elements
of are outaged. There are possible outage permutations,

which we denote by . In each

outaged network, constitutes a minimal cutset,
and from (6)

(C1)

Next, we assume that the statement is true for the minimal cutset
constituted by a set of elements and prove its veracity

for a set of elements. Assume holds

. By (B6), we can state that

(C2)

It follows form that (B4) ; hence, (C2) implies that

(C3)

Since any transaction between the subnetworks and
must flow over the minimal cutset elements, the proof of (ii)
follows from the results in part (i) and (8).

For the proof of , let be an intra-sub-
network transaction in . For an inter-subnetwork transaction

, from part (ii)

(C4)

Similarly, for the inter-subnetwork transaction

(C5)

Note that is equivalent to the two transactions and and
due to linearity

(C6)

A similar argument holds for an arbitrary intra-subnetwork
where terminal node pairs are in .

Proof of Theorem 2

We prove the necessary condition by contradiction. Let
be singular and assume does not contain a minimal cutset.
We perform the Gaussian elimination on and compute, at
step

(C7)
where we use the relation given in (B6). The Gaussian elim-
ination of the singular matrix results in a zero pivot at
some elimination step [23], which can only happen

if . By (5), constitutes a minimal

cutset of the network in which first lines of are
outaged. Thus, contains a minimal cutset
that is a contradiction of the original problem.

For the sufficiency condition, let be a minimal cutset
with . We partition

(C8)

Since satisfies (B13), so does . We construct the diag-
onal with

and . Thus,

. The diagonal elements of are

given by . Algebraic sum of column

(C9)

and so . Also the components of are
given by . Theorem 1
implies that , and so, .
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Consider with . Then
for the vector .

In other words, we construct a vector and .
The rows of form a linearly dependent set indicating that

is singular. Therefore, is also singular.
Furthermore, and . Since

, then using the statement of

(C10)

RRQR Factorization

We consider with such . The set of
columns of and form a basis for

. Therefore, and
...

...
... are full-rank

arrays. We define to be the matrix in relating

the two set of vectors:
...

...
... . Since the

components of each satisfy (C10), we can

reorder the rows of
...

...
... , introduce multiplication

by where necessary, and perform identical operations
on the corresponding rows of to obtain the first
elements as the identity matrix. We denote the other rows of

...
...

... by . Then the transformation that relates the
rearranged rows of the two rearranged bases is

...
...

... (C11)

where each also satisfies (C10). So, .
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